1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
44 #define DEBUG_TYPE "regalloc-emitter"
46 //===----------------------------------------------------------------------===//
48 //===----------------------------------------------------------------------===//
50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record
*R
, unsigned Enum
)
51 : TheDef(R
), EnumValue(Enum
), AllSuperRegsCovered(true), Artificial(true) {
52 Name
= std::string(R
->getName());
53 if (R
->getValue("Namespace"))
54 Namespace
= std::string(R
->getValueAsString("Namespace"));
55 Size
= R
->getValueAsInt("Size");
56 Offset
= R
->getValueAsInt("Offset");
59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N
, StringRef Nspace
,
61 : TheDef(nullptr), Name(std::string(N
)), Namespace(std::string(Nspace
)),
62 Size(-1), Offset(-1), EnumValue(Enum
), AllSuperRegsCovered(true),
65 std::string
CodeGenSubRegIndex::getQualifiedName() const {
66 std::string N
= getNamespace();
73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank
&RegBank
) {
77 std::vector
<Record
*> Comps
= TheDef
->getValueAsListOfDefs("ComposedOf");
79 if (Comps
.size() != 2)
80 PrintFatalError(TheDef
->getLoc(),
81 "ComposedOf must have exactly two entries");
82 CodeGenSubRegIndex
*A
= RegBank
.getSubRegIdx(Comps
[0]);
83 CodeGenSubRegIndex
*B
= RegBank
.getSubRegIdx(Comps
[1]);
84 CodeGenSubRegIndex
*X
= A
->addComposite(B
, this);
86 PrintFatalError(TheDef
->getLoc(), "Ambiguous ComposedOf entries");
89 std::vector
<Record
*> Parts
=
90 TheDef
->getValueAsListOfDefs("CoveringSubRegIndices");
93 PrintFatalError(TheDef
->getLoc(),
94 "CoveredBySubRegs must have two or more entries");
95 SmallVector
<CodeGenSubRegIndex
*, 8> IdxParts
;
96 for (Record
*Part
: Parts
)
97 IdxParts
.push_back(RegBank
.getSubRegIdx(Part
));
98 setConcatenationOf(IdxParts
);
102 LaneBitmask
CodeGenSubRegIndex::computeLaneMask() const {
107 // Recursion guard, shouldn't be required.
108 LaneMask
= LaneBitmask::getAll();
110 // The lane mask is simply the union of all sub-indices.
112 for (const auto &C
: Composed
)
113 M
|= C
.second
->computeLaneMask();
114 assert(M
.any() && "Missing lane mask, sub-register cycle?");
119 void CodeGenSubRegIndex::setConcatenationOf(
120 ArrayRef
<CodeGenSubRegIndex
*> Parts
) {
121 if (ConcatenationOf
.empty())
122 ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
124 assert(std::equal(Parts
.begin(), Parts
.end(),
125 ConcatenationOf
.begin()) && "parts consistent");
128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129 for (SmallVectorImpl
<CodeGenSubRegIndex
*>::iterator
130 I
= ConcatenationOf
.begin(); I
!= ConcatenationOf
.end(); /*empty*/) {
131 CodeGenSubRegIndex
*SubIdx
= *I
;
132 SubIdx
->computeConcatTransitiveClosure();
134 for (CodeGenSubRegIndex
*SRI
: SubIdx
->ConcatenationOf
)
135 assert(SRI
->ConcatenationOf
.empty() && "No transitive closure?");
138 if (SubIdx
->ConcatenationOf
.empty()) {
141 I
= ConcatenationOf
.erase(I
);
142 I
= ConcatenationOf
.insert(I
, SubIdx
->ConcatenationOf
.begin(),
143 SubIdx
->ConcatenationOf
.end());
144 I
+= SubIdx
->ConcatenationOf
.size();
149 //===----------------------------------------------------------------------===//
151 //===----------------------------------------------------------------------===//
153 CodeGenRegister::CodeGenRegister(Record
*R
, unsigned Enum
)
154 : TheDef(R
), EnumValue(Enum
),
155 CostPerUse(R
->getValueAsListOfInts("CostPerUse")),
156 CoveredBySubRegs(R
->getValueAsBit("CoveredBySubRegs")),
157 HasDisjunctSubRegs(false), Constant(R
->getValueAsBit("isConstant")),
158 SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
159 Artificial
= R
->getValueAsBit("isArtificial");
162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank
&RegBank
) {
163 std::vector
<Record
*> SRIs
= TheDef
->getValueAsListOfDefs("SubRegIndices");
164 std::vector
<Record
*> SRs
= TheDef
->getValueAsListOfDefs("SubRegs");
166 if (SRIs
.size() != SRs
.size())
167 PrintFatalError(TheDef
->getLoc(),
168 "SubRegs and SubRegIndices must have the same size");
170 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
) {
171 ExplicitSubRegIndices
.push_back(RegBank
.getSubRegIdx(SRIs
[i
]));
172 ExplicitSubRegs
.push_back(RegBank
.getReg(SRs
[i
]));
175 // Also compute leading super-registers. Each register has a list of
176 // covered-by-subregs super-registers where it appears as the first explicit
179 // This is used by computeSecondarySubRegs() to find candidates.
180 if (CoveredBySubRegs
&& !ExplicitSubRegs
.empty())
181 ExplicitSubRegs
.front()->LeadingSuperRegs
.push_back(this);
183 // Add ad hoc alias links. This is a symmetric relationship between two
184 // registers, so build a symmetric graph by adding links in both ends.
185 std::vector
<Record
*> Aliases
= TheDef
->getValueAsListOfDefs("Aliases");
186 for (Record
*Alias
: Aliases
) {
187 CodeGenRegister
*Reg
= RegBank
.getReg(Alias
);
188 ExplicitAliases
.push_back(Reg
);
189 Reg
->ExplicitAliases
.push_back(this);
193 StringRef
CodeGenRegister::getName() const {
194 assert(TheDef
&& "no def");
195 return TheDef
->getName();
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator
{
202 CodeGenRegister::Vec::const_iterator RegI
, RegE
;
203 CodeGenRegister::RegUnitList::iterator UnitI
, UnitE
;
204 static CodeGenRegister::RegUnitList Sentinel
;
207 RegUnitIterator(const CodeGenRegister::Vec
&Regs
):
208 RegI(Regs
.begin()), RegE(Regs
.end()) {
211 UnitI
= Sentinel
.end();
212 UnitE
= Sentinel
.end();
214 UnitI
= (*RegI
)->getRegUnits().begin();
215 UnitE
= (*RegI
)->getRegUnits().end();
220 bool isValid() const { return UnitI
!= UnitE
; }
222 unsigned operator* () const { assert(isValid()); return *UnitI
; }
224 const CodeGenRegister
*getReg() const { assert(isValid()); return *RegI
; }
226 /// Preincrement. Move to the next unit.
228 assert(isValid() && "Cannot advance beyond the last operand");
235 while (UnitI
== UnitE
) {
238 UnitI
= (*RegI
)->getRegUnits().begin();
239 UnitE
= (*RegI
)->getRegUnits().end();
244 CodeGenRegister::RegUnitList
RegUnitIterator::Sentinel
;
246 } // end anonymous namespace
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList
&RegUnits
, unsigned Unit
) {
250 return RegUnits
.test(Unit
);
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank
&RegBank
) {
256 bool changed
= false;
257 for (const auto &SubReg
: SubRegs
) {
258 CodeGenRegister
*SR
= SubReg
.second
;
259 // Merge the subregister's units into this register's RegUnits.
260 changed
|= (RegUnits
|= SR
->RegUnits
);
266 const CodeGenRegister::SubRegMap
&
267 CodeGenRegister::computeSubRegs(CodeGenRegBank
&RegBank
) {
268 // Only compute this map once.
271 SubRegsComplete
= true;
273 HasDisjunctSubRegs
= ExplicitSubRegs
.size() > 1;
275 // First insert the explicit subregs and make sure they are fully indexed.
276 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
277 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
278 CodeGenSubRegIndex
*Idx
= ExplicitSubRegIndices
[i
];
280 Idx
->Artificial
= false;
281 if (!SubRegs
.insert(std::make_pair(Idx
, SR
)).second
)
282 PrintFatalError(TheDef
->getLoc(), "SubRegIndex " + Idx
->getName() +
283 " appears twice in Register " + getName());
284 // Map explicit sub-registers first, so the names take precedence.
285 // The inherited sub-registers are mapped below.
286 SubReg2Idx
.insert(std::make_pair(SR
, Idx
));
289 // Keep track of inherited subregs and how they can be reached.
290 SmallPtrSet
<CodeGenRegister
*, 8> Orphans
;
292 // Clone inherited subregs and place duplicate entries in Orphans.
293 // Here the order is important - earlier subregs take precedence.
294 for (CodeGenRegister
*ESR
: ExplicitSubRegs
) {
295 const SubRegMap
&Map
= ESR
->computeSubRegs(RegBank
);
296 HasDisjunctSubRegs
|= ESR
->HasDisjunctSubRegs
;
298 for (const auto &SR
: Map
) {
299 if (!SubRegs
.insert(SR
).second
)
300 Orphans
.insert(SR
.second
);
304 // Expand any composed subreg indices.
305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
307 // expanded subreg indices recursively.
308 SmallVector
<CodeGenSubRegIndex
*, 8> Indices
= ExplicitSubRegIndices
;
309 for (unsigned i
= 0; i
!= Indices
.size(); ++i
) {
310 CodeGenSubRegIndex
*Idx
= Indices
[i
];
311 const CodeGenSubRegIndex::CompMap
&Comps
= Idx
->getComposites();
312 CodeGenRegister
*SR
= SubRegs
[Idx
];
313 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
315 // Look at the possible compositions of Idx.
316 // They may not all be supported by SR.
317 for (auto Comp
: Comps
) {
318 SubRegMap::const_iterator SRI
= Map
.find(Comp
.first
);
319 if (SRI
== Map
.end())
320 continue; // Idx + I->first doesn't exist in SR.
321 // Add I->second as a name for the subreg SRI->second, assuming it is
322 // orphaned, and the name isn't already used for something else.
323 if (SubRegs
.count(Comp
.second
) || !Orphans
.erase(SRI
->second
))
325 // We found a new name for the orphaned sub-register.
326 SubRegs
.insert(std::make_pair(Comp
.second
, SRI
->second
));
327 Indices
.push_back(Comp
.second
);
331 // Now Orphans contains the inherited subregisters without a direct index.
332 // Create inferred indexes for all missing entries.
333 // Work backwards in the Indices vector in order to compose subregs bottom-up.
334 // Consider this subreg sequence:
336 // qsub_1 -> dsub_0 -> ssub_0
338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339 // can be reached in two different ways:
344 // We pick the latter composition because another register may have [dsub_0,
345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
346 // dsub_2 -> ssub_0 composition can be shared.
347 while (!Indices
.empty() && !Orphans
.empty()) {
348 CodeGenSubRegIndex
*Idx
= Indices
.pop_back_val();
349 CodeGenRegister
*SR
= SubRegs
[Idx
];
350 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
351 for (const auto &SubReg
: Map
)
352 if (Orphans
.erase(SubReg
.second
))
353 SubRegs
[RegBank
.getCompositeSubRegIndex(Idx
, SubReg
.first
)] = SubReg
.second
;
356 // Compute the inverse SubReg -> Idx map.
357 for (const auto &SubReg
: SubRegs
) {
358 if (SubReg
.second
== this) {
361 Loc
= TheDef
->getLoc();
362 PrintFatalError(Loc
, "Register " + getName() +
363 " has itself as a sub-register");
366 // Compute AllSuperRegsCovered.
367 if (!CoveredBySubRegs
)
368 SubReg
.first
->AllSuperRegsCovered
= false;
370 // Ensure that every sub-register has a unique name.
371 DenseMap
<const CodeGenRegister
*, CodeGenSubRegIndex
*>::iterator Ins
=
372 SubReg2Idx
.insert(std::make_pair(SubReg
.second
, SubReg
.first
)).first
;
373 if (Ins
->second
== SubReg
.first
)
375 // Trouble: Two different names for SubReg.second.
378 Loc
= TheDef
->getLoc();
379 PrintFatalError(Loc
, "Sub-register can't have two names: " +
380 SubReg
.second
->getName() + " available as " +
381 SubReg
.first
->getName() + " and " + Ins
->second
->getName());
384 // Derive possible names for sub-register concatenations from any explicit
385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386 // that getConcatSubRegIndex() won't invent any concatenated indices that the
387 // user already specified.
388 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
389 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
390 if (!SR
->CoveredBySubRegs
|| SR
->ExplicitSubRegs
.size() <= 1 ||
394 // SR is composed of multiple sub-regs. Find their names in this register.
395 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
396 for (unsigned j
= 0, e
= SR
->ExplicitSubRegs
.size(); j
!= e
; ++j
) {
397 CodeGenSubRegIndex
&I
= *SR
->ExplicitSubRegIndices
[j
];
399 Parts
.push_back(getSubRegIndex(SR
->ExplicitSubRegs
[j
]));
402 // Offer this as an existing spelling for the concatenation of Parts.
403 CodeGenSubRegIndex
&Idx
= *ExplicitSubRegIndices
[i
];
404 Idx
.setConcatenationOf(Parts
);
407 // Initialize RegUnitList. Because getSubRegs is called recursively, this
408 // processes the register hierarchy in postorder.
410 // Inherit all sub-register units. It is good enough to look at the explicit
411 // sub-registers, the other registers won't contribute any more units.
412 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
413 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
414 RegUnits
|= SR
->RegUnits
;
417 // Absent any ad hoc aliasing, we create one register unit per leaf register.
418 // These units correspond to the maximal cliques in the register overlap
419 // graph which is optimal.
421 // When there is ad hoc aliasing, we simply create one unit per edge in the
422 // undirected ad hoc aliasing graph. Technically, we could do better by
423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424 // are extremely rare anyway (I've never seen one), so we don't bother with
425 // the added complexity.
426 for (unsigned i
= 0, e
= ExplicitAliases
.size(); i
!= e
; ++i
) {
427 CodeGenRegister
*AR
= ExplicitAliases
[i
];
428 // Only visit each edge once.
429 if (AR
->SubRegsComplete
)
431 // Create a RegUnit representing this alias edge, and add it to both
433 unsigned Unit
= RegBank
.newRegUnit(this, AR
);
435 AR
->RegUnits
.set(Unit
);
438 // Finally, create units for leaf registers without ad hoc aliases. Note that
439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440 // necessary. This means the aliasing leaf registers can share a single unit.
441 if (RegUnits
.empty())
442 RegUnits
.set(RegBank
.newRegUnit(this));
444 // We have now computed the native register units. More may be adopted later
445 // for balancing purposes.
446 NativeRegUnits
= RegUnits
;
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank
&RegBank
) {
465 SmallVector
<SubRegMap::value_type
, 8> NewSubRegs
;
467 std::queue
<std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*>> SubRegQueue
;
468 for (std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> P
: SubRegs
)
471 // Look at the leading super-registers of each sub-register. Those are the
472 // candidates for new sub-registers, assuming they are fully contained in
474 while (!SubRegQueue
.empty()) {
475 CodeGenSubRegIndex
*SubRegIdx
;
476 const CodeGenRegister
*SubReg
;
477 std::tie(SubRegIdx
, SubReg
) = SubRegQueue
.front();
480 const CodeGenRegister::SuperRegList
&Leads
= SubReg
->LeadingSuperRegs
;
481 for (unsigned i
= 0, e
= Leads
.size(); i
!= e
; ++i
) {
482 CodeGenRegister
*Cand
= const_cast<CodeGenRegister
*>(Leads
[i
]);
483 // Already got this sub-register?
484 if (Cand
== this || getSubRegIndex(Cand
))
486 // Check if each component of Cand is already a sub-register.
487 assert(!Cand
->ExplicitSubRegs
.empty() &&
488 "Super-register has no sub-registers");
489 if (Cand
->ExplicitSubRegs
.size() == 1)
491 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
492 // We know that the first component is (SubRegIdx,SubReg). However we
493 // may still need to split it into smaller subregister parts.
494 assert(Cand
->ExplicitSubRegs
[0] == SubReg
&& "LeadingSuperRegs correct");
495 assert(getSubRegIndex(SubReg
) == SubRegIdx
&& "LeadingSuperRegs correct");
496 for (CodeGenRegister
*SubReg
: Cand
->ExplicitSubRegs
) {
497 if (CodeGenSubRegIndex
*SubRegIdx
= getSubRegIndex(SubReg
)) {
498 if (SubRegIdx
->ConcatenationOf
.empty())
499 Parts
.push_back(SubRegIdx
);
501 append_range(Parts
, SubRegIdx
->ConcatenationOf
);
503 // Sub-register doesn't exist.
508 // There is nothing to do if some Cand sub-register is not part of this
513 // Each part of Cand is a sub-register of this. Make the full Cand also
514 // a sub-register with a concatenated sub-register index.
515 CodeGenSubRegIndex
*Concat
= RegBank
.getConcatSubRegIndex(Parts
);
516 std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> NewSubReg
=
517 std::make_pair(Concat
, Cand
);
519 if (!SubRegs
.insert(NewSubReg
).second
)
522 // We inserted a new subregister.
523 NewSubRegs
.push_back(NewSubReg
);
524 SubRegQueue
.push(NewSubReg
);
525 SubReg2Idx
.insert(std::make_pair(Cand
, Concat
));
529 // Create sub-register index composition maps for the synthesized indices.
530 for (unsigned i
= 0, e
= NewSubRegs
.size(); i
!= e
; ++i
) {
531 CodeGenSubRegIndex
*NewIdx
= NewSubRegs
[i
].first
;
532 CodeGenRegister
*NewSubReg
= NewSubRegs
[i
].second
;
533 for (auto SubReg
: NewSubReg
->SubRegs
) {
534 CodeGenSubRegIndex
*SubIdx
= getSubRegIndex(SubReg
.second
);
536 PrintFatalError(TheDef
->getLoc(), "No SubRegIndex for " +
537 SubReg
.second
->getName() +
539 NewIdx
->addComposite(SubReg
.first
, SubIdx
);
544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank
&RegBank
) {
545 // Only visit each register once.
546 if (SuperRegsComplete
)
548 SuperRegsComplete
= true;
550 // Make sure all sub-registers have been visited first, so the super-reg
551 // lists will be topologically ordered.
552 for (auto SubReg
: SubRegs
)
553 SubReg
.second
->computeSuperRegs(RegBank
);
555 // Now add this as a super-register on all sub-registers.
556 // Also compute the TopoSigId in post-order.
558 for (auto SubReg
: SubRegs
) {
559 // Topological signature computed from SubIdx, TopoId(SubReg).
560 // Loops and idempotent indices have TopoSig = ~0u.
561 Id
.push_back(SubReg
.first
->EnumValue
);
562 Id
.push_back(SubReg
.second
->TopoSig
);
564 // Don't add duplicate entries.
565 if (!SubReg
.second
->SuperRegs
.empty() &&
566 SubReg
.second
->SuperRegs
.back() == this)
568 SubReg
.second
->SuperRegs
.push_back(this);
570 TopoSig
= RegBank
.getTopoSig(Id
);
574 CodeGenRegister::addSubRegsPreOrder(SetVector
<const CodeGenRegister
*> &OSet
,
575 CodeGenRegBank
&RegBank
) const {
576 assert(SubRegsComplete
&& "Must precompute sub-registers");
577 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
578 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
580 SR
->addSubRegsPreOrder(OSet
, RegBank
);
582 // Add any secondary sub-registers that weren't part of the explicit tree.
583 for (auto SubReg
: SubRegs
)
584 OSet
.insert(SubReg
.second
);
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank
&RegBank
) const {
590 for (unsigned RegUnit
: RegUnits
) {
591 Weight
+= RegBank
.getRegUnit(RegUnit
).Weight
;
596 //===----------------------------------------------------------------------===//
598 //===----------------------------------------------------------------------===//
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
605 struct TupleExpander
: SetTheory::Expander
{
606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607 // the synthesized definitions for their lifetime.
608 std::vector
<std::unique_ptr
<Record
>> &SynthDefs
;
610 TupleExpander(std::vector
<std::unique_ptr
<Record
>> &SynthDefs
)
611 : SynthDefs(SynthDefs
) {}
613 void expand(SetTheory
&ST
, Record
*Def
, SetTheory::RecSet
&Elts
) override
{
614 std::vector
<Record
*> Indices
= Def
->getValueAsListOfDefs("SubRegIndices");
615 unsigned Dim
= Indices
.size();
616 ListInit
*SubRegs
= Def
->getValueAsListInit("SubRegs");
617 if (Dim
!= SubRegs
->size())
618 PrintFatalError(Def
->getLoc(), "SubRegIndices and SubRegs size mismatch");
620 PrintFatalError(Def
->getLoc(),
621 "Tuples must have at least 2 sub-registers");
623 // Evaluate the sub-register lists to be zipped.
624 unsigned Length
= ~0u;
625 SmallVector
<SetTheory::RecSet
, 4> Lists(Dim
);
626 for (unsigned i
= 0; i
!= Dim
; ++i
) {
627 ST
.evaluate(SubRegs
->getElement(i
), Lists
[i
], Def
->getLoc());
628 Length
= std::min(Length
, unsigned(Lists
[i
].size()));
634 // Precompute some types.
635 Record
*RegisterCl
= Def
->getRecords().getClass("Register");
636 RecTy
*RegisterRecTy
= RecordRecTy::get(RegisterCl
);
637 std::vector
<StringRef
> RegNames
=
638 Def
->getValueAsListOfStrings("RegAsmNames");
641 RecordKeeper
&RK
= Def
->getRecords();
642 for (unsigned n
= 0; n
!= Length
; ++n
) {
644 Record
*Proto
= Lists
[0][n
];
645 std::vector
<Init
*> Tuple
;
646 for (unsigned i
= 0; i
!= Dim
; ++i
) {
647 Record
*Reg
= Lists
[i
][n
];
649 Name
+= Reg
->getName();
650 Tuple
.push_back(DefInit::get(Reg
));
653 // Take the cost list of the first register in the tuple.
654 ListInit
*CostList
= Proto
->getValueAsListInit("CostPerUse");
655 SmallVector
<Init
*, 2> CostPerUse
;
656 CostPerUse
.insert(CostPerUse
.end(), CostList
->begin(), CostList
->end());
658 StringInit
*AsmName
= StringInit::get(RK
, "");
659 if (!RegNames
.empty()) {
660 if (RegNames
.size() <= n
)
661 PrintFatalError(Def
->getLoc(),
662 "Register tuple definition missing name for '" +
664 AsmName
= StringInit::get(RK
, RegNames
[n
]);
667 // Create a new Record representing the synthesized register. This record
668 // is only for consumption by CodeGenRegister, it is not added to the
670 SynthDefs
.emplace_back(
671 std::make_unique
<Record
>(Name
, Def
->getLoc(), Def
->getRecords()));
672 Record
*NewReg
= SynthDefs
.back().get();
675 // Copy Proto super-classes.
676 ArrayRef
<std::pair
<Record
*, SMRange
>> Supers
= Proto
->getSuperClasses();
677 for (const auto &SuperPair
: Supers
)
678 NewReg
->addSuperClass(SuperPair
.first
, SuperPair
.second
);
680 // Copy Proto fields.
681 for (unsigned i
= 0, e
= Proto
->getValues().size(); i
!= e
; ++i
) {
682 RecordVal RV
= Proto
->getValues()[i
];
684 // Skip existing fields, like NAME.
685 if (NewReg
->getValue(RV
.getNameInit()))
688 StringRef Field
= RV
.getName();
690 // Replace the sub-register list with Tuple.
691 if (Field
== "SubRegs")
692 RV
.setValue(ListInit::get(Tuple
, RegisterRecTy
));
694 if (Field
== "AsmName")
695 RV
.setValue(AsmName
);
697 // CostPerUse is aggregated from all Tuple members.
698 if (Field
== "CostPerUse")
699 RV
.setValue(ListInit::get(CostPerUse
, CostList
->getElementType()));
701 // Composite registers are always covered by sub-registers.
702 if (Field
== "CoveredBySubRegs")
703 RV
.setValue(BitInit::get(RK
, true));
705 // Copy fields from the RegisterTuples def.
706 if (Field
== "SubRegIndices" ||
707 Field
== "CompositeIndices") {
708 NewReg
->addValue(*Def
->getValue(Field
));
712 // Some fields get their default uninitialized value.
713 if (Field
== "DwarfNumbers" ||
714 Field
== "DwarfAlias" ||
715 Field
== "Aliases") {
716 if (const RecordVal
*DefRV
= RegisterCl
->getValue(Field
))
717 NewReg
->addValue(*DefRV
);
721 // Everything else is copied from Proto.
722 NewReg
->addValue(RV
);
728 } // end anonymous namespace
730 //===----------------------------------------------------------------------===//
731 // CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
734 static void sortAndUniqueRegisters(CodeGenRegister::Vec
&M
) {
735 llvm::sort(M
, deref
<std::less
<>>());
736 M
.erase(std::unique(M
.begin(), M
.end(), deref
<std::equal_to
<>>()), M
.end());
739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
, Record
*R
)
740 : TheDef(R
), Name(std::string(R
->getName())),
741 TopoSigs(RegBank
.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742 GeneratePressureSet
= R
->getValueAsBit("GeneratePressureSet");
743 std::vector
<Record
*> TypeList
= R
->getValueAsListOfDefs("RegTypes");
744 if (TypeList
.empty())
745 PrintFatalError(R
->getLoc(), "RegTypes list must not be empty!");
746 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
747 Record
*Type
= TypeList
[i
];
748 if (!Type
->isSubClassOf("ValueType"))
749 PrintFatalError(R
->getLoc(),
750 "RegTypes list member '" + Type
->getName() +
751 "' does not derive from the ValueType class!");
752 VTs
.push_back(getValueTypeByHwMode(Type
, RegBank
.getHwModes()));
755 // Allocation order 0 is the full set. AltOrders provides others.
756 const SetTheory::RecVec
*Elements
= RegBank
.getSets().expand(R
);
757 ListInit
*AltOrders
= R
->getValueAsListInit("AltOrders");
758 Orders
.resize(1 + AltOrders
->size());
760 // Default allocation order always contains all registers.
762 for (unsigned i
= 0, e
= Elements
->size(); i
!= e
; ++i
) {
763 Orders
[0].push_back((*Elements
)[i
]);
764 const CodeGenRegister
*Reg
= RegBank
.getReg((*Elements
)[i
]);
765 Members
.push_back(Reg
);
766 Artificial
&= Reg
->Artificial
;
767 TopoSigs
.set(Reg
->getTopoSig());
769 sortAndUniqueRegisters(Members
);
771 // Alternative allocation orders may be subsets.
772 SetTheory::RecSet Order
;
773 for (unsigned i
= 0, e
= AltOrders
->size(); i
!= e
; ++i
) {
774 RegBank
.getSets().evaluate(AltOrders
->getElement(i
), Order
, R
->getLoc());
775 Orders
[1 + i
].append(Order
.begin(), Order
.end());
776 // Verify that all altorder members are regclass members.
777 while (!Order
.empty()) {
778 CodeGenRegister
*Reg
= RegBank
.getReg(Order
.back());
781 PrintFatalError(R
->getLoc(), " AltOrder register " + Reg
->getName() +
782 " is not a class member");
786 Namespace
= R
->getValueAsString("Namespace");
788 if (const RecordVal
*RV
= R
->getValue("RegInfos"))
789 if (DefInit
*DI
= dyn_cast_or_null
<DefInit
>(RV
->getValue()))
790 RSI
= RegSizeInfoByHwMode(DI
->getDef(), RegBank
.getHwModes());
791 unsigned Size
= R
->getValueAsInt("Size");
792 assert((RSI
.hasDefault() || Size
!= 0 || VTs
[0].isSimple()) &&
793 "Impossible to determine register size");
794 if (!RSI
.hasDefault()) {
796 RI
.RegSize
= RI
.SpillSize
= Size
? Size
797 : VTs
[0].getSimple().getSizeInBits();
798 RI
.SpillAlignment
= R
->getValueAsInt("Alignment");
799 RSI
.insertRegSizeForMode(DefaultMode
, RI
);
802 CopyCost
= R
->getValueAsInt("CopyCost");
803 Allocatable
= R
->getValueAsBit("isAllocatable");
804 AltOrderSelect
= R
->getValueAsString("AltOrderSelect");
805 int AllocationPriority
= R
->getValueAsInt("AllocationPriority");
806 if (!isUInt
<5>(AllocationPriority
))
807 PrintFatalError(R
->getLoc(), "AllocationPriority out of range [0,31]");
808 this->AllocationPriority
= AllocationPriority
;
810 GlobalPriority
= R
->getValueAsBit("GlobalPriority");
812 BitsInit
*TSF
= R
->getValueAsBitsInit("TSFlags");
813 for (unsigned I
= 0, E
= TSF
->getNumBits(); I
!= E
; ++I
) {
814 BitInit
*Bit
= cast
<BitInit
>(TSF
->getBit(I
));
815 TSFlags
|= uint8_t(Bit
->getValue()) << I
;
819 // Create an inferred register class that was missing from the .td files.
820 // Most properties will be inherited from the closest super-class after the
821 // class structure has been computed.
822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
,
823 StringRef Name
, Key Props
)
824 : Members(*Props
.Members
), TheDef(nullptr), Name(std::string(Name
)),
825 TopoSigs(RegBank
.getNumTopoSigs()), EnumValue(-1), RSI(Props
.RSI
),
826 CopyCost(0), Allocatable(true), AllocationPriority(0),
827 GlobalPriority(false), TSFlags(0) {
829 GeneratePressureSet
= false;
830 for (const auto R
: Members
) {
831 TopoSigs
.set(R
->getTopoSig());
832 Artificial
&= R
->Artificial
;
836 // Compute inherited propertied for a synthesized register class.
837 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank
&RegBank
) {
838 assert(!getDef() && "Only synthesized classes can inherit properties");
839 assert(!SuperClasses
.empty() && "Synthesized class without super class");
841 // The last super-class is the smallest one.
842 CodeGenRegisterClass
&Super
= *SuperClasses
.back();
844 // Most properties are copied directly.
845 // Exceptions are members, size, and alignment
846 Namespace
= Super
.Namespace
;
848 CopyCost
= Super
.CopyCost
;
849 // Check for allocatable superclasses.
850 Allocatable
= any_of(SuperClasses
, [&](const CodeGenRegisterClass
*S
) {
851 return S
->Allocatable
;
853 AltOrderSelect
= Super
.AltOrderSelect
;
854 AllocationPriority
= Super
.AllocationPriority
;
855 GlobalPriority
= Super
.GlobalPriority
;
856 TSFlags
= Super
.TSFlags
;
857 GeneratePressureSet
|= Super
.GeneratePressureSet
;
859 // Copy all allocation orders, filter out foreign registers from the larger
861 Orders
.resize(Super
.Orders
.size());
862 for (unsigned i
= 0, ie
= Super
.Orders
.size(); i
!= ie
; ++i
)
863 for (unsigned j
= 0, je
= Super
.Orders
[i
].size(); j
!= je
; ++j
)
864 if (contains(RegBank
.getReg(Super
.Orders
[i
][j
])))
865 Orders
[i
].push_back(Super
.Orders
[i
][j
]);
868 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode
&VT
) const {
869 if (llvm::is_contained(VTs
, VT
))
872 // If VT is not identical to any of this class's types, but is a simple
873 // type, check if any of the types for this class contain it under some
875 // The motivating example came from RISC-V, where (likely because of being
876 // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
877 // type in GRC was {*:[i32], m1:[i64]}.
879 MVT T
= VT
.getSimple();
880 for (const ValueTypeByHwMode
&OurVT
: VTs
) {
881 if (llvm::count_if(OurVT
, [T
](auto &&P
) { return P
.second
== T
; }))
888 bool CodeGenRegisterClass::contains(const CodeGenRegister
*Reg
) const {
889 return std::binary_search(Members
.begin(), Members
.end(), Reg
,
890 deref
<std::less
<>>());
893 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank
& RegBank
) const {
894 if (TheDef
&& !TheDef
->isValueUnset("Weight"))
895 return TheDef
->getValueAsInt("Weight");
897 if (Members
.empty() || Artificial
)
900 return (*Members
.begin())->getWeight(RegBank
);
905 raw_ostream
&operator<<(raw_ostream
&OS
, const CodeGenRegisterClass::Key
&K
) {
907 for (const auto R
: *K
.Members
)
908 OS
<< ", " << R
->getName();
912 } // end namespace llvm
914 // This is a simple lexicographical order that can be used to search for sets.
915 // It is not the same as the topological order provided by TopoOrderRC.
916 bool CodeGenRegisterClass::Key::
917 operator<(const CodeGenRegisterClass::Key
&B
) const {
918 assert(Members
&& B
.Members
);
919 return std::tie(*Members
, RSI
) < std::tie(*B
.Members
, B
.RSI
);
922 // Returns true if RC is a strict subclass.
923 // RC is a sub-class of this class if it is a valid replacement for any
924 // instruction operand where a register of this classis required. It must
925 // satisfy these conditions:
927 // 1. All RC registers are also in this.
928 // 2. The RC spill size must not be smaller than our spill size.
929 // 3. RC spill alignment must be compatible with ours.
931 static bool testSubClass(const CodeGenRegisterClass
*A
,
932 const CodeGenRegisterClass
*B
) {
933 return A
->RSI
.isSubClassOf(B
->RSI
) &&
934 std::includes(A
->getMembers().begin(), A
->getMembers().end(),
935 B
->getMembers().begin(), B
->getMembers().end(),
936 deref
<std::less
<>>());
939 /// Sorting predicate for register classes. This provides a topological
940 /// ordering that arranges all register classes before their sub-classes.
942 /// Register classes with the same registers, spill size, and alignment form a
943 /// clique. They will be ordered alphabetically.
945 static bool TopoOrderRC(const CodeGenRegisterClass
&PA
,
946 const CodeGenRegisterClass
&PB
) {
954 if (A
->RSI
!= B
->RSI
)
957 // Order by descending set size. Note that the classes' allocation order may
958 // not have been computed yet. The Members set is always vaild.
959 if (A
->getMembers().size() > B
->getMembers().size())
961 if (A
->getMembers().size() < B
->getMembers().size())
964 // Finally order by name as a tie breaker.
965 return StringRef(A
->getName()) < B
->getName();
968 std::string
CodeGenRegisterClass::getNamespaceQualification() const {
969 return Namespace
.empty() ? "" : (Namespace
+ "::").str();
972 std::string
CodeGenRegisterClass::getQualifiedName() const {
973 return getNamespaceQualification() + getName();
976 std::string
CodeGenRegisterClass::getIdName() const {
977 return getName() + "RegClassID";
980 std::string
CodeGenRegisterClass::getQualifiedIdName() const {
981 return getNamespaceQualification() + getIdName();
984 // Compute sub-classes of all register classes.
985 // Assume the classes are ordered topologically.
986 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank
&RegBank
) {
987 auto &RegClasses
= RegBank
.getRegClasses();
989 // Visit backwards so sub-classes are seen first.
990 for (auto I
= RegClasses
.rbegin(), E
= RegClasses
.rend(); I
!= E
; ++I
) {
991 CodeGenRegisterClass
&RC
= *I
;
992 RC
.SubClasses
.resize(RegClasses
.size());
993 RC
.SubClasses
.set(RC
.EnumValue
);
997 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
998 for (auto I2
= I
.base(), E2
= RegClasses
.end(); I2
!= E2
; ++I2
) {
999 CodeGenRegisterClass
&SubRC
= *I2
;
1000 if (RC
.SubClasses
.test(SubRC
.EnumValue
))
1002 if (!testSubClass(&RC
, &SubRC
))
1004 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
1005 // check them again.
1006 RC
.SubClasses
|= SubRC
.SubClasses
;
1009 // Sweep up missed clique members. They will be immediately preceding RC.
1010 for (auto I2
= std::next(I
); I2
!= E
&& testSubClass(&RC
, &*I2
); ++I2
)
1011 RC
.SubClasses
.set(I2
->EnumValue
);
1014 // Compute the SuperClasses lists from the SubClasses vectors.
1015 for (auto &RC
: RegClasses
) {
1016 const BitVector
&SC
= RC
.getSubClasses();
1017 auto I
= RegClasses
.begin();
1018 for (int s
= 0, next_s
= SC
.find_first(); next_s
!= -1;
1019 next_s
= SC
.find_next(s
)) {
1020 std::advance(I
, next_s
- s
);
1024 I
->SuperClasses
.push_back(&RC
);
1028 // With the class hierarchy in place, let synthesized register classes inherit
1029 // properties from their closest super-class. The iteration order here can
1030 // propagate properties down multiple levels.
1031 for (auto &RC
: RegClasses
)
1033 RC
.inheritProperties(RegBank
);
1036 std::optional
<std::pair
<CodeGenRegisterClass
*, CodeGenRegisterClass
*>>
1037 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1038 CodeGenRegBank
&RegBank
, const CodeGenSubRegIndex
*SubIdx
) const {
1039 auto WeakSizeOrder
= [this](const CodeGenRegisterClass
*A
,
1040 const CodeGenRegisterClass
*B
) {
1041 // If there are multiple, identical register classes, prefer the original
1045 if (A
->getMembers().size() == B
->getMembers().size())
1047 return A
->getMembers().size() > B
->getMembers().size();
1050 auto &RegClasses
= RegBank
.getRegClasses();
1052 // Find all the subclasses of this one that fully support the sub-register
1053 // index and order them by size. BiggestSuperRC should always be first.
1054 CodeGenRegisterClass
*BiggestSuperRegRC
= getSubClassWithSubReg(SubIdx
);
1055 if (!BiggestSuperRegRC
)
1056 return std::nullopt
;
1057 BitVector SuperRegRCsBV
= BiggestSuperRegRC
->getSubClasses();
1058 std::vector
<CodeGenRegisterClass
*> SuperRegRCs
;
1059 for (auto &RC
: RegClasses
)
1060 if (SuperRegRCsBV
[RC
.EnumValue
])
1061 SuperRegRCs
.emplace_back(&RC
);
1062 llvm::stable_sort(SuperRegRCs
, WeakSizeOrder
);
1064 assert(SuperRegRCs
.front() == BiggestSuperRegRC
&&
1065 "Biggest class wasn't first");
1067 // Find all the subreg classes and order them by size too.
1068 std::vector
<std::pair
<CodeGenRegisterClass
*, BitVector
>> SuperRegClasses
;
1069 for (auto &RC
: RegClasses
) {
1070 BitVector
SuperRegClassesBV(RegClasses
.size());
1071 RC
.getSuperRegClasses(SubIdx
, SuperRegClassesBV
);
1072 if (SuperRegClassesBV
.any())
1073 SuperRegClasses
.push_back(std::make_pair(&RC
, SuperRegClassesBV
));
1075 llvm::stable_sort(SuperRegClasses
,
1076 [&](const std::pair
<CodeGenRegisterClass
*, BitVector
> &A
,
1077 const std::pair
<CodeGenRegisterClass
*, BitVector
> &B
) {
1078 return WeakSizeOrder(A
.first
, B
.first
);
1081 // Find the biggest subclass and subreg class such that R:subidx is in the
1082 // subreg class for all R in subclass.
1085 // All registers in X86's GR64 have a sub_32bit subregister but no class
1086 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1087 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1088 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1089 // having excluded RIP, we are able to find a SubRegRC (GR32).
1090 CodeGenRegisterClass
*ChosenSuperRegClass
= nullptr;
1091 CodeGenRegisterClass
*SubRegRC
= nullptr;
1092 for (auto *SuperRegRC
: SuperRegRCs
) {
1093 for (const auto &SuperRegClassPair
: SuperRegClasses
) {
1094 const BitVector
&SuperRegClassBV
= SuperRegClassPair
.second
;
1095 if (SuperRegClassBV
[SuperRegRC
->EnumValue
]) {
1096 SubRegRC
= SuperRegClassPair
.first
;
1097 ChosenSuperRegClass
= SuperRegRC
;
1099 // If SubRegRC is bigger than SuperRegRC then there are members of
1100 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1101 // find a better fit and fall back on this one if there isn't one.
1103 // This is intended to prevent X86 from making odd choices such as
1104 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1105 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1106 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1108 if (SuperRegRC
->getMembers().size() >= SubRegRC
->getMembers().size())
1109 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1113 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1114 // registers, then we're done.
1115 if (ChosenSuperRegClass
)
1116 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1119 return std::nullopt
;
1122 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex
*SubIdx
,
1123 BitVector
&Out
) const {
1124 auto FindI
= SuperRegClasses
.find(SubIdx
);
1125 if (FindI
== SuperRegClasses
.end())
1127 for (CodeGenRegisterClass
*RC
: FindI
->second
)
1128 Out
.set(RC
->EnumValue
);
1131 // Populate a unique sorted list of units from a register set.
1132 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank
&RegBank
,
1133 std::vector
<unsigned> &RegUnits
) const {
1134 std::vector
<unsigned> TmpUnits
;
1135 for (RegUnitIterator
UnitI(Members
); UnitI
.isValid(); ++UnitI
) {
1136 const RegUnit
&RU
= RegBank
.getRegUnit(*UnitI
);
1138 TmpUnits
.push_back(*UnitI
);
1140 llvm::sort(TmpUnits
);
1141 std::unique_copy(TmpUnits
.begin(), TmpUnits
.end(),
1142 std::back_inserter(RegUnits
));
1145 //===----------------------------------------------------------------------===//
1146 // CodeGenRegisterCategory
1147 //===----------------------------------------------------------------------===//
1149 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank
&RegBank
,
1151 : TheDef(R
), Name(std::string(R
->getName())) {
1152 for (Record
*RegClass
: R
->getValueAsListOfDefs("Classes"))
1153 Classes
.push_back(RegBank
.getRegClass(RegClass
));
1156 //===----------------------------------------------------------------------===//
1158 //===----------------------------------------------------------------------===//
1160 CodeGenRegBank::CodeGenRegBank(RecordKeeper
&Records
,
1161 const CodeGenHwModes
&Modes
) : CGH(Modes
) {
1162 // Configure register Sets to understand register classes and tuples.
1163 Sets
.addFieldExpander("RegisterClass", "MemberList");
1164 Sets
.addFieldExpander("CalleeSavedRegs", "SaveList");
1165 Sets
.addExpander("RegisterTuples",
1166 std::make_unique
<TupleExpander
>(SynthDefs
));
1168 // Read in the user-defined (named) sub-register indices.
1169 // More indices will be synthesized later.
1170 std::vector
<Record
*> SRIs
= Records
.getAllDerivedDefinitions("SubRegIndex");
1171 llvm::sort(SRIs
, LessRecord());
1172 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
)
1173 getSubRegIdx(SRIs
[i
]);
1174 // Build composite maps from ComposedOf fields.
1175 for (auto &Idx
: SubRegIndices
)
1176 Idx
.updateComponents(*this);
1178 // Read in the register and register tuple definitions.
1179 std::vector
<Record
*> Regs
= Records
.getAllDerivedDefinitions("Register");
1180 if (!Regs
.empty() && Regs
[0]->isSubClassOf("X86Reg")) {
1181 // For X86, we need to sort Registers and RegisterTuples together to list
1182 // new registers and register tuples at a later position. So that we can
1183 // reduce unnecessary iterations on unsupported registers in LiveVariables.
1184 // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
1186 std::vector
<Record
*> Tups
=
1187 Records
.getAllDerivedDefinitions("RegisterTuples");
1188 for (Record
*R
: Tups
) {
1189 // Expand tuples and merge the vectors
1190 std::vector
<Record
*> TupRegs
= *Sets
.expand(R
);
1191 Regs
.insert(Regs
.end(), TupRegs
.begin(), TupRegs
.end());
1194 llvm::sort(Regs
, LessRecordRegister());
1195 // Assign the enumeration values.
1196 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
)
1199 llvm::sort(Regs
, LessRecordRegister());
1200 // Assign the enumeration values.
1201 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
)
1204 // Expand tuples and number the new registers.
1205 std::vector
<Record
*> Tups
=
1206 Records
.getAllDerivedDefinitions("RegisterTuples");
1208 for (Record
*R
: Tups
) {
1209 std::vector
<Record
*> TupRegs
= *Sets
.expand(R
);
1210 llvm::sort(TupRegs
, LessRecordRegister());
1211 for (Record
*RC
: TupRegs
)
1216 // Now all the registers are known. Build the object graph of explicit
1217 // register-register references.
1218 for (auto &Reg
: Registers
)
1219 Reg
.buildObjectGraph(*this);
1221 // Compute register name map.
1222 for (auto &Reg
: Registers
)
1223 // FIXME: This could just be RegistersByName[name] = register, except that
1224 // causes some failures in MIPS - perhaps they have duplicate register name
1225 // entries? (or maybe there's a reason for it - I don't know much about this
1226 // code, just drive-by refactoring)
1227 RegistersByName
.insert(
1228 std::make_pair(Reg
.TheDef
->getValueAsString("AsmName"), &Reg
));
1230 // Precompute all sub-register maps.
1231 // This will create Composite entries for all inferred sub-register indices.
1232 for (auto &Reg
: Registers
)
1233 Reg
.computeSubRegs(*this);
1235 // Compute transitive closure of subregister index ConcatenationOf vectors
1236 // and initialize ConcatIdx map.
1237 for (CodeGenSubRegIndex
&SRI
: SubRegIndices
) {
1238 SRI
.computeConcatTransitiveClosure();
1239 if (!SRI
.ConcatenationOf
.empty())
1240 ConcatIdx
.insert(std::make_pair(
1241 SmallVector
<CodeGenSubRegIndex
*,8>(SRI
.ConcatenationOf
.begin(),
1242 SRI
.ConcatenationOf
.end()), &SRI
));
1245 // Infer even more sub-registers by combining leading super-registers.
1246 for (auto &Reg
: Registers
)
1247 if (Reg
.CoveredBySubRegs
)
1248 Reg
.computeSecondarySubRegs(*this);
1250 // After the sub-register graph is complete, compute the topologically
1251 // ordered SuperRegs list.
1252 for (auto &Reg
: Registers
)
1253 Reg
.computeSuperRegs(*this);
1255 // For each pair of Reg:SR, if both are non-artificial, mark the
1256 // corresponding sub-register index as non-artificial.
1257 for (auto &Reg
: Registers
) {
1260 for (auto P
: Reg
.getSubRegs()) {
1261 const CodeGenRegister
*SR
= P
.second
;
1262 if (!SR
->Artificial
)
1263 P
.first
->Artificial
= false;
1267 // Native register units are associated with a leaf register. They've all been
1269 NumNativeRegUnits
= RegUnits
.size();
1271 // Read in register class definitions.
1272 std::vector
<Record
*> RCs
= Records
.getAllDerivedDefinitions("RegisterClass");
1274 PrintFatalError("No 'RegisterClass' subclasses defined!");
1276 // Allocate user-defined register classes.
1277 for (auto *R
: RCs
) {
1278 RegClasses
.emplace_back(*this, R
);
1279 CodeGenRegisterClass
&RC
= RegClasses
.back();
1284 // Infer missing classes to create a full algebra.
1285 computeInferredRegisterClasses();
1287 // Order register classes topologically and assign enum values.
1288 RegClasses
.sort(TopoOrderRC
);
1290 for (auto &RC
: RegClasses
)
1292 CodeGenRegisterClass::computeSubClasses(*this);
1294 // Read in the register category definitions.
1295 std::vector
<Record
*> RCats
=
1296 Records
.getAllDerivedDefinitions("RegisterCategory");
1297 for (auto *R
: RCats
)
1298 RegCategories
.emplace_back(*this, R
);
1301 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1303 CodeGenRegBank::createSubRegIndex(StringRef Name
, StringRef Namespace
) {
1304 SubRegIndices
.emplace_back(Name
, Namespace
, SubRegIndices
.size() + 1);
1305 return &SubRegIndices
.back();
1308 CodeGenSubRegIndex
*CodeGenRegBank::getSubRegIdx(Record
*Def
) {
1309 CodeGenSubRegIndex
*&Idx
= Def2SubRegIdx
[Def
];
1312 SubRegIndices
.emplace_back(Def
, SubRegIndices
.size() + 1);
1313 Idx
= &SubRegIndices
.back();
1317 const CodeGenSubRegIndex
*
1318 CodeGenRegBank::findSubRegIdx(const Record
* Def
) const {
1319 return Def2SubRegIdx
.lookup(Def
);
1322 CodeGenRegister
*CodeGenRegBank::getReg(Record
*Def
) {
1323 CodeGenRegister
*&Reg
= Def2Reg
[Def
];
1326 Registers
.emplace_back(Def
, Registers
.size() + 1);
1327 Reg
= &Registers
.back();
1331 void CodeGenRegBank::addToMaps(CodeGenRegisterClass
*RC
) {
1332 if (Record
*Def
= RC
->getDef())
1333 Def2RC
.insert(std::make_pair(Def
, RC
));
1335 // Duplicate classes are rejected by insert().
1336 // That's OK, we only care about the properties handled by CGRC::Key.
1337 CodeGenRegisterClass::Key
K(*RC
);
1338 Key2RC
.insert(std::make_pair(K
, RC
));
1341 // Create a synthetic sub-class if it is missing.
1342 CodeGenRegisterClass
*
1343 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass
*RC
,
1344 const CodeGenRegister::Vec
*Members
,
1346 // Synthetic sub-class has the same size and alignment as RC.
1347 CodeGenRegisterClass::Key
K(Members
, RC
->RSI
);
1348 RCKeyMap::const_iterator FoundI
= Key2RC
.find(K
);
1349 if (FoundI
!= Key2RC
.end())
1350 return FoundI
->second
;
1352 // Sub-class doesn't exist, create a new one.
1353 RegClasses
.emplace_back(*this, Name
, K
);
1354 addToMaps(&RegClasses
.back());
1355 return &RegClasses
.back();
1358 CodeGenRegisterClass
*CodeGenRegBank::getRegClass(const Record
*Def
) const {
1359 if (CodeGenRegisterClass
*RC
= Def2RC
.lookup(Def
))
1362 PrintFatalError(Def
->getLoc(), "Not a known RegisterClass!");
1366 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex
*A
,
1367 CodeGenSubRegIndex
*B
) {
1368 // Look for an existing entry.
1369 CodeGenSubRegIndex
*Comp
= A
->compose(B
);
1373 // None exists, synthesize one.
1374 std::string Name
= A
->getName() + "_then_" + B
->getName();
1375 Comp
= createSubRegIndex(Name
, A
->getNamespace());
1376 A
->addComposite(B
, Comp
);
1380 CodeGenSubRegIndex
*CodeGenRegBank::
1381 getConcatSubRegIndex(const SmallVector
<CodeGenSubRegIndex
*, 8> &Parts
) {
1382 assert(Parts
.size() > 1 && "Need two parts to concatenate");
1384 for (CodeGenSubRegIndex
*Idx
: Parts
) {
1385 assert(Idx
->ConcatenationOf
.empty() && "No transitive closure?");
1389 // Look for an existing entry.
1390 CodeGenSubRegIndex
*&Idx
= ConcatIdx
[Parts
];
1394 // None exists, synthesize one.
1395 std::string Name
= Parts
.front()->getName();
1396 // Determine whether all parts are contiguous.
1397 bool isContinuous
= true;
1398 unsigned Size
= Parts
.front()->Size
;
1399 unsigned LastOffset
= Parts
.front()->Offset
;
1400 unsigned LastSize
= Parts
.front()->Size
;
1401 unsigned UnknownSize
= (uint16_t)-1;
1402 for (unsigned i
= 1, e
= Parts
.size(); i
!= e
; ++i
) {
1404 Name
+= Parts
[i
]->getName();
1405 if (Size
== UnknownSize
|| Parts
[i
]->Size
== UnknownSize
)
1408 Size
+= Parts
[i
]->Size
;
1409 if (LastSize
== UnknownSize
|| Parts
[i
]->Offset
!= (LastOffset
+ LastSize
))
1410 isContinuous
= false;
1411 LastOffset
= Parts
[i
]->Offset
;
1412 LastSize
= Parts
[i
]->Size
;
1414 Idx
= createSubRegIndex(Name
, Parts
.front()->getNamespace());
1416 Idx
->Offset
= isContinuous
? Parts
.front()->Offset
: -1;
1417 Idx
->ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
1421 void CodeGenRegBank::computeComposites() {
1422 using RegMap
= std::map
<const CodeGenRegister
*, const CodeGenRegister
*>;
1424 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1425 // register to (sub)register associated with the action of the left-hand
1426 // side subregister.
1427 std::map
<const CodeGenSubRegIndex
*, RegMap
> SubRegAction
;
1428 for (const CodeGenRegister
&R
: Registers
) {
1429 const CodeGenRegister::SubRegMap
&SM
= R
.getSubRegs();
1430 for (std::pair
<const CodeGenSubRegIndex
*, const CodeGenRegister
*> P
: SM
)
1431 SubRegAction
[P
.first
].insert({&R
, P
.second
});
1434 // Calculate the composition of two subregisters as compositions of their
1435 // associated actions.
1436 auto compose
= [&SubRegAction
] (const CodeGenSubRegIndex
*Sub1
,
1437 const CodeGenSubRegIndex
*Sub2
) {
1439 const RegMap
&Img1
= SubRegAction
.at(Sub1
);
1440 const RegMap
&Img2
= SubRegAction
.at(Sub2
);
1441 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Img1
) {
1442 auto F
= Img2
.find(P
.second
);
1443 if (F
!= Img2
.end())
1444 C
.insert({P
.first
, F
->second
});
1449 // Check if the two maps agree on the intersection of their domains.
1450 auto agree
= [] (const RegMap
&Map1
, const RegMap
&Map2
) {
1451 // Technically speaking, an empty map agrees with any other map, but
1452 // this could flag false positives. We're interested in non-vacuous
1454 if (Map1
.empty() || Map2
.empty())
1456 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Map1
) {
1457 auto F
= Map2
.find(P
.first
);
1458 if (F
== Map2
.end() || P
.second
!= F
->second
)
1464 using CompositePair
= std::pair
<const CodeGenSubRegIndex
*,
1465 const CodeGenSubRegIndex
*>;
1466 SmallSet
<CompositePair
,4> UserDefined
;
1467 for (const CodeGenSubRegIndex
&Idx
: SubRegIndices
)
1468 for (auto P
: Idx
.getComposites())
1469 UserDefined
.insert(std::make_pair(&Idx
, P
.first
));
1471 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1472 // and many registers will share TopoSigs on regular architectures.
1473 BitVector
TopoSigs(getNumTopoSigs());
1475 for (const auto &Reg1
: Registers
) {
1476 // Skip identical subreg structures already processed.
1477 if (TopoSigs
.test(Reg1
.getTopoSig()))
1479 TopoSigs
.set(Reg1
.getTopoSig());
1481 const CodeGenRegister::SubRegMap
&SRM1
= Reg1
.getSubRegs();
1482 for (auto I1
: SRM1
) {
1483 CodeGenSubRegIndex
*Idx1
= I1
.first
;
1484 CodeGenRegister
*Reg2
= I1
.second
;
1485 // Ignore identity compositions.
1488 const CodeGenRegister::SubRegMap
&SRM2
= Reg2
->getSubRegs();
1489 // Try composing Idx1 with another SubRegIndex.
1490 for (auto I2
: SRM2
) {
1491 CodeGenSubRegIndex
*Idx2
= I2
.first
;
1492 CodeGenRegister
*Reg3
= I2
.second
;
1493 // Ignore identity compositions.
1496 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1497 CodeGenSubRegIndex
*Idx3
= Reg1
.getSubRegIndex(Reg3
);
1498 assert(Idx3
&& "Sub-register doesn't have an index");
1500 // Conflicting composition? Emit a warning but allow it.
1501 if (CodeGenSubRegIndex
*Prev
= Idx1
->addComposite(Idx2
, Idx3
)) {
1502 // If the composition was not user-defined, always emit a warning.
1503 if (!UserDefined
.count({Idx1
, Idx2
}) ||
1504 agree(compose(Idx1
, Idx2
), SubRegAction
.at(Idx3
)))
1505 PrintWarning(Twine("SubRegIndex ") + Idx1
->getQualifiedName() +
1506 " and " + Idx2
->getQualifiedName() +
1507 " compose ambiguously as " + Prev
->getQualifiedName() +
1508 " or " + Idx3
->getQualifiedName());
1515 // Compute lane masks. This is similar to register units, but at the
1516 // sub-register index level. Each bit in the lane mask is like a register unit
1517 // class, and two lane masks will have a bit in common if two sub-register
1518 // indices overlap in some register.
1520 // Conservatively share a lane mask bit if two sub-register indices overlap in
1521 // some registers, but not in others. That shouldn't happen a lot.
1522 void CodeGenRegBank::computeSubRegLaneMasks() {
1523 // First assign individual bits to all the leaf indices.
1525 // Determine mask of lanes that cover their registers.
1526 CoveringLanes
= LaneBitmask::getAll();
1527 for (auto &Idx
: SubRegIndices
) {
1528 if (Idx
.getComposites().empty()) {
1529 if (Bit
> LaneBitmask::BitWidth
) {
1531 Twine("Ran out of lanemask bits to represent subregister ")
1534 Idx
.LaneMask
= LaneBitmask::getLane(Bit
);
1537 Idx
.LaneMask
= LaneBitmask::getNone();
1541 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1542 // here is that for each possible target subregister we look at the leafs
1543 // in the subregister graph that compose for this target and create
1544 // transformation sequences for the lanemasks. Each step in the sequence
1545 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1546 // are usually the same for many subregisters we can easily combine the steps
1547 // by combining the masks.
1548 for (const auto &Idx
: SubRegIndices
) {
1549 const auto &Composites
= Idx
.getComposites();
1550 auto &LaneTransforms
= Idx
.CompositionLaneMaskTransform
;
1552 if (Composites
.empty()) {
1553 // Moving from a class with no subregisters we just had a single lane:
1554 // The subregister must be a leaf subregister and only occupies 1 bit.
1555 // Move the bit from the class without subregisters into that position.
1556 unsigned DstBit
= Idx
.LaneMask
.getHighestLane();
1557 assert(Idx
.LaneMask
== LaneBitmask::getLane(DstBit
) &&
1558 "Must be a leaf subregister");
1559 MaskRolPair MaskRol
= { LaneBitmask::getLane(0), (uint8_t)DstBit
};
1560 LaneTransforms
.push_back(MaskRol
);
1562 // Go through all leaf subregisters and find the ones that compose with
1563 // Idx. These make out all possible valid bits in the lane mask we want to
1564 // transform. Looking only at the leafs ensure that only a single bit in
1566 unsigned NextBit
= 0;
1567 for (auto &Idx2
: SubRegIndices
) {
1568 // Skip non-leaf subregisters.
1569 if (!Idx2
.getComposites().empty())
1571 // Replicate the behaviour from the lane mask generation loop above.
1572 unsigned SrcBit
= NextBit
;
1573 LaneBitmask SrcMask
= LaneBitmask::getLane(SrcBit
);
1574 if (NextBit
< LaneBitmask::BitWidth
-1)
1576 assert(Idx2
.LaneMask
== SrcMask
);
1578 // Get the composed subregister if there is any.
1579 auto C
= Composites
.find(&Idx2
);
1580 if (C
== Composites
.end())
1582 const CodeGenSubRegIndex
*Composite
= C
->second
;
1583 // The Composed subreg should be a leaf subreg too
1584 assert(Composite
->getComposites().empty());
1586 // Create Mask+Rotate operation and merge with existing ops if possible.
1587 unsigned DstBit
= Composite
->LaneMask
.getHighestLane();
1588 int Shift
= DstBit
- SrcBit
;
1589 uint8_t RotateLeft
= Shift
>= 0 ? (uint8_t)Shift
1590 : LaneBitmask::BitWidth
+ Shift
;
1591 for (auto &I
: LaneTransforms
) {
1592 if (I
.RotateLeft
== RotateLeft
) {
1594 SrcMask
= LaneBitmask::getNone();
1597 if (SrcMask
.any()) {
1598 MaskRolPair MaskRol
= { SrcMask
, RotateLeft
};
1599 LaneTransforms
.push_back(MaskRol
);
1604 // Optimize if the transformation consists of one step only: Set mask to
1605 // 0xffffffff (including some irrelevant invalid bits) so that it should
1606 // merge with more entries later while compressing the table.
1607 if (LaneTransforms
.size() == 1)
1608 LaneTransforms
[0].Mask
= LaneBitmask::getAll();
1610 // Further compression optimization: For invalid compositions resulting
1611 // in a sequence with 0 entries we can just pick any other. Choose
1612 // Mask 0xffffffff with Rotation 0.
1613 if (LaneTransforms
.size() == 0) {
1614 MaskRolPair P
= { LaneBitmask::getAll(), 0 };
1615 LaneTransforms
.push_back(P
);
1619 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1620 // by the sub-register graph? This doesn't occur in any known targets.
1622 // Inherit lanes from composites.
1623 for (const auto &Idx
: SubRegIndices
) {
1624 LaneBitmask Mask
= Idx
.computeLaneMask();
1625 // If some super-registers without CoveredBySubRegs use this index, we can
1626 // no longer assume that the lanes are covering their registers.
1627 if (!Idx
.AllSuperRegsCovered
)
1628 CoveringLanes
&= ~Mask
;
1631 // Compute lane mask combinations for register classes.
1632 for (auto &RegClass
: RegClasses
) {
1633 LaneBitmask LaneMask
;
1634 for (const auto &SubRegIndex
: SubRegIndices
) {
1635 if (RegClass
.getSubClassWithSubReg(&SubRegIndex
) == nullptr)
1637 LaneMask
|= SubRegIndex
.LaneMask
;
1640 // For classes without any subregisters set LaneMask to 1 instead of 0.
1641 // This makes it easier for client code to handle classes uniformly.
1642 if (LaneMask
.none())
1643 LaneMask
= LaneBitmask::getLane(0);
1645 RegClass
.LaneMask
= LaneMask
;
1651 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1652 // the transitive closure of the union of overlapping register
1653 // classes. Together, the UberRegSets form a partition of the registers. If we
1654 // consider overlapping register classes to be connected, then each UberRegSet
1655 // is a set of connected components.
1657 // An UberRegSet will likely be a horizontal slice of register names of
1658 // the same width. Nontrivial subregisters should then be in a separate
1659 // UberRegSet. But this property isn't required for valid computation of
1660 // register unit weights.
1662 // A Weight field caches the max per-register unit weight in each UberRegSet.
1664 // A set of SingularDeterminants flags single units of some register in this set
1665 // for which the unit weight equals the set weight. These units should not have
1666 // their weight increased.
1668 CodeGenRegister::Vec Regs
;
1669 unsigned Weight
= 0;
1670 CodeGenRegister::RegUnitList SingularDeterminants
;
1672 UberRegSet() = default;
1675 } // end anonymous namespace
1677 // Partition registers into UberRegSets, where each set is the transitive
1678 // closure of the union of overlapping register classes.
1680 // UberRegSets[0] is a special non-allocatable set.
1681 static void computeUberSets(std::vector
<UberRegSet
> &UberSets
,
1682 std::vector
<UberRegSet
*> &RegSets
,
1683 CodeGenRegBank
&RegBank
) {
1684 const auto &Registers
= RegBank
.getRegisters();
1686 // The Register EnumValue is one greater than its index into Registers.
1687 assert(Registers
.size() == Registers
.back().EnumValue
&&
1688 "register enum value mismatch");
1690 // For simplicitly make the SetID the same as EnumValue.
1691 IntEqClasses
UberSetIDs(Registers
.size() + 1);
1692 BitVector
AllocatableRegs(Registers
.size() + 1);
1693 for (auto &RegClass
: RegBank
.getRegClasses()) {
1694 if (!RegClass
.Allocatable
)
1697 const CodeGenRegister::Vec
&Regs
= RegClass
.getMembers();
1701 unsigned USetID
= UberSetIDs
.findLeader((*Regs
.begin())->EnumValue
);
1702 assert(USetID
&& "register number 0 is invalid");
1704 AllocatableRegs
.set((*Regs
.begin())->EnumValue
);
1705 for (const CodeGenRegister
*CGR
: llvm::drop_begin(Regs
)) {
1706 AllocatableRegs
.set(CGR
->EnumValue
);
1707 UberSetIDs
.join(USetID
, CGR
->EnumValue
);
1710 // Combine non-allocatable regs.
1711 for (const auto &Reg
: Registers
) {
1712 unsigned RegNum
= Reg
.EnumValue
;
1713 if (AllocatableRegs
.test(RegNum
))
1716 UberSetIDs
.join(0, RegNum
);
1718 UberSetIDs
.compress();
1720 // Make the first UberSet a special unallocatable set.
1721 unsigned ZeroID
= UberSetIDs
[0];
1723 // Insert Registers into the UberSets formed by union-find.
1724 // Do not resize after this.
1725 UberSets
.resize(UberSetIDs
.getNumClasses());
1727 for (const CodeGenRegister
&Reg
: Registers
) {
1728 unsigned USetID
= UberSetIDs
[Reg
.EnumValue
];
1731 else if (USetID
== ZeroID
)
1734 UberRegSet
*USet
= &UberSets
[USetID
];
1735 USet
->Regs
.push_back(&Reg
);
1736 RegSets
[i
++] = USet
;
1740 // Recompute each UberSet weight after changing unit weights.
1741 static void computeUberWeights(std::vector
<UberRegSet
> &UberSets
,
1742 CodeGenRegBank
&RegBank
) {
1743 // Skip the first unallocatable set.
1744 for (std::vector
<UberRegSet
>::iterator I
= std::next(UberSets
.begin()),
1745 E
= UberSets
.end(); I
!= E
; ++I
) {
1747 // Initialize all unit weights in this set, and remember the max units/reg.
1748 const CodeGenRegister
*Reg
= nullptr;
1749 unsigned MaxWeight
= 0, Weight
= 0;
1750 for (RegUnitIterator
UnitI(I
->Regs
); UnitI
.isValid(); ++UnitI
) {
1751 if (Reg
!= UnitI
.getReg()) {
1752 if (Weight
> MaxWeight
)
1754 Reg
= UnitI
.getReg();
1757 if (!RegBank
.getRegUnit(*UnitI
).Artificial
) {
1758 unsigned UWeight
= RegBank
.getRegUnit(*UnitI
).Weight
;
1761 RegBank
.increaseRegUnitWeight(*UnitI
, UWeight
);
1766 if (Weight
> MaxWeight
)
1768 if (I
->Weight
!= MaxWeight
) {
1769 LLVM_DEBUG(dbgs() << "UberSet " << I
- UberSets
.begin() << " Weight "
1773 << " " << Unit
->getName();
1775 // Update the set weight.
1776 I
->Weight
= MaxWeight
;
1779 // Find singular determinants.
1780 for (const auto R
: I
->Regs
) {
1781 if (R
->getRegUnits().count() == 1 && R
->getWeight(RegBank
) == I
->Weight
) {
1782 I
->SingularDeterminants
|= R
->getRegUnits();
1788 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1789 // a register and its subregisters so that they have the same weight as their
1790 // UberSet. Self-recursion processes the subregister tree in postorder so
1791 // subregisters are normalized first.
1794 // - creates new adopted register units
1795 // - causes superregisters to inherit adopted units
1796 // - increases the weight of "singular" units
1797 // - induces recomputation of UberWeights.
1798 static bool normalizeWeight(CodeGenRegister
*Reg
,
1799 std::vector
<UberRegSet
> &UberSets
,
1800 std::vector
<UberRegSet
*> &RegSets
,
1801 BitVector
&NormalRegs
,
1802 CodeGenRegister::RegUnitList
&NormalUnits
,
1803 CodeGenRegBank
&RegBank
) {
1804 NormalRegs
.resize(std::max(Reg
->EnumValue
+ 1, NormalRegs
.size()));
1805 if (NormalRegs
.test(Reg
->EnumValue
))
1807 NormalRegs
.set(Reg
->EnumValue
);
1809 bool Changed
= false;
1810 const CodeGenRegister::SubRegMap
&SRM
= Reg
->getSubRegs();
1811 for (auto SRI
: SRM
) {
1812 if (SRI
.second
== Reg
)
1813 continue; // self-cycles happen
1815 Changed
|= normalizeWeight(SRI
.second
, UberSets
, RegSets
, NormalRegs
,
1816 NormalUnits
, RegBank
);
1818 // Postorder register normalization.
1820 // Inherit register units newly adopted by subregisters.
1821 if (Reg
->inheritRegUnits(RegBank
))
1822 computeUberWeights(UberSets
, RegBank
);
1824 // Check if this register is too skinny for its UberRegSet.
1825 UberRegSet
*UberSet
= RegSets
[RegBank
.getRegIndex(Reg
)];
1827 unsigned RegWeight
= Reg
->getWeight(RegBank
);
1828 if (UberSet
->Weight
> RegWeight
) {
1829 // A register unit's weight can be adjusted only if it is the singular unit
1830 // for this register, has not been used to normalize a subregister's set,
1831 // and has not already been used to singularly determine this UberRegSet.
1832 unsigned AdjustUnit
= *Reg
->getRegUnits().begin();
1833 if (Reg
->getRegUnits().count() != 1
1834 || hasRegUnit(NormalUnits
, AdjustUnit
)
1835 || hasRegUnit(UberSet
->SingularDeterminants
, AdjustUnit
)) {
1836 // We don't have an adjustable unit, so adopt a new one.
1837 AdjustUnit
= RegBank
.newRegUnit(UberSet
->Weight
- RegWeight
);
1838 Reg
->adoptRegUnit(AdjustUnit
);
1839 // Adopting a unit does not immediately require recomputing set weights.
1842 // Adjust the existing single unit.
1843 if (!RegBank
.getRegUnit(AdjustUnit
).Artificial
)
1844 RegBank
.increaseRegUnitWeight(AdjustUnit
, UberSet
->Weight
- RegWeight
);
1845 // The unit may be shared among sets and registers within this set.
1846 computeUberWeights(UberSets
, RegBank
);
1851 // Mark these units normalized so superregisters can't change their weights.
1852 NormalUnits
|= Reg
->getRegUnits();
1857 // Compute a weight for each register unit created during getSubRegs.
1859 // The goal is that two registers in the same class will have the same weight,
1860 // where each register's weight is defined as sum of its units' weights.
1861 void CodeGenRegBank::computeRegUnitWeights() {
1862 std::vector
<UberRegSet
> UberSets
;
1863 std::vector
<UberRegSet
*> RegSets(Registers
.size());
1864 computeUberSets(UberSets
, RegSets
, *this);
1865 // UberSets and RegSets are now immutable.
1867 computeUberWeights(UberSets
, *this);
1869 // Iterate over each Register, normalizing the unit weights until reaching
1871 unsigned NumIters
= 0;
1872 for (bool Changed
= true; Changed
; ++NumIters
) {
1873 assert(NumIters
<= NumNativeRegUnits
&& "Runaway register unit weights");
1876 for (auto &Reg
: Registers
) {
1877 CodeGenRegister::RegUnitList NormalUnits
;
1878 BitVector NormalRegs
;
1879 Changed
|= normalizeWeight(&Reg
, UberSets
, RegSets
, NormalRegs
,
1880 NormalUnits
, *this);
1885 // Find a set in UniqueSets with the same elements as Set.
1886 // Return an iterator into UniqueSets.
1887 static std::vector
<RegUnitSet
>::const_iterator
1888 findRegUnitSet(const std::vector
<RegUnitSet
> &UniqueSets
,
1889 const RegUnitSet
&Set
) {
1890 std::vector
<RegUnitSet
>::const_iterator
1891 I
= UniqueSets
.begin(), E
= UniqueSets
.end();
1893 if (I
->Units
== Set
.Units
)
1899 // Return true if the RUSubSet is a subset of RUSuperSet.
1900 static bool isRegUnitSubSet(const std::vector
<unsigned> &RUSubSet
,
1901 const std::vector
<unsigned> &RUSuperSet
) {
1902 return std::includes(RUSuperSet
.begin(), RUSuperSet
.end(),
1903 RUSubSet
.begin(), RUSubSet
.end());
1906 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1907 /// but with one or two registers removed. We occasionally have registers like
1908 /// APSR and PC thrown in with the general registers. We also see many
1909 /// special-purpose register subsets, such as tail-call and Thumb
1910 /// encodings. Generating all possible overlapping sets is combinatorial and
1911 /// overkill for modeling pressure. Ideally we could fix this statically in
1912 /// tablegen by (1) having the target define register classes that only include
1913 /// the allocatable registers and marking other classes as non-allocatable and
1914 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1915 /// the purpose of pressure. However, we make an attempt to handle targets that
1916 /// are not nicely defined by merging nearly identical register unit sets
1917 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1918 /// set limit by filtering the reserved registers.
1920 /// Merge sets only if the units have the same weight. For example, on ARM,
1921 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1922 /// should not expand the S set to include D regs.
1923 void CodeGenRegBank::pruneUnitSets() {
1924 assert(RegClassUnitSets
.empty() && "this invalidates RegClassUnitSets");
1926 // Form an equivalence class of UnitSets with no significant difference.
1927 std::vector
<unsigned> SuperSetIDs
;
1928 for (unsigned SubIdx
= 0, EndIdx
= RegUnitSets
.size();
1929 SubIdx
!= EndIdx
; ++SubIdx
) {
1930 const RegUnitSet
&SubSet
= RegUnitSets
[SubIdx
];
1931 unsigned SuperIdx
= 0;
1932 for (; SuperIdx
!= EndIdx
; ++SuperIdx
) {
1933 if (SuperIdx
== SubIdx
)
1936 unsigned UnitWeight
= RegUnits
[SubSet
.Units
[0]].Weight
;
1937 const RegUnitSet
&SuperSet
= RegUnitSets
[SuperIdx
];
1938 if (isRegUnitSubSet(SubSet
.Units
, SuperSet
.Units
)
1939 && (SubSet
.Units
.size() + 3 > SuperSet
.Units
.size())
1940 && UnitWeight
== RegUnits
[SuperSet
.Units
[0]].Weight
1941 && UnitWeight
== RegUnits
[SuperSet
.Units
.back()].Weight
) {
1942 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx
<< " subsumed by " << SuperIdx
1944 // We can pick any of the set names for the merged set. Go for the
1945 // shortest one to avoid picking the name of one of the classes that are
1946 // artificially created by tablegen. So "FPR128_lo" instead of
1947 // "QQQQ_with_qsub3_in_FPR128_lo".
1948 if (RegUnitSets
[SubIdx
].Name
.size() < RegUnitSets
[SuperIdx
].Name
.size())
1949 RegUnitSets
[SuperIdx
].Name
= RegUnitSets
[SubIdx
].Name
;
1953 if (SuperIdx
== EndIdx
)
1954 SuperSetIDs
.push_back(SubIdx
);
1956 // Populate PrunedUnitSets with each equivalence class's superset.
1957 std::vector
<RegUnitSet
> PrunedUnitSets(SuperSetIDs
.size());
1958 for (unsigned i
= 0, e
= SuperSetIDs
.size(); i
!= e
; ++i
) {
1959 unsigned SuperIdx
= SuperSetIDs
[i
];
1960 PrunedUnitSets
[i
].Name
= RegUnitSets
[SuperIdx
].Name
;
1961 PrunedUnitSets
[i
].Units
.swap(RegUnitSets
[SuperIdx
].Units
);
1963 RegUnitSets
.swap(PrunedUnitSets
);
1966 // Create a RegUnitSet for each RegClass that contains all units in the class
1967 // including adopted units that are necessary to model register pressure. Then
1968 // iteratively compute RegUnitSets such that the union of any two overlapping
1969 // RegUnitSets is repreresented.
1971 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1972 // RegUnitSet that is a superset of that RegUnitClass.
1973 void CodeGenRegBank::computeRegUnitSets() {
1974 assert(RegUnitSets
.empty() && "dirty RegUnitSets");
1976 // Compute a unique RegUnitSet for each RegClass.
1977 auto &RegClasses
= getRegClasses();
1978 for (auto &RC
: RegClasses
) {
1979 if (!RC
.Allocatable
|| RC
.Artificial
|| !RC
.GeneratePressureSet
)
1982 // Speculatively grow the RegUnitSets to hold the new set.
1983 RegUnitSets
.resize(RegUnitSets
.size() + 1);
1984 RegUnitSets
.back().Name
= RC
.getName();
1986 // Compute a sorted list of units in this class.
1987 RC
.buildRegUnitSet(*this, RegUnitSets
.back().Units
);
1989 // Find an existing RegUnitSet.
1990 std::vector
<RegUnitSet
>::const_iterator SetI
=
1991 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
1992 if (SetI
!= std::prev(RegUnitSets
.end()))
1993 RegUnitSets
.pop_back();
1996 if (RegUnitSets
.empty())
1997 PrintFatalError("RegUnitSets cannot be empty!");
1999 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx
= 0,
2000 USEnd
= RegUnitSets
.size();
2001 USIdx
< USEnd
; ++USIdx
) {
2002 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
2003 for (auto &U
: RegUnitSets
[USIdx
].Units
)
2004 printRegUnitName(U
);
2008 // Iteratively prune unit sets.
2011 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx
= 0,
2012 USEnd
= RegUnitSets
.size();
2013 USIdx
< USEnd
; ++USIdx
) {
2014 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
2015 for (auto &U
: RegUnitSets
[USIdx
].Units
)
2016 printRegUnitName(U
);
2018 } dbgs() << "\nUnion sets:\n");
2020 // Iterate over all unit sets, including new ones added by this loop.
2021 unsigned NumRegUnitSubSets
= RegUnitSets
.size();
2022 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
2023 // In theory, this is combinatorial. In practice, it needs to be bounded
2024 // by a small number of sets for regpressure to be efficient.
2025 // If the assert is hit, we need to implement pruning.
2026 assert(Idx
< (2*NumRegUnitSubSets
) && "runaway unit set inference");
2028 // Compare new sets with all original classes.
2029 for (unsigned SearchIdx
= (Idx
>= NumRegUnitSubSets
) ? 0 : Idx
+1;
2030 SearchIdx
!= EndIdx
; ++SearchIdx
) {
2031 std::set
<unsigned> Intersection
;
2032 std::set_intersection(RegUnitSets
[Idx
].Units
.begin(),
2033 RegUnitSets
[Idx
].Units
.end(),
2034 RegUnitSets
[SearchIdx
].Units
.begin(),
2035 RegUnitSets
[SearchIdx
].Units
.end(),
2036 std::inserter(Intersection
, Intersection
.begin()));
2037 if (Intersection
.empty())
2040 // Speculatively grow the RegUnitSets to hold the new set.
2041 RegUnitSets
.resize(RegUnitSets
.size() + 1);
2042 RegUnitSets
.back().Name
=
2043 RegUnitSets
[Idx
].Name
+ "_with_" + RegUnitSets
[SearchIdx
].Name
;
2045 std::set_union(RegUnitSets
[Idx
].Units
.begin(),
2046 RegUnitSets
[Idx
].Units
.end(),
2047 RegUnitSets
[SearchIdx
].Units
.begin(),
2048 RegUnitSets
[SearchIdx
].Units
.end(),
2049 std::inserter(RegUnitSets
.back().Units
,
2050 RegUnitSets
.back().Units
.begin()));
2052 // Find an existing RegUnitSet, or add the union to the unique sets.
2053 std::vector
<RegUnitSet
>::const_iterator SetI
=
2054 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
2055 if (SetI
!= std::prev(RegUnitSets
.end()))
2056 RegUnitSets
.pop_back();
2058 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets
.size() - 1 << " "
2059 << RegUnitSets
.back().Name
<< ":";
2061 : RegUnitSets
.back().Units
) printRegUnitName(U
);
2067 // Iteratively prune unit sets after inferring supersets.
2071 dbgs() << "\n"; for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
2072 USIdx
< USEnd
; ++USIdx
) {
2073 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
2074 for (auto &U
: RegUnitSets
[USIdx
].Units
)
2075 printRegUnitName(U
);
2079 // For each register class, list the UnitSets that are supersets.
2080 RegClassUnitSets
.resize(RegClasses
.size());
2082 for (auto &RC
: RegClasses
) {
2084 if (!RC
.Allocatable
)
2087 // Recompute the sorted list of units in this class.
2088 std::vector
<unsigned> RCRegUnits
;
2089 RC
.buildRegUnitSet(*this, RCRegUnits
);
2091 // Don't increase pressure for unallocatable regclasses.
2092 if (RCRegUnits
.empty())
2095 LLVM_DEBUG(dbgs() << "RC " << RC
.getName() << " Units:\n";
2097 : RCRegUnits
) printRegUnitName(U
);
2098 dbgs() << "\n UnitSetIDs:");
2100 // Find all supersets.
2101 for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
2102 USIdx
!= USEnd
; ++USIdx
) {
2103 if (isRegUnitSubSet(RCRegUnits
, RegUnitSets
[USIdx
].Units
)) {
2104 LLVM_DEBUG(dbgs() << " " << USIdx
);
2105 RegClassUnitSets
[RCIdx
].push_back(USIdx
);
2108 LLVM_DEBUG(dbgs() << "\n");
2109 assert((!RegClassUnitSets
[RCIdx
].empty() || !RC
.GeneratePressureSet
) &&
2110 "missing unit set for regclass");
2113 // For each register unit, ensure that we have the list of UnitSets that
2114 // contain the unit. Normally, this matches an existing list of UnitSets for a
2115 // register class. If not, we create a new entry in RegClassUnitSets as a
2116 // "fake" register class.
2117 for (unsigned UnitIdx
= 0, UnitEnd
= NumNativeRegUnits
;
2118 UnitIdx
< UnitEnd
; ++UnitIdx
) {
2119 std::vector
<unsigned> RUSets
;
2120 for (unsigned i
= 0, e
= RegUnitSets
.size(); i
!= e
; ++i
) {
2121 RegUnitSet
&RUSet
= RegUnitSets
[i
];
2122 if (!is_contained(RUSet
.Units
, UnitIdx
))
2124 RUSets
.push_back(i
);
2126 unsigned RCUnitSetsIdx
= 0;
2127 for (unsigned e
= RegClassUnitSets
.size();
2128 RCUnitSetsIdx
!= e
; ++RCUnitSetsIdx
) {
2129 if (RegClassUnitSets
[RCUnitSetsIdx
] == RUSets
) {
2133 RegUnits
[UnitIdx
].RegClassUnitSetsIdx
= RCUnitSetsIdx
;
2134 if (RCUnitSetsIdx
== RegClassUnitSets
.size()) {
2135 // Create a new list of UnitSets as a "fake" register class.
2136 RegClassUnitSets
.resize(RCUnitSetsIdx
+ 1);
2137 RegClassUnitSets
[RCUnitSetsIdx
].swap(RUSets
);
2142 void CodeGenRegBank::computeRegUnitLaneMasks() {
2143 for (auto &Register
: Registers
) {
2144 // Create an initial lane mask for all register units.
2145 const auto &RegUnits
= Register
.getRegUnits();
2146 CodeGenRegister::RegUnitLaneMaskList
RegUnitLaneMasks(
2147 RegUnits
.count(), LaneBitmask::getAll());
2148 // Iterate through SubRegisters.
2149 typedef CodeGenRegister::SubRegMap SubRegMap
;
2150 const SubRegMap
&SubRegs
= Register
.getSubRegs();
2151 for (auto S
: SubRegs
) {
2152 CodeGenRegister
*SubReg
= S
.second
;
2153 // Ignore non-leaf subregisters, their lane masks are fully covered by
2154 // the leaf subregisters anyway.
2155 if (!SubReg
->getSubRegs().empty())
2157 CodeGenSubRegIndex
*SubRegIndex
= S
.first
;
2158 const CodeGenRegister
*SubRegister
= S
.second
;
2159 LaneBitmask LaneMask
= SubRegIndex
->LaneMask
;
2160 // Distribute LaneMask to Register Units touched.
2161 for (unsigned SUI
: SubRegister
->getRegUnits()) {
2164 for (unsigned RU
: RegUnits
) {
2166 RegUnitLaneMasks
[u
] &= LaneMask
;
2176 Register
.setRegUnitLaneMasks(RegUnitLaneMasks
);
2180 void CodeGenRegBank::computeDerivedInfo() {
2181 computeComposites();
2182 computeSubRegLaneMasks();
2184 // Compute a weight for each register unit created during getSubRegs.
2185 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2186 computeRegUnitWeights();
2188 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2189 // supersets for the union of overlapping sets.
2190 computeRegUnitSets();
2192 computeRegUnitLaneMasks();
2194 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2195 for (CodeGenRegisterClass
&RC
: RegClasses
) {
2196 RC
.HasDisjunctSubRegs
= false;
2197 RC
.CoveredBySubRegs
= true;
2198 for (const CodeGenRegister
*Reg
: RC
.getMembers()) {
2199 RC
.HasDisjunctSubRegs
|= Reg
->HasDisjunctSubRegs
;
2200 RC
.CoveredBySubRegs
&= Reg
->CoveredBySubRegs
;
2204 // Get the weight of each set.
2205 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2206 RegUnitSets
[Idx
].Weight
= getRegUnitSetWeight(RegUnitSets
[Idx
].Units
);
2208 // Find the order of each set.
2209 RegUnitSetOrder
.reserve(RegUnitSets
.size());
2210 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2211 RegUnitSetOrder
.push_back(Idx
);
2213 llvm::stable_sort(RegUnitSetOrder
, [this](unsigned ID1
, unsigned ID2
) {
2214 return getRegPressureSet(ID1
).Units
.size() <
2215 getRegPressureSet(ID2
).Units
.size();
2217 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
2218 RegUnitSets
[RegUnitSetOrder
[Idx
]].Order
= Idx
;
2223 // Synthesize missing register class intersections.
2225 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2226 // returns a maximal register class for all X.
2228 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass
*RC
) {
2229 assert(!RegClasses
.empty());
2230 // Stash the iterator to the last element so that this loop doesn't visit
2231 // elements added by the getOrCreateSubClass call within it.
2232 for (auto I
= RegClasses
.begin(), E
= std::prev(RegClasses
.end());
2233 I
!= std::next(E
); ++I
) {
2234 CodeGenRegisterClass
*RC1
= RC
;
2235 CodeGenRegisterClass
*RC2
= &*I
;
2239 // Compute the set intersection of RC1 and RC2.
2240 const CodeGenRegister::Vec
&Memb1
= RC1
->getMembers();
2241 const CodeGenRegister::Vec
&Memb2
= RC2
->getMembers();
2242 CodeGenRegister::Vec Intersection
;
2243 std::set_intersection(Memb1
.begin(), Memb1
.end(), Memb2
.begin(),
2245 std::inserter(Intersection
, Intersection
.begin()),
2246 deref
<std::less
<>>());
2248 // Skip disjoint class pairs.
2249 if (Intersection
.empty())
2252 // If RC1 and RC2 have different spill sizes or alignments, use the
2253 // stricter one for sub-classing. If they are equal, prefer RC1.
2254 if (RC2
->RSI
.hasStricterSpillThan(RC1
->RSI
))
2255 std::swap(RC1
, RC2
);
2257 getOrCreateSubClass(RC1
, &Intersection
,
2258 RC1
->getName() + "_and_" + RC2
->getName());
2263 // Synthesize missing sub-classes for getSubClassWithSubReg().
2265 // Make sure that the set of registers in RC with a given SubIdx sub-register
2266 // form a register class. Update RC->SubClassWithSubReg.
2268 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass
*RC
) {
2269 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2270 typedef std::map
<const CodeGenSubRegIndex
*, CodeGenRegister::Vec
,
2274 // Compute the set of registers supporting each SubRegIndex.
2275 SubReg2SetMap SRSets
;
2276 for (const auto R
: RC
->getMembers()) {
2279 const CodeGenRegister::SubRegMap
&SRM
= R
->getSubRegs();
2280 for (auto I
: SRM
) {
2281 if (!I
.first
->Artificial
)
2282 SRSets
[I
.first
].push_back(R
);
2286 for (auto I
: SRSets
)
2287 sortAndUniqueRegisters(I
.second
);
2289 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2290 // numerical order to visit synthetic indices last.
2291 for (const auto &SubIdx
: SubRegIndices
) {
2292 if (SubIdx
.Artificial
)
2294 SubReg2SetMap::const_iterator I
= SRSets
.find(&SubIdx
);
2295 // Unsupported SubRegIndex. Skip it.
2296 if (I
== SRSets
.end())
2298 // In most cases, all RC registers support the SubRegIndex.
2299 if (I
->second
.size() == RC
->getMembers().size()) {
2300 RC
->setSubClassWithSubReg(&SubIdx
, RC
);
2303 // This is a real subset. See if we have a matching class.
2304 CodeGenRegisterClass
*SubRC
=
2305 getOrCreateSubClass(RC
, &I
->second
,
2306 RC
->getName() + "_with_" + I
->first
->getName());
2307 RC
->setSubClassWithSubReg(&SubIdx
, SubRC
);
2312 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2314 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2315 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2318 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass
*RC
,
2319 std::list
<CodeGenRegisterClass
>::iterator FirstSubRegRC
) {
2320 DenseMap
<const CodeGenRegister
*, std::vector
<const CodeGenRegister
*>>
2322 BitVector
TopoSigs(getNumTopoSigs());
2324 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2325 for (auto &SubIdx
: SubRegIndices
) {
2326 // Skip indexes that aren't fully supported by RC's registers. This was
2327 // computed by inferSubClassWithSubReg() above which should have been
2329 if (RC
->getSubClassWithSubReg(&SubIdx
) != RC
)
2332 // Build list of (Super, Sub) pairs for this SubIdx.
2333 SubToSuperRegs
.clear();
2335 for (const auto Super
: RC
->getMembers()) {
2336 const CodeGenRegister
*Sub
= Super
->getSubRegs().find(&SubIdx
)->second
;
2337 assert(Sub
&& "Missing sub-register");
2338 SubToSuperRegs
[Sub
].push_back(Super
);
2339 TopoSigs
.set(Sub
->getTopoSig());
2342 // Iterate over sub-register class candidates. Ignore classes created by
2343 // this loop. They will never be useful.
2344 // Store an iterator to the last element (not end) so that this loop doesn't
2345 // visit newly inserted elements.
2346 assert(!RegClasses
.empty());
2347 for (auto I
= FirstSubRegRC
, E
= std::prev(RegClasses
.end());
2348 I
!= std::next(E
); ++I
) {
2349 CodeGenRegisterClass
&SubRC
= *I
;
2350 if (SubRC
.Artificial
)
2352 // Topological shortcut: SubRC members have the wrong shape.
2353 if (!TopoSigs
.anyCommon(SubRC
.getTopoSigs()))
2355 // Compute the subset of RC that maps into SubRC.
2356 CodeGenRegister::Vec SubSetVec
;
2357 for (const CodeGenRegister
*R
: SubRC
.getMembers()) {
2358 auto It
= SubToSuperRegs
.find(R
);
2359 if (It
!= SubToSuperRegs
.end()) {
2360 const std::vector
<const CodeGenRegister
*> &SuperRegs
= It
->second
;
2361 SubSetVec
.insert(SubSetVec
.end(), SuperRegs
.begin(), SuperRegs
.end());
2365 if (SubSetVec
.empty())
2368 // RC injects completely into SubRC.
2369 sortAndUniqueRegisters(SubSetVec
);
2370 if (SubSetVec
.size() == RC
->getMembers().size()) {
2371 SubRC
.addSuperRegClass(&SubIdx
, RC
);
2375 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2377 getOrCreateSubClass(RC
, &SubSetVec
, RC
->getName() + "_with_" +
2378 SubIdx
.getName() + "_in_" +
2385 // Infer missing register classes.
2387 void CodeGenRegBank::computeInferredRegisterClasses() {
2388 assert(!RegClasses
.empty());
2389 // When this function is called, the register classes have not been sorted
2390 // and assigned EnumValues yet. That means getSubClasses(),
2391 // getSuperClasses(), and hasSubClass() functions are defunct.
2393 // Use one-before-the-end so it doesn't move forward when new elements are
2395 auto FirstNewRC
= std::prev(RegClasses
.end());
2397 // Visit all register classes, including the ones being added by the loop.
2398 // Watch out for iterator invalidation here.
2399 for (auto I
= RegClasses
.begin(), E
= RegClasses
.end(); I
!= E
; ++I
) {
2400 CodeGenRegisterClass
*RC
= &*I
;
2404 // Synthesize answers for getSubClassWithSubReg().
2405 inferSubClassWithSubReg(RC
);
2407 // Synthesize answers for getCommonSubClass().
2408 inferCommonSubClass(RC
);
2410 // Synthesize answers for getMatchingSuperRegClass().
2411 inferMatchingSuperRegClass(RC
);
2413 // New register classes are created while this loop is running, and we need
2414 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2415 // to match old super-register classes with sub-register classes created
2416 // after inferMatchingSuperRegClass was called. At this point,
2417 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2418 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2419 if (I
== FirstNewRC
) {
2420 auto NextNewRC
= std::prev(RegClasses
.end());
2421 for (auto I2
= RegClasses
.begin(), E2
= std::next(FirstNewRC
); I2
!= E2
;
2423 inferMatchingSuperRegClass(&*I2
, E2
);
2424 FirstNewRC
= NextNewRC
;
2429 /// getRegisterClassForRegister - Find the register class that contains the
2430 /// specified physical register. If the register is not in a register class,
2431 /// return null. If the register is in multiple classes, and the classes have a
2432 /// superset-subset relationship and the same set of types, return the
2433 /// superclass. Otherwise return null.
2434 const CodeGenRegisterClass
*
2435 CodeGenRegBank::getRegClassForRegister(Record
*R
) {
2436 const CodeGenRegister
*Reg
= getReg(R
);
2437 const CodeGenRegisterClass
*FoundRC
= nullptr;
2438 for (const auto &RC
: getRegClasses()) {
2439 if (!RC
.contains(Reg
))
2442 // If this is the first class that contains the register,
2443 // make a note of it and go on to the next class.
2449 // If a register's classes have different types, return null.
2450 if (RC
.getValueTypes() != FoundRC
->getValueTypes())
2453 // Check to see if the previously found class that contains
2454 // the register is a subclass of the current class. If so,
2455 // prefer the superclass.
2456 if (RC
.hasSubClass(FoundRC
)) {
2461 // Check to see if the previously found class that contains
2462 // the register is a superclass of the current class. If so,
2463 // prefer the superclass.
2464 if (FoundRC
->hasSubClass(&RC
))
2467 // Multiple classes, and neither is a superclass of the other.
2474 const CodeGenRegisterClass
*
2475 CodeGenRegBank::getMinimalPhysRegClass(Record
*RegRecord
,
2476 ValueTypeByHwMode
*VT
) {
2477 const CodeGenRegister
*Reg
= getReg(RegRecord
);
2478 const CodeGenRegisterClass
*BestRC
= nullptr;
2479 for (const auto &RC
: getRegClasses()) {
2480 if ((!VT
|| RC
.hasType(*VT
)) &&
2481 RC
.contains(Reg
) && (!BestRC
|| BestRC
->hasSubClass(&RC
)))
2485 assert(BestRC
&& "Couldn't find the register class");
2489 BitVector
CodeGenRegBank::computeCoveredRegisters(ArrayRef
<Record
*> Regs
) {
2490 SetVector
<const CodeGenRegister
*> Set
;
2492 // First add Regs with all sub-registers.
2493 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
2494 CodeGenRegister
*Reg
= getReg(Regs
[i
]);
2495 if (Set
.insert(Reg
))
2496 // Reg is new, add all sub-registers.
2497 // The pre-ordering is not important here.
2498 Reg
->addSubRegsPreOrder(Set
, *this);
2501 // Second, find all super-registers that are completely covered by the set.
2502 for (unsigned i
= 0; i
!= Set
.size(); ++i
) {
2503 const CodeGenRegister::SuperRegList
&SR
= Set
[i
]->getSuperRegs();
2504 for (unsigned j
= 0, e
= SR
.size(); j
!= e
; ++j
) {
2505 const CodeGenRegister
*Super
= SR
[j
];
2506 if (!Super
->CoveredBySubRegs
|| Set
.count(Super
))
2508 // This new super-register is covered by its sub-registers.
2509 bool AllSubsInSet
= true;
2510 const CodeGenRegister::SubRegMap
&SRM
= Super
->getSubRegs();
2512 if (!Set
.count(I
.second
)) {
2513 AllSubsInSet
= false;
2516 // All sub-registers in Set, add Super as well.
2517 // We will visit Super later to recheck its super-registers.
2523 // Convert to BitVector.
2524 BitVector
BV(Registers
.size() + 1);
2525 for (unsigned i
= 0, e
= Set
.size(); i
!= e
; ++i
)
2526 BV
.set(Set
[i
]->EnumValue
);
2530 void CodeGenRegBank::printRegUnitName(unsigned Unit
) const {
2531 if (Unit
< NumNativeRegUnits
)
2532 dbgs() << ' ' << RegUnits
[Unit
].Roots
[0]->getName();
2534 dbgs() << " #" << Unit
;