1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "CodeGenDAGPatterns.h"
10 #include "CodeGenInstruction.h"
11 #include "CodeGenRegisters.h"
12 #include "CodeGenTarget.h"
13 #include "DAGISelMatcher.h"
14 #include "InfoByHwMode.h"
15 #include "SDNodeProperties.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
24 /// getRegisterValueType - Look up and return the ValueType of the specified
25 /// register. If the register is a member of multiple register classes, they
26 /// must all have the same type.
27 static MVT::SimpleValueType
getRegisterValueType(Record
*R
,
28 const CodeGenTarget
&T
) {
30 MVT::SimpleValueType VT
= MVT::Other
;
31 const CodeGenRegister
*Reg
= T
.getRegBank().getReg(R
);
33 for (const auto &RC
: T
.getRegBank().getRegClasses()) {
34 if (!RC
.contains(Reg
))
39 const ValueTypeByHwMode
&VVT
= RC
.getValueTypeNum(0);
40 assert(VVT
.isSimple());
41 VT
= VVT
.getSimple().SimpleTy
;
46 // If this occurs in multiple register classes, they all have to agree.
47 const ValueTypeByHwMode
&VVT
= RC
.getValueTypeNum(0);
48 assert(VVT
.isSimple() && VVT
.getSimple().SimpleTy
== VT
&&
49 "ValueType mismatch between register classes for this register");
58 const PatternToMatch
&Pattern
;
59 const CodeGenDAGPatterns
&CGP
;
61 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
62 /// out with all of the types removed. This allows us to insert type checks
63 /// as we scan the tree.
64 TreePatternNodePtr PatWithNoTypes
;
66 /// VariableMap - A map from variable names ('$dst') to the recorded operand
67 /// number that they were captured as. These are biased by 1 to make
69 StringMap
<unsigned> VariableMap
;
71 /// This maintains the recorded operand number that OPC_CheckComplexPattern
72 /// drops each sub-operand into. We don't want to insert these into
73 /// VariableMap because that leads to identity checking if they are
74 /// encountered multiple times. Biased by 1 like VariableMap for
76 StringMap
<unsigned> NamedComplexPatternOperands
;
78 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
79 /// the RecordedNodes array, this keeps track of which slot will be next to
81 unsigned NextRecordedOperandNo
;
83 /// MatchedChainNodes - This maintains the position in the recorded nodes
84 /// array of all of the recorded input nodes that have chains.
85 SmallVector
<unsigned, 2> MatchedChainNodes
;
87 /// MatchedComplexPatterns - This maintains a list of all of the
88 /// ComplexPatterns that we need to check. The second element of each pair
89 /// is the recorded operand number of the input node.
90 SmallVector
<std::pair
<const TreePatternNode
*,
91 unsigned>, 2> MatchedComplexPatterns
;
93 /// PhysRegInputs - List list has an entry for each explicitly specified
94 /// physreg input to the pattern. The first elt is the Register node, the
95 /// second is the recorded slot number the input pattern match saved it in.
96 SmallVector
<std::pair
<Record
*, unsigned>, 2> PhysRegInputs
;
98 /// Matcher - This is the top level of the generated matcher, the result.
101 /// CurPredicate - As we emit matcher nodes, this points to the latest check
102 /// which should have future checks stuck into its Next position.
103 Matcher
*CurPredicate
;
105 MatcherGen(const PatternToMatch
&pattern
, const CodeGenDAGPatterns
&cgp
);
107 bool EmitMatcherCode(unsigned Variant
);
108 void EmitResultCode();
110 Matcher
*GetMatcher() const { return TheMatcher
; }
112 void AddMatcher(Matcher
*NewNode
);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode
*N
, TreePatternNode
*NodeNoTypes
);
117 void EmitLeafMatchCode(const TreePatternNode
*N
);
118 void EmitOperatorMatchCode(const TreePatternNode
*N
,
119 TreePatternNode
*NodeNoTypes
);
121 /// If this is the first time a node with unique identifier Name has been
122 /// seen, record it. Otherwise, emit a check to make sure this is the same
123 /// node. Returns true if this is the first encounter.
124 bool recordUniqueNode(ArrayRef
<std::string
> Names
);
126 // Result Code Generation.
127 unsigned getNamedArgumentSlot(StringRef Name
) {
128 unsigned VarMapEntry
= VariableMap
[Name
];
129 assert(VarMapEntry
!= 0 &&
130 "Variable referenced but not defined and not caught earlier!");
131 return VarMapEntry
-1;
134 void EmitResultOperand(const TreePatternNode
*N
,
135 SmallVectorImpl
<unsigned> &ResultOps
);
136 void EmitResultOfNamedOperand(const TreePatternNode
*N
,
137 SmallVectorImpl
<unsigned> &ResultOps
);
138 void EmitResultLeafAsOperand(const TreePatternNode
*N
,
139 SmallVectorImpl
<unsigned> &ResultOps
);
140 void EmitResultInstructionAsOperand(const TreePatternNode
*N
,
141 SmallVectorImpl
<unsigned> &ResultOps
);
142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
143 SmallVectorImpl
<unsigned> &ResultOps
);
146 } // end anonymous namespace
148 MatcherGen::MatcherGen(const PatternToMatch
&pattern
,
149 const CodeGenDAGPatterns
&cgp
)
150 : Pattern(pattern
), CGP(cgp
), NextRecordedOperandNo(0),
151 TheMatcher(nullptr), CurPredicate(nullptr) {
152 // We need to produce the matcher tree for the patterns source pattern. To do
153 // this we need to match the structure as well as the types. To do the type
154 // matching, we want to figure out the fewest number of type checks we need to
155 // emit. For example, if there is only one integer type supported by a
156 // target, there should be no type comparisons at all for integer patterns!
158 // To figure out the fewest number of type checks needed, clone the pattern,
159 // remove the types, then perform type inference on the pattern as a whole.
160 // If there are unresolved types, emit an explicit check for those types,
161 // apply the type to the tree, then rerun type inference. Iterate until all
162 // types are resolved.
164 PatWithNoTypes
= Pattern
.getSrcPattern()->clone();
165 PatWithNoTypes
->RemoveAllTypes();
167 // If there are types that are manifestly known, infer them.
168 InferPossibleTypes();
171 /// InferPossibleTypes - As we emit the pattern, we end up generating type
172 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
173 /// want to propagate implied types as far throughout the tree as possible so
174 /// that we avoid doing redundant type checks. This does the type propagation.
175 void MatcherGen::InferPossibleTypes() {
176 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
177 // diagnostics, which we know are impossible at this point.
178 TreePattern
&TP
= *CGP
.pf_begin()->second
;
180 bool MadeChange
= true;
182 MadeChange
= PatWithNoTypes
->ApplyTypeConstraints(TP
,
183 true/*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher
*NewNode
) {
190 CurPredicate
->setNext(NewNode
);
192 TheMatcher
= NewNode
;
193 CurPredicate
= NewNode
;
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode
*N
) {
203 assert(N
->isLeaf() && "Not a leaf?");
205 // Direct match against an integer constant.
206 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getLeafValue())) {
207 // If this is the root of the dag we're matching, we emit a redundant opcode
208 // check to ensure that this gets folded into the normal top-level
210 if (N
== Pattern
.getSrcPattern()) {
211 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed("imm"));
212 AddMatcher(new CheckOpcodeMatcher(NI
));
215 return AddMatcher(new CheckIntegerMatcher(II
->getValue()));
218 // An UnsetInit represents a named node without any constraints.
219 if (isa
<UnsetInit
>(N
->getLeafValue())) {
220 assert(N
->hasName() && "Unnamed ? leaf");
224 DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue());
226 errs() << "Unknown leaf kind: " << *N
<< "\n";
230 Record
*LeafRec
= DI
->getDef();
232 // A ValueType leaf node can represent a register when named, or itself when
234 if (LeafRec
->isSubClassOf("ValueType")) {
235 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239 return AddMatcher(new CheckValueTypeMatcher(LeafRec
->getName()));
242 if (// Handle register references. Nothing to do here, they always match.
243 LeafRec
->isSubClassOf("RegisterClass") ||
244 LeafRec
->isSubClassOf("RegisterOperand") ||
245 LeafRec
->isSubClassOf("PointerLikeRegClass") ||
246 LeafRec
->isSubClassOf("SubRegIndex") ||
247 // Place holder for SRCVALUE nodes. Nothing to do here.
248 LeafRec
->getName() == "srcvalue")
251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252 // record the register
253 if (LeafRec
->isSubClassOf("Register")) {
254 AddMatcher(new RecordMatcher("physreg input "+LeafRec
->getName().str(),
255 NextRecordedOperandNo
));
256 PhysRegInputs
.push_back(std::make_pair(LeafRec
, NextRecordedOperandNo
++));
260 if (LeafRec
->isSubClassOf("CondCode"))
261 return AddMatcher(new CheckCondCodeMatcher(LeafRec
->getName()));
263 if (LeafRec
->isSubClassOf("ComplexPattern")) {
264 // We can't model ComplexPattern uses that don't have their name taken yet.
265 // The OPC_CheckComplexPattern operation implicitly records the results.
266 if (N
->getName().empty()) {
268 raw_string_ostream
OS(S
);
269 OS
<< "We expect complex pattern uses to have names: " << *N
;
273 // Remember this ComplexPattern so that we can emit it after all the other
274 // structural matches are done.
275 unsigned InputOperand
= VariableMap
[N
->getName()] - 1;
276 MatchedComplexPatterns
.push_back(std::make_pair(N
, InputOperand
));
280 if (LeafRec
->getName() == "immAllOnesV" ||
281 LeafRec
->getName() == "immAllZerosV") {
282 // If this is the root of the dag we're matching, we emit a redundant opcode
283 // check to ensure that this gets folded into the normal top-level
285 if (N
== Pattern
.getSrcPattern()) {
286 MVT VT
= N
->getSimpleType(0);
287 StringRef Name
= VT
.isScalableVector() ? "splat_vector" : "build_vector";
288 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed(Name
));
289 AddMatcher(new CheckOpcodeMatcher(NI
));
291 if (LeafRec
->getName() == "immAllOnesV")
292 AddMatcher(new CheckImmAllOnesVMatcher());
294 AddMatcher(new CheckImmAllZerosVMatcher());
298 errs() << "Unknown leaf kind: " << *N
<< "\n";
302 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode
*N
,
303 TreePatternNode
*NodeNoTypes
) {
304 assert(!N
->isLeaf() && "Not an operator?");
306 if (N
->getOperator()->isSubClassOf("ComplexPattern")) {
307 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
308 // "MY_PAT:op1:op2". We should already have validated that the uses are
310 std::string PatternName
= std::string(N
->getOperator()->getName());
311 for (unsigned i
= 0; i
< N
->getNumChildren(); ++i
) {
313 PatternName
+= N
->getChild(i
)->getName();
316 if (recordUniqueNode(PatternName
)) {
317 auto NodeAndOpNum
= std::make_pair(N
, NextRecordedOperandNo
- 1);
318 MatchedComplexPatterns
.push_back(NodeAndOpNum
);
324 const SDNodeInfo
&CInfo
= CGP
.getSDNodeInfo(N
->getOperator());
326 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
327 // a constant without a predicate fn that has more than one bit set, handle
328 // this as a special case. This is usually for targets that have special
329 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
330 // handling stuff). Using these instructions is often far more efficient
331 // than materializing the constant. Unfortunately, both the instcombiner
332 // and the dag combiner can often infer that bits are dead, and thus drop
333 // them from the mask in the dag. For example, it might turn 'AND X, 255'
334 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
336 if ((N
->getOperator()->getName() == "and" ||
337 N
->getOperator()->getName() == "or") &&
338 N
->getChild(1)->isLeaf() && N
->getChild(1)->getPredicateCalls().empty() &&
339 N
->getPredicateCalls().empty()) {
340 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getChild(1)->getLeafValue())) {
341 if (!llvm::has_single_bit
<uint32_t>(
342 II
->getValue())) { // Don't bother with single bits.
343 // If this is at the root of the pattern, we emit a redundant
344 // CheckOpcode so that the following checks get factored properly under
345 // a single opcode check.
346 if (N
== Pattern
.getSrcPattern())
347 AddMatcher(new CheckOpcodeMatcher(CInfo
));
349 // Emit the CheckAndImm/CheckOrImm node.
350 if (N
->getOperator()->getName() == "and")
351 AddMatcher(new CheckAndImmMatcher(II
->getValue()));
353 AddMatcher(new CheckOrImmMatcher(II
->getValue()));
355 // Match the LHS of the AND as appropriate.
356 AddMatcher(new MoveChildMatcher(0));
357 EmitMatchCode(N
->getChild(0), NodeNoTypes
->getChild(0));
358 AddMatcher(new MoveParentMatcher());
364 // Check that the current opcode lines up.
365 AddMatcher(new CheckOpcodeMatcher(CInfo
));
367 // If this node has memory references (i.e. is a load or store), tell the
368 // interpreter to capture them in the memref array.
369 if (N
->NodeHasProperty(SDNPMemOperand
, CGP
))
370 AddMatcher(new RecordMemRefMatcher());
372 // If this node has a chain, then the chain is operand #0 is the SDNode, and
373 // the child numbers of the node are all offset by one.
375 if (N
->NodeHasProperty(SDNPHasChain
, CGP
)) {
376 // Record the node and remember it in our chained nodes list.
377 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName().str() +
379 NextRecordedOperandNo
));
380 // Remember all of the input chains our pattern will match.
381 MatchedChainNodes
.push_back(NextRecordedOperandNo
++);
383 // Don't look at the input chain when matching the tree pattern to the
387 // If this node is not the root and the subtree underneath it produces a
388 // chain, then the result of matching the node is also produce a chain.
389 // Beyond that, this means that we're also folding (at least) the root node
390 // into the node that produce the chain (for example, matching
391 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
392 // problematic, if the 'reg' node also uses the load (say, its chain).
397 // | \ DAG's like cheese.
403 // It would be invalid to fold XX and LD. In this case, folding the two
404 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
405 // To prevent this, we emit a dynamic check for legality before allowing
406 // this to be folded.
408 const TreePatternNode
*Root
= Pattern
.getSrcPattern();
409 if (N
!= Root
) { // Not the root of the pattern.
410 // If there is a node between the root and this node, then we definitely
411 // need to emit the check.
412 bool NeedCheck
= !Root
->hasChild(N
);
414 // If it *is* an immediate child of the root, we can still need a check if
415 // the root SDNode has multiple inputs. For us, this means that it is an
416 // intrinsic, has multiple operands, or has other inputs like chain or
419 const SDNodeInfo
&PInfo
= CGP
.getSDNodeInfo(Root
->getOperator());
421 Root
->getOperator() == CGP
.get_intrinsic_void_sdnode() ||
422 Root
->getOperator() == CGP
.get_intrinsic_w_chain_sdnode() ||
423 Root
->getOperator() == CGP
.get_intrinsic_wo_chain_sdnode() ||
424 PInfo
.getNumOperands() > 1 ||
425 PInfo
.hasProperty(SDNPHasChain
) ||
426 PInfo
.hasProperty(SDNPInGlue
) ||
427 PInfo
.hasProperty(SDNPOptInGlue
);
431 AddMatcher(new CheckFoldableChainNodeMatcher());
435 // If this node has an output glue and isn't the root, remember it.
436 if (N
->NodeHasProperty(SDNPOutGlue
, CGP
) &&
437 N
!= Pattern
.getSrcPattern()) {
438 // TODO: This redundantly records nodes with both glues and chains.
440 // Record the node and remember it in our chained nodes list.
441 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName().str() +
442 "' glue output node",
443 NextRecordedOperandNo
));
446 // If this node is known to have an input glue or if it *might* have an input
447 // glue, capture it as the glue input of the pattern.
448 if (N
->NodeHasProperty(SDNPOptInGlue
, CGP
) ||
449 N
->NodeHasProperty(SDNPInGlue
, CGP
))
450 AddMatcher(new CaptureGlueInputMatcher());
452 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
, ++OpNo
) {
453 // Get the code suitable for matching this child. Move to the child, check
454 // it then move back to the parent.
455 AddMatcher(new MoveChildMatcher(OpNo
));
456 EmitMatchCode(N
->getChild(i
), NodeNoTypes
->getChild(i
));
457 AddMatcher(new MoveParentMatcher());
461 bool MatcherGen::recordUniqueNode(ArrayRef
<std::string
> Names
) {
463 for (const std::string
&Name
: Names
) {
464 unsigned &VarMapEntry
= VariableMap
[Name
];
467 assert(Entry
== VarMapEntry
);
470 bool NewRecord
= false;
472 // If it is a named node, we must emit a 'Record' opcode.
474 for (const std::string
&Name
: Names
) {
475 if (!WhatFor
.empty())
477 WhatFor
+= "$" + Name
;
479 AddMatcher(new RecordMatcher(WhatFor
, NextRecordedOperandNo
));
480 Entry
= ++NextRecordedOperandNo
;
483 // If we get here, this is a second reference to a specific name. Since
484 // we already have checked that the first reference is valid, we don't
485 // have to recursively match it, just check that it's the same as the
486 // previously named thing.
487 AddMatcher(new CheckSameMatcher(Entry
-1));
490 for (const std::string
&Name
: Names
)
491 VariableMap
[Name
] = Entry
;
496 void MatcherGen::EmitMatchCode(const TreePatternNode
*N
,
497 TreePatternNode
*NodeNoTypes
) {
498 // If N and NodeNoTypes don't agree on a type, then this is a case where we
499 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
500 // reinfer any correlated types.
501 SmallVector
<unsigned, 2> ResultsToTypeCheck
;
503 for (unsigned i
= 0, e
= NodeNoTypes
->getNumTypes(); i
!= e
; ++i
) {
504 if (NodeNoTypes
->getExtType(i
) == N
->getExtType(i
)) continue;
505 NodeNoTypes
->setType(i
, N
->getExtType(i
));
506 InferPossibleTypes();
507 ResultsToTypeCheck
.push_back(i
);
510 // If this node has a name associated with it, capture it in VariableMap. If
511 // we already saw this in the pattern, emit code to verify dagness.
512 SmallVector
<std::string
, 4> Names
;
513 if (!N
->getName().empty())
514 Names
.push_back(N
->getName());
516 for (const ScopedName
&Name
: N
->getNamesAsPredicateArg()) {
517 Names
.push_back(("pred:" + Twine(Name
.getScope()) + ":" + Name
.getIdentifier()).str());
520 if (!Names
.empty()) {
521 if (!recordUniqueNode(Names
))
526 EmitLeafMatchCode(N
);
528 EmitOperatorMatchCode(N
, NodeNoTypes
);
530 // If there are node predicates for this node, generate their checks.
531 for (unsigned i
= 0, e
= N
->getPredicateCalls().size(); i
!= e
; ++i
) {
532 const TreePredicateCall
&Pred
= N
->getPredicateCalls()[i
];
533 SmallVector
<unsigned, 4> Operands
;
534 if (Pred
.Fn
.usesOperands()) {
535 TreePattern
*TP
= Pred
.Fn
.getOrigPatFragRecord();
536 for (unsigned i
= 0; i
< TP
->getNumArgs(); ++i
) {
538 ("pred:" + Twine(Pred
.Scope
) + ":" + TP
->getArgName(i
)).str();
539 Operands
.push_back(getNamedArgumentSlot(Name
));
542 AddMatcher(new CheckPredicateMatcher(Pred
.Fn
, Operands
));
545 for (unsigned i
= 0, e
= ResultsToTypeCheck
.size(); i
!= e
; ++i
)
546 AddMatcher(new CheckTypeMatcher(N
->getSimpleType(ResultsToTypeCheck
[i
]),
547 ResultsToTypeCheck
[i
]));
550 /// EmitMatcherCode - Generate the code that matches the predicate of this
551 /// pattern for the specified Variant. If the variant is invalid this returns
552 /// true and does not generate code, if it is valid, it returns false.
553 bool MatcherGen::EmitMatcherCode(unsigned Variant
) {
554 // If the root of the pattern is a ComplexPattern and if it is specified to
555 // match some number of root opcodes, these are considered to be our variants.
556 // Depending on which variant we're generating code for, emit the root opcode
558 if (const ComplexPattern
*CP
=
559 Pattern
.getSrcPattern()->getComplexPatternInfo(CGP
)) {
560 const std::vector
<Record
*> &OpNodes
= CP
->getRootNodes();
561 assert(!OpNodes
.empty() &&"Complex Pattern must specify what it can match");
562 if (Variant
>= OpNodes
.size()) return true;
564 AddMatcher(new CheckOpcodeMatcher(CGP
.getSDNodeInfo(OpNodes
[Variant
])));
566 if (Variant
!= 0) return true;
569 // Emit the matcher for the pattern structure and types.
570 EmitMatchCode(Pattern
.getSrcPattern(), PatWithNoTypes
.get());
572 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
573 // feature is around, do the check).
574 std::string PredicateCheck
= Pattern
.getPredicateCheck();
575 if (!PredicateCheck
.empty())
576 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck
));
578 // Now that we've completed the structural type match, emit any ComplexPattern
579 // checks (e.g. addrmode matches). We emit this after the structural match
580 // because they are generally more expensive to evaluate and more difficult to
582 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
) {
583 auto N
= MatchedComplexPatterns
[i
].first
;
585 // Remember where the results of this match get stuck.
587 NamedComplexPatternOperands
[N
->getName()] = NextRecordedOperandNo
+ 1;
589 unsigned CurOp
= NextRecordedOperandNo
;
590 for (unsigned i
= 0; i
< N
->getNumChildren(); ++i
) {
591 NamedComplexPatternOperands
[N
->getChild(i
)->getName()] = CurOp
+ 1;
592 CurOp
+= N
->getChild(i
)->getNumMIResults(CGP
);
596 // Get the slot we recorded the value in from the name on the node.
597 unsigned RecNodeEntry
= MatchedComplexPatterns
[i
].second
;
599 const ComplexPattern
*CP
= N
->getComplexPatternInfo(CGP
);
600 assert(CP
&& "Not a valid ComplexPattern!");
602 // Emit a CheckComplexPat operation, which does the match (aborting if it
603 // fails) and pushes the matched operands onto the recorded nodes list.
604 AddMatcher(new CheckComplexPatMatcher(*CP
, RecNodeEntry
, N
->getName(),
605 NextRecordedOperandNo
));
607 // Record the right number of operands.
608 NextRecordedOperandNo
+= CP
->getNumOperands();
609 if (CP
->hasProperty(SDNPHasChain
)) {
610 // If the complex pattern has a chain, then we need to keep track of the
611 // fact that we just recorded a chain input. The chain input will be
612 // matched as the last operand of the predicate if it was successful.
613 ++NextRecordedOperandNo
; // Chained node operand.
615 // It is the last operand recorded.
616 assert(NextRecordedOperandNo
> 1 &&
617 "Should have recorded input/result chains at least!");
618 MatchedChainNodes
.push_back(NextRecordedOperandNo
-1);
621 // TODO: Complex patterns can't have output glues, if they did, we'd want
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
633 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode
*N
,
634 SmallVectorImpl
<unsigned> &ResultOps
){
635 assert(!N
->getName().empty() && "Operand not named!");
637 if (unsigned SlotNo
= NamedComplexPatternOperands
[N
->getName()]) {
638 // Complex operands have already been completely selected, just find the
639 // right slot ant add the arguments directly.
640 for (unsigned i
= 0; i
< N
->getNumMIResults(CGP
); ++i
)
641 ResultOps
.push_back(SlotNo
- 1 + i
);
646 unsigned SlotNo
= getNamedArgumentSlot(N
->getName());
648 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649 // version of the immediate so that it doesn't get selected due to some other
652 StringRef OperatorName
= N
->getOperator()->getName();
653 if (OperatorName
== "imm" || OperatorName
== "fpimm") {
654 AddMatcher(new EmitConvertToTargetMatcher(SlotNo
));
655 ResultOps
.push_back(NextRecordedOperandNo
++);
660 for (unsigned i
= 0; i
< N
->getNumMIResults(CGP
); ++i
)
661 ResultOps
.push_back(SlotNo
+ i
);
664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode
*N
,
665 SmallVectorImpl
<unsigned> &ResultOps
) {
666 assert(N
->isLeaf() && "Must be a leaf");
668 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getLeafValue())) {
669 AddMatcher(new EmitIntegerMatcher(II
->getValue(), N
->getSimpleType(0)));
670 ResultOps
.push_back(NextRecordedOperandNo
++);
674 // If this is an explicit register reference, handle it.
675 if (DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
676 Record
*Def
= DI
->getDef();
677 if (Def
->isSubClassOf("Register")) {
678 const CodeGenRegister
*Reg
=
679 CGP
.getTargetInfo().getRegBank().getReg(Def
);
680 AddMatcher(new EmitRegisterMatcher(Reg
, N
->getSimpleType(0)));
681 ResultOps
.push_back(NextRecordedOperandNo
++);
685 if (Def
->getName() == "zero_reg") {
686 AddMatcher(new EmitRegisterMatcher(nullptr, N
->getSimpleType(0)));
687 ResultOps
.push_back(NextRecordedOperandNo
++);
691 if (Def
->getName() == "undef_tied_input") {
692 MVT::SimpleValueType ResultVT
= N
->getSimpleType(0);
693 auto IDOperandNo
= NextRecordedOperandNo
++;
694 Record
*ImpDef
= Def
->getRecords().getDef("IMPLICIT_DEF");
695 CodeGenInstruction
&II
= CGP
.getTargetInfo().getInstruction(ImpDef
);
696 AddMatcher(new EmitNodeMatcher(II
, ResultVT
, std::nullopt
, false, false,
697 false, false, -1, IDOperandNo
));
698 ResultOps
.push_back(IDOperandNo
);
702 // Handle a reference to a register class. This is used
703 // in COPY_TO_SUBREG instructions.
704 if (Def
->isSubClassOf("RegisterOperand"))
705 Def
= Def
->getValueAsDef("RegClass");
706 if (Def
->isSubClassOf("RegisterClass")) {
707 // If the register class has an enum integer value greater than 127, the
708 // encoding overflows the limit of 7 bits, which precludes the use of
709 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
710 const CodeGenRegisterClass
&RC
=
711 CGP
.getTargetInfo().getRegisterClass(Def
);
712 if (RC
.EnumValue
<= 127) {
713 std::string Value
= RC
.getQualifiedIdName();
714 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
715 ResultOps
.push_back(NextRecordedOperandNo
++);
717 AddMatcher(new EmitIntegerMatcher(RC
.EnumValue
, MVT::i32
));
718 ResultOps
.push_back(NextRecordedOperandNo
++);
723 // Handle a subregister index. This is used for INSERT_SUBREG etc.
724 if (Def
->isSubClassOf("SubRegIndex")) {
725 const CodeGenRegBank
&RB
= CGP
.getTargetInfo().getRegBank();
726 // If we have more than 127 subreg indices the encoding can overflow
727 // 7 bit and we cannot use StringInteger.
728 if (RB
.getSubRegIndices().size() > 127) {
729 const CodeGenSubRegIndex
*I
= RB
.findSubRegIdx(Def
);
730 assert(I
&& "Cannot find subreg index by name!");
731 if (I
->EnumValue
> 127) {
732 AddMatcher(new EmitIntegerMatcher(I
->EnumValue
, MVT::i32
));
733 ResultOps
.push_back(NextRecordedOperandNo
++);
737 std::string Value
= getQualifiedName(Def
);
738 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
739 ResultOps
.push_back(NextRecordedOperandNo
++);
744 errs() << "unhandled leaf node:\n";
749 mayInstNodeLoadOrStore(const TreePatternNode
*N
,
750 const CodeGenDAGPatterns
&CGP
) {
751 Record
*Op
= N
->getOperator();
752 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
753 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
754 return II
.mayLoad
|| II
.mayStore
;
758 numNodesThatMayLoadOrStore(const TreePatternNode
*N
,
759 const CodeGenDAGPatterns
&CGP
) {
763 Record
*OpRec
= N
->getOperator();
764 if (!OpRec
->isSubClassOf("Instruction"))
768 if (mayInstNodeLoadOrStore(N
, CGP
))
771 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
772 Count
+= numNodesThatMayLoadOrStore(N
->getChild(i
), CGP
);
778 EmitResultInstructionAsOperand(const TreePatternNode
*N
,
779 SmallVectorImpl
<unsigned> &OutputOps
) {
780 Record
*Op
= N
->getOperator();
781 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
782 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
783 const DAGInstruction
&Inst
= CGP
.getInstruction(Op
);
785 bool isRoot
= N
== Pattern
.getDstPattern();
787 // TreeHasOutGlue - True if this tree has glue.
788 bool TreeHasInGlue
= false, TreeHasOutGlue
= false;
790 const TreePatternNode
*SrcPat
= Pattern
.getSrcPattern();
791 TreeHasInGlue
= SrcPat
->TreeHasProperty(SDNPOptInGlue
, CGP
) ||
792 SrcPat
->TreeHasProperty(SDNPInGlue
, CGP
);
794 // FIXME2: this is checking the entire pattern, not just the node in
795 // question, doing this just for the root seems like a total hack.
796 TreeHasOutGlue
= SrcPat
->TreeHasProperty(SDNPOutGlue
, CGP
);
799 // NumResults - This is the number of results produced by the instruction in
801 unsigned NumResults
= Inst
.getNumResults();
803 // Number of operands we know the output instruction must have. If it is
804 // variadic, we could have more operands.
805 unsigned NumFixedOperands
= II
.Operands
.size();
807 SmallVector
<unsigned, 8> InstOps
;
809 // Loop over all of the fixed operands of the instruction pattern, emitting
810 // code to fill them all in. The node 'N' usually has number children equal to
811 // the number of input operands of the instruction. However, in cases where
812 // there are predicate operands for an instruction, we need to fill in the
813 // 'execute always' values. Match up the node operands to the instruction
814 // operands to do this.
815 unsigned ChildNo
= 0;
817 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
818 // number of operands at the end of the list which have default values.
819 // Those can come from the pattern if it provides enough arguments, or be
820 // filled in with the default if the pattern hasn't provided them. But any
821 // operand with a default value _before_ the last mandatory one will be
822 // filled in with their defaults unconditionally.
823 unsigned NonOverridableOperands
= NumFixedOperands
;
824 while (NonOverridableOperands
> NumResults
&&
825 CGP
.operandHasDefault(II
.Operands
[NonOverridableOperands
-1].Rec
))
826 --NonOverridableOperands
;
828 for (unsigned InstOpNo
= NumResults
, e
= NumFixedOperands
;
829 InstOpNo
!= e
; ++InstOpNo
) {
830 // Determine what to emit for this operand.
831 Record
*OperandNode
= II
.Operands
[InstOpNo
].Rec
;
832 if (CGP
.operandHasDefault(OperandNode
) &&
833 (InstOpNo
< NonOverridableOperands
|| ChildNo
>= N
->getNumChildren())) {
834 // This is a predicate or optional def operand which the pattern has not
835 // overridden, or which we aren't letting it override; emit the 'default
837 const DAGDefaultOperand
&DefaultOp
838 = CGP
.getDefaultOperand(OperandNode
);
839 for (unsigned i
= 0, e
= DefaultOp
.DefaultOps
.size(); i
!= e
; ++i
)
840 EmitResultOperand(DefaultOp
.DefaultOps
[i
].get(), InstOps
);
844 // Otherwise this is a normal operand or a predicate operand without
845 // 'execute always'; emit it.
847 // For operands with multiple sub-operands we may need to emit
848 // multiple child patterns to cover them all. However, ComplexPattern
849 // children may themselves emit multiple MI operands.
850 unsigned NumSubOps
= 1;
851 if (OperandNode
->isSubClassOf("Operand")) {
852 DagInit
*MIOpInfo
= OperandNode
->getValueAsDag("MIOperandInfo");
853 if (unsigned NumArgs
= MIOpInfo
->getNumArgs())
857 unsigned FinalNumOps
= InstOps
.size() + NumSubOps
;
858 while (InstOps
.size() < FinalNumOps
) {
859 const TreePatternNode
*Child
= N
->getChild(ChildNo
);
860 unsigned BeforeAddingNumOps
= InstOps
.size();
861 EmitResultOperand(Child
, InstOps
);
862 assert(InstOps
.size() > BeforeAddingNumOps
&& "Didn't add any operands");
864 // If the operand is an instruction and it produced multiple results, just
865 // take the first one.
866 if (!Child
->isLeaf() && Child
->getOperator()->isSubClassOf("Instruction"))
867 InstOps
.resize(BeforeAddingNumOps
+1);
873 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
874 // expand suboperands, use default operands, or other features determined from
875 // the CodeGenInstruction after the fixed operands, which were handled
876 // above. Emit the remaining instructions implicitly added by the use for
878 if (II
.Operands
.isVariadic
) {
879 for (unsigned I
= ChildNo
, E
= N
->getNumChildren(); I
< E
; ++I
)
880 EmitResultOperand(N
->getChild(I
), InstOps
);
883 // If this node has input glue or explicitly specified input physregs, we
884 // need to add chained and glued copyfromreg nodes and materialize the glue
886 if (isRoot
&& !PhysRegInputs
.empty()) {
887 // Emit all of the CopyToReg nodes for the input physical registers. These
888 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
889 for (unsigned i
= 0, e
= PhysRegInputs
.size(); i
!= e
; ++i
) {
890 const CodeGenRegister
*Reg
=
891 CGP
.getTargetInfo().getRegBank().getReg(PhysRegInputs
[i
].first
);
892 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs
[i
].second
,
896 // Even if the node has no other glue inputs, the resultant node must be
897 // glued to the CopyFromReg nodes we just generated.
898 TreeHasInGlue
= true;
901 // Result order: node results, chain, glue
903 // Determine the result types.
904 SmallVector
<MVT::SimpleValueType
, 4> ResultVTs
;
905 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
)
906 ResultVTs
.push_back(N
->getSimpleType(i
));
908 // If this is the root instruction of a pattern that has physical registers in
909 // its result pattern, add output VTs for them. For example, X86 has:
910 // (set AL, (mul ...))
911 // This also handles implicit results like:
913 if (isRoot
&& !Pattern
.getDstRegs().empty()) {
914 // If the root came from an implicit def in the instruction handling stuff,
916 Record
*HandledReg
= nullptr;
917 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
918 HandledReg
= II
.ImplicitDefs
[0];
920 for (Record
*Reg
: Pattern
.getDstRegs()) {
921 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
922 ResultVTs
.push_back(getRegisterValueType(Reg
, CGT
));
926 // If this is the root of the pattern and the pattern we're matching includes
927 // a node that is variadic, mark the generated node as variadic so that it
928 // gets the excess operands from the input DAG.
929 int NumFixedArityOperands
= -1;
931 Pattern
.getSrcPattern()->NodeHasProperty(SDNPVariadic
, CGP
))
932 NumFixedArityOperands
= Pattern
.getSrcPattern()->getNumChildren();
934 // If this is the root node and multiple matched nodes in the input pattern
935 // have MemRefs in them, have the interpreter collect them and plop them onto
936 // this node. If there is just one node with MemRefs, leave them on that node
937 // even if it is not the root.
939 // FIXME3: This is actively incorrect for result patterns with multiple
940 // memory-referencing instructions.
941 bool PatternHasMemOperands
=
942 Pattern
.getSrcPattern()->TreeHasProperty(SDNPMemOperand
, CGP
);
944 bool NodeHasMemRefs
= false;
945 if (PatternHasMemOperands
) {
946 unsigned NumNodesThatLoadOrStore
=
947 numNodesThatMayLoadOrStore(Pattern
.getDstPattern(), CGP
);
948 bool NodeIsUniqueLoadOrStore
= mayInstNodeLoadOrStore(N
, CGP
) &&
949 NumNodesThatLoadOrStore
== 1;
951 NodeIsUniqueLoadOrStore
|| (isRoot
&& (mayInstNodeLoadOrStore(N
, CGP
) ||
952 NumNodesThatLoadOrStore
!= 1));
955 // Determine whether we need to attach a chain to this node.
956 bool NodeHasChain
= false;
957 if (Pattern
.getSrcPattern()->TreeHasProperty(SDNPHasChain
, CGP
)) {
958 // For some instructions, we were able to infer from the pattern whether
959 // they should have a chain. Otherwise, attach the chain to the root.
961 // FIXME2: This is extremely dubious for several reasons, not the least of
962 // which it gives special status to instructions with patterns that Pat<>
963 // nodes can't duplicate.
964 if (II
.hasChain_Inferred
)
965 NodeHasChain
= II
.hasChain
;
967 NodeHasChain
= isRoot
;
968 // Instructions which load and store from memory should have a chain,
969 // regardless of whether they happen to have a pattern saying so.
970 if (II
.hasCtrlDep
|| II
.mayLoad
|| II
.mayStore
|| II
.canFoldAsLoad
||
975 assert((!ResultVTs
.empty() || TreeHasOutGlue
|| NodeHasChain
) &&
976 "Node has no result");
978 AddMatcher(new EmitNodeMatcher(II
, ResultVTs
, InstOps
, NodeHasChain
,
979 TreeHasInGlue
, TreeHasOutGlue
, NodeHasMemRefs
,
980 NumFixedArityOperands
, NextRecordedOperandNo
));
982 // The non-chain and non-glue results of the newly emitted node get recorded.
983 for (unsigned i
= 0, e
= ResultVTs
.size(); i
!= e
; ++i
) {
984 if (ResultVTs
[i
] == MVT::Other
|| ResultVTs
[i
] == MVT::Glue
) break;
985 OutputOps
.push_back(NextRecordedOperandNo
++);
990 EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
991 SmallVectorImpl
<unsigned> &ResultOps
) {
992 assert(N
->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
995 SmallVector
<unsigned, 8> InputOps
;
997 // FIXME2: Could easily generalize this to support multiple inputs and outputs
998 // to the SDNodeXForm. For now we just support one input and one output like
999 // the old instruction selector.
1000 assert(N
->getNumChildren() == 1);
1001 EmitResultOperand(N
->getChild(0), InputOps
);
1003 // The input currently must have produced exactly one result.
1004 assert(InputOps
.size() == 1 && "Unexpected input to SDNodeXForm");
1006 AddMatcher(new EmitNodeXFormMatcher(InputOps
[0], N
->getOperator()));
1007 ResultOps
.push_back(NextRecordedOperandNo
++);
1010 void MatcherGen::EmitResultOperand(const TreePatternNode
*N
,
1011 SmallVectorImpl
<unsigned> &ResultOps
) {
1012 // This is something selected from the pattern we matched.
1013 if (!N
->getName().empty())
1014 return EmitResultOfNamedOperand(N
, ResultOps
);
1017 return EmitResultLeafAsOperand(N
, ResultOps
);
1019 Record
*OpRec
= N
->getOperator();
1020 if (OpRec
->isSubClassOf("Instruction"))
1021 return EmitResultInstructionAsOperand(N
, ResultOps
);
1022 if (OpRec
->isSubClassOf("SDNodeXForm"))
1023 return EmitResultSDNodeXFormAsOperand(N
, ResultOps
);
1024 errs() << "Unknown result node to emit code for: " << *N
<< '\n';
1025 PrintFatalError("Unknown node in result pattern!");
1028 void MatcherGen::EmitResultCode() {
1029 // Patterns that match nodes with (potentially multiple) chain inputs have to
1030 // merge them together into a token factor. This informs the generated code
1031 // what all the chained nodes are.
1032 if (!MatchedChainNodes
.empty())
1033 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes
));
1035 // Codegen the root of the result pattern, capturing the resulting values.
1036 SmallVector
<unsigned, 8> Ops
;
1037 EmitResultOperand(Pattern
.getDstPattern(), Ops
);
1039 // At this point, we have however many values the result pattern produces.
1040 // However, the input pattern might not need all of these. If there are
1041 // excess values at the end (such as implicit defs of condition codes etc)
1042 // just lop them off. This doesn't need to worry about glue or chains, just
1043 // explicit results.
1045 unsigned NumSrcResults
= Pattern
.getSrcPattern()->getNumTypes();
1047 // If the pattern also has (implicit) results, count them as well.
1048 if (!Pattern
.getDstRegs().empty()) {
1049 // If the root came from an implicit def in the instruction handling stuff,
1051 Record
*HandledReg
= nullptr;
1052 const TreePatternNode
*DstPat
= Pattern
.getDstPattern();
1053 if (!DstPat
->isLeaf() &&DstPat
->getOperator()->isSubClassOf("Instruction")){
1054 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
1055 CodeGenInstruction
&II
= CGT
.getInstruction(DstPat
->getOperator());
1057 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
1058 HandledReg
= II
.ImplicitDefs
[0];
1061 for (Record
*Reg
: Pattern
.getDstRegs()) {
1062 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
1067 SmallVector
<unsigned, 8> Results(Ops
);
1069 // Apply result permutation.
1070 for (unsigned ResNo
= 0; ResNo
< Pattern
.getDstPattern()->getNumResults();
1072 Results
[ResNo
] = Ops
[Pattern
.getDstPattern()->getResultIndex(ResNo
)];
1075 Results
.resize(NumSrcResults
);
1076 AddMatcher(new CompleteMatchMatcher(Results
, Pattern
));
1080 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1081 /// the specified variant. If the variant number is invalid, this returns null.
1082 Matcher
*llvm::ConvertPatternToMatcher(const PatternToMatch
&Pattern
,
1084 const CodeGenDAGPatterns
&CGP
) {
1085 MatcherGen
Gen(Pattern
, CGP
);
1087 // Generate the code for the matcher.
1088 if (Gen
.EmitMatcherCode(Variant
))
1091 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1092 // FIXME2: Split result code out to another table, and make the matcher end
1093 // with an "Emit <index>" command. This allows result generation stuff to be
1094 // shared and factored?
1096 // If the match succeeds, then we generate Pattern.
1097 Gen
.EmitResultCode();
1099 // Unconditional match.
1100 return Gen
.GetMatcher();