1 //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/MachineValueType.h"
10 #include "llvm/CodeGen/ValueTypes.h"
11 #include "llvm/IR/DerivedTypes.h"
12 #include "llvm/IR/LLVMContext.h"
13 #include "llvm/Support/TypeSize.h"
14 #include "gtest/gtest.h"
20 TEST(ScalableVectorMVTsTest
, IntegerMVTs
) {
21 for (MVT VecTy
: MVT::integer_scalable_vector_valuetypes()) {
22 ASSERT_TRUE(VecTy
.isValid());
23 ASSERT_TRUE(VecTy
.isInteger());
24 ASSERT_TRUE(VecTy
.isVector());
25 ASSERT_TRUE(VecTy
.isScalableVector());
26 ASSERT_TRUE(VecTy
.getScalarType().isValid());
28 ASSERT_FALSE(VecTy
.isFloatingPoint());
32 TEST(ScalableVectorMVTsTest
, FloatMVTs
) {
33 for (MVT VecTy
: MVT::fp_scalable_vector_valuetypes()) {
34 ASSERT_TRUE(VecTy
.isValid());
35 ASSERT_TRUE(VecTy
.isFloatingPoint());
36 ASSERT_TRUE(VecTy
.isVector());
37 ASSERT_TRUE(VecTy
.isScalableVector());
38 ASSERT_TRUE(VecTy
.getScalarType().isValid());
40 ASSERT_FALSE(VecTy
.isInteger());
44 TEST(ScalableVectorMVTsTest
, HelperFuncs
) {
47 // Create with scalable flag
48 EVT Vnx4i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 4, /*Scalable=*/true);
49 ASSERT_TRUE(Vnx4i32
.isScalableVector());
51 // Create with separate llvm::ElementCount
52 auto EltCnt
= ElementCount::getScalable(2);
53 EVT Vnx2i32
= EVT::getVectorVT(Ctx
, MVT::i32
, EltCnt
);
54 ASSERT_TRUE(Vnx2i32
.isScalableVector());
56 // Create with inline llvm::ElementCount
57 EVT Vnx2i64
= EVT::getVectorVT(Ctx
, MVT::i64
, ElementCount::getScalable(2));
58 ASSERT_TRUE(Vnx2i64
.isScalableVector());
60 // Check that changing scalar types/element count works
61 EXPECT_EQ(Vnx2i32
.widenIntegerVectorElementType(Ctx
), Vnx2i64
);
62 EXPECT_EQ(Vnx4i32
.getHalfNumVectorElementsVT(Ctx
), Vnx2i32
);
64 // Check that operators work
65 EXPECT_EQ(EVT::getVectorVT(Ctx
, MVT::i64
, EltCnt
* 2), MVT::nxv4i64
);
66 EXPECT_EQ(EVT::getVectorVT(Ctx
, MVT::i64
, EltCnt
.divideCoefficientBy(2)),
69 // Check that float->int conversion works
70 EVT Vnx2f64
= EVT::getVectorVT(Ctx
, MVT::f64
, ElementCount::getScalable(2));
71 EXPECT_EQ(Vnx2f64
.changeTypeToInteger(), Vnx2i64
);
73 // Check fields inside llvm::ElementCount
74 EltCnt
= Vnx4i32
.getVectorElementCount();
75 EXPECT_EQ(EltCnt
.getKnownMinValue(), 4U);
76 ASSERT_TRUE(EltCnt
.isScalable());
78 // Check that fixed-length vector types aren't scalable.
79 EVT V8i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 8);
80 ASSERT_FALSE(V8i32
.isScalableVector());
81 EVT V4f64
= EVT::getVectorVT(Ctx
, MVT::f64
, ElementCount::getFixed(4));
82 ASSERT_FALSE(V4f64
.isScalableVector());
84 // Check that llvm::ElementCount works for fixed-length types.
85 EltCnt
= V8i32
.getVectorElementCount();
86 EXPECT_EQ(EltCnt
.getKnownMinValue(), 8U);
87 ASSERT_FALSE(EltCnt
.isScalable());
90 TEST(ScalableVectorMVTsTest
, IRToVTTranslation
) {
93 Type
*Int64Ty
= Type::getInt64Ty(Ctx
);
94 VectorType
*ScV8Int64Ty
=
95 VectorType::get(Int64Ty
, ElementCount::getScalable(8));
97 // Check that we can map a scalable IR type to an MVT
98 MVT Mnxv8i64
= MVT::getVT(ScV8Int64Ty
);
99 ASSERT_TRUE(Mnxv8i64
.isScalableVector());
100 ASSERT_EQ(ScV8Int64Ty
->getElementCount(), Mnxv8i64
.getVectorElementCount());
101 ASSERT_EQ(MVT::getVT(ScV8Int64Ty
->getElementType()),
102 Mnxv8i64
.getScalarType());
104 // Check that we can map a scalable IR type to an EVT
105 EVT Enxv8i64
= EVT::getEVT(ScV8Int64Ty
);
106 ASSERT_TRUE(Enxv8i64
.isScalableVector());
107 ASSERT_EQ(ScV8Int64Ty
->getElementCount(), Enxv8i64
.getVectorElementCount());
108 ASSERT_EQ(EVT::getEVT(ScV8Int64Ty
->getElementType()),
109 Enxv8i64
.getScalarType());
112 TEST(ScalableVectorMVTsTest
, VTToIRTranslation
) {
115 EVT Enxv4f64
= EVT::getVectorVT(Ctx
, MVT::f64
, ElementCount::getScalable(4));
117 Type
*Ty
= Enxv4f64
.getTypeForEVT(Ctx
);
118 VectorType
*ScV4Float64Ty
= cast
<VectorType
>(Ty
);
119 ASSERT_TRUE(isa
<ScalableVectorType
>(ScV4Float64Ty
));
120 ASSERT_EQ(Enxv4f64
.getVectorElementCount(), ScV4Float64Ty
->getElementCount());
121 ASSERT_EQ(Enxv4f64
.getScalarType().getTypeForEVT(Ctx
),
122 ScV4Float64Ty
->getElementType());
125 TEST(ScalableVectorMVTsTest
, SizeQueries
) {
128 EVT nxv4i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 4, /*Scalable=*/ true);
129 EVT nxv2i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 2, /*Scalable=*/ true);
130 EVT nxv2i64
= EVT::getVectorVT(Ctx
, MVT::i64
, 2, /*Scalable=*/ true);
131 EVT nxv2f64
= EVT::getVectorVT(Ctx
, MVT::f64
, 2, /*Scalable=*/ true);
133 EVT v4i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 4);
134 EVT v2i32
= EVT::getVectorVT(Ctx
, MVT::i32
, 2);
135 EVT v2i64
= EVT::getVectorVT(Ctx
, MVT::i64
, 2);
136 EVT v2f64
= EVT::getVectorVT(Ctx
, MVT::f64
, 2);
138 // Check equivalence and ordering on scalable types.
139 EXPECT_EQ(nxv4i32
.getSizeInBits(), nxv2i64
.getSizeInBits());
140 EXPECT_EQ(nxv2f64
.getSizeInBits(), nxv2i64
.getSizeInBits());
141 EXPECT_NE(nxv2i32
.getSizeInBits(), nxv4i32
.getSizeInBits());
142 EXPECT_LT(nxv2i32
.getSizeInBits().getKnownMinValue(),
143 nxv2i64
.getSizeInBits().getKnownMinValue());
144 EXPECT_LE(nxv4i32
.getSizeInBits().getKnownMinValue(),
145 nxv2i64
.getSizeInBits().getKnownMinValue());
146 EXPECT_GT(nxv4i32
.getSizeInBits().getKnownMinValue(),
147 nxv2i32
.getSizeInBits().getKnownMinValue());
148 EXPECT_GE(nxv2i64
.getSizeInBits().getKnownMinValue(),
149 nxv4i32
.getSizeInBits().getKnownMinValue());
151 // Check equivalence and ordering on fixed types.
152 EXPECT_EQ(v4i32
.getSizeInBits(), v2i64
.getSizeInBits());
153 EXPECT_EQ(v2f64
.getSizeInBits(), v2i64
.getSizeInBits());
154 EXPECT_NE(v2i32
.getSizeInBits(), v4i32
.getSizeInBits());
155 EXPECT_LT(v2i32
.getFixedSizeInBits(), v2i64
.getFixedSizeInBits());
156 EXPECT_LE(v4i32
.getFixedSizeInBits(), v2i64
.getFixedSizeInBits());
157 EXPECT_GT(v4i32
.getFixedSizeInBits(), v2i32
.getFixedSizeInBits());
158 EXPECT_GE(v2i64
.getFixedSizeInBits(), v4i32
.getFixedSizeInBits());
160 // Check that scalable and non-scalable types with the same minimum size
161 // are not considered equal.
162 ASSERT_TRUE(v4i32
.getSizeInBits() != nxv4i32
.getSizeInBits());
163 ASSERT_FALSE(v2i64
.getSizeInBits() == nxv2f64
.getSizeInBits());
165 // Check that we can obtain a known-exact size from a non-scalable type.
166 EXPECT_EQ(v4i32
.getFixedSizeInBits(), 128U);
167 EXPECT_EQ(v2i64
.getFixedSizeInBits(), 128U);
169 // Check that we can query the known minimum size for both scalable and
170 // fixed length types.
171 EXPECT_EQ(nxv2i32
.getSizeInBits().getKnownMinValue(), 64U);
172 EXPECT_EQ(nxv2f64
.getSizeInBits().getKnownMinValue(), 128U);
173 EXPECT_EQ(v2i32
.getSizeInBits().getKnownMinValue(),
174 nxv2i32
.getSizeInBits().getKnownMinValue());
176 // Check scalable property.
177 ASSERT_FALSE(v4i32
.getSizeInBits().isScalable());
178 ASSERT_TRUE(nxv4i32
.getSizeInBits().isScalable());
180 // Check convenience size scaling methods.
181 EXPECT_EQ(v2i32
.getSizeInBits() * 2, v4i32
.getSizeInBits());
182 EXPECT_EQ(2 * nxv2i32
.getSizeInBits(), nxv4i32
.getSizeInBits());
183 EXPECT_EQ(nxv2f64
.getSizeInBits().divideCoefficientBy(2),
184 nxv2i32
.getSizeInBits());
187 } // end anonymous namespace