Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / utils / TableGen / DAGISelMatcherGen.cpp
blobd08f57b84b95f0882da3a2124dc2a1713f1e1118
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "CodeGenDAGPatterns.h"
10 #include "CodeGenInstruction.h"
11 #include "CodeGenRegisters.h"
12 #include "CodeGenTarget.h"
13 #include "DAGISelMatcher.h"
14 #include "InfoByHwMode.h"
15 #include "SDNodeProperties.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include <utility>
21 using namespace llvm;
24 /// getRegisterValueType - Look up and return the ValueType of the specified
25 /// register. If the register is a member of multiple register classes, they
26 /// must all have the same type.
27 static MVT::SimpleValueType getRegisterValueType(Record *R,
28 const CodeGenTarget &T) {
29 bool FoundRC = false;
30 MVT::SimpleValueType VT = MVT::Other;
31 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
33 for (const auto &RC : T.getRegBank().getRegClasses()) {
34 if (!RC.contains(Reg))
35 continue;
37 if (!FoundRC) {
38 FoundRC = true;
39 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
40 assert(VVT.isSimple());
41 VT = VVT.getSimple().SimpleTy;
42 continue;
45 #ifndef NDEBUG
46 // If this occurs in multiple register classes, they all have to agree.
47 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
48 assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT &&
49 "ValueType mismatch between register classes for this register");
50 #endif
52 return VT;
56 namespace {
57 class MatcherGen {
58 const PatternToMatch &Pattern;
59 const CodeGenDAGPatterns &CGP;
61 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
62 /// out with all of the types removed. This allows us to insert type checks
63 /// as we scan the tree.
64 TreePatternNodePtr PatWithNoTypes;
66 /// VariableMap - A map from variable names ('$dst') to the recorded operand
67 /// number that they were captured as. These are biased by 1 to make
68 /// insertion easier.
69 StringMap<unsigned> VariableMap;
71 /// This maintains the recorded operand number that OPC_CheckComplexPattern
72 /// drops each sub-operand into. We don't want to insert these into
73 /// VariableMap because that leads to identity checking if they are
74 /// encountered multiple times. Biased by 1 like VariableMap for
75 /// consistency.
76 StringMap<unsigned> NamedComplexPatternOperands;
78 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
79 /// the RecordedNodes array, this keeps track of which slot will be next to
80 /// record into.
81 unsigned NextRecordedOperandNo;
83 /// MatchedChainNodes - This maintains the position in the recorded nodes
84 /// array of all of the recorded input nodes that have chains.
85 SmallVector<unsigned, 2> MatchedChainNodes;
87 /// MatchedComplexPatterns - This maintains a list of all of the
88 /// ComplexPatterns that we need to check. The second element of each pair
89 /// is the recorded operand number of the input node.
90 SmallVector<std::pair<const TreePatternNode*,
91 unsigned>, 2> MatchedComplexPatterns;
93 /// PhysRegInputs - List list has an entry for each explicitly specified
94 /// physreg input to the pattern. The first elt is the Register node, the
95 /// second is the recorded slot number the input pattern match saved it in.
96 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
98 /// Matcher - This is the top level of the generated matcher, the result.
99 Matcher *TheMatcher;
101 /// CurPredicate - As we emit matcher nodes, this points to the latest check
102 /// which should have future checks stuck into its Next position.
103 Matcher *CurPredicate;
104 public:
105 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
107 bool EmitMatcherCode(unsigned Variant);
108 void EmitResultCode();
110 Matcher *GetMatcher() const { return TheMatcher; }
111 private:
112 void AddMatcher(Matcher *NewNode);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117 void EmitLeafMatchCode(const TreePatternNode *N);
118 void EmitOperatorMatchCode(const TreePatternNode *N,
119 TreePatternNode *NodeNoTypes);
121 /// If this is the first time a node with unique identifier Name has been
122 /// seen, record it. Otherwise, emit a check to make sure this is the same
123 /// node. Returns true if this is the first encounter.
124 bool recordUniqueNode(ArrayRef<std::string> Names);
126 // Result Code Generation.
127 unsigned getNamedArgumentSlot(StringRef Name) {
128 unsigned VarMapEntry = VariableMap[Name];
129 assert(VarMapEntry != 0 &&
130 "Variable referenced but not defined and not caught earlier!");
131 return VarMapEntry-1;
134 void EmitResultOperand(const TreePatternNode *N,
135 SmallVectorImpl<unsigned> &ResultOps);
136 void EmitResultOfNamedOperand(const TreePatternNode *N,
137 SmallVectorImpl<unsigned> &ResultOps);
138 void EmitResultLeafAsOperand(const TreePatternNode *N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 void EmitResultInstructionAsOperand(const TreePatternNode *N,
141 SmallVectorImpl<unsigned> &ResultOps);
142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
143 SmallVectorImpl<unsigned> &ResultOps);
146 } // end anonymous namespace
148 MatcherGen::MatcherGen(const PatternToMatch &pattern,
149 const CodeGenDAGPatterns &cgp)
150 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
151 TheMatcher(nullptr), CurPredicate(nullptr) {
152 // We need to produce the matcher tree for the patterns source pattern. To do
153 // this we need to match the structure as well as the types. To do the type
154 // matching, we want to figure out the fewest number of type checks we need to
155 // emit. For example, if there is only one integer type supported by a
156 // target, there should be no type comparisons at all for integer patterns!
158 // To figure out the fewest number of type checks needed, clone the pattern,
159 // remove the types, then perform type inference on the pattern as a whole.
160 // If there are unresolved types, emit an explicit check for those types,
161 // apply the type to the tree, then rerun type inference. Iterate until all
162 // types are resolved.
164 PatWithNoTypes = Pattern.getSrcPattern()->clone();
165 PatWithNoTypes->RemoveAllTypes();
167 // If there are types that are manifestly known, infer them.
168 InferPossibleTypes();
171 /// InferPossibleTypes - As we emit the pattern, we end up generating type
172 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
173 /// want to propagate implied types as far throughout the tree as possible so
174 /// that we avoid doing redundant type checks. This does the type propagation.
175 void MatcherGen::InferPossibleTypes() {
176 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
177 // diagnostics, which we know are impossible at this point.
178 TreePattern &TP = *CGP.pf_begin()->second;
180 bool MadeChange = true;
181 while (MadeChange)
182 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183 true/*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189 if (CurPredicate)
190 CurPredicate->setNext(NewNode);
191 else
192 TheMatcher = NewNode;
193 CurPredicate = NewNode;
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203 assert(N->isLeaf() && "Not a leaf?");
205 // Direct match against an integer constant.
206 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207 // If this is the root of the dag we're matching, we emit a redundant opcode
208 // check to ensure that this gets folded into the normal top-level
209 // OpcodeSwitch.
210 if (N == Pattern.getSrcPattern()) {
211 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212 AddMatcher(new CheckOpcodeMatcher(NI));
215 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
218 // An UnsetInit represents a named node without any constraints.
219 if (isa<UnsetInit>(N->getLeafValue())) {
220 assert(N->hasName() && "Unnamed ? leaf");
221 return;
224 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225 if (!DI) {
226 errs() << "Unknown leaf kind: " << *N << "\n";
227 abort();
230 Record *LeafRec = DI->getDef();
232 // A ValueType leaf node can represent a register when named, or itself when
233 // unnamed.
234 if (LeafRec->isSubClassOf("ValueType")) {
235 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236 if (N->hasName())
237 return;
238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
242 if (// Handle register references. Nothing to do here, they always match.
243 LeafRec->isSubClassOf("RegisterClass") ||
244 LeafRec->isSubClassOf("RegisterOperand") ||
245 LeafRec->isSubClassOf("PointerLikeRegClass") ||
246 LeafRec->isSubClassOf("SubRegIndex") ||
247 // Place holder for SRCVALUE nodes. Nothing to do here.
248 LeafRec->getName() == "srcvalue")
249 return;
251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252 // record the register
253 if (LeafRec->isSubClassOf("Register")) {
254 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255 NextRecordedOperandNo));
256 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257 return;
260 if (LeafRec->isSubClassOf("CondCode"))
261 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263 if (LeafRec->isSubClassOf("ComplexPattern")) {
264 // We can't model ComplexPattern uses that don't have their name taken yet.
265 // The OPC_CheckComplexPattern operation implicitly records the results.
266 if (N->getName().empty()) {
267 std::string S;
268 raw_string_ostream OS(S);
269 OS << "We expect complex pattern uses to have names: " << *N;
270 PrintFatalError(S);
273 // Remember this ComplexPattern so that we can emit it after all the other
274 // structural matches are done.
275 unsigned InputOperand = VariableMap[N->getName()] - 1;
276 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277 return;
280 if (LeafRec->getName() == "immAllOnesV" ||
281 LeafRec->getName() == "immAllZerosV") {
282 // If this is the root of the dag we're matching, we emit a redundant opcode
283 // check to ensure that this gets folded into the normal top-level
284 // OpcodeSwitch.
285 if (N == Pattern.getSrcPattern()) {
286 MVT VT = N->getSimpleType(0);
287 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
288 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
289 AddMatcher(new CheckOpcodeMatcher(NI));
291 if (LeafRec->getName() == "immAllOnesV")
292 AddMatcher(new CheckImmAllOnesVMatcher());
293 else
294 AddMatcher(new CheckImmAllZerosVMatcher());
295 return;
298 errs() << "Unknown leaf kind: " << *N << "\n";
299 abort();
302 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
303 TreePatternNode *NodeNoTypes) {
304 assert(!N->isLeaf() && "Not an operator?");
306 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
307 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
308 // "MY_PAT:op1:op2". We should already have validated that the uses are
309 // consistent.
310 std::string PatternName = std::string(N->getOperator()->getName());
311 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
312 PatternName += ":";
313 PatternName += N->getChild(i)->getName();
316 if (recordUniqueNode(PatternName)) {
317 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
318 MatchedComplexPatterns.push_back(NodeAndOpNum);
321 return;
324 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
326 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
327 // a constant without a predicate fn that has more than one bit set, handle
328 // this as a special case. This is usually for targets that have special
329 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
330 // handling stuff). Using these instructions is often far more efficient
331 // than materializing the constant. Unfortunately, both the instcombiner
332 // and the dag combiner can often infer that bits are dead, and thus drop
333 // them from the mask in the dag. For example, it might turn 'AND X, 255'
334 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
335 // to handle this.
336 if ((N->getOperator()->getName() == "and" ||
337 N->getOperator()->getName() == "or") &&
338 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
339 N->getPredicateCalls().empty()) {
340 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
341 if (!llvm::has_single_bit<uint32_t>(
342 II->getValue())) { // Don't bother with single bits.
343 // If this is at the root of the pattern, we emit a redundant
344 // CheckOpcode so that the following checks get factored properly under
345 // a single opcode check.
346 if (N == Pattern.getSrcPattern())
347 AddMatcher(new CheckOpcodeMatcher(CInfo));
349 // Emit the CheckAndImm/CheckOrImm node.
350 if (N->getOperator()->getName() == "and")
351 AddMatcher(new CheckAndImmMatcher(II->getValue()));
352 else
353 AddMatcher(new CheckOrImmMatcher(II->getValue()));
355 // Match the LHS of the AND as appropriate.
356 AddMatcher(new MoveChildMatcher(0));
357 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
358 AddMatcher(new MoveParentMatcher());
359 return;
364 // Check that the current opcode lines up.
365 AddMatcher(new CheckOpcodeMatcher(CInfo));
367 // If this node has memory references (i.e. is a load or store), tell the
368 // interpreter to capture them in the memref array.
369 if (N->NodeHasProperty(SDNPMemOperand, CGP))
370 AddMatcher(new RecordMemRefMatcher());
372 // If this node has a chain, then the chain is operand #0 is the SDNode, and
373 // the child numbers of the node are all offset by one.
374 unsigned OpNo = 0;
375 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
376 // Record the node and remember it in our chained nodes list.
377 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
378 "' chained node",
379 NextRecordedOperandNo));
380 // Remember all of the input chains our pattern will match.
381 MatchedChainNodes.push_back(NextRecordedOperandNo++);
383 // Don't look at the input chain when matching the tree pattern to the
384 // SDNode.
385 OpNo = 1;
387 // If this node is not the root and the subtree underneath it produces a
388 // chain, then the result of matching the node is also produce a chain.
389 // Beyond that, this means that we're also folding (at least) the root node
390 // into the node that produce the chain (for example, matching
391 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
392 // problematic, if the 'reg' node also uses the load (say, its chain).
393 // Graphically:
395 // [LD]
396 // ^ ^
397 // | \ DAG's like cheese.
398 // / |
399 // / [YY]
400 // | ^
401 // [XX]--/
403 // It would be invalid to fold XX and LD. In this case, folding the two
404 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
405 // To prevent this, we emit a dynamic check for legality before allowing
406 // this to be folded.
408 const TreePatternNode *Root = Pattern.getSrcPattern();
409 if (N != Root) { // Not the root of the pattern.
410 // If there is a node between the root and this node, then we definitely
411 // need to emit the check.
412 bool NeedCheck = !Root->hasChild(N);
414 // If it *is* an immediate child of the root, we can still need a check if
415 // the root SDNode has multiple inputs. For us, this means that it is an
416 // intrinsic, has multiple operands, or has other inputs like chain or
417 // glue).
418 if (!NeedCheck) {
419 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
420 NeedCheck =
421 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
422 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
423 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
424 PInfo.getNumOperands() > 1 ||
425 PInfo.hasProperty(SDNPHasChain) ||
426 PInfo.hasProperty(SDNPInGlue) ||
427 PInfo.hasProperty(SDNPOptInGlue);
430 if (NeedCheck)
431 AddMatcher(new CheckFoldableChainNodeMatcher());
435 // If this node has an output glue and isn't the root, remember it.
436 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
437 N != Pattern.getSrcPattern()) {
438 // TODO: This redundantly records nodes with both glues and chains.
440 // Record the node and remember it in our chained nodes list.
441 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
442 "' glue output node",
443 NextRecordedOperandNo));
446 // If this node is known to have an input glue or if it *might* have an input
447 // glue, capture it as the glue input of the pattern.
448 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
449 N->NodeHasProperty(SDNPInGlue, CGP))
450 AddMatcher(new CaptureGlueInputMatcher());
452 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
453 // Get the code suitable for matching this child. Move to the child, check
454 // it then move back to the parent.
455 AddMatcher(new MoveChildMatcher(OpNo));
456 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
457 AddMatcher(new MoveParentMatcher());
461 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
462 unsigned Entry = 0;
463 for (const std::string &Name : Names) {
464 unsigned &VarMapEntry = VariableMap[Name];
465 if (!Entry)
466 Entry = VarMapEntry;
467 assert(Entry == VarMapEntry);
470 bool NewRecord = false;
471 if (Entry == 0) {
472 // If it is a named node, we must emit a 'Record' opcode.
473 std::string WhatFor;
474 for (const std::string &Name : Names) {
475 if (!WhatFor.empty())
476 WhatFor += ',';
477 WhatFor += "$" + Name;
479 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
480 Entry = ++NextRecordedOperandNo;
481 NewRecord = true;
482 } else {
483 // If we get here, this is a second reference to a specific name. Since
484 // we already have checked that the first reference is valid, we don't
485 // have to recursively match it, just check that it's the same as the
486 // previously named thing.
487 AddMatcher(new CheckSameMatcher(Entry-1));
490 for (const std::string &Name : Names)
491 VariableMap[Name] = Entry;
493 return NewRecord;
496 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
497 TreePatternNode *NodeNoTypes) {
498 // If N and NodeNoTypes don't agree on a type, then this is a case where we
499 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
500 // reinfer any correlated types.
501 SmallVector<unsigned, 2> ResultsToTypeCheck;
503 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
504 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
505 NodeNoTypes->setType(i, N->getExtType(i));
506 InferPossibleTypes();
507 ResultsToTypeCheck.push_back(i);
510 // If this node has a name associated with it, capture it in VariableMap. If
511 // we already saw this in the pattern, emit code to verify dagness.
512 SmallVector<std::string, 4> Names;
513 if (!N->getName().empty())
514 Names.push_back(N->getName());
516 for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
517 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
520 if (!Names.empty()) {
521 if (!recordUniqueNode(Names))
522 return;
525 if (N->isLeaf())
526 EmitLeafMatchCode(N);
527 else
528 EmitOperatorMatchCode(N, NodeNoTypes);
530 // If there are node predicates for this node, generate their checks.
531 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
532 const TreePredicateCall &Pred = N->getPredicateCalls()[i];
533 SmallVector<unsigned, 4> Operands;
534 if (Pred.Fn.usesOperands()) {
535 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
536 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
537 std::string Name =
538 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
539 Operands.push_back(getNamedArgumentSlot(Name));
542 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
545 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
546 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
547 ResultsToTypeCheck[i]));
550 /// EmitMatcherCode - Generate the code that matches the predicate of this
551 /// pattern for the specified Variant. If the variant is invalid this returns
552 /// true and does not generate code, if it is valid, it returns false.
553 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
554 // If the root of the pattern is a ComplexPattern and if it is specified to
555 // match some number of root opcodes, these are considered to be our variants.
556 // Depending on which variant we're generating code for, emit the root opcode
557 // check.
558 if (const ComplexPattern *CP =
559 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
560 const std::vector<Record*> &OpNodes = CP->getRootNodes();
561 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
562 if (Variant >= OpNodes.size()) return true;
564 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
565 } else {
566 if (Variant != 0) return true;
569 // Emit the matcher for the pattern structure and types.
570 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get());
572 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
573 // feature is around, do the check).
574 std::string PredicateCheck = Pattern.getPredicateCheck();
575 if (!PredicateCheck.empty())
576 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck));
578 // Now that we've completed the structural type match, emit any ComplexPattern
579 // checks (e.g. addrmode matches). We emit this after the structural match
580 // because they are generally more expensive to evaluate and more difficult to
581 // factor.
582 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
583 auto N = MatchedComplexPatterns[i].first;
585 // Remember where the results of this match get stuck.
586 if (N->isLeaf()) {
587 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
588 } else {
589 unsigned CurOp = NextRecordedOperandNo;
590 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
591 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
592 CurOp += N->getChild(i)->getNumMIResults(CGP);
596 // Get the slot we recorded the value in from the name on the node.
597 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
599 const ComplexPattern *CP = N->getComplexPatternInfo(CGP);
600 assert(CP && "Not a valid ComplexPattern!");
602 // Emit a CheckComplexPat operation, which does the match (aborting if it
603 // fails) and pushes the matched operands onto the recorded nodes list.
604 AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N->getName(),
605 NextRecordedOperandNo));
607 // Record the right number of operands.
608 NextRecordedOperandNo += CP->getNumOperands();
609 if (CP->hasProperty(SDNPHasChain)) {
610 // If the complex pattern has a chain, then we need to keep track of the
611 // fact that we just recorded a chain input. The chain input will be
612 // matched as the last operand of the predicate if it was successful.
613 ++NextRecordedOperandNo; // Chained node operand.
615 // It is the last operand recorded.
616 assert(NextRecordedOperandNo > 1 &&
617 "Should have recorded input/result chains at least!");
618 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
621 // TODO: Complex patterns can't have output glues, if they did, we'd want
622 // to record them.
625 return false;
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
633 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
634 SmallVectorImpl<unsigned> &ResultOps){
635 assert(!N->getName().empty() && "Operand not named!");
637 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
638 // Complex operands have already been completely selected, just find the
639 // right slot ant add the arguments directly.
640 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
641 ResultOps.push_back(SlotNo - 1 + i);
643 return;
646 unsigned SlotNo = getNamedArgumentSlot(N->getName());
648 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649 // version of the immediate so that it doesn't get selected due to some other
650 // node use.
651 if (!N->isLeaf()) {
652 StringRef OperatorName = N->getOperator()->getName();
653 if (OperatorName == "imm" || OperatorName == "fpimm") {
654 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
655 ResultOps.push_back(NextRecordedOperandNo++);
656 return;
660 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
661 ResultOps.push_back(SlotNo + i);
664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
665 SmallVectorImpl<unsigned> &ResultOps) {
666 assert(N->isLeaf() && "Must be a leaf");
668 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
669 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
670 ResultOps.push_back(NextRecordedOperandNo++);
671 return;
674 // If this is an explicit register reference, handle it.
675 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
676 Record *Def = DI->getDef();
677 if (Def->isSubClassOf("Register")) {
678 const CodeGenRegister *Reg =
679 CGP.getTargetInfo().getRegBank().getReg(Def);
680 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
681 ResultOps.push_back(NextRecordedOperandNo++);
682 return;
685 if (Def->getName() == "zero_reg") {
686 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
687 ResultOps.push_back(NextRecordedOperandNo++);
688 return;
691 if (Def->getName() == "undef_tied_input") {
692 MVT::SimpleValueType ResultVT = N->getSimpleType(0);
693 auto IDOperandNo = NextRecordedOperandNo++;
694 Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF");
695 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef);
696 AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false,
697 false, false, -1, IDOperandNo));
698 ResultOps.push_back(IDOperandNo);
699 return;
702 // Handle a reference to a register class. This is used
703 // in COPY_TO_SUBREG instructions.
704 if (Def->isSubClassOf("RegisterOperand"))
705 Def = Def->getValueAsDef("RegClass");
706 if (Def->isSubClassOf("RegisterClass")) {
707 // If the register class has an enum integer value greater than 127, the
708 // encoding overflows the limit of 7 bits, which precludes the use of
709 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
710 const CodeGenRegisterClass &RC =
711 CGP.getTargetInfo().getRegisterClass(Def);
712 if (RC.EnumValue <= 127) {
713 std::string Value = RC.getQualifiedIdName();
714 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
715 ResultOps.push_back(NextRecordedOperandNo++);
716 } else {
717 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
718 ResultOps.push_back(NextRecordedOperandNo++);
720 return;
723 // Handle a subregister index. This is used for INSERT_SUBREG etc.
724 if (Def->isSubClassOf("SubRegIndex")) {
725 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
726 // If we have more than 127 subreg indices the encoding can overflow
727 // 7 bit and we cannot use StringInteger.
728 if (RB.getSubRegIndices().size() > 127) {
729 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
730 assert(I && "Cannot find subreg index by name!");
731 if (I->EnumValue > 127) {
732 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
733 ResultOps.push_back(NextRecordedOperandNo++);
734 return;
737 std::string Value = getQualifiedName(Def);
738 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
739 ResultOps.push_back(NextRecordedOperandNo++);
740 return;
744 errs() << "unhandled leaf node:\n";
745 N->dump();
748 static bool
749 mayInstNodeLoadOrStore(const TreePatternNode *N,
750 const CodeGenDAGPatterns &CGP) {
751 Record *Op = N->getOperator();
752 const CodeGenTarget &CGT = CGP.getTargetInfo();
753 CodeGenInstruction &II = CGT.getInstruction(Op);
754 return II.mayLoad || II.mayStore;
757 static unsigned
758 numNodesThatMayLoadOrStore(const TreePatternNode *N,
759 const CodeGenDAGPatterns &CGP) {
760 if (N->isLeaf())
761 return 0;
763 Record *OpRec = N->getOperator();
764 if (!OpRec->isSubClassOf("Instruction"))
765 return 0;
767 unsigned Count = 0;
768 if (mayInstNodeLoadOrStore(N, CGP))
769 ++Count;
771 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
772 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
774 return Count;
777 void MatcherGen::
778 EmitResultInstructionAsOperand(const TreePatternNode *N,
779 SmallVectorImpl<unsigned> &OutputOps) {
780 Record *Op = N->getOperator();
781 const CodeGenTarget &CGT = CGP.getTargetInfo();
782 CodeGenInstruction &II = CGT.getInstruction(Op);
783 const DAGInstruction &Inst = CGP.getInstruction(Op);
785 bool isRoot = N == Pattern.getDstPattern();
787 // TreeHasOutGlue - True if this tree has glue.
788 bool TreeHasInGlue = false, TreeHasOutGlue = false;
789 if (isRoot) {
790 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
791 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
792 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
794 // FIXME2: this is checking the entire pattern, not just the node in
795 // question, doing this just for the root seems like a total hack.
796 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
799 // NumResults - This is the number of results produced by the instruction in
800 // the "outs" list.
801 unsigned NumResults = Inst.getNumResults();
803 // Number of operands we know the output instruction must have. If it is
804 // variadic, we could have more operands.
805 unsigned NumFixedOperands = II.Operands.size();
807 SmallVector<unsigned, 8> InstOps;
809 // Loop over all of the fixed operands of the instruction pattern, emitting
810 // code to fill them all in. The node 'N' usually has number children equal to
811 // the number of input operands of the instruction. However, in cases where
812 // there are predicate operands for an instruction, we need to fill in the
813 // 'execute always' values. Match up the node operands to the instruction
814 // operands to do this.
815 unsigned ChildNo = 0;
817 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
818 // number of operands at the end of the list which have default values.
819 // Those can come from the pattern if it provides enough arguments, or be
820 // filled in with the default if the pattern hasn't provided them. But any
821 // operand with a default value _before_ the last mandatory one will be
822 // filled in with their defaults unconditionally.
823 unsigned NonOverridableOperands = NumFixedOperands;
824 while (NonOverridableOperands > NumResults &&
825 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
826 --NonOverridableOperands;
828 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
829 InstOpNo != e; ++InstOpNo) {
830 // Determine what to emit for this operand.
831 Record *OperandNode = II.Operands[InstOpNo].Rec;
832 if (CGP.operandHasDefault(OperandNode) &&
833 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
834 // This is a predicate or optional def operand which the pattern has not
835 // overridden, or which we aren't letting it override; emit the 'default
836 // ops' operands.
837 const DAGDefaultOperand &DefaultOp
838 = CGP.getDefaultOperand(OperandNode);
839 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
840 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
841 continue;
844 // Otherwise this is a normal operand or a predicate operand without
845 // 'execute always'; emit it.
847 // For operands with multiple sub-operands we may need to emit
848 // multiple child patterns to cover them all. However, ComplexPattern
849 // children may themselves emit multiple MI operands.
850 unsigned NumSubOps = 1;
851 if (OperandNode->isSubClassOf("Operand")) {
852 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
853 if (unsigned NumArgs = MIOpInfo->getNumArgs())
854 NumSubOps = NumArgs;
857 unsigned FinalNumOps = InstOps.size() + NumSubOps;
858 while (InstOps.size() < FinalNumOps) {
859 const TreePatternNode *Child = N->getChild(ChildNo);
860 unsigned BeforeAddingNumOps = InstOps.size();
861 EmitResultOperand(Child, InstOps);
862 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
864 // If the operand is an instruction and it produced multiple results, just
865 // take the first one.
866 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
867 InstOps.resize(BeforeAddingNumOps+1);
869 ++ChildNo;
873 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
874 // expand suboperands, use default operands, or other features determined from
875 // the CodeGenInstruction after the fixed operands, which were handled
876 // above. Emit the remaining instructions implicitly added by the use for
877 // variable_ops.
878 if (II.Operands.isVariadic) {
879 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
880 EmitResultOperand(N->getChild(I), InstOps);
883 // If this node has input glue or explicitly specified input physregs, we
884 // need to add chained and glued copyfromreg nodes and materialize the glue
885 // input.
886 if (isRoot && !PhysRegInputs.empty()) {
887 // Emit all of the CopyToReg nodes for the input physical registers. These
888 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
889 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
890 const CodeGenRegister *Reg =
891 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
892 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
893 Reg));
896 // Even if the node has no other glue inputs, the resultant node must be
897 // glued to the CopyFromReg nodes we just generated.
898 TreeHasInGlue = true;
901 // Result order: node results, chain, glue
903 // Determine the result types.
904 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
905 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
906 ResultVTs.push_back(N->getSimpleType(i));
908 // If this is the root instruction of a pattern that has physical registers in
909 // its result pattern, add output VTs for them. For example, X86 has:
910 // (set AL, (mul ...))
911 // This also handles implicit results like:
912 // (implicit EFLAGS)
913 if (isRoot && !Pattern.getDstRegs().empty()) {
914 // If the root came from an implicit def in the instruction handling stuff,
915 // don't re-add it.
916 Record *HandledReg = nullptr;
917 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
918 HandledReg = II.ImplicitDefs[0];
920 for (Record *Reg : Pattern.getDstRegs()) {
921 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
922 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
926 // If this is the root of the pattern and the pattern we're matching includes
927 // a node that is variadic, mark the generated node as variadic so that it
928 // gets the excess operands from the input DAG.
929 int NumFixedArityOperands = -1;
930 if (isRoot &&
931 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
932 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
934 // If this is the root node and multiple matched nodes in the input pattern
935 // have MemRefs in them, have the interpreter collect them and plop them onto
936 // this node. If there is just one node with MemRefs, leave them on that node
937 // even if it is not the root.
939 // FIXME3: This is actively incorrect for result patterns with multiple
940 // memory-referencing instructions.
941 bool PatternHasMemOperands =
942 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
944 bool NodeHasMemRefs = false;
945 if (PatternHasMemOperands) {
946 unsigned NumNodesThatLoadOrStore =
947 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
948 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
949 NumNodesThatLoadOrStore == 1;
950 NodeHasMemRefs =
951 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
952 NumNodesThatLoadOrStore != 1));
955 // Determine whether we need to attach a chain to this node.
956 bool NodeHasChain = false;
957 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
958 // For some instructions, we were able to infer from the pattern whether
959 // they should have a chain. Otherwise, attach the chain to the root.
961 // FIXME2: This is extremely dubious for several reasons, not the least of
962 // which it gives special status to instructions with patterns that Pat<>
963 // nodes can't duplicate.
964 if (II.hasChain_Inferred)
965 NodeHasChain = II.hasChain;
966 else
967 NodeHasChain = isRoot;
968 // Instructions which load and store from memory should have a chain,
969 // regardless of whether they happen to have a pattern saying so.
970 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
971 II.hasSideEffects)
972 NodeHasChain = true;
975 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
976 "Node has no result");
978 AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain,
979 TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs,
980 NumFixedArityOperands, NextRecordedOperandNo));
982 // The non-chain and non-glue results of the newly emitted node get recorded.
983 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
984 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
985 OutputOps.push_back(NextRecordedOperandNo++);
989 void MatcherGen::
990 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
991 SmallVectorImpl<unsigned> &ResultOps) {
992 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
994 // Emit the operand.
995 SmallVector<unsigned, 8> InputOps;
997 // FIXME2: Could easily generalize this to support multiple inputs and outputs
998 // to the SDNodeXForm. For now we just support one input and one output like
999 // the old instruction selector.
1000 assert(N->getNumChildren() == 1);
1001 EmitResultOperand(N->getChild(0), InputOps);
1003 // The input currently must have produced exactly one result.
1004 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1006 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1007 ResultOps.push_back(NextRecordedOperandNo++);
1010 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1011 SmallVectorImpl<unsigned> &ResultOps) {
1012 // This is something selected from the pattern we matched.
1013 if (!N->getName().empty())
1014 return EmitResultOfNamedOperand(N, ResultOps);
1016 if (N->isLeaf())
1017 return EmitResultLeafAsOperand(N, ResultOps);
1019 Record *OpRec = N->getOperator();
1020 if (OpRec->isSubClassOf("Instruction"))
1021 return EmitResultInstructionAsOperand(N, ResultOps);
1022 if (OpRec->isSubClassOf("SDNodeXForm"))
1023 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1024 errs() << "Unknown result node to emit code for: " << *N << '\n';
1025 PrintFatalError("Unknown node in result pattern!");
1028 void MatcherGen::EmitResultCode() {
1029 // Patterns that match nodes with (potentially multiple) chain inputs have to
1030 // merge them together into a token factor. This informs the generated code
1031 // what all the chained nodes are.
1032 if (!MatchedChainNodes.empty())
1033 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1035 // Codegen the root of the result pattern, capturing the resulting values.
1036 SmallVector<unsigned, 8> Ops;
1037 EmitResultOperand(Pattern.getDstPattern(), Ops);
1039 // At this point, we have however many values the result pattern produces.
1040 // However, the input pattern might not need all of these. If there are
1041 // excess values at the end (such as implicit defs of condition codes etc)
1042 // just lop them off. This doesn't need to worry about glue or chains, just
1043 // explicit results.
1045 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1047 // If the pattern also has (implicit) results, count them as well.
1048 if (!Pattern.getDstRegs().empty()) {
1049 // If the root came from an implicit def in the instruction handling stuff,
1050 // don't re-add it.
1051 Record *HandledReg = nullptr;
1052 const TreePatternNode *DstPat = Pattern.getDstPattern();
1053 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1054 const CodeGenTarget &CGT = CGP.getTargetInfo();
1055 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1057 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1058 HandledReg = II.ImplicitDefs[0];
1061 for (Record *Reg : Pattern.getDstRegs()) {
1062 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1063 ++NumSrcResults;
1067 SmallVector<unsigned, 8> Results(Ops);
1069 // Apply result permutation.
1070 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1071 ++ResNo) {
1072 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1075 Results.resize(NumSrcResults);
1076 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1080 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1081 /// the specified variant. If the variant number is invalid, this returns null.
1082 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1083 unsigned Variant,
1084 const CodeGenDAGPatterns &CGP) {
1085 MatcherGen Gen(Pattern, CGP);
1087 // Generate the code for the matcher.
1088 if (Gen.EmitMatcherCode(Variant))
1089 return nullptr;
1091 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1092 // FIXME2: Split result code out to another table, and make the matcher end
1093 // with an "Emit <index>" command. This allows result generation stuff to be
1094 // shared and factored?
1096 // If the match succeeds, then we generate Pattern.
1097 Gen.EmitResultCode();
1099 // Unconditional match.
1100 return Gen.GetMatcher();