Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / unittests / IR / InstructionsTest.cpp
blob803bc56bd6d530fda7c0d339e61e906585de9a48
1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/ADT/CombinationGenerator.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/AsmParser/Parser.h"
15 #include "llvm/IR/BasicBlock.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/FPEnv.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm-c/Core.h"
30 #include "gmock/gmock-matchers.h"
31 #include "gtest/gtest.h"
32 #include <memory>
34 namespace llvm {
35 namespace {
37 static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
38 SMDiagnostic Err;
39 std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
40 if (!Mod)
41 Err.print("InstructionsTests", errs());
42 return Mod;
45 TEST(InstructionsTest, ReturnInst) {
46 LLVMContext C;
48 // test for PR6589
49 const ReturnInst* r0 = ReturnInst::Create(C);
50 EXPECT_EQ(r0->getNumOperands(), 0U);
51 EXPECT_EQ(r0->op_begin(), r0->op_end());
53 IntegerType* Int1 = IntegerType::get(C, 1);
54 Constant* One = ConstantInt::get(Int1, 1, true);
55 const ReturnInst* r1 = ReturnInst::Create(C, One);
56 EXPECT_EQ(1U, r1->getNumOperands());
57 User::const_op_iterator b(r1->op_begin());
58 EXPECT_NE(r1->op_end(), b);
59 EXPECT_EQ(One, *b);
60 EXPECT_EQ(One, r1->getOperand(0));
61 ++b;
62 EXPECT_EQ(r1->op_end(), b);
64 // clean up
65 delete r0;
66 delete r1;
69 // Test fixture that provides a module and a single function within it. Useful
70 // for tests that need to refer to the function in some way.
71 class ModuleWithFunctionTest : public testing::Test {
72 protected:
73 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
74 FArgTypes.push_back(Type::getInt8Ty(Ctx));
75 FArgTypes.push_back(Type::getInt32Ty(Ctx));
76 FArgTypes.push_back(Type::getInt64Ty(Ctx));
77 FunctionType *FTy =
78 FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
79 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
82 LLVMContext Ctx;
83 std::unique_ptr<Module> M;
84 SmallVector<Type *, 3> FArgTypes;
85 Function *F;
88 TEST_F(ModuleWithFunctionTest, CallInst) {
89 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
90 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
91 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
92 std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
94 // Make sure iteration over a call's arguments works as expected.
95 unsigned Idx = 0;
96 for (Value *Arg : Call->args()) {
97 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
98 EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
99 Idx++;
102 Call->addRetAttr(Attribute::get(Call->getContext(), "test-str-attr"));
103 EXPECT_TRUE(Call->hasRetAttr("test-str-attr"));
104 EXPECT_FALSE(Call->hasRetAttr("not-on-call"));
106 Call->addFnAttr(Attribute::get(Call->getContext(), "test-str-fn-attr"));
107 ASSERT_TRUE(Call->hasFnAttr("test-str-fn-attr"));
108 Call->removeFnAttr("test-str-fn-attr");
109 EXPECT_FALSE(Call->hasFnAttr("test-str-fn-attr"));
112 TEST_F(ModuleWithFunctionTest, InvokeInst) {
113 BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
114 BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
116 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
117 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
118 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
119 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
121 // Make sure iteration over invoke's arguments works as expected.
122 unsigned Idx = 0;
123 for (Value *Arg : Invoke->args()) {
124 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
125 EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
126 Idx++;
130 TEST(InstructionsTest, BranchInst) {
131 LLVMContext C;
133 // Make a BasicBlocks
134 BasicBlock* bb0 = BasicBlock::Create(C);
135 BasicBlock* bb1 = BasicBlock::Create(C);
137 // Mandatory BranchInst
138 const BranchInst* b0 = BranchInst::Create(bb0);
140 EXPECT_TRUE(b0->isUnconditional());
141 EXPECT_FALSE(b0->isConditional());
142 EXPECT_EQ(1U, b0->getNumSuccessors());
144 // check num operands
145 EXPECT_EQ(1U, b0->getNumOperands());
147 EXPECT_NE(b0->op_begin(), b0->op_end());
148 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
150 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
152 IntegerType* Int1 = IntegerType::get(C, 1);
153 Constant* One = ConstantInt::get(Int1, 1, true);
155 // Conditional BranchInst
156 BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
158 EXPECT_FALSE(b1->isUnconditional());
159 EXPECT_TRUE(b1->isConditional());
160 EXPECT_EQ(2U, b1->getNumSuccessors());
162 // check num operands
163 EXPECT_EQ(3U, b1->getNumOperands());
165 User::const_op_iterator b(b1->op_begin());
167 // check COND
168 EXPECT_NE(b, b1->op_end());
169 EXPECT_EQ(One, *b);
170 EXPECT_EQ(One, b1->getOperand(0));
171 EXPECT_EQ(One, b1->getCondition());
172 ++b;
174 // check ELSE
175 EXPECT_EQ(bb1, *b);
176 EXPECT_EQ(bb1, b1->getOperand(1));
177 EXPECT_EQ(bb1, b1->getSuccessor(1));
178 ++b;
180 // check THEN
181 EXPECT_EQ(bb0, *b);
182 EXPECT_EQ(bb0, b1->getOperand(2));
183 EXPECT_EQ(bb0, b1->getSuccessor(0));
184 ++b;
186 EXPECT_EQ(b1->op_end(), b);
188 // clean up
189 delete b0;
190 delete b1;
192 delete bb0;
193 delete bb1;
196 TEST(InstructionsTest, CastInst) {
197 LLVMContext C;
199 Type *Int8Ty = Type::getInt8Ty(C);
200 Type *Int16Ty = Type::getInt16Ty(C);
201 Type *Int32Ty = Type::getInt32Ty(C);
202 Type *Int64Ty = Type::getInt64Ty(C);
203 Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
204 Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
205 Type *X86MMXTy = Type::getX86_MMXTy(C);
207 Type *HalfTy = Type::getHalfTy(C);
208 Type *FloatTy = Type::getFloatTy(C);
209 Type *DoubleTy = Type::getDoubleTy(C);
211 Type *V2Int32Ty = FixedVectorType::get(Int32Ty, 2);
212 Type *V2Int64Ty = FixedVectorType::get(Int64Ty, 2);
213 Type *V4Int16Ty = FixedVectorType::get(Int16Ty, 4);
214 Type *V1Int16Ty = FixedVectorType::get(Int16Ty, 1);
216 Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
217 Type *VScaleV2Int64Ty = ScalableVectorType::get(Int64Ty, 2);
218 Type *VScaleV4Int16Ty = ScalableVectorType::get(Int16Ty, 4);
219 Type *VScaleV1Int16Ty = ScalableVectorType::get(Int16Ty, 1);
221 Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
222 Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
224 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
225 Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
227 Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
228 Type *V2Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 2);
229 Type *V4Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 4);
230 Type *VScaleV4Int32PtrAS1Ty = ScalableVectorType::get(Int32PtrAS1Ty, 4);
231 Type *V4Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 4);
233 Type *V2Int64PtrTy = FixedVectorType::get(Int64PtrTy, 2);
234 Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
235 Type *VScaleV2Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 2);
236 Type *V4Int32PtrTy = FixedVectorType::get(Int32PtrTy, 4);
237 Type *VScaleV4Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 4);
238 Type *VScaleV4Int64PtrTy = ScalableVectorType::get(Int64PtrTy, 4);
240 const Constant* c8 = Constant::getNullValue(V8x8Ty);
241 const Constant* c64 = Constant::getNullValue(V8x64Ty);
243 const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
245 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
246 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
248 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
249 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
250 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
251 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
252 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
254 // Check address space casts are rejected since we don't know the sizes here
255 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
256 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
257 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
258 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
259 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
260 EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
261 V2Int32PtrAS1Ty,
262 true));
264 // Test mismatched number of elements for pointers
265 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
266 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
267 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
268 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
269 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
271 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
272 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
273 EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
274 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
275 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
276 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
277 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
278 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
279 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
281 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
282 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
283 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
285 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
286 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
287 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
288 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
289 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
290 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
293 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
294 Constant::getNullValue(V4Int32PtrTy),
295 V2Int32PtrTy));
296 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
297 Constant::getNullValue(V2Int32PtrTy),
298 V4Int32PtrTy));
300 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
301 Constant::getNullValue(V4Int32PtrAS1Ty),
302 V2Int32PtrTy));
303 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
304 Constant::getNullValue(V2Int32PtrTy),
305 V4Int32PtrAS1Ty));
307 // Address space cast of fixed/scalable vectors of pointers to scalable/fixed
308 // vector of pointers.
309 EXPECT_FALSE(CastInst::castIsValid(
310 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
311 V4Int32PtrTy));
312 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
313 Constant::getNullValue(V4Int32PtrTy),
314 VScaleV4Int32PtrAS1Ty));
315 // Address space cast of scalable vectors of pointers to scalable vector of
316 // pointers.
317 EXPECT_FALSE(CastInst::castIsValid(
318 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
319 VScaleV2Int32PtrTy));
320 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
321 Constant::getNullValue(VScaleV2Int32PtrTy),
322 VScaleV4Int32PtrAS1Ty));
323 EXPECT_TRUE(CastInst::castIsValid(Instruction::AddrSpaceCast,
324 Constant::getNullValue(VScaleV4Int64PtrTy),
325 VScaleV4Int32PtrAS1Ty));
326 // Same number of lanes, different address space.
327 EXPECT_TRUE(CastInst::castIsValid(
328 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
329 VScaleV4Int32PtrTy));
330 // Same number of lanes, same address space.
331 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
332 Constant::getNullValue(VScaleV4Int64PtrTy),
333 VScaleV4Int32PtrTy));
335 // Bit casting fixed/scalable vector to scalable/fixed vectors.
336 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
337 Constant::getNullValue(V2Int32Ty),
338 VScaleV2Int32Ty));
339 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
340 Constant::getNullValue(V2Int64Ty),
341 VScaleV2Int64Ty));
342 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
343 Constant::getNullValue(V4Int16Ty),
344 VScaleV4Int16Ty));
345 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
346 Constant::getNullValue(VScaleV2Int32Ty),
347 V2Int32Ty));
348 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
349 Constant::getNullValue(VScaleV2Int64Ty),
350 V2Int64Ty));
351 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
352 Constant::getNullValue(VScaleV4Int16Ty),
353 V4Int16Ty));
355 // Bit casting scalable vectors to scalable vectors.
356 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
357 Constant::getNullValue(VScaleV4Int16Ty),
358 VScaleV2Int32Ty));
359 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
360 Constant::getNullValue(VScaleV2Int32Ty),
361 VScaleV4Int16Ty));
362 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
363 Constant::getNullValue(VScaleV2Int64Ty),
364 VScaleV2Int32Ty));
365 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
366 Constant::getNullValue(VScaleV2Int32Ty),
367 VScaleV2Int64Ty));
369 // Bitcasting to/from <vscale x 1 x Ty>
370 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
371 Constant::getNullValue(VScaleV1Int16Ty),
372 V1Int16Ty));
373 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
374 Constant::getNullValue(V1Int16Ty),
375 VScaleV1Int16Ty));
377 // Check that assertion is not hit when creating a cast with a vector of
378 // pointers
379 // First form
380 BasicBlock *BB = BasicBlock::Create(C);
381 Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
382 auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
384 Constant *NullVScaleV2I32Ptr = Constant::getNullValue(VScaleV2Int32PtrTy);
385 auto Inst1VScale = CastInst::CreatePointerCast(
386 NullVScaleV2I32Ptr, VScaleV2Int32Ty, "foo.vscale", BB);
388 // Second form
389 auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
390 auto Inst2VScale =
391 CastInst::CreatePointerCast(NullVScaleV2I32Ptr, VScaleV2Int32Ty);
393 delete Inst2;
394 delete Inst2VScale;
395 Inst1->eraseFromParent();
396 Inst1VScale->eraseFromParent();
397 delete BB;
400 TEST(InstructionsTest, CastCAPI) {
401 LLVMContext C;
403 Type *Int8Ty = Type::getInt8Ty(C);
404 Type *Int32Ty = Type::getInt32Ty(C);
405 Type *Int64Ty = Type::getInt64Ty(C);
407 Type *FloatTy = Type::getFloatTy(C);
408 Type *DoubleTy = Type::getDoubleTy(C);
410 Type *Int8PtrTy = PointerType::get(Int8Ty, 0);
411 Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
413 const Constant *C8 = Constant::getNullValue(Int8Ty);
414 const Constant *C64 = Constant::getNullValue(Int64Ty);
416 EXPECT_EQ(LLVMBitCast,
417 LLVMGetCastOpcode(wrap(C64), true, wrap(Int64Ty), true));
418 EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(C64), true, wrap(Int8Ty), true));
419 EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(C8), true, wrap(Int64Ty), true));
420 EXPECT_EQ(LLVMZExt, LLVMGetCastOpcode(wrap(C8), false, wrap(Int64Ty), true));
422 const Constant *CF32 = Constant::getNullValue(FloatTy);
423 const Constant *CF64 = Constant::getNullValue(DoubleTy);
425 EXPECT_EQ(LLVMFPToUI,
426 LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), false));
427 EXPECT_EQ(LLVMFPToSI,
428 LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), true));
429 EXPECT_EQ(LLVMUIToFP,
430 LLVMGetCastOpcode(wrap(C8), false, wrap(FloatTy), true));
431 EXPECT_EQ(LLVMSIToFP, LLVMGetCastOpcode(wrap(C8), true, wrap(FloatTy), true));
432 EXPECT_EQ(LLVMFPTrunc,
433 LLVMGetCastOpcode(wrap(CF64), true, wrap(FloatTy), true));
434 EXPECT_EQ(LLVMFPExt,
435 LLVMGetCastOpcode(wrap(CF32), true, wrap(DoubleTy), true));
437 const Constant *CPtr8 = Constant::getNullValue(Int8PtrTy);
439 EXPECT_EQ(LLVMPtrToInt,
440 LLVMGetCastOpcode(wrap(CPtr8), true, wrap(Int8Ty), true));
441 EXPECT_EQ(LLVMIntToPtr,
442 LLVMGetCastOpcode(wrap(C8), true, wrap(Int8PtrTy), true));
444 Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
445 Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
446 const Constant *CV8 = Constant::getNullValue(V8x8Ty);
447 const Constant *CV64 = Constant::getNullValue(V8x64Ty);
449 EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(CV64), true, wrap(V8x8Ty), true));
450 EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(CV8), true, wrap(V8x64Ty), true));
452 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
453 Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
454 Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
455 const Constant *CV2ptr32 = Constant::getNullValue(V2Int32PtrTy);
457 EXPECT_EQ(LLVMAddrSpaceCast, LLVMGetCastOpcode(wrap(CV2ptr32), true,
458 wrap(V2Int32PtrAS1Ty), true));
461 TEST(InstructionsTest, VectorGep) {
462 LLVMContext C;
464 // Type Definitions
465 Type *I8Ty = IntegerType::get(C, 8);
466 Type *I32Ty = IntegerType::get(C, 32);
467 PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
468 PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
470 VectorType *V2xi8PTy = FixedVectorType::get(Ptri8Ty, 2);
471 VectorType *V2xi32PTy = FixedVectorType::get(Ptri32Ty, 2);
473 // Test different aspects of the vector-of-pointers type
474 // and GEPs which use this type.
475 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
476 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
477 std::vector<Constant*> ConstVa(2, Ci32a);
478 std::vector<Constant*> ConstVb(2, Ci32b);
479 Constant *C2xi32a = ConstantVector::get(ConstVa);
480 Constant *C2xi32b = ConstantVector::get(ConstVb);
482 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
483 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
485 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
486 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
487 EXPECT_NE(ICmp0, ICmp1); // suppress warning.
489 BasicBlock* BB0 = BasicBlock::Create(C);
490 // Test InsertAtEnd ICmpInst constructor.
491 ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
492 EXPECT_NE(ICmp0, ICmp2); // suppress warning.
494 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
495 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
496 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
497 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
499 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
500 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
501 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
502 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
504 Value *S0 = BTC0->stripPointerCasts();
505 Value *S1 = BTC1->stripPointerCasts();
506 Value *S2 = BTC2->stripPointerCasts();
507 Value *S3 = BTC3->stripPointerCasts();
509 EXPECT_NE(S0, Gep0);
510 EXPECT_NE(S1, Gep1);
511 EXPECT_NE(S2, Gep2);
512 EXPECT_NE(S3, Gep3);
514 int64_t Offset;
515 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
516 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
517 ":128:128-n8:16:32:64-S128");
518 // Make sure we don't crash
519 GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
520 GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
521 GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
522 GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
524 // Gep of Geps
525 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
526 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
527 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
528 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
530 EXPECT_EQ(GepII0->getNumIndices(), 1u);
531 EXPECT_EQ(GepII1->getNumIndices(), 1u);
532 EXPECT_EQ(GepII2->getNumIndices(), 1u);
533 EXPECT_EQ(GepII3->getNumIndices(), 1u);
535 EXPECT_FALSE(GepII0->hasAllZeroIndices());
536 EXPECT_FALSE(GepII1->hasAllZeroIndices());
537 EXPECT_FALSE(GepII2->hasAllZeroIndices());
538 EXPECT_FALSE(GepII3->hasAllZeroIndices());
540 delete GepII0;
541 delete GepII1;
542 delete GepII2;
543 delete GepII3;
545 delete BTC0;
546 delete BTC1;
547 delete BTC2;
548 delete BTC3;
550 delete Gep0;
551 delete Gep1;
552 delete Gep2;
553 delete Gep3;
555 ICmp2->eraseFromParent();
556 delete BB0;
558 delete ICmp0;
559 delete ICmp1;
560 delete PtrVecA;
561 delete PtrVecB;
564 TEST(InstructionsTest, FPMathOperator) {
565 LLVMContext Context;
566 IRBuilder<> Builder(Context);
567 MDBuilder MDHelper(Context);
568 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
569 MDNode *MD1 = MDHelper.createFPMath(1.0);
570 Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
571 EXPECT_TRUE(isa<FPMathOperator>(V1));
572 FPMathOperator *O1 = cast<FPMathOperator>(V1);
573 EXPECT_EQ(O1->getFPAccuracy(), 1.0);
574 V1->deleteValue();
575 I->deleteValue();
578 TEST(InstructionTest, ConstrainedTrans) {
579 LLVMContext Context;
580 std::unique_ptr<Module> M(new Module("MyModule", Context));
581 FunctionType *FTy =
582 FunctionType::get(Type::getVoidTy(Context),
583 {Type::getFloatTy(Context), Type::getFloatTy(Context),
584 Type::getInt32Ty(Context)},
585 false);
586 auto *F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
587 auto *BB = BasicBlock::Create(Context, "bb", F);
588 IRBuilder<> Builder(Context);
589 Builder.SetInsertPoint(BB);
590 auto *Arg0 = F->arg_begin();
591 auto *Arg1 = F->arg_begin() + 1;
594 auto *I = cast<Instruction>(Builder.CreateFAdd(Arg0, Arg1));
595 EXPECT_EQ(Intrinsic::experimental_constrained_fadd,
596 getConstrainedIntrinsicID(*I));
600 auto *I = cast<Instruction>(
601 Builder.CreateFPToSI(Arg0, Type::getInt32Ty(Context)));
602 EXPECT_EQ(Intrinsic::experimental_constrained_fptosi,
603 getConstrainedIntrinsicID(*I));
607 auto *I = cast<Instruction>(Builder.CreateIntrinsic(
608 Intrinsic::ceil, {Type::getFloatTy(Context)}, {Arg0}));
609 EXPECT_EQ(Intrinsic::experimental_constrained_ceil,
610 getConstrainedIntrinsicID(*I));
614 auto *I = cast<Instruction>(Builder.CreateFCmpOEQ(Arg0, Arg1));
615 EXPECT_EQ(Intrinsic::experimental_constrained_fcmp,
616 getConstrainedIntrinsicID(*I));
620 auto *Arg2 = F->arg_begin() + 2;
621 auto *I = cast<Instruction>(Builder.CreateAdd(Arg2, Arg2));
622 EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
626 auto *I = cast<Instruction>(Builder.CreateConstrainedFPBinOp(
627 Intrinsic::experimental_constrained_fadd, Arg0, Arg0));
628 EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
632 TEST(InstructionsTest, isEliminableCastPair) {
633 LLVMContext C;
635 Type* Int16Ty = Type::getInt16Ty(C);
636 Type* Int32Ty = Type::getInt32Ty(C);
637 Type* Int64Ty = Type::getInt64Ty(C);
638 Type *Int64PtrTy = PointerType::get(C, 0);
640 // Source and destination pointers have same size -> bitcast.
641 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
642 CastInst::IntToPtr,
643 Int64PtrTy, Int64Ty, Int64PtrTy,
644 Int32Ty, nullptr, Int32Ty),
645 CastInst::BitCast);
647 // Source and destination have unknown sizes, but the same address space and
648 // the intermediate int is the maximum pointer size -> bitcast
649 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
650 CastInst::IntToPtr,
651 Int64PtrTy, Int64Ty, Int64PtrTy,
652 nullptr, nullptr, nullptr),
653 CastInst::BitCast);
655 // Source and destination have unknown sizes, but the same address space and
656 // the intermediate int is not the maximum pointer size -> nothing
657 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
658 CastInst::IntToPtr,
659 Int64PtrTy, Int32Ty, Int64PtrTy,
660 nullptr, nullptr, nullptr),
661 0U);
663 // Middle pointer big enough -> bitcast.
664 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
665 CastInst::PtrToInt,
666 Int64Ty, Int64PtrTy, Int64Ty,
667 nullptr, Int64Ty, nullptr),
668 CastInst::BitCast);
670 // Middle pointer too small -> fail.
671 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
672 CastInst::PtrToInt,
673 Int64Ty, Int64PtrTy, Int64Ty,
674 nullptr, Int32Ty, nullptr),
675 0U);
677 // Test that we don't eliminate bitcasts between different address spaces,
678 // or if we don't have available pointer size information.
679 DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
680 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
681 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
683 Type *Int64PtrTyAS1 = PointerType::get(C, 1);
684 Type *Int64PtrTyAS2 = PointerType::get(C, 2);
686 IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
687 IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
689 // Cannot simplify inttoptr, addrspacecast
690 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
691 CastInst::AddrSpaceCast,
692 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
693 nullptr, Int16SizePtr, Int64SizePtr),
694 0U);
696 // Cannot simplify addrspacecast, ptrtoint
697 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
698 CastInst::PtrToInt,
699 Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
700 Int64SizePtr, Int16SizePtr, nullptr),
701 0U);
703 // Pass since the bitcast address spaces are the same
704 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
705 CastInst::BitCast,
706 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
707 nullptr, nullptr, nullptr),
708 CastInst::IntToPtr);
712 TEST(InstructionsTest, CloneCall) {
713 LLVMContext C;
714 Type *Int32Ty = Type::getInt32Ty(C);
715 Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
716 FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
717 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
718 Value *Args[] = {
719 ConstantInt::get(Int32Ty, 1),
720 ConstantInt::get(Int32Ty, 2),
721 ConstantInt::get(Int32Ty, 3)
723 std::unique_ptr<CallInst> Call(
724 CallInst::Create(FnTy, Callee, Args, "result"));
726 // Test cloning the tail call kind.
727 CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
728 CallInst::TCK_MustTail};
729 for (CallInst::TailCallKind TCK : Kinds) {
730 Call->setTailCallKind(TCK);
731 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
732 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
734 Call->setTailCallKind(CallInst::TCK_None);
736 // Test cloning an attribute.
738 AttrBuilder AB(C);
739 AB.addAttribute(Attribute::NoUnwind);
740 Call->setAttributes(
741 AttributeList::get(C, AttributeList::FunctionIndex, AB));
742 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
743 EXPECT_TRUE(Clone->doesNotThrow());
747 TEST(InstructionsTest, AlterCallBundles) {
748 LLVMContext C;
749 Type *Int32Ty = Type::getInt32Ty(C);
750 FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
751 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
752 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
753 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
754 std::unique_ptr<CallInst> Call(
755 CallInst::Create(FnTy, Callee, Args, OldBundle, "result"));
756 Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
757 AttrBuilder AB(C);
758 AB.addAttribute(Attribute::Cold);
759 Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
760 Call->setDebugLoc(DebugLoc(MDNode::get(C, std::nullopt)));
762 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
763 std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
764 EXPECT_EQ(Call->arg_size(), Clone->arg_size());
765 EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
766 EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
767 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
768 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
769 EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
770 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
771 EXPECT_TRUE(Clone->getOperandBundle("after"));
774 TEST(InstructionsTest, AlterInvokeBundles) {
775 LLVMContext C;
776 Type *Int32Ty = Type::getInt32Ty(C);
777 FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
778 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
779 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
780 std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
781 std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
782 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
783 std::unique_ptr<InvokeInst> Invoke(
784 InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args,
785 OldBundle, "result"));
786 AttrBuilder AB(C);
787 AB.addAttribute(Attribute::Cold);
788 Invoke->setAttributes(
789 AttributeList::get(C, AttributeList::FunctionIndex, AB));
790 Invoke->setDebugLoc(DebugLoc(MDNode::get(C, std::nullopt)));
792 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
793 std::unique_ptr<InvokeInst> Clone(
794 InvokeInst::Create(Invoke.get(), NewBundle));
795 EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
796 EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
797 EXPECT_EQ(Invoke->arg_size(), Clone->arg_size());
798 EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
799 EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
800 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
801 EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
802 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
803 EXPECT_TRUE(Clone->getOperandBundle("after"));
806 TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
807 auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
808 auto *Arg0 = &*F->arg_begin();
810 IRBuilder<NoFolder> B(Ctx);
811 B.SetInsertPoint(OnlyBB);
814 auto *UI =
815 cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
816 ASSERT_TRUE(UI->isExact());
817 UI->dropPoisonGeneratingFlags();
818 ASSERT_FALSE(UI->isExact());
822 auto *ShrI =
823 cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
824 ASSERT_TRUE(ShrI->isExact());
825 ShrI->dropPoisonGeneratingFlags();
826 ASSERT_FALSE(ShrI->isExact());
830 auto *AI = cast<Instruction>(
831 B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
832 ASSERT_TRUE(AI->hasNoUnsignedWrap());
833 AI->dropPoisonGeneratingFlags();
834 ASSERT_FALSE(AI->hasNoUnsignedWrap());
835 ASSERT_FALSE(AI->hasNoSignedWrap());
839 auto *SI = cast<Instruction>(
840 B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
841 ASSERT_TRUE(SI->hasNoSignedWrap());
842 SI->dropPoisonGeneratingFlags();
843 ASSERT_FALSE(SI->hasNoUnsignedWrap());
844 ASSERT_FALSE(SI->hasNoSignedWrap());
848 auto *ShlI = cast<Instruction>(
849 B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
850 ASSERT_TRUE(ShlI->hasNoSignedWrap());
851 ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
852 ShlI->dropPoisonGeneratingFlags();
853 ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
854 ASSERT_FALSE(ShlI->hasNoSignedWrap());
858 Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
859 auto *GI = cast<GetElementPtrInst>(
860 B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0));
861 ASSERT_TRUE(GI->isInBounds());
862 GI->dropPoisonGeneratingFlags();
863 ASSERT_FALSE(GI->isInBounds());
867 TEST(InstructionsTest, GEPIndices) {
868 LLVMContext Context;
869 IRBuilder<NoFolder> Builder(Context);
870 Type *ElementTy = Builder.getInt8Ty();
871 Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
872 Value *Indices[] = {
873 Builder.getInt32(0),
874 Builder.getInt32(13),
875 Builder.getInt32(42) };
877 Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
878 Indices);
879 ASSERT_TRUE(isa<GetElementPtrInst>(V));
881 auto *GEPI = cast<GetElementPtrInst>(V);
882 ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
883 ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
884 EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
885 EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
886 EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
887 EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
888 EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
890 const auto *CGEPI = GEPI;
891 ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
892 ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
893 EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
894 EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
895 EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
896 EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
897 EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
899 delete GEPI;
902 TEST(InstructionsTest, SwitchInst) {
903 LLVMContext C;
905 std::unique_ptr<BasicBlock> BB1, BB2, BB3;
906 BB1.reset(BasicBlock::Create(C));
907 BB2.reset(BasicBlock::Create(C));
908 BB3.reset(BasicBlock::Create(C));
910 // We create block 0 after the others so that it gets destroyed first and
911 // clears the uses of the other basic blocks.
912 std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
914 auto *Int32Ty = Type::getInt32Ty(C);
916 SwitchInst *SI =
917 SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
918 SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
919 SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
920 SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
922 auto CI = SI->case_begin();
923 ASSERT_NE(CI, SI->case_end());
924 EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
925 EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
926 EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
927 EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
928 EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
929 EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
930 EXPECT_EQ(CI + 1, std::next(CI));
931 EXPECT_EQ(CI + 2, std::next(CI, 2));
932 EXPECT_EQ(CI + 3, std::next(CI, 3));
933 EXPECT_EQ(SI->case_end(), CI + 3);
934 EXPECT_EQ(0, CI - CI);
935 EXPECT_EQ(1, (CI + 1) - CI);
936 EXPECT_EQ(2, (CI + 2) - CI);
937 EXPECT_EQ(3, SI->case_end() - CI);
938 EXPECT_EQ(3, std::distance(CI, SI->case_end()));
940 auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
941 SwitchInst::ConstCaseIt CCE = SI->case_end();
942 ASSERT_NE(CCI, SI->case_end());
943 EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
944 EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
945 EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
946 EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
947 EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
948 EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
949 EXPECT_EQ(CCI + 1, std::next(CCI));
950 EXPECT_EQ(CCI + 2, std::next(CCI, 2));
951 EXPECT_EQ(CCI + 3, std::next(CCI, 3));
952 EXPECT_EQ(CCE, CCI + 3);
953 EXPECT_EQ(0, CCI - CCI);
954 EXPECT_EQ(1, (CCI + 1) - CCI);
955 EXPECT_EQ(2, (CCI + 2) - CCI);
956 EXPECT_EQ(3, CCE - CCI);
957 EXPECT_EQ(3, std::distance(CCI, CCE));
959 // Make sure that the const iterator is compatible with a const auto ref.
960 const auto &Handle = *CCI;
961 EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
962 EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
965 TEST(InstructionsTest, SwitchInstProfUpdateWrapper) {
966 LLVMContext C;
968 std::unique_ptr<BasicBlock> BB1, BB2, BB3;
969 BB1.reset(BasicBlock::Create(C));
970 BB2.reset(BasicBlock::Create(C));
971 BB3.reset(BasicBlock::Create(C));
973 // We create block 0 after the others so that it gets destroyed first and
974 // clears the uses of the other basic blocks.
975 std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
977 auto *Int32Ty = Type::getInt32Ty(C);
979 SwitchInst *SI =
980 SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get());
981 SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
982 SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
983 SI->setMetadata(LLVMContext::MD_prof,
984 MDBuilder(C).createBranchWeights({ 9, 1, 22 }));
987 SwitchInstProfUpdateWrapper SIW(*SI);
988 EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u);
989 EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u);
990 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
991 SIW.setSuccessorWeight(0, 99u);
992 SIW.setSuccessorWeight(1, 11u);
993 EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
994 EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
995 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
998 { // Create another wrapper and check that the data persist.
999 SwitchInstProfUpdateWrapper SIW(*SI);
1000 EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
1001 EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
1002 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
1006 TEST(InstructionsTest, CommuteShuffleMask) {
1007 SmallVector<int, 16> Indices({-1, 0, 7});
1008 ShuffleVectorInst::commuteShuffleMask(Indices, 4);
1009 EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
1012 TEST(InstructionsTest, ShuffleMaskQueries) {
1013 // Create the elements for various constant vectors.
1014 LLVMContext Ctx;
1015 Type *Int32Ty = Type::getInt32Ty(Ctx);
1016 Constant *CU = UndefValue::get(Int32Ty);
1017 Constant *C0 = ConstantInt::get(Int32Ty, 0);
1018 Constant *C1 = ConstantInt::get(Int32Ty, 1);
1019 Constant *C2 = ConstantInt::get(Int32Ty, 2);
1020 Constant *C3 = ConstantInt::get(Int32Ty, 3);
1021 Constant *C4 = ConstantInt::get(Int32Ty, 4);
1022 Constant *C5 = ConstantInt::get(Int32Ty, 5);
1023 Constant *C6 = ConstantInt::get(Int32Ty, 6);
1024 Constant *C7 = ConstantInt::get(Int32Ty, 7);
1026 Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
1027 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1028 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1029 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1030 Identity,
1031 cast<FixedVectorType>(Identity->getType())
1032 ->getNumElements())); // identity is distinguished from select
1033 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1034 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1035 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1036 Identity, cast<FixedVectorType>(Identity->getType())
1037 ->getNumElements())); // identity is always single source
1038 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1039 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1040 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1041 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1043 Constant *Select = ConstantVector::get({CU, C1, C5});
1044 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1045 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1046 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1047 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1048 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1049 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1050 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1051 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1052 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1053 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1054 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1055 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1057 Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
1058 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1059 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1060 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1061 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1062 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1063 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1064 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1065 Reverse, cast<FixedVectorType>(Reverse->getType())
1066 ->getNumElements())); // reverse is always single source
1067 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1068 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1069 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1070 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1072 Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
1073 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1074 SingleSource,
1075 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1076 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1077 SingleSource,
1078 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1079 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1080 SingleSource,
1081 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1082 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1083 SingleSource,
1084 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1085 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1086 SingleSource,
1087 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1088 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1089 SingleSource,
1090 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1092 Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
1093 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1094 ZeroEltSplat,
1095 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1096 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1097 ZeroEltSplat,
1098 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1099 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1100 ZeroEltSplat,
1101 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1102 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1103 ZeroEltSplat, cast<FixedVectorType>(ZeroEltSplat->getType())
1104 ->getNumElements())); // 0-splat is always single source
1105 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1106 ZeroEltSplat,
1107 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1108 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1109 ZeroEltSplat,
1110 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1112 Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
1113 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1114 Transpose,
1115 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1116 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1117 Transpose,
1118 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1119 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1120 Transpose,
1121 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1122 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1123 Transpose,
1124 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1125 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1126 Transpose,
1127 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1128 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1129 Transpose,
1130 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1132 // More tests to make sure the logic is/stays correct...
1133 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1134 ConstantVector::get({CU, C1, CU, C3}), 4));
1135 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1136 ConstantVector::get({C4, CU, C6, CU}), 4));
1138 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1139 ConstantVector::get({C4, C1, C6, CU}), 4));
1140 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1141 ConstantVector::get({CU, C1, C6, C3}), 4));
1143 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1144 ConstantVector::get({C7, C6, CU, C4}), 4));
1145 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1146 ConstantVector::get({C3, CU, C1, CU}), 4));
1148 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1149 ConstantVector::get({C7, C5, CU, C7}), 4));
1150 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1151 ConstantVector::get({C3, C0, CU, C3}), 4));
1153 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1154 ConstantVector::get({C4, CU, CU, C4}), 4));
1155 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1156 ConstantVector::get({CU, C0, CU, C0}), 4));
1158 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1159 ConstantVector::get({C1, C5, C3, C7}), 4));
1160 EXPECT_TRUE(
1161 ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3}), 2));
1163 // Nothing special about the values here - just re-using inputs to reduce code.
1164 Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
1165 Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
1167 // Identity with undef elts.
1168 ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
1169 ConstantVector::get({C0, C1, CU, CU}));
1170 EXPECT_TRUE(Id1->isIdentity());
1171 EXPECT_FALSE(Id1->isIdentityWithPadding());
1172 EXPECT_FALSE(Id1->isIdentityWithExtract());
1173 EXPECT_FALSE(Id1->isConcat());
1174 delete Id1;
1176 // Result has less elements than operands.
1177 ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
1178 ConstantVector::get({C0, C1, C2}));
1179 EXPECT_FALSE(Id2->isIdentity());
1180 EXPECT_FALSE(Id2->isIdentityWithPadding());
1181 EXPECT_TRUE(Id2->isIdentityWithExtract());
1182 EXPECT_FALSE(Id2->isConcat());
1183 delete Id2;
1185 // Result has less elements than operands; choose from Op1.
1186 ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
1187 ConstantVector::get({C4, CU, C6}));
1188 EXPECT_FALSE(Id3->isIdentity());
1189 EXPECT_FALSE(Id3->isIdentityWithPadding());
1190 EXPECT_TRUE(Id3->isIdentityWithExtract());
1191 EXPECT_FALSE(Id3->isConcat());
1192 delete Id3;
1194 // Result has less elements than operands; choose from Op0 and Op1 is not identity.
1195 ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
1196 ConstantVector::get({C4, C1, C6}));
1197 EXPECT_FALSE(Id4->isIdentity());
1198 EXPECT_FALSE(Id4->isIdentityWithPadding());
1199 EXPECT_FALSE(Id4->isIdentityWithExtract());
1200 EXPECT_FALSE(Id4->isConcat());
1201 delete Id4;
1203 // Result has more elements than operands, and extra elements are undef.
1204 ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
1205 ConstantVector::get({CU, C1, C2, C3, CU, CU}));
1206 EXPECT_FALSE(Id5->isIdentity());
1207 EXPECT_TRUE(Id5->isIdentityWithPadding());
1208 EXPECT_FALSE(Id5->isIdentityWithExtract());
1209 EXPECT_FALSE(Id5->isConcat());
1210 delete Id5;
1212 // Result has more elements than operands, and extra elements are undef; choose from Op1.
1213 ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
1214 ConstantVector::get({C4, C5, C6, CU, CU, CU}));
1215 EXPECT_FALSE(Id6->isIdentity());
1216 EXPECT_TRUE(Id6->isIdentityWithPadding());
1217 EXPECT_FALSE(Id6->isIdentityWithExtract());
1218 EXPECT_FALSE(Id6->isConcat());
1219 delete Id6;
1221 // Result has more elements than operands, but extra elements are not undef.
1222 ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
1223 ConstantVector::get({C0, C1, C2, C3, CU, C1}));
1224 EXPECT_FALSE(Id7->isIdentity());
1225 EXPECT_FALSE(Id7->isIdentityWithPadding());
1226 EXPECT_FALSE(Id7->isIdentityWithExtract());
1227 EXPECT_FALSE(Id7->isConcat());
1228 delete Id7;
1230 // Result has more elements than operands; choose from Op0 and Op1 is not identity.
1231 ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
1232 ConstantVector::get({C4, CU, C2, C3, CU, CU}));
1233 EXPECT_FALSE(Id8->isIdentity());
1234 EXPECT_FALSE(Id8->isIdentityWithPadding());
1235 EXPECT_FALSE(Id8->isIdentityWithExtract());
1236 EXPECT_FALSE(Id8->isConcat());
1237 delete Id8;
1239 // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
1240 ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
1241 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
1242 EXPECT_FALSE(Id9->isIdentity());
1243 EXPECT_FALSE(Id9->isIdentityWithPadding());
1244 EXPECT_FALSE(Id9->isIdentityWithExtract());
1245 EXPECT_TRUE(Id9->isConcat());
1246 delete Id9;
1248 // Result has less than twice as many elements as operands, so not a concat.
1249 ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
1250 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
1251 EXPECT_FALSE(Id10->isIdentity());
1252 EXPECT_FALSE(Id10->isIdentityWithPadding());
1253 EXPECT_FALSE(Id10->isIdentityWithExtract());
1254 EXPECT_FALSE(Id10->isConcat());
1255 delete Id10;
1257 // Result has more than twice as many elements as operands, so not a concat.
1258 ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
1259 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
1260 EXPECT_FALSE(Id11->isIdentity());
1261 EXPECT_FALSE(Id11->isIdentityWithPadding());
1262 EXPECT_FALSE(Id11->isIdentityWithExtract());
1263 EXPECT_FALSE(Id11->isConcat());
1264 delete Id11;
1266 // If an input is undef, it's not a concat.
1267 // TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
1268 ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
1269 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
1270 EXPECT_FALSE(Id12->isIdentity());
1271 EXPECT_FALSE(Id12->isIdentityWithPadding());
1272 EXPECT_FALSE(Id12->isIdentityWithExtract());
1273 EXPECT_FALSE(Id12->isConcat());
1274 delete Id12;
1276 // Not possible to express shuffle mask for scalable vector for extract
1277 // subvector.
1278 Type *VScaleV4Int32Ty = ScalableVectorType::get(Int32Ty, 4);
1279 ShuffleVectorInst *Id13 =
1280 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV4Int32Ty),
1281 UndefValue::get(VScaleV4Int32Ty),
1282 Constant::getNullValue(VScaleV4Int32Ty));
1283 int Index = 0;
1284 EXPECT_FALSE(Id13->isExtractSubvectorMask(Index));
1285 EXPECT_FALSE(Id13->changesLength());
1286 EXPECT_FALSE(Id13->increasesLength());
1287 delete Id13;
1289 // Result has twice as many operands.
1290 Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
1291 ShuffleVectorInst *Id14 =
1292 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
1293 UndefValue::get(VScaleV2Int32Ty),
1294 Constant::getNullValue(VScaleV4Int32Ty));
1295 EXPECT_TRUE(Id14->changesLength());
1296 EXPECT_TRUE(Id14->increasesLength());
1297 delete Id14;
1299 // Not possible to express these masks for scalable vectors, make sure we
1300 // don't crash.
1301 ShuffleVectorInst *Id15 =
1302 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
1303 Constant::getNullValue(VScaleV2Int32Ty),
1304 Constant::getNullValue(VScaleV2Int32Ty));
1305 EXPECT_FALSE(Id15->isIdentityWithPadding());
1306 EXPECT_FALSE(Id15->isIdentityWithExtract());
1307 EXPECT_FALSE(Id15->isConcat());
1308 delete Id15;
1311 TEST(InstructionsTest, ShuffleMaskIsReplicationMask) {
1312 for (int ReplicationFactor : seq_inclusive(1, 8)) {
1313 for (int VF : seq_inclusive(1, 8)) {
1314 const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
1315 int GuessedReplicationFactor = -1, GuessedVF = -1;
1316 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1317 ReplicatedMask, GuessedReplicationFactor, GuessedVF));
1318 EXPECT_EQ(GuessedReplicationFactor, ReplicationFactor);
1319 EXPECT_EQ(GuessedVF, VF);
1321 for (int OpVF : seq_inclusive(VF, 2 * VF + 1)) {
1322 LLVMContext Ctx;
1323 Type *OpVFTy = FixedVectorType::get(IntegerType::getInt1Ty(Ctx), OpVF);
1324 Value *Op = ConstantVector::getNullValue(OpVFTy);
1325 ShuffleVectorInst *SVI = new ShuffleVectorInst(Op, Op, ReplicatedMask);
1326 EXPECT_EQ(SVI->isReplicationMask(GuessedReplicationFactor, GuessedVF),
1327 OpVF == VF);
1328 delete SVI;
1334 TEST(InstructionsTest, ShuffleMaskIsReplicationMask_undef) {
1335 for (int ReplicationFactor : seq_inclusive(1, 4)) {
1336 for (int VF : seq_inclusive(1, 4)) {
1337 const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
1338 int GuessedReplicationFactor = -1, GuessedVF = -1;
1340 // If we change some mask elements to undef, we should still match.
1342 SmallVector<SmallVector<bool>> ElementChoices(ReplicatedMask.size(),
1343 {false, true});
1345 CombinationGenerator<bool, decltype(ElementChoices)::value_type,
1346 /*variable_smallsize=*/4>
1347 G(ElementChoices);
1349 G.generate([&](ArrayRef<bool> UndefOverrides) -> bool {
1350 SmallVector<int> AdjustedMask;
1351 AdjustedMask.reserve(ReplicatedMask.size());
1352 for (auto I : zip(ReplicatedMask, UndefOverrides))
1353 AdjustedMask.emplace_back(std::get<1>(I) ? -1 : std::get<0>(I));
1354 assert(AdjustedMask.size() == ReplicatedMask.size() &&
1355 "Size misprediction");
1357 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1358 AdjustedMask, GuessedReplicationFactor, GuessedVF));
1359 // Do not check GuessedReplicationFactor and GuessedVF,
1360 // with enough undef's we may deduce a different tuple.
1362 return /*Abort=*/false;
1368 TEST(InstructionsTest, ShuffleMaskIsReplicationMask_Exhaustive_Correctness) {
1369 for (int ShufMaskNumElts : seq_inclusive(1, 6)) {
1370 SmallVector<int> PossibleShufMaskElts;
1371 PossibleShufMaskElts.reserve(ShufMaskNumElts + 2);
1372 for (int PossibleShufMaskElt : seq_inclusive(-1, ShufMaskNumElts))
1373 PossibleShufMaskElts.emplace_back(PossibleShufMaskElt);
1374 assert(PossibleShufMaskElts.size() == ShufMaskNumElts + 2U &&
1375 "Size misprediction");
1377 SmallVector<SmallVector<int>> ElementChoices(ShufMaskNumElts,
1378 PossibleShufMaskElts);
1380 CombinationGenerator<int, decltype(ElementChoices)::value_type,
1381 /*variable_smallsize=*/4>
1382 G(ElementChoices);
1384 G.generate([&](ArrayRef<int> Mask) -> bool {
1385 int GuessedReplicationFactor = -1, GuessedVF = -1;
1386 bool Match = ShuffleVectorInst::isReplicationMask(
1387 Mask, GuessedReplicationFactor, GuessedVF);
1388 if (!Match)
1389 return /*Abort=*/false;
1391 const auto ActualMask =
1392 createReplicatedMask(GuessedReplicationFactor, GuessedVF);
1393 EXPECT_EQ(Mask.size(), ActualMask.size());
1394 for (auto I : zip(Mask, ActualMask)) {
1395 int Elt = std::get<0>(I);
1396 int ActualElt = std::get<0>(I);
1398 if (Elt != -1) {
1399 EXPECT_EQ(Elt, ActualElt);
1403 return /*Abort=*/false;
1408 TEST(InstructionsTest, GetSplat) {
1409 // Create the elements for various constant vectors.
1410 LLVMContext Ctx;
1411 Type *Int32Ty = Type::getInt32Ty(Ctx);
1412 Constant *CU = UndefValue::get(Int32Ty);
1413 Constant *C0 = ConstantInt::get(Int32Ty, 0);
1414 Constant *C1 = ConstantInt::get(Int32Ty, 1);
1416 Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0});
1417 Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1});
1418 Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU});
1419 Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU});
1420 Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1});
1421 Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0});
1423 // Default - undefs are not allowed.
1424 EXPECT_EQ(Splat0->getSplatValue(), C0);
1425 EXPECT_EQ(Splat1->getSplatValue(), C1);
1426 EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr);
1427 EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr);
1428 EXPECT_EQ(NotSplat->getSplatValue(), nullptr);
1429 EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr);
1431 // Disallow undefs explicitly.
1432 EXPECT_EQ(Splat0->getSplatValue(false), C0);
1433 EXPECT_EQ(Splat1->getSplatValue(false), C1);
1434 EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr);
1435 EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr);
1436 EXPECT_EQ(NotSplat->getSplatValue(false), nullptr);
1437 EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr);
1439 // Allow undefs.
1440 EXPECT_EQ(Splat0->getSplatValue(true), C0);
1441 EXPECT_EQ(Splat1->getSplatValue(true), C1);
1442 EXPECT_EQ(Splat0Undef->getSplatValue(true), C0);
1443 EXPECT_EQ(Splat1Undef->getSplatValue(true), C1);
1444 EXPECT_EQ(NotSplat->getSplatValue(true), nullptr);
1445 EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr);
1448 TEST(InstructionsTest, SkipDebug) {
1449 LLVMContext C;
1450 std::unique_ptr<Module> M = parseIR(C,
1452 declare void @llvm.dbg.value(metadata, metadata, metadata)
1454 define void @f() {
1455 entry:
1456 call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
1457 ret void
1460 !llvm.dbg.cu = !{!0}
1461 !llvm.module.flags = !{!3, !4}
1462 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1463 !1 = !DIFile(filename: "t2.c", directory: "foo")
1464 !2 = !{}
1465 !3 = !{i32 2, !"Dwarf Version", i32 4}
1466 !4 = !{i32 2, !"Debug Info Version", i32 3}
1467 !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1468 !9 = !DISubroutineType(types: !10)
1469 !10 = !{null}
1470 !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
1471 !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
1472 !13 = !DILocation(line: 2, column: 7, scope: !8)
1473 )");
1474 ASSERT_TRUE(M);
1475 Function *F = cast<Function>(M->getNamedValue("f"));
1476 BasicBlock &BB = F->front();
1478 // The first non-debug instruction is the terminator.
1479 auto *Term = BB.getTerminator();
1480 EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
1481 EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
1483 // After the terminator, there are no non-debug instructions.
1484 EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
1487 TEST(InstructionsTest, PhiMightNotBeFPMathOperator) {
1488 LLVMContext Context;
1489 IRBuilder<> Builder(Context);
1490 MDBuilder MDHelper(Context);
1491 Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0);
1492 EXPECT_FALSE(isa<FPMathOperator>(I));
1493 I->deleteValue();
1494 Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1495 EXPECT_TRUE(isa<FPMathOperator>(FP));
1496 FP->deleteValue();
1499 TEST(InstructionsTest, FPCallIsFPMathOperator) {
1500 LLVMContext C;
1502 Type *ITy = Type::getInt32Ty(C);
1503 FunctionType *IFnTy = FunctionType::get(ITy, {});
1504 Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo());
1505 std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, ""));
1506 EXPECT_FALSE(isa<FPMathOperator>(ICall));
1508 Type *VITy = FixedVectorType::get(ITy, 2);
1509 FunctionType *VIFnTy = FunctionType::get(VITy, {});
1510 Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo());
1511 std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, ""));
1512 EXPECT_FALSE(isa<FPMathOperator>(VICall));
1514 Type *AITy = ArrayType::get(ITy, 2);
1515 FunctionType *AIFnTy = FunctionType::get(AITy, {});
1516 Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo());
1517 std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, ""));
1518 EXPECT_FALSE(isa<FPMathOperator>(AICall));
1520 Type *FTy = Type::getFloatTy(C);
1521 FunctionType *FFnTy = FunctionType::get(FTy, {});
1522 Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo());
1523 std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, ""));
1524 EXPECT_TRUE(isa<FPMathOperator>(FCall));
1526 Type *VFTy = FixedVectorType::get(FTy, 2);
1527 FunctionType *VFFnTy = FunctionType::get(VFTy, {});
1528 Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo());
1529 std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, ""));
1530 EXPECT_TRUE(isa<FPMathOperator>(VFCall));
1532 Type *AFTy = ArrayType::get(FTy, 2);
1533 FunctionType *AFFnTy = FunctionType::get(AFTy, {});
1534 Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo());
1535 std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, ""));
1536 EXPECT_TRUE(isa<FPMathOperator>(AFCall));
1538 Type *AVFTy = ArrayType::get(VFTy, 2);
1539 FunctionType *AVFFnTy = FunctionType::get(AVFTy, {});
1540 Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo());
1541 std::unique_ptr<CallInst> AVFCall(
1542 CallInst::Create(AVFFnTy, AVFCallee, {}, ""));
1543 EXPECT_TRUE(isa<FPMathOperator>(AVFCall));
1545 Type *AAVFTy = ArrayType::get(AVFTy, 2);
1546 FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {});
1547 Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo());
1548 std::unique_ptr<CallInst> AAVFCall(
1549 CallInst::Create(AAVFFnTy, AAVFCallee, {}, ""));
1550 EXPECT_TRUE(isa<FPMathOperator>(AAVFCall));
1553 TEST(InstructionsTest, FNegInstruction) {
1554 LLVMContext Context;
1555 Type *FltTy = Type::getFloatTy(Context);
1556 Constant *One = ConstantFP::get(FltTy, 1.0);
1557 BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One);
1558 FAdd->setHasNoNaNs(true);
1559 UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd);
1560 EXPECT_TRUE(FNeg->hasNoNaNs());
1561 EXPECT_FALSE(FNeg->hasNoInfs());
1562 EXPECT_FALSE(FNeg->hasNoSignedZeros());
1563 EXPECT_FALSE(FNeg->hasAllowReciprocal());
1564 EXPECT_FALSE(FNeg->hasAllowContract());
1565 EXPECT_FALSE(FNeg->hasAllowReassoc());
1566 EXPECT_FALSE(FNeg->hasApproxFunc());
1567 FAdd->deleteValue();
1568 FNeg->deleteValue();
1571 TEST(InstructionsTest, CallBrInstruction) {
1572 LLVMContext Context;
1573 std::unique_ptr<Module> M = parseIR(Context, R"(
1574 define void @foo() {
1575 entry:
1576 callbr void asm sideeffect "// XXX: ${0:l}", "!i"()
1577 to label %land.rhs.i [label %branch_test.exit]
1579 land.rhs.i:
1580 br label %branch_test.exit
1582 branch_test.exit:
1583 %0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ]
1584 br i1 %0, label %if.end, label %if.then
1586 if.then:
1587 ret void
1589 if.end:
1590 ret void
1592 )");
1593 Function *Foo = M->getFunction("foo");
1594 auto BBs = Foo->begin();
1595 CallBrInst &CBI = cast<CallBrInst>(BBs->front());
1596 ++BBs;
1597 ++BBs;
1598 BasicBlock &BranchTestExit = *BBs;
1599 ++BBs;
1600 BasicBlock &IfThen = *BBs;
1602 // Test that setting the first indirect destination of callbr updates the dest
1603 EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
1604 CBI.setIndirectDest(0, &IfThen);
1605 EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
1608 TEST(InstructionsTest, UnaryOperator) {
1609 LLVMContext Context;
1610 IRBuilder<> Builder(Context);
1611 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1612 Value *F = Builder.CreateFNeg(I);
1614 EXPECT_TRUE(isa<Value>(F));
1615 EXPECT_TRUE(isa<Instruction>(F));
1616 EXPECT_TRUE(isa<UnaryInstruction>(F));
1617 EXPECT_TRUE(isa<UnaryOperator>(F));
1618 EXPECT_FALSE(isa<BinaryOperator>(F));
1620 F->deleteValue();
1621 I->deleteValue();
1624 TEST(InstructionsTest, DropLocation) {
1625 LLVMContext C;
1626 std::unique_ptr<Module> M = parseIR(C,
1628 declare void @callee()
1630 define void @no_parent_scope() {
1631 call void @callee() ; I1: Call with no location.
1632 call void @callee(), !dbg !11 ; I2: Call with location.
1633 ret void, !dbg !11 ; I3: Non-call with location.
1636 define void @with_parent_scope() !dbg !8 {
1637 call void @callee() ; I1: Call with no location.
1638 call void @callee(), !dbg !11 ; I2: Call with location.
1639 ret void, !dbg !11 ; I3: Non-call with location.
1642 !llvm.dbg.cu = !{!0}
1643 !llvm.module.flags = !{!3, !4}
1644 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1645 !1 = !DIFile(filename: "t2.c", directory: "foo")
1646 !2 = !{}
1647 !3 = !{i32 2, !"Dwarf Version", i32 4}
1648 !4 = !{i32 2, !"Debug Info Version", i32 3}
1649 !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1650 !9 = !DISubroutineType(types: !10)
1651 !10 = !{null}
1652 !11 = !DILocation(line: 2, column: 7, scope: !8, inlinedAt: !12)
1653 !12 = !DILocation(line: 3, column: 8, scope: !8)
1654 )");
1655 ASSERT_TRUE(M);
1658 Function *NoParentScopeF =
1659 cast<Function>(M->getNamedValue("no_parent_scope"));
1660 BasicBlock &BB = NoParentScopeF->front();
1662 auto *I1 = BB.getFirstNonPHI();
1663 auto *I2 = I1->getNextNode();
1664 auto *I3 = BB.getTerminator();
1666 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1667 I1->dropLocation();
1668 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1670 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1671 I2->dropLocation();
1672 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1674 EXPECT_EQ(I3->getDebugLoc().getLine(), 2U);
1675 I3->dropLocation();
1676 EXPECT_EQ(I3->getDebugLoc(), DebugLoc());
1680 Function *WithParentScopeF =
1681 cast<Function>(M->getNamedValue("with_parent_scope"));
1682 BasicBlock &BB = WithParentScopeF->front();
1684 auto *I2 = BB.getFirstNonPHI()->getNextNode();
1686 MDNode *Scope = cast<MDNode>(WithParentScopeF->getSubprogram());
1687 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1688 I2->dropLocation();
1689 EXPECT_EQ(I2->getDebugLoc().getLine(), 0U);
1690 EXPECT_EQ(I2->getDebugLoc().getScope(), Scope);
1691 EXPECT_EQ(I2->getDebugLoc().getInlinedAt(), nullptr);
1695 TEST(InstructionsTest, BranchWeightOverflow) {
1696 LLVMContext C;
1697 std::unique_ptr<Module> M = parseIR(C,
1699 declare void @callee()
1701 define void @caller() {
1702 call void @callee(), !prof !1
1703 ret void
1706 !1 = !{!"branch_weights", i32 20000}
1707 )");
1708 ASSERT_TRUE(M);
1709 CallInst *CI =
1710 cast<CallInst>(&M->getFunction("caller")->getEntryBlock().front());
1711 uint64_t ProfWeight;
1712 CI->extractProfTotalWeight(ProfWeight);
1713 ASSERT_EQ(ProfWeight, 20000U);
1714 CI->updateProfWeight(10000000, 1);
1715 CI->extractProfTotalWeight(ProfWeight);
1716 ASSERT_EQ(ProfWeight, UINT32_MAX);
1719 TEST(InstructionsTest, AllocaInst) {
1720 LLVMContext Ctx;
1721 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1722 %T = type { i64, [3 x i32]}
1723 define void @f(i32 %n) {
1724 entry:
1725 %A = alloca i32, i32 1
1726 %B = alloca i32, i32 4
1727 %C = alloca i32, i32 %n
1728 %D = alloca <8 x double>
1729 %E = alloca <vscale x 8 x double>
1730 %F = alloca [2 x half]
1731 %G = alloca [2 x [3 x i128]]
1732 %H = alloca %T
1733 ret void
1735 )");
1736 const DataLayout &DL = M->getDataLayout();
1737 ASSERT_TRUE(M);
1738 Function *Fun = cast<Function>(M->getNamedValue("f"));
1739 BasicBlock &BB = Fun->front();
1740 auto It = BB.begin();
1741 AllocaInst &A = cast<AllocaInst>(*It++);
1742 AllocaInst &B = cast<AllocaInst>(*It++);
1743 AllocaInst &C = cast<AllocaInst>(*It++);
1744 AllocaInst &D = cast<AllocaInst>(*It++);
1745 AllocaInst &E = cast<AllocaInst>(*It++);
1746 AllocaInst &F = cast<AllocaInst>(*It++);
1747 AllocaInst &G = cast<AllocaInst>(*It++);
1748 AllocaInst &H = cast<AllocaInst>(*It++);
1749 EXPECT_EQ(A.getAllocationSizeInBits(DL), TypeSize::Fixed(32));
1750 EXPECT_EQ(B.getAllocationSizeInBits(DL), TypeSize::Fixed(128));
1751 EXPECT_FALSE(C.getAllocationSizeInBits(DL));
1752 EXPECT_EQ(D.getAllocationSizeInBits(DL), TypeSize::Fixed(512));
1753 EXPECT_EQ(E.getAllocationSizeInBits(DL), TypeSize::Scalable(512));
1754 EXPECT_EQ(F.getAllocationSizeInBits(DL), TypeSize::Fixed(32));
1755 EXPECT_EQ(G.getAllocationSizeInBits(DL), TypeSize::Fixed(768));
1756 EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::Fixed(160));
1759 TEST(InstructionsTest, InsertAtBegin) {
1760 LLVMContext Ctx;
1761 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1762 define void @f(i32 %a, i32 %b) {
1763 entry:
1764 ret void
1766 )");
1767 Function *F = &*M->begin();
1768 Argument *ArgA = F->getArg(0);
1769 Argument *ArgB = F->getArg(1);
1770 BasicBlock *BB = &*F->begin();
1771 Instruction *Ret = &*BB->begin();
1772 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1773 auto It = I->insertInto(BB, BB->begin());
1774 EXPECT_EQ(&*It, I);
1775 EXPECT_EQ(I->getNextNode(), Ret);
1778 TEST(InstructionsTest, InsertAtEnd) {
1779 LLVMContext Ctx;
1780 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1781 define void @f(i32 %a, i32 %b) {
1782 entry:
1783 ret void
1785 )");
1786 Function *F = &*M->begin();
1787 Argument *ArgA = F->getArg(0);
1788 Argument *ArgB = F->getArg(1);
1789 BasicBlock *BB = &*F->begin();
1790 Instruction *Ret = &*BB->begin();
1791 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1792 auto It = I->insertInto(BB, BB->end());
1793 EXPECT_EQ(&*It, I);
1794 EXPECT_EQ(Ret->getNextNode(), I);
1797 } // end anonymous namespace
1798 } // end namespace llvm