Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / utils / TableGen / CodeGenRegisters.cpp
blobd1abdb74ea4a982c42966f9bb4f449bb1affa40c
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
42 using namespace llvm;
44 #define DEBUG_TYPE "regalloc-emitter"
46 //===----------------------------------------------------------------------===//
47 // CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52 Name = std::string(R->getName());
53 if (R->getValue("Namespace"))
54 Namespace = std::string(R->getValueAsString("Namespace"));
55 Size = R->getValueAsInt("Size");
56 Offset = R->getValueAsInt("Offset");
59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60 unsigned Enum)
61 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63 Artificial(true) {}
65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66 std::string N = getNamespace();
67 if (!N.empty())
68 N += "::";
69 N += getName();
70 return N;
73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74 if (!TheDef)
75 return;
77 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78 if (!Comps.empty()) {
79 if (Comps.size() != 2)
80 PrintFatalError(TheDef->getLoc(),
81 "ComposedOf must have exactly two entries");
82 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84 CodeGenSubRegIndex *X = A->addComposite(B, this);
85 if (X)
86 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
89 std::vector<Record*> Parts =
90 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91 if (!Parts.empty()) {
92 if (Parts.size() < 2)
93 PrintFatalError(TheDef->getLoc(),
94 "CoveredBySubRegs must have two or more entries");
95 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96 for (Record *Part : Parts)
97 IdxParts.push_back(RegBank.getSubRegIdx(Part));
98 setConcatenationOf(IdxParts);
102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103 // Already computed?
104 if (LaneMask.any())
105 return LaneMask;
107 // Recursion guard, shouldn't be required.
108 LaneMask = LaneBitmask::getAll();
110 // The lane mask is simply the union of all sub-indices.
111 LaneBitmask M;
112 for (const auto &C : Composed)
113 M |= C.second->computeLaneMask();
114 assert(M.any() && "Missing lane mask, sub-register cycle?");
115 LaneMask = M;
116 return LaneMask;
119 void CodeGenSubRegIndex::setConcatenationOf(
120 ArrayRef<CodeGenSubRegIndex*> Parts) {
121 if (ConcatenationOf.empty())
122 ConcatenationOf.assign(Parts.begin(), Parts.end());
123 else
124 assert(std::equal(Parts.begin(), Parts.end(),
125 ConcatenationOf.begin()) && "parts consistent");
128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131 CodeGenSubRegIndex *SubIdx = *I;
132 SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135 assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
138 if (SubIdx->ConcatenationOf.empty()) {
139 ++I;
140 } else {
141 I = ConcatenationOf.erase(I);
142 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143 SubIdx->ConcatenationOf.end());
144 I += SubIdx->ConcatenationOf.size();
149 //===----------------------------------------------------------------------===//
150 // CodeGenRegister
151 //===----------------------------------------------------------------------===//
153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154 : TheDef(R), EnumValue(Enum),
155 CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157 HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")),
158 SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
159 Artificial = R->getValueAsBit("isArtificial");
162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
166 if (SRIs.size() != SRs.size())
167 PrintFatalError(TheDef->getLoc(),
168 "SubRegs and SubRegIndices must have the same size");
170 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
175 // Also compute leading super-registers. Each register has a list of
176 // covered-by-subregs super-registers where it appears as the first explicit
177 // sub-register.
179 // This is used by computeSecondarySubRegs() to find candidates.
180 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
183 // Add ad hoc alias links. This is a symmetric relationship between two
184 // registers, so build a symmetric graph by adding links in both ends.
185 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186 for (Record *Alias : Aliases) {
187 CodeGenRegister *Reg = RegBank.getReg(Alias);
188 ExplicitAliases.push_back(Reg);
189 Reg->ExplicitAliases.push_back(this);
193 StringRef CodeGenRegister::getName() const {
194 assert(TheDef && "no def");
195 return TheDef->getName();
198 namespace {
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202 CodeGenRegister::Vec::const_iterator RegI, RegE;
203 CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204 static CodeGenRegister::RegUnitList Sentinel;
206 public:
207 RegUnitIterator(const CodeGenRegister::Vec &Regs):
208 RegI(Regs.begin()), RegE(Regs.end()) {
210 if (RegI == RegE) {
211 UnitI = Sentinel.end();
212 UnitE = Sentinel.end();
213 } else {
214 UnitI = (*RegI)->getRegUnits().begin();
215 UnitE = (*RegI)->getRegUnits().end();
216 advance();
220 bool isValid() const { return UnitI != UnitE; }
222 unsigned operator* () const { assert(isValid()); return *UnitI; }
224 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
226 /// Preincrement. Move to the next unit.
227 void operator++() {
228 assert(isValid() && "Cannot advance beyond the last operand");
229 ++UnitI;
230 advance();
233 protected:
234 void advance() {
235 while (UnitI == UnitE) {
236 if (++RegI == RegE)
237 break;
238 UnitI = (*RegI)->getRegUnits().begin();
239 UnitE = (*RegI)->getRegUnits().end();
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
246 } // end anonymous namespace
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250 return RegUnits.test(Unit);
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256 bool changed = false;
257 for (const auto &SubReg : SubRegs) {
258 CodeGenRegister *SR = SubReg.second;
259 // Merge the subregister's units into this register's RegUnits.
260 changed |= (RegUnits |= SR->RegUnits);
263 return changed;
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268 // Only compute this map once.
269 if (SubRegsComplete)
270 return SubRegs;
271 SubRegsComplete = true;
273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
275 // First insert the explicit subregs and make sure they are fully indexed.
276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277 CodeGenRegister *SR = ExplicitSubRegs[i];
278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279 if (!SR->Artificial)
280 Idx->Artificial = false;
281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283 " appears twice in Register " + getName());
284 // Map explicit sub-registers first, so the names take precedence.
285 // The inherited sub-registers are mapped below.
286 SubReg2Idx.insert(std::make_pair(SR, Idx));
289 // Keep track of inherited subregs and how they can be reached.
290 SmallPtrSet<CodeGenRegister*, 8> Orphans;
292 // Clone inherited subregs and place duplicate entries in Orphans.
293 // Here the order is important - earlier subregs take precedence.
294 for (CodeGenRegister *ESR : ExplicitSubRegs) {
295 const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
298 for (const auto &SR : Map) {
299 if (!SubRegs.insert(SR).second)
300 Orphans.insert(SR.second);
304 // Expand any composed subreg indices.
305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
307 // expanded subreg indices recursively.
308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309 for (unsigned i = 0; i != Indices.size(); ++i) {
310 CodeGenSubRegIndex *Idx = Indices[i];
311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312 CodeGenRegister *SR = SubRegs[Idx];
313 const SubRegMap &Map = SR->computeSubRegs(RegBank);
315 // Look at the possible compositions of Idx.
316 // They may not all be supported by SR.
317 for (auto Comp : Comps) {
318 SubRegMap::const_iterator SRI = Map.find(Comp.first);
319 if (SRI == Map.end())
320 continue; // Idx + I->first doesn't exist in SR.
321 // Add I->second as a name for the subreg SRI->second, assuming it is
322 // orphaned, and the name isn't already used for something else.
323 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324 continue;
325 // We found a new name for the orphaned sub-register.
326 SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327 Indices.push_back(Comp.second);
331 // Now Orphans contains the inherited subregisters without a direct index.
332 // Create inferred indexes for all missing entries.
333 // Work backwards in the Indices vector in order to compose subregs bottom-up.
334 // Consider this subreg sequence:
336 // qsub_1 -> dsub_0 -> ssub_0
338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339 // can be reached in two different ways:
341 // qsub_1 -> ssub_0
342 // dsub_2 -> ssub_0
344 // We pick the latter composition because another register may have [dsub_0,
345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
346 // dsub_2 -> ssub_0 composition can be shared.
347 while (!Indices.empty() && !Orphans.empty()) {
348 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349 CodeGenRegister *SR = SubRegs[Idx];
350 const SubRegMap &Map = SR->computeSubRegs(RegBank);
351 for (const auto &SubReg : Map)
352 if (Orphans.erase(SubReg.second))
353 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
356 // Compute the inverse SubReg -> Idx map.
357 for (const auto &SubReg : SubRegs) {
358 if (SubReg.second == this) {
359 ArrayRef<SMLoc> Loc;
360 if (TheDef)
361 Loc = TheDef->getLoc();
362 PrintFatalError(Loc, "Register " + getName() +
363 " has itself as a sub-register");
366 // Compute AllSuperRegsCovered.
367 if (!CoveredBySubRegs)
368 SubReg.first->AllSuperRegsCovered = false;
370 // Ensure that every sub-register has a unique name.
371 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373 if (Ins->second == SubReg.first)
374 continue;
375 // Trouble: Two different names for SubReg.second.
376 ArrayRef<SMLoc> Loc;
377 if (TheDef)
378 Loc = TheDef->getLoc();
379 PrintFatalError(Loc, "Sub-register can't have two names: " +
380 SubReg.second->getName() + " available as " +
381 SubReg.first->getName() + " and " + Ins->second->getName());
384 // Derive possible names for sub-register concatenations from any explicit
385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386 // that getConcatSubRegIndex() won't invent any concatenated indices that the
387 // user already specified.
388 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389 CodeGenRegister *SR = ExplicitSubRegs[i];
390 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391 SR->Artificial)
392 continue;
394 // SR is composed of multiple sub-regs. Find their names in this register.
395 SmallVector<CodeGenSubRegIndex*, 8> Parts;
396 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398 if (!I.Artificial)
399 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
402 // Offer this as an existing spelling for the concatenation of Parts.
403 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404 Idx.setConcatenationOf(Parts);
407 // Initialize RegUnitList. Because getSubRegs is called recursively, this
408 // processes the register hierarchy in postorder.
410 // Inherit all sub-register units. It is good enough to look at the explicit
411 // sub-registers, the other registers won't contribute any more units.
412 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413 CodeGenRegister *SR = ExplicitSubRegs[i];
414 RegUnits |= SR->RegUnits;
417 // Absent any ad hoc aliasing, we create one register unit per leaf register.
418 // These units correspond to the maximal cliques in the register overlap
419 // graph which is optimal.
421 // When there is ad hoc aliasing, we simply create one unit per edge in the
422 // undirected ad hoc aliasing graph. Technically, we could do better by
423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424 // are extremely rare anyway (I've never seen one), so we don't bother with
425 // the added complexity.
426 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427 CodeGenRegister *AR = ExplicitAliases[i];
428 // Only visit each edge once.
429 if (AR->SubRegsComplete)
430 continue;
431 // Create a RegUnit representing this alias edge, and add it to both
432 // registers.
433 unsigned Unit = RegBank.newRegUnit(this, AR);
434 RegUnits.set(Unit);
435 AR->RegUnits.set(Unit);
438 // Finally, create units for leaf registers without ad hoc aliases. Note that
439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440 // necessary. This means the aliasing leaf registers can share a single unit.
441 if (RegUnits.empty())
442 RegUnits.set(RegBank.newRegUnit(this));
444 // We have now computed the native register units. More may be adopted later
445 // for balancing purposes.
446 NativeRegUnits = RegUnits;
448 return SubRegs;
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
454 // QQ0 = {Q0, Q1}
455 // Q0 = {D0, D1}
456 // Q1 = {D2, D3}
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
467 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469 SubRegQueue.push(P);
471 // Look at the leading super-registers of each sub-register. Those are the
472 // candidates for new sub-registers, assuming they are fully contained in
473 // this register.
474 while (!SubRegQueue.empty()) {
475 CodeGenSubRegIndex *SubRegIdx;
476 const CodeGenRegister *SubReg;
477 std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478 SubRegQueue.pop();
480 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483 // Already got this sub-register?
484 if (Cand == this || getSubRegIndex(Cand))
485 continue;
486 // Check if each component of Cand is already a sub-register.
487 assert(!Cand->ExplicitSubRegs.empty() &&
488 "Super-register has no sub-registers");
489 if (Cand->ExplicitSubRegs.size() == 1)
490 continue;
491 SmallVector<CodeGenSubRegIndex*, 8> Parts;
492 // We know that the first component is (SubRegIdx,SubReg). However we
493 // may still need to split it into smaller subregister parts.
494 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498 if (SubRegIdx->ConcatenationOf.empty())
499 Parts.push_back(SubRegIdx);
500 else
501 append_range(Parts, SubRegIdx->ConcatenationOf);
502 } else {
503 // Sub-register doesn't exist.
504 Parts.clear();
505 break;
508 // There is nothing to do if some Cand sub-register is not part of this
509 // register.
510 if (Parts.empty())
511 continue;
513 // Each part of Cand is a sub-register of this. Make the full Cand also
514 // a sub-register with a concatenated sub-register index.
515 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517 std::make_pair(Concat, Cand);
519 if (!SubRegs.insert(NewSubReg).second)
520 continue;
522 // We inserted a new subregister.
523 NewSubRegs.push_back(NewSubReg);
524 SubRegQueue.push(NewSubReg);
525 SubReg2Idx.insert(std::make_pair(Cand, Concat));
529 // Create sub-register index composition maps for the synthesized indices.
530 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533 for (auto SubReg : NewSubReg->SubRegs) {
534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535 if (!SubIdx)
536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537 SubReg.second->getName() +
538 " in " + getName());
539 NewIdx->addComposite(SubReg.first, SubIdx);
544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545 // Only visit each register once.
546 if (SuperRegsComplete)
547 return;
548 SuperRegsComplete = true;
550 // Make sure all sub-registers have been visited first, so the super-reg
551 // lists will be topologically ordered.
552 for (auto SubReg : SubRegs)
553 SubReg.second->computeSuperRegs(RegBank);
555 // Now add this as a super-register on all sub-registers.
556 // Also compute the TopoSigId in post-order.
557 TopoSigId Id;
558 for (auto SubReg : SubRegs) {
559 // Topological signature computed from SubIdx, TopoId(SubReg).
560 // Loops and idempotent indices have TopoSig = ~0u.
561 Id.push_back(SubReg.first->EnumValue);
562 Id.push_back(SubReg.second->TopoSig);
564 // Don't add duplicate entries.
565 if (!SubReg.second->SuperRegs.empty() &&
566 SubReg.second->SuperRegs.back() == this)
567 continue;
568 SubReg.second->SuperRegs.push_back(this);
570 TopoSig = RegBank.getTopoSig(Id);
573 void
574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575 CodeGenRegBank &RegBank) const {
576 assert(SubRegsComplete && "Must precompute sub-registers");
577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578 CodeGenRegister *SR = ExplicitSubRegs[i];
579 if (OSet.insert(SR))
580 SR->addSubRegsPreOrder(OSet, RegBank);
582 // Add any secondary sub-registers that weren't part of the explicit tree.
583 for (auto SubReg : SubRegs)
584 OSet.insert(SubReg.second);
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589 unsigned Weight = 0;
590 for (unsigned RegUnit : RegUnits) {
591 Weight += RegBank.getRegUnit(RegUnit).Weight;
593 return Weight;
596 //===----------------------------------------------------------------------===//
597 // RegisterTuples
598 //===----------------------------------------------------------------------===//
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
605 struct TupleExpander : SetTheory::Expander {
606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607 // the synthesized definitions for their lifetime.
608 std::vector<std::unique_ptr<Record>> &SynthDefs;
610 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611 : SynthDefs(SynthDefs) {}
613 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615 unsigned Dim = Indices.size();
616 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617 if (Dim != SubRegs->size())
618 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619 if (Dim < 2)
620 PrintFatalError(Def->getLoc(),
621 "Tuples must have at least 2 sub-registers");
623 // Evaluate the sub-register lists to be zipped.
624 unsigned Length = ~0u;
625 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626 for (unsigned i = 0; i != Dim; ++i) {
627 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628 Length = std::min(Length, unsigned(Lists[i].size()));
631 if (Length == 0)
632 return;
634 // Precompute some types.
635 Record *RegisterCl = Def->getRecords().getClass("Register");
636 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637 std::vector<StringRef> RegNames =
638 Def->getValueAsListOfStrings("RegAsmNames");
640 // Zip them up.
641 RecordKeeper &RK = Def->getRecords();
642 for (unsigned n = 0; n != Length; ++n) {
643 std::string Name;
644 Record *Proto = Lists[0][n];
645 std::vector<Init*> Tuple;
646 for (unsigned i = 0; i != Dim; ++i) {
647 Record *Reg = Lists[i][n];
648 if (i) Name += '_';
649 Name += Reg->getName();
650 Tuple.push_back(DefInit::get(Reg));
653 // Take the cost list of the first register in the tuple.
654 ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655 SmallVector<Init *, 2> CostPerUse;
656 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
658 StringInit *AsmName = StringInit::get(RK, "");
659 if (!RegNames.empty()) {
660 if (RegNames.size() <= n)
661 PrintFatalError(Def->getLoc(),
662 "Register tuple definition missing name for '" +
663 Name + "'.");
664 AsmName = StringInit::get(RK, RegNames[n]);
667 // Create a new Record representing the synthesized register. This record
668 // is only for consumption by CodeGenRegister, it is not added to the
669 // RecordKeeper.
670 SynthDefs.emplace_back(
671 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672 Record *NewReg = SynthDefs.back().get();
673 Elts.insert(NewReg);
675 // Copy Proto super-classes.
676 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677 for (const auto &SuperPair : Supers)
678 NewReg->addSuperClass(SuperPair.first, SuperPair.second);
680 // Copy Proto fields.
681 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682 RecordVal RV = Proto->getValues()[i];
684 // Skip existing fields, like NAME.
685 if (NewReg->getValue(RV.getNameInit()))
686 continue;
688 StringRef Field = RV.getName();
690 // Replace the sub-register list with Tuple.
691 if (Field == "SubRegs")
692 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
694 if (Field == "AsmName")
695 RV.setValue(AsmName);
697 // CostPerUse is aggregated from all Tuple members.
698 if (Field == "CostPerUse")
699 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
701 // Composite registers are always covered by sub-registers.
702 if (Field == "CoveredBySubRegs")
703 RV.setValue(BitInit::get(RK, true));
705 // Copy fields from the RegisterTuples def.
706 if (Field == "SubRegIndices" ||
707 Field == "CompositeIndices") {
708 NewReg->addValue(*Def->getValue(Field));
709 continue;
712 // Some fields get their default uninitialized value.
713 if (Field == "DwarfNumbers" ||
714 Field == "DwarfAlias" ||
715 Field == "Aliases") {
716 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717 NewReg->addValue(*DefRV);
718 continue;
721 // Everything else is copied from Proto.
722 NewReg->addValue(RV);
728 } // end anonymous namespace
730 //===----------------------------------------------------------------------===//
731 // CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735 llvm::sort(M, deref<std::less<>>());
736 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740 : TheDef(R), Name(std::string(R->getName())),
741 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744 if (TypeList.empty())
745 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747 Record *Type = TypeList[i];
748 if (!Type->isSubClassOf("ValueType"))
749 PrintFatalError(R->getLoc(),
750 "RegTypes list member '" + Type->getName() +
751 "' does not derive from the ValueType class!");
752 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
755 // Allocation order 0 is the full set. AltOrders provides others.
756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758 Orders.resize(1 + AltOrders->size());
760 // Default allocation order always contains all registers.
761 Artificial = true;
762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763 Orders[0].push_back((*Elements)[i]);
764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765 Members.push_back(Reg);
766 Artificial &= Reg->Artificial;
767 TopoSigs.set(Reg->getTopoSig());
769 sortAndUniqueRegisters(Members);
771 // Alternative allocation orders may be subsets.
772 SetTheory::RecSet Order;
773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775 Orders[1 + i].append(Order.begin(), Order.end());
776 // Verify that all altorder members are regclass members.
777 while (!Order.empty()) {
778 CodeGenRegister *Reg = RegBank.getReg(Order.back());
779 Order.pop_back();
780 if (!contains(Reg))
781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782 " is not a class member");
786 Namespace = R->getValueAsString("Namespace");
788 if (const RecordVal *RV = R->getValue("RegInfos"))
789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791 unsigned Size = R->getValueAsInt("Size");
792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793 "Impossible to determine register size");
794 if (!RSI.hasDefault()) {
795 RegSizeInfo RI;
796 RI.RegSize = RI.SpillSize = Size ? Size
797 : VTs[0].getSimple().getSizeInBits();
798 RI.SpillAlignment = R->getValueAsInt("Alignment");
799 RSI.insertRegSizeForMode(DefaultMode, RI);
802 CopyCost = R->getValueAsInt("CopyCost");
803 Allocatable = R->getValueAsBit("isAllocatable");
804 AltOrderSelect = R->getValueAsString("AltOrderSelect");
805 int AllocationPriority = R->getValueAsInt("AllocationPriority");
806 if (!isUInt<5>(AllocationPriority))
807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
808 this->AllocationPriority = AllocationPriority;
810 GlobalPriority = R->getValueAsBit("GlobalPriority");
812 BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
813 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
814 BitInit *Bit = cast<BitInit>(TSF->getBit(I));
815 TSFlags |= uint8_t(Bit->getValue()) << I;
819 // Create an inferred register class that was missing from the .td files.
820 // Most properties will be inherited from the closest super-class after the
821 // class structure has been computed.
822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
823 StringRef Name, Key Props)
824 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
825 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
826 CopyCost(0), Allocatable(true), AllocationPriority(0),
827 GlobalPriority(false), TSFlags(0) {
828 Artificial = true;
829 GeneratePressureSet = false;
830 for (const auto R : Members) {
831 TopoSigs.set(R->getTopoSig());
832 Artificial &= R->Artificial;
836 // Compute inherited propertied for a synthesized register class.
837 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
838 assert(!getDef() && "Only synthesized classes can inherit properties");
839 assert(!SuperClasses.empty() && "Synthesized class without super class");
841 // The last super-class is the smallest one.
842 CodeGenRegisterClass &Super = *SuperClasses.back();
844 // Most properties are copied directly.
845 // Exceptions are members, size, and alignment
846 Namespace = Super.Namespace;
847 VTs = Super.VTs;
848 CopyCost = Super.CopyCost;
849 // Check for allocatable superclasses.
850 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
851 return S->Allocatable;
853 AltOrderSelect = Super.AltOrderSelect;
854 AllocationPriority = Super.AllocationPriority;
855 GlobalPriority = Super.GlobalPriority;
856 TSFlags = Super.TSFlags;
857 GeneratePressureSet |= Super.GeneratePressureSet;
859 // Copy all allocation orders, filter out foreign registers from the larger
860 // super-class.
861 Orders.resize(Super.Orders.size());
862 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
863 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
864 if (contains(RegBank.getReg(Super.Orders[i][j])))
865 Orders[i].push_back(Super.Orders[i][j]);
868 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
869 if (llvm::is_contained(VTs, VT))
870 return true;
872 // If VT is not identical to any of this class's types, but is a simple
873 // type, check if any of the types for this class contain it under some
874 // mode.
875 // The motivating example came from RISC-V, where (likely because of being
876 // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
877 // type in GRC was {*:[i32], m1:[i64]}.
878 if (VT.isSimple()) {
879 MVT T = VT.getSimple();
880 for (const ValueTypeByHwMode &OurVT : VTs) {
881 if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
882 return true;
885 return false;
888 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
889 return std::binary_search(Members.begin(), Members.end(), Reg,
890 deref<std::less<>>());
893 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
894 if (TheDef && !TheDef->isValueUnset("Weight"))
895 return TheDef->getValueAsInt("Weight");
897 if (Members.empty() || Artificial)
898 return 0;
900 return (*Members.begin())->getWeight(RegBank);
903 namespace llvm {
905 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
906 OS << "{ " << K.RSI;
907 for (const auto R : *K.Members)
908 OS << ", " << R->getName();
909 return OS << " }";
912 } // end namespace llvm
914 // This is a simple lexicographical order that can be used to search for sets.
915 // It is not the same as the topological order provided by TopoOrderRC.
916 bool CodeGenRegisterClass::Key::
917 operator<(const CodeGenRegisterClass::Key &B) const {
918 assert(Members && B.Members);
919 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
922 // Returns true if RC is a strict subclass.
923 // RC is a sub-class of this class if it is a valid replacement for any
924 // instruction operand where a register of this classis required. It must
925 // satisfy these conditions:
927 // 1. All RC registers are also in this.
928 // 2. The RC spill size must not be smaller than our spill size.
929 // 3. RC spill alignment must be compatible with ours.
931 static bool testSubClass(const CodeGenRegisterClass *A,
932 const CodeGenRegisterClass *B) {
933 return A->RSI.isSubClassOf(B->RSI) &&
934 std::includes(A->getMembers().begin(), A->getMembers().end(),
935 B->getMembers().begin(), B->getMembers().end(),
936 deref<std::less<>>());
939 /// Sorting predicate for register classes. This provides a topological
940 /// ordering that arranges all register classes before their sub-classes.
942 /// Register classes with the same registers, spill size, and alignment form a
943 /// clique. They will be ordered alphabetically.
945 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
946 const CodeGenRegisterClass &PB) {
947 auto *A = &PA;
948 auto *B = &PB;
949 if (A == B)
950 return false;
952 if (A->RSI < B->RSI)
953 return true;
954 if (A->RSI != B->RSI)
955 return false;
957 // Order by descending set size. Note that the classes' allocation order may
958 // not have been computed yet. The Members set is always vaild.
959 if (A->getMembers().size() > B->getMembers().size())
960 return true;
961 if (A->getMembers().size() < B->getMembers().size())
962 return false;
964 // Finally order by name as a tie breaker.
965 return StringRef(A->getName()) < B->getName();
968 std::string CodeGenRegisterClass::getNamespaceQualification() const {
969 return Namespace.empty() ? "" : (Namespace + "::").str();
972 std::string CodeGenRegisterClass::getQualifiedName() const {
973 return getNamespaceQualification() + getName();
976 std::string CodeGenRegisterClass::getIdName() const {
977 return getName() + "RegClassID";
980 std::string CodeGenRegisterClass::getQualifiedIdName() const {
981 return getNamespaceQualification() + getIdName();
984 // Compute sub-classes of all register classes.
985 // Assume the classes are ordered topologically.
986 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
987 auto &RegClasses = RegBank.getRegClasses();
989 // Visit backwards so sub-classes are seen first.
990 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
991 CodeGenRegisterClass &RC = *I;
992 RC.SubClasses.resize(RegClasses.size());
993 RC.SubClasses.set(RC.EnumValue);
994 if (RC.Artificial)
995 continue;
997 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
998 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
999 CodeGenRegisterClass &SubRC = *I2;
1000 if (RC.SubClasses.test(SubRC.EnumValue))
1001 continue;
1002 if (!testSubClass(&RC, &SubRC))
1003 continue;
1004 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
1005 // check them again.
1006 RC.SubClasses |= SubRC.SubClasses;
1009 // Sweep up missed clique members. They will be immediately preceding RC.
1010 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
1011 RC.SubClasses.set(I2->EnumValue);
1014 // Compute the SuperClasses lists from the SubClasses vectors.
1015 for (auto &RC : RegClasses) {
1016 const BitVector &SC = RC.getSubClasses();
1017 auto I = RegClasses.begin();
1018 for (int s = 0, next_s = SC.find_first(); next_s != -1;
1019 next_s = SC.find_next(s)) {
1020 std::advance(I, next_s - s);
1021 s = next_s;
1022 if (&*I == &RC)
1023 continue;
1024 I->SuperClasses.push_back(&RC);
1028 // With the class hierarchy in place, let synthesized register classes inherit
1029 // properties from their closest super-class. The iteration order here can
1030 // propagate properties down multiple levels.
1031 for (auto &RC : RegClasses)
1032 if (!RC.getDef())
1033 RC.inheritProperties(RegBank);
1036 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
1037 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1038 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1039 auto WeakSizeOrder = [this](const CodeGenRegisterClass *A,
1040 const CodeGenRegisterClass *B) {
1041 // If there are multiple, identical register classes, prefer the original
1042 // register class.
1043 if (A == B)
1044 return false;
1045 if (A->getMembers().size() == B->getMembers().size())
1046 return A == this;
1047 return A->getMembers().size() > B->getMembers().size();
1050 auto &RegClasses = RegBank.getRegClasses();
1052 // Find all the subclasses of this one that fully support the sub-register
1053 // index and order them by size. BiggestSuperRC should always be first.
1054 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1055 if (!BiggestSuperRegRC)
1056 return std::nullopt;
1057 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1058 std::vector<CodeGenRegisterClass *> SuperRegRCs;
1059 for (auto &RC : RegClasses)
1060 if (SuperRegRCsBV[RC.EnumValue])
1061 SuperRegRCs.emplace_back(&RC);
1062 llvm::stable_sort(SuperRegRCs, WeakSizeOrder);
1064 assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1065 "Biggest class wasn't first");
1067 // Find all the subreg classes and order them by size too.
1068 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1069 for (auto &RC: RegClasses) {
1070 BitVector SuperRegClassesBV(RegClasses.size());
1071 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1072 if (SuperRegClassesBV.any())
1073 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1075 llvm::stable_sort(SuperRegClasses,
1076 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1077 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1078 return WeakSizeOrder(A.first, B.first);
1081 // Find the biggest subclass and subreg class such that R:subidx is in the
1082 // subreg class for all R in subclass.
1084 // For example:
1085 // All registers in X86's GR64 have a sub_32bit subregister but no class
1086 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1087 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1088 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1089 // having excluded RIP, we are able to find a SubRegRC (GR32).
1090 CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1091 CodeGenRegisterClass *SubRegRC = nullptr;
1092 for (auto *SuperRegRC : SuperRegRCs) {
1093 for (const auto &SuperRegClassPair : SuperRegClasses) {
1094 const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1095 if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1096 SubRegRC = SuperRegClassPair.first;
1097 ChosenSuperRegClass = SuperRegRC;
1099 // If SubRegRC is bigger than SuperRegRC then there are members of
1100 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1101 // find a better fit and fall back on this one if there isn't one.
1103 // This is intended to prevent X86 from making odd choices such as
1104 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1105 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1106 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1107 // mapping.
1108 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1109 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1113 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1114 // registers, then we're done.
1115 if (ChosenSuperRegClass)
1116 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1119 return std::nullopt;
1122 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1123 BitVector &Out) const {
1124 auto FindI = SuperRegClasses.find(SubIdx);
1125 if (FindI == SuperRegClasses.end())
1126 return;
1127 for (CodeGenRegisterClass *RC : FindI->second)
1128 Out.set(RC->EnumValue);
1131 // Populate a unique sorted list of units from a register set.
1132 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1133 std::vector<unsigned> &RegUnits) const {
1134 std::vector<unsigned> TmpUnits;
1135 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1136 const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1137 if (!RU.Artificial)
1138 TmpUnits.push_back(*UnitI);
1140 llvm::sort(TmpUnits);
1141 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1142 std::back_inserter(RegUnits));
1145 //===----------------------------------------------------------------------===//
1146 // CodeGenRegisterCategory
1147 //===----------------------------------------------------------------------===//
1149 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1150 Record *R)
1151 : TheDef(R), Name(std::string(R->getName())) {
1152 for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1153 Classes.push_back(RegBank.getRegClass(RegClass));
1156 //===----------------------------------------------------------------------===//
1157 // CodeGenRegBank
1158 //===----------------------------------------------------------------------===//
1160 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1161 const CodeGenHwModes &Modes) : CGH(Modes) {
1162 // Configure register Sets to understand register classes and tuples.
1163 Sets.addFieldExpander("RegisterClass", "MemberList");
1164 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1165 Sets.addExpander("RegisterTuples",
1166 std::make_unique<TupleExpander>(SynthDefs));
1168 // Read in the user-defined (named) sub-register indices.
1169 // More indices will be synthesized later.
1170 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1171 llvm::sort(SRIs, LessRecord());
1172 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1173 getSubRegIdx(SRIs[i]);
1174 // Build composite maps from ComposedOf fields.
1175 for (auto &Idx : SubRegIndices)
1176 Idx.updateComponents(*this);
1178 // Read in the register and register tuple definitions.
1179 std::vector<Record *> Regs = Records.getAllDerivedDefinitions("Register");
1180 if (!Regs.empty() && Regs[0]->isSubClassOf("X86Reg")) {
1181 // For X86, we need to sort Registers and RegisterTuples together to list
1182 // new registers and register tuples at a later position. So that we can
1183 // reduce unnecessary iterations on unsupported registers in LiveVariables.
1184 // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
1185 // completely.
1186 std::vector<Record *> Tups =
1187 Records.getAllDerivedDefinitions("RegisterTuples");
1188 for (Record *R : Tups) {
1189 // Expand tuples and merge the vectors
1190 std::vector<Record *> TupRegs = *Sets.expand(R);
1191 Regs.insert(Regs.end(), TupRegs.begin(), TupRegs.end());
1194 llvm::sort(Regs, LessRecordRegister());
1195 // Assign the enumeration values.
1196 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1197 getReg(Regs[i]);
1198 } else {
1199 llvm::sort(Regs, LessRecordRegister());
1200 // Assign the enumeration values.
1201 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1202 getReg(Regs[i]);
1204 // Expand tuples and number the new registers.
1205 std::vector<Record *> Tups =
1206 Records.getAllDerivedDefinitions("RegisterTuples");
1208 for (Record *R : Tups) {
1209 std::vector<Record *> TupRegs = *Sets.expand(R);
1210 llvm::sort(TupRegs, LessRecordRegister());
1211 for (Record *RC : TupRegs)
1212 getReg(RC);
1216 // Now all the registers are known. Build the object graph of explicit
1217 // register-register references.
1218 for (auto &Reg : Registers)
1219 Reg.buildObjectGraph(*this);
1221 // Compute register name map.
1222 for (auto &Reg : Registers)
1223 // FIXME: This could just be RegistersByName[name] = register, except that
1224 // causes some failures in MIPS - perhaps they have duplicate register name
1225 // entries? (or maybe there's a reason for it - I don't know much about this
1226 // code, just drive-by refactoring)
1227 RegistersByName.insert(
1228 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1230 // Precompute all sub-register maps.
1231 // This will create Composite entries for all inferred sub-register indices.
1232 for (auto &Reg : Registers)
1233 Reg.computeSubRegs(*this);
1235 // Compute transitive closure of subregister index ConcatenationOf vectors
1236 // and initialize ConcatIdx map.
1237 for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1238 SRI.computeConcatTransitiveClosure();
1239 if (!SRI.ConcatenationOf.empty())
1240 ConcatIdx.insert(std::make_pair(
1241 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1242 SRI.ConcatenationOf.end()), &SRI));
1245 // Infer even more sub-registers by combining leading super-registers.
1246 for (auto &Reg : Registers)
1247 if (Reg.CoveredBySubRegs)
1248 Reg.computeSecondarySubRegs(*this);
1250 // After the sub-register graph is complete, compute the topologically
1251 // ordered SuperRegs list.
1252 for (auto &Reg : Registers)
1253 Reg.computeSuperRegs(*this);
1255 // For each pair of Reg:SR, if both are non-artificial, mark the
1256 // corresponding sub-register index as non-artificial.
1257 for (auto &Reg : Registers) {
1258 if (Reg.Artificial)
1259 continue;
1260 for (auto P : Reg.getSubRegs()) {
1261 const CodeGenRegister *SR = P.second;
1262 if (!SR->Artificial)
1263 P.first->Artificial = false;
1267 // Native register units are associated with a leaf register. They've all been
1268 // discovered now.
1269 NumNativeRegUnits = RegUnits.size();
1271 // Read in register class definitions.
1272 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1273 if (RCs.empty())
1274 PrintFatalError("No 'RegisterClass' subclasses defined!");
1276 // Allocate user-defined register classes.
1277 for (auto *R : RCs) {
1278 RegClasses.emplace_back(*this, R);
1279 CodeGenRegisterClass &RC = RegClasses.back();
1280 if (!RC.Artificial)
1281 addToMaps(&RC);
1284 // Infer missing classes to create a full algebra.
1285 computeInferredRegisterClasses();
1287 // Order register classes topologically and assign enum values.
1288 RegClasses.sort(TopoOrderRC);
1289 unsigned i = 0;
1290 for (auto &RC : RegClasses)
1291 RC.EnumValue = i++;
1292 CodeGenRegisterClass::computeSubClasses(*this);
1294 // Read in the register category definitions.
1295 std::vector<Record *> RCats =
1296 Records.getAllDerivedDefinitions("RegisterCategory");
1297 for (auto *R : RCats)
1298 RegCategories.emplace_back(*this, R);
1301 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1302 CodeGenSubRegIndex*
1303 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1304 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1305 return &SubRegIndices.back();
1308 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1309 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1310 if (Idx)
1311 return Idx;
1312 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1313 Idx = &SubRegIndices.back();
1314 return Idx;
1317 const CodeGenSubRegIndex *
1318 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1319 return Def2SubRegIdx.lookup(Def);
1322 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1323 CodeGenRegister *&Reg = Def2Reg[Def];
1324 if (Reg)
1325 return Reg;
1326 Registers.emplace_back(Def, Registers.size() + 1);
1327 Reg = &Registers.back();
1328 return Reg;
1331 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1332 if (Record *Def = RC->getDef())
1333 Def2RC.insert(std::make_pair(Def, RC));
1335 // Duplicate classes are rejected by insert().
1336 // That's OK, we only care about the properties handled by CGRC::Key.
1337 CodeGenRegisterClass::Key K(*RC);
1338 Key2RC.insert(std::make_pair(K, RC));
1341 // Create a synthetic sub-class if it is missing.
1342 CodeGenRegisterClass*
1343 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1344 const CodeGenRegister::Vec *Members,
1345 StringRef Name) {
1346 // Synthetic sub-class has the same size and alignment as RC.
1347 CodeGenRegisterClass::Key K(Members, RC->RSI);
1348 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1349 if (FoundI != Key2RC.end())
1350 return FoundI->second;
1352 // Sub-class doesn't exist, create a new one.
1353 RegClasses.emplace_back(*this, Name, K);
1354 addToMaps(&RegClasses.back());
1355 return &RegClasses.back();
1358 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1359 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1360 return RC;
1362 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1365 CodeGenSubRegIndex*
1366 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1367 CodeGenSubRegIndex *B) {
1368 // Look for an existing entry.
1369 CodeGenSubRegIndex *Comp = A->compose(B);
1370 if (Comp)
1371 return Comp;
1373 // None exists, synthesize one.
1374 std::string Name = A->getName() + "_then_" + B->getName();
1375 Comp = createSubRegIndex(Name, A->getNamespace());
1376 A->addComposite(B, Comp);
1377 return Comp;
1380 CodeGenSubRegIndex *CodeGenRegBank::
1381 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1382 assert(Parts.size() > 1 && "Need two parts to concatenate");
1383 #ifndef NDEBUG
1384 for (CodeGenSubRegIndex *Idx : Parts) {
1385 assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1387 #endif
1389 // Look for an existing entry.
1390 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1391 if (Idx)
1392 return Idx;
1394 // None exists, synthesize one.
1395 std::string Name = Parts.front()->getName();
1396 // Determine whether all parts are contiguous.
1397 bool isContinuous = true;
1398 unsigned Size = Parts.front()->Size;
1399 unsigned LastOffset = Parts.front()->Offset;
1400 unsigned LastSize = Parts.front()->Size;
1401 unsigned UnknownSize = (uint16_t)-1;
1402 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1403 Name += '_';
1404 Name += Parts[i]->getName();
1405 if (Size == UnknownSize || Parts[i]->Size == UnknownSize)
1406 Size = UnknownSize;
1407 else
1408 Size += Parts[i]->Size;
1409 if (LastSize == UnknownSize || Parts[i]->Offset != (LastOffset + LastSize))
1410 isContinuous = false;
1411 LastOffset = Parts[i]->Offset;
1412 LastSize = Parts[i]->Size;
1414 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1415 Idx->Size = Size;
1416 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1417 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1418 return Idx;
1421 void CodeGenRegBank::computeComposites() {
1422 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1424 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1425 // register to (sub)register associated with the action of the left-hand
1426 // side subregister.
1427 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1428 for (const CodeGenRegister &R : Registers) {
1429 const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1430 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1431 SubRegAction[P.first].insert({&R, P.second});
1434 // Calculate the composition of two subregisters as compositions of their
1435 // associated actions.
1436 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1437 const CodeGenSubRegIndex *Sub2) {
1438 RegMap C;
1439 const RegMap &Img1 = SubRegAction.at(Sub1);
1440 const RegMap &Img2 = SubRegAction.at(Sub2);
1441 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1442 auto F = Img2.find(P.second);
1443 if (F != Img2.end())
1444 C.insert({P.first, F->second});
1446 return C;
1449 // Check if the two maps agree on the intersection of their domains.
1450 auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1451 // Technically speaking, an empty map agrees with any other map, but
1452 // this could flag false positives. We're interested in non-vacuous
1453 // agreements.
1454 if (Map1.empty() || Map2.empty())
1455 return false;
1456 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1457 auto F = Map2.find(P.first);
1458 if (F == Map2.end() || P.second != F->second)
1459 return false;
1461 return true;
1464 using CompositePair = std::pair<const CodeGenSubRegIndex*,
1465 const CodeGenSubRegIndex*>;
1466 SmallSet<CompositePair,4> UserDefined;
1467 for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1468 for (auto P : Idx.getComposites())
1469 UserDefined.insert(std::make_pair(&Idx, P.first));
1471 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1472 // and many registers will share TopoSigs on regular architectures.
1473 BitVector TopoSigs(getNumTopoSigs());
1475 for (const auto &Reg1 : Registers) {
1476 // Skip identical subreg structures already processed.
1477 if (TopoSigs.test(Reg1.getTopoSig()))
1478 continue;
1479 TopoSigs.set(Reg1.getTopoSig());
1481 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1482 for (auto I1 : SRM1) {
1483 CodeGenSubRegIndex *Idx1 = I1.first;
1484 CodeGenRegister *Reg2 = I1.second;
1485 // Ignore identity compositions.
1486 if (&Reg1 == Reg2)
1487 continue;
1488 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1489 // Try composing Idx1 with another SubRegIndex.
1490 for (auto I2 : SRM2) {
1491 CodeGenSubRegIndex *Idx2 = I2.first;
1492 CodeGenRegister *Reg3 = I2.second;
1493 // Ignore identity compositions.
1494 if (Reg2 == Reg3)
1495 continue;
1496 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1497 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1498 assert(Idx3 && "Sub-register doesn't have an index");
1500 // Conflicting composition? Emit a warning but allow it.
1501 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1502 // If the composition was not user-defined, always emit a warning.
1503 if (!UserDefined.count({Idx1, Idx2}) ||
1504 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1505 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1506 " and " + Idx2->getQualifiedName() +
1507 " compose ambiguously as " + Prev->getQualifiedName() +
1508 " or " + Idx3->getQualifiedName());
1515 // Compute lane masks. This is similar to register units, but at the
1516 // sub-register index level. Each bit in the lane mask is like a register unit
1517 // class, and two lane masks will have a bit in common if two sub-register
1518 // indices overlap in some register.
1520 // Conservatively share a lane mask bit if two sub-register indices overlap in
1521 // some registers, but not in others. That shouldn't happen a lot.
1522 void CodeGenRegBank::computeSubRegLaneMasks() {
1523 // First assign individual bits to all the leaf indices.
1524 unsigned Bit = 0;
1525 // Determine mask of lanes that cover their registers.
1526 CoveringLanes = LaneBitmask::getAll();
1527 for (auto &Idx : SubRegIndices) {
1528 if (Idx.getComposites().empty()) {
1529 if (Bit > LaneBitmask::BitWidth) {
1530 PrintFatalError(
1531 Twine("Ran out of lanemask bits to represent subregister ")
1532 + Idx.getName());
1534 Idx.LaneMask = LaneBitmask::getLane(Bit);
1535 ++Bit;
1536 } else {
1537 Idx.LaneMask = LaneBitmask::getNone();
1541 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1542 // here is that for each possible target subregister we look at the leafs
1543 // in the subregister graph that compose for this target and create
1544 // transformation sequences for the lanemasks. Each step in the sequence
1545 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1546 // are usually the same for many subregisters we can easily combine the steps
1547 // by combining the masks.
1548 for (const auto &Idx : SubRegIndices) {
1549 const auto &Composites = Idx.getComposites();
1550 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1552 if (Composites.empty()) {
1553 // Moving from a class with no subregisters we just had a single lane:
1554 // The subregister must be a leaf subregister and only occupies 1 bit.
1555 // Move the bit from the class without subregisters into that position.
1556 unsigned DstBit = Idx.LaneMask.getHighestLane();
1557 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1558 "Must be a leaf subregister");
1559 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1560 LaneTransforms.push_back(MaskRol);
1561 } else {
1562 // Go through all leaf subregisters and find the ones that compose with
1563 // Idx. These make out all possible valid bits in the lane mask we want to
1564 // transform. Looking only at the leafs ensure that only a single bit in
1565 // the mask is set.
1566 unsigned NextBit = 0;
1567 for (auto &Idx2 : SubRegIndices) {
1568 // Skip non-leaf subregisters.
1569 if (!Idx2.getComposites().empty())
1570 continue;
1571 // Replicate the behaviour from the lane mask generation loop above.
1572 unsigned SrcBit = NextBit;
1573 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1574 if (NextBit < LaneBitmask::BitWidth-1)
1575 ++NextBit;
1576 assert(Idx2.LaneMask == SrcMask);
1578 // Get the composed subregister if there is any.
1579 auto C = Composites.find(&Idx2);
1580 if (C == Composites.end())
1581 continue;
1582 const CodeGenSubRegIndex *Composite = C->second;
1583 // The Composed subreg should be a leaf subreg too
1584 assert(Composite->getComposites().empty());
1586 // Create Mask+Rotate operation and merge with existing ops if possible.
1587 unsigned DstBit = Composite->LaneMask.getHighestLane();
1588 int Shift = DstBit - SrcBit;
1589 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1590 : LaneBitmask::BitWidth + Shift;
1591 for (auto &I : LaneTransforms) {
1592 if (I.RotateLeft == RotateLeft) {
1593 I.Mask |= SrcMask;
1594 SrcMask = LaneBitmask::getNone();
1597 if (SrcMask.any()) {
1598 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1599 LaneTransforms.push_back(MaskRol);
1604 // Optimize if the transformation consists of one step only: Set mask to
1605 // 0xffffffff (including some irrelevant invalid bits) so that it should
1606 // merge with more entries later while compressing the table.
1607 if (LaneTransforms.size() == 1)
1608 LaneTransforms[0].Mask = LaneBitmask::getAll();
1610 // Further compression optimization: For invalid compositions resulting
1611 // in a sequence with 0 entries we can just pick any other. Choose
1612 // Mask 0xffffffff with Rotation 0.
1613 if (LaneTransforms.size() == 0) {
1614 MaskRolPair P = { LaneBitmask::getAll(), 0 };
1615 LaneTransforms.push_back(P);
1619 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1620 // by the sub-register graph? This doesn't occur in any known targets.
1622 // Inherit lanes from composites.
1623 for (const auto &Idx : SubRegIndices) {
1624 LaneBitmask Mask = Idx.computeLaneMask();
1625 // If some super-registers without CoveredBySubRegs use this index, we can
1626 // no longer assume that the lanes are covering their registers.
1627 if (!Idx.AllSuperRegsCovered)
1628 CoveringLanes &= ~Mask;
1631 // Compute lane mask combinations for register classes.
1632 for (auto &RegClass : RegClasses) {
1633 LaneBitmask LaneMask;
1634 for (const auto &SubRegIndex : SubRegIndices) {
1635 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1636 continue;
1637 LaneMask |= SubRegIndex.LaneMask;
1640 // For classes without any subregisters set LaneMask to 1 instead of 0.
1641 // This makes it easier for client code to handle classes uniformly.
1642 if (LaneMask.none())
1643 LaneMask = LaneBitmask::getLane(0);
1645 RegClass.LaneMask = LaneMask;
1649 namespace {
1651 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1652 // the transitive closure of the union of overlapping register
1653 // classes. Together, the UberRegSets form a partition of the registers. If we
1654 // consider overlapping register classes to be connected, then each UberRegSet
1655 // is a set of connected components.
1657 // An UberRegSet will likely be a horizontal slice of register names of
1658 // the same width. Nontrivial subregisters should then be in a separate
1659 // UberRegSet. But this property isn't required for valid computation of
1660 // register unit weights.
1662 // A Weight field caches the max per-register unit weight in each UberRegSet.
1664 // A set of SingularDeterminants flags single units of some register in this set
1665 // for which the unit weight equals the set weight. These units should not have
1666 // their weight increased.
1667 struct UberRegSet {
1668 CodeGenRegister::Vec Regs;
1669 unsigned Weight = 0;
1670 CodeGenRegister::RegUnitList SingularDeterminants;
1672 UberRegSet() = default;
1675 } // end anonymous namespace
1677 // Partition registers into UberRegSets, where each set is the transitive
1678 // closure of the union of overlapping register classes.
1680 // UberRegSets[0] is a special non-allocatable set.
1681 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1682 std::vector<UberRegSet*> &RegSets,
1683 CodeGenRegBank &RegBank) {
1684 const auto &Registers = RegBank.getRegisters();
1686 // The Register EnumValue is one greater than its index into Registers.
1687 assert(Registers.size() == Registers.back().EnumValue &&
1688 "register enum value mismatch");
1690 // For simplicitly make the SetID the same as EnumValue.
1691 IntEqClasses UberSetIDs(Registers.size() + 1);
1692 BitVector AllocatableRegs(Registers.size() + 1);
1693 for (auto &RegClass : RegBank.getRegClasses()) {
1694 if (!RegClass.Allocatable)
1695 continue;
1697 const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1698 if (Regs.empty())
1699 continue;
1701 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1702 assert(USetID && "register number 0 is invalid");
1704 AllocatableRegs.set((*Regs.begin())->EnumValue);
1705 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1706 AllocatableRegs.set(CGR->EnumValue);
1707 UberSetIDs.join(USetID, CGR->EnumValue);
1710 // Combine non-allocatable regs.
1711 for (const auto &Reg : Registers) {
1712 unsigned RegNum = Reg.EnumValue;
1713 if (AllocatableRegs.test(RegNum))
1714 continue;
1716 UberSetIDs.join(0, RegNum);
1718 UberSetIDs.compress();
1720 // Make the first UberSet a special unallocatable set.
1721 unsigned ZeroID = UberSetIDs[0];
1723 // Insert Registers into the UberSets formed by union-find.
1724 // Do not resize after this.
1725 UberSets.resize(UberSetIDs.getNumClasses());
1726 unsigned i = 0;
1727 for (const CodeGenRegister &Reg : Registers) {
1728 unsigned USetID = UberSetIDs[Reg.EnumValue];
1729 if (!USetID)
1730 USetID = ZeroID;
1731 else if (USetID == ZeroID)
1732 USetID = 0;
1734 UberRegSet *USet = &UberSets[USetID];
1735 USet->Regs.push_back(&Reg);
1736 RegSets[i++] = USet;
1740 // Recompute each UberSet weight after changing unit weights.
1741 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1742 CodeGenRegBank &RegBank) {
1743 // Skip the first unallocatable set.
1744 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1745 E = UberSets.end(); I != E; ++I) {
1747 // Initialize all unit weights in this set, and remember the max units/reg.
1748 const CodeGenRegister *Reg = nullptr;
1749 unsigned MaxWeight = 0, Weight = 0;
1750 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1751 if (Reg != UnitI.getReg()) {
1752 if (Weight > MaxWeight)
1753 MaxWeight = Weight;
1754 Reg = UnitI.getReg();
1755 Weight = 0;
1757 if (!RegBank.getRegUnit(*UnitI).Artificial) {
1758 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1759 if (!UWeight) {
1760 UWeight = 1;
1761 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1763 Weight += UWeight;
1766 if (Weight > MaxWeight)
1767 MaxWeight = Weight;
1768 if (I->Weight != MaxWeight) {
1769 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1770 << MaxWeight;
1771 for (auto &Unit
1772 : I->Regs) dbgs()
1773 << " " << Unit->getName();
1774 dbgs() << "\n");
1775 // Update the set weight.
1776 I->Weight = MaxWeight;
1779 // Find singular determinants.
1780 for (const auto R : I->Regs) {
1781 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1782 I->SingularDeterminants |= R->getRegUnits();
1788 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1789 // a register and its subregisters so that they have the same weight as their
1790 // UberSet. Self-recursion processes the subregister tree in postorder so
1791 // subregisters are normalized first.
1793 // Side effects:
1794 // - creates new adopted register units
1795 // - causes superregisters to inherit adopted units
1796 // - increases the weight of "singular" units
1797 // - induces recomputation of UberWeights.
1798 static bool normalizeWeight(CodeGenRegister *Reg,
1799 std::vector<UberRegSet> &UberSets,
1800 std::vector<UberRegSet*> &RegSets,
1801 BitVector &NormalRegs,
1802 CodeGenRegister::RegUnitList &NormalUnits,
1803 CodeGenRegBank &RegBank) {
1804 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1805 if (NormalRegs.test(Reg->EnumValue))
1806 return false;
1807 NormalRegs.set(Reg->EnumValue);
1809 bool Changed = false;
1810 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1811 for (auto SRI : SRM) {
1812 if (SRI.second == Reg)
1813 continue; // self-cycles happen
1815 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1816 NormalUnits, RegBank);
1818 // Postorder register normalization.
1820 // Inherit register units newly adopted by subregisters.
1821 if (Reg->inheritRegUnits(RegBank))
1822 computeUberWeights(UberSets, RegBank);
1824 // Check if this register is too skinny for its UberRegSet.
1825 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1827 unsigned RegWeight = Reg->getWeight(RegBank);
1828 if (UberSet->Weight > RegWeight) {
1829 // A register unit's weight can be adjusted only if it is the singular unit
1830 // for this register, has not been used to normalize a subregister's set,
1831 // and has not already been used to singularly determine this UberRegSet.
1832 unsigned AdjustUnit = *Reg->getRegUnits().begin();
1833 if (Reg->getRegUnits().count() != 1
1834 || hasRegUnit(NormalUnits, AdjustUnit)
1835 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1836 // We don't have an adjustable unit, so adopt a new one.
1837 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1838 Reg->adoptRegUnit(AdjustUnit);
1839 // Adopting a unit does not immediately require recomputing set weights.
1841 else {
1842 // Adjust the existing single unit.
1843 if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1844 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1845 // The unit may be shared among sets and registers within this set.
1846 computeUberWeights(UberSets, RegBank);
1848 Changed = true;
1851 // Mark these units normalized so superregisters can't change their weights.
1852 NormalUnits |= Reg->getRegUnits();
1854 return Changed;
1857 // Compute a weight for each register unit created during getSubRegs.
1859 // The goal is that two registers in the same class will have the same weight,
1860 // where each register's weight is defined as sum of its units' weights.
1861 void CodeGenRegBank::computeRegUnitWeights() {
1862 std::vector<UberRegSet> UberSets;
1863 std::vector<UberRegSet*> RegSets(Registers.size());
1864 computeUberSets(UberSets, RegSets, *this);
1865 // UberSets and RegSets are now immutable.
1867 computeUberWeights(UberSets, *this);
1869 // Iterate over each Register, normalizing the unit weights until reaching
1870 // a fix point.
1871 unsigned NumIters = 0;
1872 for (bool Changed = true; Changed; ++NumIters) {
1873 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1874 (void) NumIters;
1875 Changed = false;
1876 for (auto &Reg : Registers) {
1877 CodeGenRegister::RegUnitList NormalUnits;
1878 BitVector NormalRegs;
1879 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1880 NormalUnits, *this);
1885 // Find a set in UniqueSets with the same elements as Set.
1886 // Return an iterator into UniqueSets.
1887 static std::vector<RegUnitSet>::const_iterator
1888 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1889 const RegUnitSet &Set) {
1890 std::vector<RegUnitSet>::const_iterator
1891 I = UniqueSets.begin(), E = UniqueSets.end();
1892 for(;I != E; ++I) {
1893 if (I->Units == Set.Units)
1894 break;
1896 return I;
1899 // Return true if the RUSubSet is a subset of RUSuperSet.
1900 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1901 const std::vector<unsigned> &RUSuperSet) {
1902 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1903 RUSubSet.begin(), RUSubSet.end());
1906 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1907 /// but with one or two registers removed. We occasionally have registers like
1908 /// APSR and PC thrown in with the general registers. We also see many
1909 /// special-purpose register subsets, such as tail-call and Thumb
1910 /// encodings. Generating all possible overlapping sets is combinatorial and
1911 /// overkill for modeling pressure. Ideally we could fix this statically in
1912 /// tablegen by (1) having the target define register classes that only include
1913 /// the allocatable registers and marking other classes as non-allocatable and
1914 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1915 /// the purpose of pressure. However, we make an attempt to handle targets that
1916 /// are not nicely defined by merging nearly identical register unit sets
1917 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1918 /// set limit by filtering the reserved registers.
1920 /// Merge sets only if the units have the same weight. For example, on ARM,
1921 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1922 /// should not expand the S set to include D regs.
1923 void CodeGenRegBank::pruneUnitSets() {
1924 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1926 // Form an equivalence class of UnitSets with no significant difference.
1927 std::vector<unsigned> SuperSetIDs;
1928 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1929 SubIdx != EndIdx; ++SubIdx) {
1930 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1931 unsigned SuperIdx = 0;
1932 for (; SuperIdx != EndIdx; ++SuperIdx) {
1933 if (SuperIdx == SubIdx)
1934 continue;
1936 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1937 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1938 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1939 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1940 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1941 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1942 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1943 << "\n");
1944 // We can pick any of the set names for the merged set. Go for the
1945 // shortest one to avoid picking the name of one of the classes that are
1946 // artificially created by tablegen. So "FPR128_lo" instead of
1947 // "QQQQ_with_qsub3_in_FPR128_lo".
1948 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1949 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1950 break;
1953 if (SuperIdx == EndIdx)
1954 SuperSetIDs.push_back(SubIdx);
1956 // Populate PrunedUnitSets with each equivalence class's superset.
1957 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1958 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1959 unsigned SuperIdx = SuperSetIDs[i];
1960 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1961 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1963 RegUnitSets.swap(PrunedUnitSets);
1966 // Create a RegUnitSet for each RegClass that contains all units in the class
1967 // including adopted units that are necessary to model register pressure. Then
1968 // iteratively compute RegUnitSets such that the union of any two overlapping
1969 // RegUnitSets is repreresented.
1971 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1972 // RegUnitSet that is a superset of that RegUnitClass.
1973 void CodeGenRegBank::computeRegUnitSets() {
1974 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1976 // Compute a unique RegUnitSet for each RegClass.
1977 auto &RegClasses = getRegClasses();
1978 for (auto &RC : RegClasses) {
1979 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1980 continue;
1982 // Speculatively grow the RegUnitSets to hold the new set.
1983 RegUnitSets.resize(RegUnitSets.size() + 1);
1984 RegUnitSets.back().Name = RC.getName();
1986 // Compute a sorted list of units in this class.
1987 RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1989 // Find an existing RegUnitSet.
1990 std::vector<RegUnitSet>::const_iterator SetI =
1991 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1992 if (SetI != std::prev(RegUnitSets.end()))
1993 RegUnitSets.pop_back();
1996 if (RegUnitSets.empty())
1997 PrintFatalError("RegUnitSets cannot be empty!");
1999 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
2000 USEnd = RegUnitSets.size();
2001 USIdx < USEnd; ++USIdx) {
2002 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2003 for (auto &U : RegUnitSets[USIdx].Units)
2004 printRegUnitName(U);
2005 dbgs() << "\n";
2008 // Iteratively prune unit sets.
2009 pruneUnitSets();
2011 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
2012 USEnd = RegUnitSets.size();
2013 USIdx < USEnd; ++USIdx) {
2014 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2015 for (auto &U : RegUnitSets[USIdx].Units)
2016 printRegUnitName(U);
2017 dbgs() << "\n";
2018 } dbgs() << "\nUnion sets:\n");
2020 // Iterate over all unit sets, including new ones added by this loop.
2021 unsigned NumRegUnitSubSets = RegUnitSets.size();
2022 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2023 // In theory, this is combinatorial. In practice, it needs to be bounded
2024 // by a small number of sets for regpressure to be efficient.
2025 // If the assert is hit, we need to implement pruning.
2026 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
2028 // Compare new sets with all original classes.
2029 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
2030 SearchIdx != EndIdx; ++SearchIdx) {
2031 std::set<unsigned> Intersection;
2032 std::set_intersection(RegUnitSets[Idx].Units.begin(),
2033 RegUnitSets[Idx].Units.end(),
2034 RegUnitSets[SearchIdx].Units.begin(),
2035 RegUnitSets[SearchIdx].Units.end(),
2036 std::inserter(Intersection, Intersection.begin()));
2037 if (Intersection.empty())
2038 continue;
2040 // Speculatively grow the RegUnitSets to hold the new set.
2041 RegUnitSets.resize(RegUnitSets.size() + 1);
2042 RegUnitSets.back().Name =
2043 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
2045 std::set_union(RegUnitSets[Idx].Units.begin(),
2046 RegUnitSets[Idx].Units.end(),
2047 RegUnitSets[SearchIdx].Units.begin(),
2048 RegUnitSets[SearchIdx].Units.end(),
2049 std::inserter(RegUnitSets.back().Units,
2050 RegUnitSets.back().Units.begin()));
2052 // Find an existing RegUnitSet, or add the union to the unique sets.
2053 std::vector<RegUnitSet>::const_iterator SetI =
2054 findRegUnitSet(RegUnitSets, RegUnitSets.back());
2055 if (SetI != std::prev(RegUnitSets.end()))
2056 RegUnitSets.pop_back();
2057 else {
2058 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2059 << RegUnitSets.back().Name << ":";
2060 for (auto &U
2061 : RegUnitSets.back().Units) printRegUnitName(U);
2062 dbgs() << "\n";);
2067 // Iteratively prune unit sets after inferring supersets.
2068 pruneUnitSets();
2070 LLVM_DEBUG(
2071 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2072 USIdx < USEnd; ++USIdx) {
2073 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2074 for (auto &U : RegUnitSets[USIdx].Units)
2075 printRegUnitName(U);
2076 dbgs() << "\n";
2079 // For each register class, list the UnitSets that are supersets.
2080 RegClassUnitSets.resize(RegClasses.size());
2081 int RCIdx = -1;
2082 for (auto &RC : RegClasses) {
2083 ++RCIdx;
2084 if (!RC.Allocatable)
2085 continue;
2087 // Recompute the sorted list of units in this class.
2088 std::vector<unsigned> RCRegUnits;
2089 RC.buildRegUnitSet(*this, RCRegUnits);
2091 // Don't increase pressure for unallocatable regclasses.
2092 if (RCRegUnits.empty())
2093 continue;
2095 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2096 for (auto U
2097 : RCRegUnits) printRegUnitName(U);
2098 dbgs() << "\n UnitSetIDs:");
2100 // Find all supersets.
2101 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2102 USIdx != USEnd; ++USIdx) {
2103 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2104 LLVM_DEBUG(dbgs() << " " << USIdx);
2105 RegClassUnitSets[RCIdx].push_back(USIdx);
2108 LLVM_DEBUG(dbgs() << "\n");
2109 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2110 "missing unit set for regclass");
2113 // For each register unit, ensure that we have the list of UnitSets that
2114 // contain the unit. Normally, this matches an existing list of UnitSets for a
2115 // register class. If not, we create a new entry in RegClassUnitSets as a
2116 // "fake" register class.
2117 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2118 UnitIdx < UnitEnd; ++UnitIdx) {
2119 std::vector<unsigned> RUSets;
2120 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2121 RegUnitSet &RUSet = RegUnitSets[i];
2122 if (!is_contained(RUSet.Units, UnitIdx))
2123 continue;
2124 RUSets.push_back(i);
2126 unsigned RCUnitSetsIdx = 0;
2127 for (unsigned e = RegClassUnitSets.size();
2128 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2129 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2130 break;
2133 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2134 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2135 // Create a new list of UnitSets as a "fake" register class.
2136 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2137 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2142 void CodeGenRegBank::computeRegUnitLaneMasks() {
2143 for (auto &Register : Registers) {
2144 // Create an initial lane mask for all register units.
2145 const auto &RegUnits = Register.getRegUnits();
2146 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(
2147 RegUnits.count(), LaneBitmask::getAll());
2148 // Iterate through SubRegisters.
2149 typedef CodeGenRegister::SubRegMap SubRegMap;
2150 const SubRegMap &SubRegs = Register.getSubRegs();
2151 for (auto S : SubRegs) {
2152 CodeGenRegister *SubReg = S.second;
2153 // Ignore non-leaf subregisters, their lane masks are fully covered by
2154 // the leaf subregisters anyway.
2155 if (!SubReg->getSubRegs().empty())
2156 continue;
2157 CodeGenSubRegIndex *SubRegIndex = S.first;
2158 const CodeGenRegister *SubRegister = S.second;
2159 LaneBitmask LaneMask = SubRegIndex->LaneMask;
2160 // Distribute LaneMask to Register Units touched.
2161 for (unsigned SUI : SubRegister->getRegUnits()) {
2162 bool Found = false;
2163 unsigned u = 0;
2164 for (unsigned RU : RegUnits) {
2165 if (SUI == RU) {
2166 RegUnitLaneMasks[u] &= LaneMask;
2167 assert(!Found);
2168 Found = true;
2170 ++u;
2172 (void)Found;
2173 assert(Found);
2176 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2180 void CodeGenRegBank::computeDerivedInfo() {
2181 computeComposites();
2182 computeSubRegLaneMasks();
2184 // Compute a weight for each register unit created during getSubRegs.
2185 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2186 computeRegUnitWeights();
2188 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2189 // supersets for the union of overlapping sets.
2190 computeRegUnitSets();
2192 computeRegUnitLaneMasks();
2194 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2195 for (CodeGenRegisterClass &RC : RegClasses) {
2196 RC.HasDisjunctSubRegs = false;
2197 RC.CoveredBySubRegs = true;
2198 for (const CodeGenRegister *Reg : RC.getMembers()) {
2199 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2200 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2204 // Get the weight of each set.
2205 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2206 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2208 // Find the order of each set.
2209 RegUnitSetOrder.reserve(RegUnitSets.size());
2210 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2211 RegUnitSetOrder.push_back(Idx);
2213 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2214 return getRegPressureSet(ID1).Units.size() <
2215 getRegPressureSet(ID2).Units.size();
2217 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2218 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2223 // Synthesize missing register class intersections.
2225 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2226 // returns a maximal register class for all X.
2228 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2229 assert(!RegClasses.empty());
2230 // Stash the iterator to the last element so that this loop doesn't visit
2231 // elements added by the getOrCreateSubClass call within it.
2232 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2233 I != std::next(E); ++I) {
2234 CodeGenRegisterClass *RC1 = RC;
2235 CodeGenRegisterClass *RC2 = &*I;
2236 if (RC1 == RC2)
2237 continue;
2239 // Compute the set intersection of RC1 and RC2.
2240 const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2241 const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2242 CodeGenRegister::Vec Intersection;
2243 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2244 Memb2.end(),
2245 std::inserter(Intersection, Intersection.begin()),
2246 deref<std::less<>>());
2248 // Skip disjoint class pairs.
2249 if (Intersection.empty())
2250 continue;
2252 // If RC1 and RC2 have different spill sizes or alignments, use the
2253 // stricter one for sub-classing. If they are equal, prefer RC1.
2254 if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2255 std::swap(RC1, RC2);
2257 getOrCreateSubClass(RC1, &Intersection,
2258 RC1->getName() + "_and_" + RC2->getName());
2263 // Synthesize missing sub-classes for getSubClassWithSubReg().
2265 // Make sure that the set of registers in RC with a given SubIdx sub-register
2266 // form a register class. Update RC->SubClassWithSubReg.
2268 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2269 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2270 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2271 deref<std::less<>>>
2272 SubReg2SetMap;
2274 // Compute the set of registers supporting each SubRegIndex.
2275 SubReg2SetMap SRSets;
2276 for (const auto R : RC->getMembers()) {
2277 if (R->Artificial)
2278 continue;
2279 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2280 for (auto I : SRM) {
2281 if (!I.first->Artificial)
2282 SRSets[I.first].push_back(R);
2286 for (auto I : SRSets)
2287 sortAndUniqueRegisters(I.second);
2289 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2290 // numerical order to visit synthetic indices last.
2291 for (const auto &SubIdx : SubRegIndices) {
2292 if (SubIdx.Artificial)
2293 continue;
2294 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2295 // Unsupported SubRegIndex. Skip it.
2296 if (I == SRSets.end())
2297 continue;
2298 // In most cases, all RC registers support the SubRegIndex.
2299 if (I->second.size() == RC->getMembers().size()) {
2300 RC->setSubClassWithSubReg(&SubIdx, RC);
2301 continue;
2303 // This is a real subset. See if we have a matching class.
2304 CodeGenRegisterClass *SubRC =
2305 getOrCreateSubClass(RC, &I->second,
2306 RC->getName() + "_with_" + I->first->getName());
2307 RC->setSubClassWithSubReg(&SubIdx, SubRC);
2312 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2314 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2315 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2318 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2319 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2320 DenseMap<const CodeGenRegister *, std::vector<const CodeGenRegister *>>
2321 SubToSuperRegs;
2322 BitVector TopoSigs(getNumTopoSigs());
2324 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2325 for (auto &SubIdx : SubRegIndices) {
2326 // Skip indexes that aren't fully supported by RC's registers. This was
2327 // computed by inferSubClassWithSubReg() above which should have been
2328 // called first.
2329 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2330 continue;
2332 // Build list of (Super, Sub) pairs for this SubIdx.
2333 SubToSuperRegs.clear();
2334 TopoSigs.reset();
2335 for (const auto Super : RC->getMembers()) {
2336 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2337 assert(Sub && "Missing sub-register");
2338 SubToSuperRegs[Sub].push_back(Super);
2339 TopoSigs.set(Sub->getTopoSig());
2342 // Iterate over sub-register class candidates. Ignore classes created by
2343 // this loop. They will never be useful.
2344 // Store an iterator to the last element (not end) so that this loop doesn't
2345 // visit newly inserted elements.
2346 assert(!RegClasses.empty());
2347 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2348 I != std::next(E); ++I) {
2349 CodeGenRegisterClass &SubRC = *I;
2350 if (SubRC.Artificial)
2351 continue;
2352 // Topological shortcut: SubRC members have the wrong shape.
2353 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2354 continue;
2355 // Compute the subset of RC that maps into SubRC.
2356 CodeGenRegister::Vec SubSetVec;
2357 for (const CodeGenRegister *R : SubRC.getMembers()) {
2358 auto It = SubToSuperRegs.find(R);
2359 if (It != SubToSuperRegs.end()) {
2360 const std::vector<const CodeGenRegister *> &SuperRegs = It->second;
2361 SubSetVec.insert(SubSetVec.end(), SuperRegs.begin(), SuperRegs.end());
2365 if (SubSetVec.empty())
2366 continue;
2368 // RC injects completely into SubRC.
2369 sortAndUniqueRegisters(SubSetVec);
2370 if (SubSetVec.size() == RC->getMembers().size()) {
2371 SubRC.addSuperRegClass(&SubIdx, RC);
2372 continue;
2375 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2376 // class.
2377 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2378 SubIdx.getName() + "_in_" +
2379 SubRC.getName());
2385 // Infer missing register classes.
2387 void CodeGenRegBank::computeInferredRegisterClasses() {
2388 assert(!RegClasses.empty());
2389 // When this function is called, the register classes have not been sorted
2390 // and assigned EnumValues yet. That means getSubClasses(),
2391 // getSuperClasses(), and hasSubClass() functions are defunct.
2393 // Use one-before-the-end so it doesn't move forward when new elements are
2394 // added.
2395 auto FirstNewRC = std::prev(RegClasses.end());
2397 // Visit all register classes, including the ones being added by the loop.
2398 // Watch out for iterator invalidation here.
2399 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2400 CodeGenRegisterClass *RC = &*I;
2401 if (RC->Artificial)
2402 continue;
2404 // Synthesize answers for getSubClassWithSubReg().
2405 inferSubClassWithSubReg(RC);
2407 // Synthesize answers for getCommonSubClass().
2408 inferCommonSubClass(RC);
2410 // Synthesize answers for getMatchingSuperRegClass().
2411 inferMatchingSuperRegClass(RC);
2413 // New register classes are created while this loop is running, and we need
2414 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2415 // to match old super-register classes with sub-register classes created
2416 // after inferMatchingSuperRegClass was called. At this point,
2417 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2418 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2419 if (I == FirstNewRC) {
2420 auto NextNewRC = std::prev(RegClasses.end());
2421 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2422 ++I2)
2423 inferMatchingSuperRegClass(&*I2, E2);
2424 FirstNewRC = NextNewRC;
2429 /// getRegisterClassForRegister - Find the register class that contains the
2430 /// specified physical register. If the register is not in a register class,
2431 /// return null. If the register is in multiple classes, and the classes have a
2432 /// superset-subset relationship and the same set of types, return the
2433 /// superclass. Otherwise return null.
2434 const CodeGenRegisterClass*
2435 CodeGenRegBank::getRegClassForRegister(Record *R) {
2436 const CodeGenRegister *Reg = getReg(R);
2437 const CodeGenRegisterClass *FoundRC = nullptr;
2438 for (const auto &RC : getRegClasses()) {
2439 if (!RC.contains(Reg))
2440 continue;
2442 // If this is the first class that contains the register,
2443 // make a note of it and go on to the next class.
2444 if (!FoundRC) {
2445 FoundRC = &RC;
2446 continue;
2449 // If a register's classes have different types, return null.
2450 if (RC.getValueTypes() != FoundRC->getValueTypes())
2451 return nullptr;
2453 // Check to see if the previously found class that contains
2454 // the register is a subclass of the current class. If so,
2455 // prefer the superclass.
2456 if (RC.hasSubClass(FoundRC)) {
2457 FoundRC = &RC;
2458 continue;
2461 // Check to see if the previously found class that contains
2462 // the register is a superclass of the current class. If so,
2463 // prefer the superclass.
2464 if (FoundRC->hasSubClass(&RC))
2465 continue;
2467 // Multiple classes, and neither is a superclass of the other.
2468 // Return null.
2469 return nullptr;
2471 return FoundRC;
2474 const CodeGenRegisterClass *
2475 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2476 ValueTypeByHwMode *VT) {
2477 const CodeGenRegister *Reg = getReg(RegRecord);
2478 const CodeGenRegisterClass *BestRC = nullptr;
2479 for (const auto &RC : getRegClasses()) {
2480 if ((!VT || RC.hasType(*VT)) &&
2481 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2482 BestRC = &RC;
2485 assert(BestRC && "Couldn't find the register class");
2486 return BestRC;
2489 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2490 SetVector<const CodeGenRegister*> Set;
2492 // First add Regs with all sub-registers.
2493 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2494 CodeGenRegister *Reg = getReg(Regs[i]);
2495 if (Set.insert(Reg))
2496 // Reg is new, add all sub-registers.
2497 // The pre-ordering is not important here.
2498 Reg->addSubRegsPreOrder(Set, *this);
2501 // Second, find all super-registers that are completely covered by the set.
2502 for (unsigned i = 0; i != Set.size(); ++i) {
2503 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2504 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2505 const CodeGenRegister *Super = SR[j];
2506 if (!Super->CoveredBySubRegs || Set.count(Super))
2507 continue;
2508 // This new super-register is covered by its sub-registers.
2509 bool AllSubsInSet = true;
2510 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2511 for (auto I : SRM)
2512 if (!Set.count(I.second)) {
2513 AllSubsInSet = false;
2514 break;
2516 // All sub-registers in Set, add Super as well.
2517 // We will visit Super later to recheck its super-registers.
2518 if (AllSubsInSet)
2519 Set.insert(Super);
2523 // Convert to BitVector.
2524 BitVector BV(Registers.size() + 1);
2525 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2526 BV.set(Set[i]->EnumValue);
2527 return BV;
2530 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2531 if (Unit < NumNativeRegUnits)
2532 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2533 else
2534 dbgs() << " #" << Unit;