Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / utils / TableGen / DAGISelMatcherOpt.cpp
blobbf2a24241e846290eb19364f70380a586bac2369
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the DAG Matcher optimizer.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenDAGPatterns.h"
14 #include "DAGISelMatcher.h"
15 #include "SDNodeProperties.h"
16 #include "llvm/ADT/StringSet.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19 using namespace llvm;
21 #define DEBUG_TYPE "isel-opt"
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24 /// into single compound nodes like RecordChild.
25 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
26 const CodeGenDAGPatterns &CGP) {
27 // If we reached the end of the chain, we're done.
28 Matcher *N = MatcherPtr.get();
29 if (!N)
30 return;
32 // If we have a scope node, walk down all of the children.
33 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
35 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
36 ContractNodes(Child, CGP);
37 Scope->resetChild(i, Child.release());
39 return;
42 // If we found a movechild node with a node that comes in a 'foochild' form,
43 // transform it.
44 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
45 Matcher *New = nullptr;
46 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47 if (MC->getChildNo() < 8) // Only have RecordChild0...7
48 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
49 RM->getResultNo());
51 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
52 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
53 CT->getResNo() == 0) // CheckChildType checks res #0
54 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
56 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
57 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
58 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
60 if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
61 if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
62 New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
64 if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
65 if (MC->getChildNo() == 2) // Only have CheckChild2CondCode
66 New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
68 if (New) {
69 // Insert the new node.
70 New->setNext(MatcherPtr.release());
71 MatcherPtr.reset(New);
72 // Remove the old one.
73 MC->setNext(MC->getNext()->takeNext());
74 return ContractNodes(MatcherPtr, CGP);
78 // Zap movechild -> moveparent.
79 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
80 if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(MC->getNext())) {
81 MatcherPtr.reset(MP->takeNext());
82 return ContractNodes(MatcherPtr, CGP);
85 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
86 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
87 if (CompleteMatchMatcher *CM =
88 dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
89 // We can only use MorphNodeTo if the result values match up.
90 unsigned RootResultFirst = EN->getFirstResultSlot();
91 bool ResultsMatch = true;
92 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
93 if (CM->getResult(i) != RootResultFirst + i)
94 ResultsMatch = false;
96 // If the selected node defines a subset of the glue/chain results, we
97 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
98 // matched pattern has a chain but the root node doesn't.
99 const PatternToMatch &Pattern = CM->getPattern();
101 if (!EN->hasChain() &&
102 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
103 ResultsMatch = false;
105 // If the matched node has glue and the output root doesn't, we can't
106 // use MorphNodeTo.
108 // NOTE: Strictly speaking, we don't have to check for glue here
109 // because the code in the pattern generator doesn't handle it right. We
110 // do it anyway for thoroughness.
111 if (!EN->hasOutGlue() &&
112 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
113 ResultsMatch = false;
115 #if 0
116 // If the root result node defines more results than the source root node
117 // *and* has a chain or glue input, then we can't match it because it
118 // would end up replacing the extra result with the chain/glue.
119 if ((EN->hasGlue() || EN->hasChain()) &&
120 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
121 ResultMatch = false;
122 #endif
124 if (ResultsMatch) {
125 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
126 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
127 MatcherPtr.reset(new MorphNodeToMatcher(
128 EN->getInstruction(), VTs, Operands, EN->hasChain(),
129 EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(),
130 EN->getNumFixedArityOperands(), Pattern));
131 return;
134 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
135 // variants.
138 ContractNodes(N->getNextPtr(), CGP);
140 // If we have a CheckType/CheckChildType/Record node followed by a
141 // CheckOpcode, invert the two nodes. We prefer to do structural checks
142 // before type checks, as this opens opportunities for factoring on targets
143 // like X86 where many operations are valid on multiple types.
144 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
145 isa<RecordMatcher>(N)) &&
146 isa<CheckOpcodeMatcher>(N->getNext())) {
147 // Unlink the two nodes from the list.
148 Matcher *CheckType = MatcherPtr.release();
149 Matcher *CheckOpcode = CheckType->takeNext();
150 Matcher *Tail = CheckOpcode->takeNext();
152 // Relink them.
153 MatcherPtr.reset(CheckOpcode);
154 CheckOpcode->setNext(CheckType);
155 CheckType->setNext(Tail);
156 return ContractNodes(MatcherPtr, CGP);
160 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
161 /// specified kind. Return null if we didn't find one otherwise return the
162 /// matcher.
163 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
164 for (; M; M = M->getNext())
165 if (M->getKind() == Kind)
166 return M;
167 return nullptr;
170 /// FactorNodes - Turn matches like this:
171 /// Scope
172 /// OPC_CheckType i32
173 /// ABC
174 /// OPC_CheckType i32
175 /// XYZ
176 /// into:
177 /// OPC_CheckType i32
178 /// Scope
179 /// ABC
180 /// XYZ
182 static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
183 // Look for a push node. Iterates instead of recurses to reduce stack usage.
184 ScopeMatcher *Scope = nullptr;
185 std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
186 while (!Scope) {
187 // If we reached the end of the chain, we're done.
188 Matcher *N = RebindableMatcherPtr->get();
189 if (!N)
190 return;
192 // If this is not a push node, just scan for one.
193 Scope = dyn_cast<ScopeMatcher>(N);
194 if (!Scope)
195 RebindableMatcherPtr = &(N->getNextPtr());
197 std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
199 // Okay, pull together the children of the scope node into a vector so we can
200 // inspect it more easily.
201 SmallVector<Matcher *, 32> OptionsToMatch;
203 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
204 // Factor the subexpression.
205 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
206 FactorNodes(Child);
208 // If the child is a ScopeMatcher we can just merge its contents.
209 if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
210 for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
211 OptionsToMatch.push_back(SM->takeChild(j));
212 } else {
213 OptionsToMatch.push_back(Child.release());
217 // Loop over options to match, merging neighboring patterns with identical
218 // starting nodes into a shared matcher.
219 auto E = OptionsToMatch.end();
220 for (auto I = OptionsToMatch.begin(); I != E; ++I) {
221 // If there are no other matchers left, there's nothing to merge with.
222 auto J = std::next(I);
223 if (J == E)
224 break;
226 // Remember where we started. We'll use this to move non-equal elements.
227 auto K = J;
229 // Find the set of matchers that start with this node.
230 Matcher *Optn = *I;
232 // See if the next option starts with the same matcher. If the two
233 // neighbors *do* start with the same matcher, we can factor the matcher out
234 // of at least these two patterns. See what the maximal set we can merge
235 // together is.
236 SmallVector<Matcher *, 8> EqualMatchers;
237 EqualMatchers.push_back(Optn);
239 // Factor all of the known-equal matchers after this one into the same
240 // group.
241 while (J != E && (*J)->isEqual(Optn))
242 EqualMatchers.push_back(*J++);
244 // If we found a non-equal matcher, see if it is contradictory with the
245 // current node. If so, we know that the ordering relation between the
246 // current sets of nodes and this node don't matter. Look past it to see if
247 // we can merge anything else into this matching group.
248 while (J != E) {
249 Matcher *ScanMatcher = *J;
251 // If we found an entry that matches out matcher, merge it into the set to
252 // handle.
253 if (Optn->isEqual(ScanMatcher)) {
254 // It is equal after all, add the option to EqualMatchers.
255 EqualMatchers.push_back(ScanMatcher);
256 ++J;
257 continue;
260 // If the option we're checking for contradicts the start of the list,
261 // move it earlier in OptionsToMatch for the next iteration of the outer
262 // loop. Then continue searching for equal or contradictory matchers.
263 if (Optn->isContradictory(ScanMatcher)) {
264 *K++ = *J++;
265 continue;
268 // If we're scanning for a simple node, see if it occurs later in the
269 // sequence. If so, and if we can move it up, it might be contradictory
270 // or the same as what we're looking for. If so, reorder it.
271 if (Optn->isSimplePredicateOrRecordNode()) {
272 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
273 if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) &&
274 (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
275 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
276 M2->setNext(MatcherWithoutM2);
277 *J = M2;
278 continue;
282 // Otherwise, we don't know how to handle this entry, we have to bail.
283 break;
286 if (J != E &&
287 // Don't print if it's obvious nothing extract could be merged anyway.
288 std::next(J) != E) {
289 LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
290 errs() << "into this:\n";
291 (*J)->print(errs(), 4);
292 (*std::next(J))->printOne(errs());
293 if (std::next(J, 2) != E) (*std::next(J, 2))->printOne(errs());
294 errs() << "\n");
297 // If we removed any equal matchers, we may need to slide the rest of the
298 // elements down for the next iteration of the outer loop.
299 if (J != K) {
300 while (J != E)
301 *K++ = *J++;
303 // Update end pointer for outer loop.
304 E = K;
307 // If we only found one option starting with this matcher, no factoring is
308 // possible. Put the Matcher back in OptionsToMatch.
309 if (EqualMatchers.size() == 1) {
310 *I = EqualMatchers[0];
311 continue;
314 // Factor these checks by pulling the first node off each entry and
315 // discarding it. Take the first one off the first entry to reuse.
316 Matcher *Shared = Optn;
317 Optn = Optn->takeNext();
318 EqualMatchers[0] = Optn;
320 // Remove and delete the first node from the other matchers we're factoring.
321 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
322 Matcher *Tmp = EqualMatchers[i]->takeNext();
323 delete EqualMatchers[i];
324 EqualMatchers[i] = Tmp;
325 assert(!Optn == !Tmp && "Expected all to be null if any are null");
328 if (EqualMatchers[0]) {
329 Shared->setNext(new ScopeMatcher(std::move(EqualMatchers)));
331 // Recursively factor the newly created node.
332 FactorNodes(Shared->getNextPtr());
335 // Put the new Matcher where we started in OptionsToMatch.
336 *I = Shared;
339 // Trim the array to match the updated end.
340 if (E != OptionsToMatch.end())
341 OptionsToMatch.erase(E, OptionsToMatch.end());
343 // If we're down to a single pattern to match, then we don't need this scope
344 // anymore.
345 if (OptionsToMatch.size() == 1) {
346 MatcherPtr.reset(OptionsToMatch[0]);
347 return;
350 if (OptionsToMatch.empty()) {
351 MatcherPtr.reset();
352 return;
355 // If our factoring failed (didn't achieve anything) see if we can simplify in
356 // other ways.
358 // Check to see if all of the leading entries are now opcode checks. If so,
359 // we can convert this Scope to be a OpcodeSwitch instead.
360 bool AllOpcodeChecks = true, AllTypeChecks = true;
361 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
362 // Check to see if this breaks a series of CheckOpcodeMatchers.
363 if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(OptionsToMatch[i])) {
364 #if 0
365 if (i > 3) {
366 errs() << "FAILING OPC #" << i << "\n";
367 OptionsToMatch[i]->dump();
369 #endif
370 AllOpcodeChecks = false;
373 // Check to see if this breaks a series of CheckTypeMatcher's.
374 if (AllTypeChecks) {
375 CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>(
376 FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType));
377 if (!CTM ||
378 // iPTR checks could alias any other case without us knowing, don't
379 // bother with them.
380 CTM->getType() == MVT::iPTR ||
381 // SwitchType only works for result #0.
382 CTM->getResNo() != 0 ||
383 // If the CheckType isn't at the start of the list, see if we can move
384 // it there.
385 !CTM->canMoveBefore(OptionsToMatch[i])) {
386 #if 0
387 if (i > 3 && AllTypeChecks) {
388 errs() << "FAILING TYPE #" << i << "\n";
389 OptionsToMatch[i]->dump();
391 #endif
392 AllTypeChecks = false;
397 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
398 if (AllOpcodeChecks) {
399 StringSet<> Opcodes;
400 SmallVector<std::pair<const SDNodeInfo *, Matcher *>, 8> Cases;
401 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
402 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(OptionsToMatch[i]);
403 assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
404 "Duplicate opcodes not factored?");
405 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
406 delete COM;
409 MatcherPtr.reset(new SwitchOpcodeMatcher(std::move(Cases)));
410 return;
413 // If all the options are CheckType's, we can form the SwitchType, woot.
414 if (AllTypeChecks) {
415 DenseMap<unsigned, unsigned> TypeEntry;
416 SmallVector<std::pair<MVT::SimpleValueType, Matcher *>, 8> Cases;
417 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
418 Matcher *M = FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType);
419 assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
421 auto *CTM = cast<CheckTypeMatcher>(M);
422 Matcher *MatcherWithoutCTM = OptionsToMatch[i]->unlinkNode(CTM);
423 MVT::SimpleValueType CTMTy = CTM->getType();
424 delete CTM;
426 unsigned &Entry = TypeEntry[CTMTy];
427 if (Entry != 0) {
428 // If we have unfactored duplicate types, then we should factor them.
429 Matcher *PrevMatcher = Cases[Entry - 1].second;
430 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
431 SM->setNumChildren(SM->getNumChildren() + 1);
432 SM->resetChild(SM->getNumChildren() - 1, MatcherWithoutCTM);
433 continue;
436 SmallVector<Matcher *, 2> Entries = {PrevMatcher, MatcherWithoutCTM};
437 Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries));
438 continue;
441 Entry = Cases.size() + 1;
442 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
445 // Make sure we recursively factor any scopes we may have created.
446 for (auto &M : Cases) {
447 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
448 std::unique_ptr<Matcher> Scope(SM);
449 FactorNodes(Scope);
450 M.second = Scope.release();
451 assert(M.second && "null matcher");
455 if (Cases.size() != 1) {
456 MatcherPtr.reset(new SwitchTypeMatcher(std::move(Cases)));
457 } else {
458 // If we factored and ended up with one case, create it now.
459 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
460 MatcherPtr->setNext(Cases[0].second);
462 return;
465 // Reassemble the Scope node with the adjusted children.
466 Scope->setNumChildren(OptionsToMatch.size());
467 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i)
468 Scope->resetChild(i, OptionsToMatch[i]);
471 void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
472 const CodeGenDAGPatterns &CGP) {
473 ContractNodes(MatcherPtr, CGP);
474 FactorNodes(MatcherPtr);