Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / unittests / Support / AlignmentTest.cpp
blob7b771977027b4d55aad3f6b2bea6dc44249422a6
1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/Alignment.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "gtest/gtest.h"
13 #include <vector>
15 #ifdef _MSC_VER
16 // Disable warnings about potential divide by 0.
17 #pragma warning(push)
18 #pragma warning(disable : 4723)
19 #endif
21 using namespace llvm;
23 namespace {
25 TEST(AlignmentTest, AlignOfConstant) {
26 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t)));
27 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t)));
28 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t)));
29 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t)));
32 TEST(AlignmentTest, AlignConstant) {
33 EXPECT_EQ(Align::Constant<1>(), Align(1));
34 EXPECT_EQ(Align::Constant<2>(), Align(2));
35 EXPECT_EQ(Align::Constant<4>(), Align(4));
36 EXPECT_EQ(Align::Constant<8>(), Align(8));
37 EXPECT_EQ(Align::Constant<16>(), Align(16));
38 EXPECT_EQ(Align::Constant<32>(), Align(32));
39 EXPECT_EQ(Align::Constant<64>(), Align(64));
42 TEST(AlignmentTest, AlignConstexprConstant) {
43 constexpr Align kConstantAlign = Align::Of<uint64_t>();
44 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign);
47 std::vector<uint64_t> getValidAlignments() {
48 std::vector<uint64_t> Out;
49 for (size_t Shift = 0; Shift < 64; ++Shift)
50 Out.push_back(1ULL << Shift);
51 return Out;
54 TEST(AlignmentTest, AlignDefaultCTor) { EXPECT_EQ(Align().value(), 1ULL); }
56 TEST(AlignmentTest, MaybeAlignDefaultCTor) { EXPECT_FALSE(MaybeAlign()); }
58 TEST(AlignmentTest, ValidCTors) {
59 for (uint64_t Value : getValidAlignments()) {
60 EXPECT_EQ(Align(Value).value(), Value);
61 EXPECT_EQ((*MaybeAlign(Value)).value(), Value);
65 TEST(AlignmentTest, CheckMaybeAlignHasValue) {
66 EXPECT_TRUE(MaybeAlign(1));
67 EXPECT_TRUE(MaybeAlign(1).has_value());
68 EXPECT_FALSE(MaybeAlign(0));
69 EXPECT_FALSE(MaybeAlign(0).has_value());
70 EXPECT_FALSE(MaybeAlign());
71 EXPECT_FALSE(MaybeAlign().has_value());
74 TEST(AlignmentTest, Division) {
75 for (uint64_t Value : getValidAlignments()) {
76 if (Value > 1) {
77 EXPECT_EQ(Align(Value).previous(), Value / 2);
82 TEST(AlignmentTest, AlignTo) {
83 struct {
84 uint64_t alignment;
85 uint64_t offset;
86 uint64_t rounded;
87 const void *forgedAddr() const {
88 // A value of any integral or enumeration type can be converted to a
89 // pointer type.
90 return reinterpret_cast<const void *>(offset);
92 } kTests[] = {
93 // Align
94 {1, 0, 0}, {1, 1, 1}, {1, 5, 5}, {2, 0, 0}, {2, 1, 2}, {2, 2, 2},
95 {2, 7, 8}, {2, 16, 16}, {4, 0, 0}, {4, 1, 4}, {4, 4, 4}, {4, 6, 8},
97 for (const auto &T : kTests) {
98 Align A = Align(T.alignment);
99 EXPECT_EQ(alignTo(T.offset, A), T.rounded);
100 EXPECT_EQ(alignAddr(T.forgedAddr(), A), T.rounded);
104 TEST(AlignmentTest, AlignToWithSkew) {
105 EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8)));
106 EXPECT_EQ(alignTo(5, Align(8), 7), 7U);
107 EXPECT_EQ(alignTo(17, Align(8), 1), 17U);
108 EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U);
111 TEST(AlignmentTest, Log2) {
112 for (uint64_t Value : getValidAlignments()) {
113 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value));
117 TEST(AlignmentTest, Encode_Decode) {
118 for (uint64_t Value : getValidAlignments()) {
120 Align Actual(Value);
121 Align Expected = *decodeMaybeAlign(encode(Actual));
122 EXPECT_EQ(Expected, Actual);
125 MaybeAlign Actual(Value);
126 MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
127 EXPECT_EQ(Expected, Actual);
130 MaybeAlign Actual(0);
131 MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
132 EXPECT_EQ(Expected, Actual);
135 TEST(AlignmentTest, isAligned_isAddrAligned) {
136 struct {
137 uint64_t alignment;
138 uint64_t offset;
139 bool isAligned;
140 const void *forgedAddr() const {
141 // A value of any integral or enumeration type can be converted to a
142 // pointer type.
143 return reinterpret_cast<const void *>(offset);
145 } kTests[] = {
146 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true},
147 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true},
148 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false},
150 for (const auto &T : kTests) {
151 MaybeAlign A(T.alignment);
152 // Test Align
153 if (A) {
154 EXPECT_EQ(isAligned(*A, T.offset), T.isAligned);
155 EXPECT_EQ(isAddrAligned(*A, T.forgedAddr()), T.isAligned);
160 TEST(AlignmentTest, offsetToAlignment) {
161 struct {
162 uint64_t alignment;
163 uint64_t offset;
164 uint64_t alignedOffset;
165 const void *forgedAddr() const {
166 // A value of any integral or enumeration type can be converted to a
167 // pointer type.
168 return reinterpret_cast<const void *>(offset);
170 } kTests[] = {
171 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0},
172 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2},
174 for (const auto &T : kTests) {
175 const Align A(T.alignment);
176 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset);
177 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset);
181 TEST(AlignmentTest, AlignComparisons) {
182 std::vector<uint64_t> ValidAlignments = getValidAlignments();
183 llvm::sort(ValidAlignments);
184 for (size_t I = 1; I < ValidAlignments.size(); ++I) {
185 assert(I >= 1);
186 const Align A(ValidAlignments[I - 1]);
187 const Align B(ValidAlignments[I]);
188 EXPECT_EQ(A, A);
189 EXPECT_NE(A, B);
190 EXPECT_LT(A, B);
191 EXPECT_GT(B, A);
192 EXPECT_LE(A, B);
193 EXPECT_GE(B, A);
194 EXPECT_LE(A, A);
195 EXPECT_GE(A, A);
197 EXPECT_EQ(A, A.value());
198 EXPECT_NE(A, B.value());
199 EXPECT_LT(A, B.value());
200 EXPECT_GT(B, A.value());
201 EXPECT_LE(A, B.value());
202 EXPECT_GE(B, A.value());
203 EXPECT_LE(A, A.value());
204 EXPECT_GE(A, A.value());
206 EXPECT_EQ(std::max(A, B), B);
207 EXPECT_EQ(std::min(A, B), A);
209 const MaybeAlign MA(ValidAlignments[I - 1]);
210 const MaybeAlign MB(ValidAlignments[I]);
211 EXPECT_EQ(MA, MA);
212 EXPECT_NE(MA, MB);
214 EXPECT_EQ(std::max(A, B), B);
215 EXPECT_EQ(std::min(A, B), A);
219 TEST(AlignmentTest, AssumeAligned) {
220 EXPECT_EQ(assumeAligned(0), Align(1));
221 EXPECT_EQ(assumeAligned(0), Align());
222 EXPECT_EQ(assumeAligned(1), Align(1));
223 EXPECT_EQ(assumeAligned(1), Align());
226 // Death tests reply on assert which is disabled in release mode.
227 #ifndef NDEBUG
229 // We use a subset of valid alignments for DEATH_TESTs as they are particularly
230 // slow.
231 std::vector<uint64_t> getValidAlignmentsForDeathTest() {
232 return {1, 1ULL << 31, 1ULL << 63};
235 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; }
237 TEST(AlignmentDeathTest, InvalidCTors) {
238 EXPECT_DEATH((Align(0)), "Value must not be 0");
239 for (uint64_t Value : getNonPowerOfTwo()) {
240 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2");
241 EXPECT_DEATH((MaybeAlign(Value)),
242 "Alignment is neither 0 nor a power of 2");
246 TEST(AlignmentDeathTest, ComparisonsWithZero) {
247 for (uint64_t Value : getValidAlignmentsForDeathTest()) {
248 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined");
249 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined");
250 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined");
251 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined");
252 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined");
253 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined");
257 TEST(AlignmentDeathTest, AlignAddr) {
258 const void *const unaligned_high_ptr =
259 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1);
260 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow");
263 #endif // NDEBUG
265 } // end anonymous namespace
267 #ifdef _MSC_VER
268 #pragma warning(pop)
269 #endif