Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / utils / TableGen / X86RecognizableInstr.cpp
blob962da623b1cadc70677cc608c890836897806542
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
14 //===----------------------------------------------------------------------===//
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86DisassemblerTables.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Record.h"
22 #include <string>
24 using namespace llvm;
25 using namespace X86Disassembler;
27 std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I, unsigned Variant) {
28 std::string AsmString = I->FlattenAsmStringVariants(I->AsmString, Variant);
29 StringRef Mnemonic(AsmString);
30 // Extract a mnemonic assuming it's separated by \t
31 Mnemonic = Mnemonic.take_until([](char C) { return C == '\t'; });
33 // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
34 // Replace it with "CC" in-place.
35 size_t CondPos = Mnemonic.find("${cond}");
36 if (CondPos != StringRef::npos)
37 Mnemonic = AsmString.replace(CondPos, StringRef::npos, "CC");
38 return Mnemonic.upper();
41 bool X86Disassembler::isRegisterOperand(const Record *Rec) {
42 return Rec->isSubClassOf("RegisterClass") ||
43 Rec->isSubClassOf("RegisterOperand");
46 bool X86Disassembler::isMemoryOperand(const Record *Rec) {
47 return Rec->isSubClassOf("Operand") &&
48 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
51 bool X86Disassembler::isImmediateOperand(const Record *Rec) {
52 return Rec->isSubClassOf("Operand") &&
53 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
56 unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) {
57 if (RegRec->isSubClassOf("RegisterClass"))
58 return RegRec->getValueAsInt("Alignment");
59 if (RegRec->isSubClassOf("RegisterOperand"))
60 return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");
62 llvm_unreachable("Register operand's size not known!");
65 unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) {
66 if (MemRec->isSubClassOf("X86MemOperand"))
67 return MemRec->getValueAsInt("Size");
69 llvm_unreachable("Memory operand's size not known!");
72 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
73 /// Useful for switch statements and the like.
74 ///
75 /// @param init - A reference to the BitsInit to be decoded.
76 /// @return - The field, with the first bit in the BitsInit as the lowest
77 /// order bit.
78 static uint8_t byteFromBitsInit(BitsInit &init) {
79 int width = init.getNumBits();
81 assert(width <= 8 && "Field is too large for uint8_t!");
83 int index;
84 uint8_t mask = 0x01;
86 uint8_t ret = 0;
88 for (index = 0; index < width; index++) {
89 if (cast<BitInit>(init.getBit(index))->getValue())
90 ret |= mask;
92 mask <<= 1;
95 return ret;
98 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
99 /// name of the field.
101 /// @param rec - The record from which to extract the value.
102 /// @param name - The name of the field in the record.
103 /// @return - The field, as translated by byteFromBitsInit().
104 static uint8_t byteFromRec(const Record* rec, StringRef name) {
105 BitsInit* bits = rec->getValueAsBitsInit(name);
106 return byteFromBitsInit(*bits);
109 RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) {
110 const Record *Rec = insn.TheDef;
111 assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction");
112 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
113 OpMap = byteFromRec(Rec, "OpMapBits");
114 Opcode = byteFromRec(Rec, "Opcode");
115 Form = byteFromRec(Rec, "FormBits");
116 Encoding = byteFromRec(Rec, "OpEncBits");
117 OpSize = byteFromRec(Rec, "OpSizeBits");
118 AdSize = byteFromRec(Rec, "AdSizeBits");
119 HasREX_W = Rec->getValueAsBit("hasREX_W");
120 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
121 IgnoresW = Rec->getValueAsBit("IgnoresW");
122 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
123 HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2");
124 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
125 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
126 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
127 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
128 IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly");
129 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
130 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
131 HasVEX_L = Rec->getValueAsBit("hasVEX_L");
133 EncodeRC = HasEVEX_B &&
134 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
137 bool RecognizableInstrBase::shouldBeEmitted() const {
138 return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) &&
139 !IsAsmParserOnly;
142 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
143 const CodeGenInstruction &insn,
144 InstrUID uid)
145 : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()),
146 Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList),
147 UID(uid), Spec(&tables.specForUID(uid)) {
148 // Check for 64-bit inst which does not require REX
149 // FIXME: Is there some better way to check for In64BitMode?
150 std::vector<Record *> Predicates = Rec->getValueAsListOfDefs("Predicates");
151 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
152 if (Predicates[i]->getName().contains("Not64Bit") ||
153 Predicates[i]->getName().contains("In32Bit")) {
154 Is32Bit = true;
155 break;
157 if (Predicates[i]->getName().contains("In64Bit")) {
158 Is64Bit = true;
159 break;
164 void RecognizableInstr::processInstr(DisassemblerTables &tables,
165 const CodeGenInstruction &insn,
166 InstrUID uid) {
167 if (!insn.TheDef->isSubClassOf("X86Inst"))
168 return;
169 RecognizableInstr recogInstr(tables, insn, uid);
171 if (!recogInstr.shouldBeEmitted())
172 return;
173 recogInstr.emitInstructionSpecifier();
174 recogInstr.emitDecodePath(tables);
177 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
178 (HasEVEX_K && HasEVEX_B ? n##_K_B : \
179 (HasEVEX_KZ ? n##_KZ : \
180 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
182 InstructionContext RecognizableInstr::insnContext() const {
183 InstructionContext insnContext;
185 if (Encoding == X86Local::EVEX) {
186 if (HasVEX_L && HasEVEX_L2) {
187 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
188 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
190 // VEX_L & VEX_W
191 if (!EncodeRC && HasVEX_L && HasREX_W) {
192 if (OpPrefix == X86Local::PD)
193 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
194 else if (OpPrefix == X86Local::XS)
195 insnContext = EVEX_KB(IC_EVEX_L_W_XS);
196 else if (OpPrefix == X86Local::XD)
197 insnContext = EVEX_KB(IC_EVEX_L_W_XD);
198 else if (OpPrefix == X86Local::PS)
199 insnContext = EVEX_KB(IC_EVEX_L_W);
200 else {
201 errs() << "Instruction does not use a prefix: " << Name << "\n";
202 llvm_unreachable("Invalid prefix");
204 } else if (!EncodeRC && HasVEX_L) {
205 // VEX_L
206 if (OpPrefix == X86Local::PD)
207 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
208 else if (OpPrefix == X86Local::XS)
209 insnContext = EVEX_KB(IC_EVEX_L_XS);
210 else if (OpPrefix == X86Local::XD)
211 insnContext = EVEX_KB(IC_EVEX_L_XD);
212 else if (OpPrefix == X86Local::PS)
213 insnContext = EVEX_KB(IC_EVEX_L);
214 else {
215 errs() << "Instruction does not use a prefix: " << Name << "\n";
216 llvm_unreachable("Invalid prefix");
218 } else if (!EncodeRC && HasEVEX_L2 && HasREX_W) {
219 // EVEX_L2 & VEX_W
220 if (OpPrefix == X86Local::PD)
221 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
222 else if (OpPrefix == X86Local::XS)
223 insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
224 else if (OpPrefix == X86Local::XD)
225 insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
226 else if (OpPrefix == X86Local::PS)
227 insnContext = EVEX_KB(IC_EVEX_L2_W);
228 else {
229 errs() << "Instruction does not use a prefix: " << Name << "\n";
230 llvm_unreachable("Invalid prefix");
232 } else if (!EncodeRC && HasEVEX_L2) {
233 // EVEX_L2
234 if (OpPrefix == X86Local::PD)
235 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
236 else if (OpPrefix == X86Local::XD)
237 insnContext = EVEX_KB(IC_EVEX_L2_XD);
238 else if (OpPrefix == X86Local::XS)
239 insnContext = EVEX_KB(IC_EVEX_L2_XS);
240 else if (OpPrefix == X86Local::PS)
241 insnContext = EVEX_KB(IC_EVEX_L2);
242 else {
243 errs() << "Instruction does not use a prefix: " << Name << "\n";
244 llvm_unreachable("Invalid prefix");
247 else if (HasREX_W) {
248 // VEX_W
249 if (OpPrefix == X86Local::PD)
250 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
251 else if (OpPrefix == X86Local::XS)
252 insnContext = EVEX_KB(IC_EVEX_W_XS);
253 else if (OpPrefix == X86Local::XD)
254 insnContext = EVEX_KB(IC_EVEX_W_XD);
255 else if (OpPrefix == X86Local::PS)
256 insnContext = EVEX_KB(IC_EVEX_W);
257 else {
258 errs() << "Instruction does not use a prefix: " << Name << "\n";
259 llvm_unreachable("Invalid prefix");
262 // No L, no W
263 else if (OpPrefix == X86Local::PD)
264 insnContext = EVEX_KB(IC_EVEX_OPSIZE);
265 else if (OpPrefix == X86Local::XD)
266 insnContext = EVEX_KB(IC_EVEX_XD);
267 else if (OpPrefix == X86Local::XS)
268 insnContext = EVEX_KB(IC_EVEX_XS);
269 else if (OpPrefix == X86Local::PS)
270 insnContext = EVEX_KB(IC_EVEX);
271 else {
272 errs() << "Instruction does not use a prefix: " << Name << "\n";
273 llvm_unreachable("Invalid prefix");
275 /// eof EVEX
276 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
277 if (HasVEX_L && HasREX_W) {
278 if (OpPrefix == X86Local::PD)
279 insnContext = IC_VEX_L_W_OPSIZE;
280 else if (OpPrefix == X86Local::XS)
281 insnContext = IC_VEX_L_W_XS;
282 else if (OpPrefix == X86Local::XD)
283 insnContext = IC_VEX_L_W_XD;
284 else if (OpPrefix == X86Local::PS)
285 insnContext = IC_VEX_L_W;
286 else {
287 errs() << "Instruction does not use a prefix: " << Name << "\n";
288 llvm_unreachable("Invalid prefix");
290 } else if (OpPrefix == X86Local::PD && HasVEX_L)
291 insnContext = IC_VEX_L_OPSIZE;
292 else if (OpPrefix == X86Local::PD && HasREX_W)
293 insnContext = IC_VEX_W_OPSIZE;
294 else if (OpPrefix == X86Local::PD)
295 insnContext = IC_VEX_OPSIZE;
296 else if (HasVEX_L && OpPrefix == X86Local::XS)
297 insnContext = IC_VEX_L_XS;
298 else if (HasVEX_L && OpPrefix == X86Local::XD)
299 insnContext = IC_VEX_L_XD;
300 else if (HasREX_W && OpPrefix == X86Local::XS)
301 insnContext = IC_VEX_W_XS;
302 else if (HasREX_W && OpPrefix == X86Local::XD)
303 insnContext = IC_VEX_W_XD;
304 else if (HasREX_W && OpPrefix == X86Local::PS)
305 insnContext = IC_VEX_W;
306 else if (HasVEX_L && OpPrefix == X86Local::PS)
307 insnContext = IC_VEX_L;
308 else if (OpPrefix == X86Local::XD)
309 insnContext = IC_VEX_XD;
310 else if (OpPrefix == X86Local::XS)
311 insnContext = IC_VEX_XS;
312 else if (OpPrefix == X86Local::PS)
313 insnContext = IC_VEX;
314 else {
315 errs() << "Instruction does not use a prefix: " << Name << "\n";
316 llvm_unreachable("Invalid prefix");
318 } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) {
319 if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
320 insnContext = IC_64BIT_REXW_OPSIZE;
321 else if (HasREX_W && AdSize == X86Local::AdSize32)
322 insnContext = IC_64BIT_REXW_ADSIZE;
323 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
324 insnContext = IC_64BIT_XD_OPSIZE;
325 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
326 insnContext = IC_64BIT_XS_OPSIZE;
327 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
328 insnContext = IC_64BIT_OPSIZE_ADSIZE;
329 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
330 insnContext = IC_64BIT_OPSIZE_ADSIZE;
331 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
332 insnContext = IC_64BIT_OPSIZE;
333 else if (AdSize == X86Local::AdSize32)
334 insnContext = IC_64BIT_ADSIZE;
335 else if (HasREX_W && OpPrefix == X86Local::XS)
336 insnContext = IC_64BIT_REXW_XS;
337 else if (HasREX_W && OpPrefix == X86Local::XD)
338 insnContext = IC_64BIT_REXW_XD;
339 else if (OpPrefix == X86Local::XD)
340 insnContext = IC_64BIT_XD;
341 else if (OpPrefix == X86Local::XS)
342 insnContext = IC_64BIT_XS;
343 else if (HasREX_W)
344 insnContext = IC_64BIT_REXW;
345 else
346 insnContext = IC_64BIT;
347 } else {
348 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
349 insnContext = IC_XD_OPSIZE;
350 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
351 insnContext = IC_XS_OPSIZE;
352 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
353 insnContext = IC_XD_ADSIZE;
354 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
355 insnContext = IC_XS_ADSIZE;
356 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
357 insnContext = IC_OPSIZE_ADSIZE;
358 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
359 insnContext = IC_OPSIZE_ADSIZE;
360 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
361 insnContext = IC_OPSIZE;
362 else if (AdSize == X86Local::AdSize16)
363 insnContext = IC_ADSIZE;
364 else if (OpPrefix == X86Local::XD)
365 insnContext = IC_XD;
366 else if (OpPrefix == X86Local::XS)
367 insnContext = IC_XS;
368 else
369 insnContext = IC;
372 return insnContext;
375 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
376 // The scaling factor for AVX512 compressed displacement encoding is an
377 // instruction attribute. Adjust the ModRM encoding type to include the
378 // scale for compressed displacement.
379 if ((encoding != ENCODING_RM &&
380 encoding != ENCODING_VSIB &&
381 encoding != ENCODING_SIB) ||CD8_Scale == 0)
382 return;
383 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
384 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
385 (encoding == ENCODING_SIB) ||
386 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
387 "Invalid CDisp scaling");
390 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
391 unsigned &physicalOperandIndex,
392 unsigned numPhysicalOperands,
393 const unsigned *operandMapping,
394 OperandEncoding (*encodingFromString)
395 (const std::string&,
396 uint8_t OpSize)) {
397 if (optional) {
398 if (physicalOperandIndex >= numPhysicalOperands)
399 return;
400 } else {
401 assert(physicalOperandIndex < numPhysicalOperands);
404 while (operandMapping[operandIndex] != operandIndex) {
405 Spec->operands[operandIndex].encoding = ENCODING_DUP;
406 Spec->operands[operandIndex].type =
407 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
408 ++operandIndex;
411 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
413 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
414 // Adjust the encoding type for an operand based on the instruction.
415 adjustOperandEncoding(encoding);
416 Spec->operands[operandIndex].encoding = encoding;
417 Spec->operands[operandIndex].type =
418 typeFromString(std::string(typeName), HasREX_W, OpSize);
420 ++operandIndex;
421 ++physicalOperandIndex;
424 void RecognizableInstr::emitInstructionSpecifier() {
425 Spec->name = Name;
427 Spec->insnContext = insnContext();
429 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
431 unsigned numOperands = OperandList.size();
432 unsigned numPhysicalOperands = 0;
434 // operandMapping maps from operands in OperandList to their originals.
435 // If operandMapping[i] != i, then the entry is a duplicate.
436 unsigned operandMapping[X86_MAX_OPERANDS];
437 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
439 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
440 if (!OperandList[operandIndex].Constraints.empty()) {
441 const CGIOperandList::ConstraintInfo &Constraint =
442 OperandList[operandIndex].Constraints[0];
443 if (Constraint.isTied()) {
444 operandMapping[operandIndex] = operandIndex;
445 operandMapping[Constraint.getTiedOperand()] = operandIndex;
446 } else {
447 ++numPhysicalOperands;
448 operandMapping[operandIndex] = operandIndex;
450 } else {
451 ++numPhysicalOperands;
452 operandMapping[operandIndex] = operandIndex;
456 #define HANDLE_OPERAND(class) \
457 handleOperand(false, \
458 operandIndex, \
459 physicalOperandIndex, \
460 numPhysicalOperands, \
461 operandMapping, \
462 class##EncodingFromString);
464 #define HANDLE_OPTIONAL(class) \
465 handleOperand(true, \
466 operandIndex, \
467 physicalOperandIndex, \
468 numPhysicalOperands, \
469 operandMapping, \
470 class##EncodingFromString);
472 // operandIndex should always be < numOperands
473 unsigned operandIndex = 0;
474 // physicalOperandIndex should always be < numPhysicalOperands
475 unsigned physicalOperandIndex = 0;
477 #ifndef NDEBUG
478 // Given the set of prefix bits, how many additional operands does the
479 // instruction have?
480 unsigned additionalOperands = 0;
481 if (HasVEX_4V)
482 ++additionalOperands;
483 if (HasEVEX_K)
484 ++additionalOperands;
485 #endif
487 switch (Form) {
488 default: llvm_unreachable("Unhandled form");
489 case X86Local::PrefixByte:
490 return;
491 case X86Local::RawFrmSrc:
492 HANDLE_OPERAND(relocation);
493 return;
494 case X86Local::RawFrmDst:
495 HANDLE_OPERAND(relocation);
496 return;
497 case X86Local::RawFrmDstSrc:
498 HANDLE_OPERAND(relocation);
499 HANDLE_OPERAND(relocation);
500 return;
501 case X86Local::RawFrm:
502 // Operand 1 (optional) is an address or immediate.
503 assert(numPhysicalOperands <= 1 &&
504 "Unexpected number of operands for RawFrm");
505 HANDLE_OPTIONAL(relocation)
506 break;
507 case X86Local::RawFrmMemOffs:
508 // Operand 1 is an address.
509 HANDLE_OPERAND(relocation);
510 break;
511 case X86Local::AddRegFrm:
512 // Operand 1 is added to the opcode.
513 // Operand 2 (optional) is an address.
514 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
515 "Unexpected number of operands for AddRegFrm");
516 HANDLE_OPERAND(opcodeModifier)
517 HANDLE_OPTIONAL(relocation)
518 break;
519 case X86Local::AddCCFrm:
520 // Operand 1 (optional) is an address or immediate.
521 assert(numPhysicalOperands == 2 &&
522 "Unexpected number of operands for AddCCFrm");
523 HANDLE_OPERAND(relocation)
524 HANDLE_OPERAND(opcodeModifier)
525 break;
526 case X86Local::MRMDestReg:
527 // Operand 1 is a register operand in the R/M field.
528 // - In AVX512 there may be a mask operand here -
529 // Operand 2 is a register operand in the Reg/Opcode field.
530 // - In AVX, there is a register operand in the VEX.vvvv field here -
531 // Operand 3 (optional) is an immediate.
532 assert(numPhysicalOperands >= 2 + additionalOperands &&
533 numPhysicalOperands <= 3 + additionalOperands &&
534 "Unexpected number of operands for MRMDestReg");
536 HANDLE_OPERAND(rmRegister)
537 if (HasEVEX_K)
538 HANDLE_OPERAND(writemaskRegister)
540 if (HasVEX_4V)
541 // FIXME: In AVX, the register below becomes the one encoded
542 // in ModRMVEX and the one above the one in the VEX.VVVV field
543 HANDLE_OPERAND(vvvvRegister)
545 HANDLE_OPERAND(roRegister)
546 HANDLE_OPTIONAL(immediate)
547 break;
548 case X86Local::MRMDestMem4VOp3CC:
549 // Operand 1 is a register operand in the Reg/Opcode field.
550 // Operand 2 is a register operand in the R/M field.
551 // Operand 3 is VEX.vvvv
552 // Operand 4 is condition code.
553 assert(numPhysicalOperands == 4 &&
554 "Unexpected number of operands for MRMDestMem4VOp3CC");
555 HANDLE_OPERAND(roRegister)
556 HANDLE_OPERAND(memory)
557 HANDLE_OPERAND(vvvvRegister)
558 HANDLE_OPERAND(opcodeModifier)
559 break;
560 case X86Local::MRMDestMem:
561 case X86Local::MRMDestMemFSIB:
562 // Operand 1 is a memory operand (possibly SIB-extended)
563 // Operand 2 is a register operand in the Reg/Opcode field.
564 // - In AVX, there is a register operand in the VEX.vvvv field here -
565 // Operand 3 (optional) is an immediate.
566 assert(numPhysicalOperands >= 2 + additionalOperands &&
567 numPhysicalOperands <= 3 + additionalOperands &&
568 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
570 HANDLE_OPERAND(memory)
572 if (HasEVEX_K)
573 HANDLE_OPERAND(writemaskRegister)
575 if (HasVEX_4V)
576 // FIXME: In AVX, the register below becomes the one encoded
577 // in ModRMVEX and the one above the one in the VEX.VVVV field
578 HANDLE_OPERAND(vvvvRegister)
580 HANDLE_OPERAND(roRegister)
581 HANDLE_OPTIONAL(immediate)
582 break;
583 case X86Local::MRMSrcReg:
584 // Operand 1 is a register operand in the Reg/Opcode field.
585 // Operand 2 is a register operand in the R/M field.
586 // - In AVX, there is a register operand in the VEX.vvvv field here -
587 // Operand 3 (optional) is an immediate.
588 // Operand 4 (optional) is an immediate.
590 assert(numPhysicalOperands >= 2 + additionalOperands &&
591 numPhysicalOperands <= 4 + additionalOperands &&
592 "Unexpected number of operands for MRMSrcRegFrm");
594 HANDLE_OPERAND(roRegister)
596 if (HasEVEX_K)
597 HANDLE_OPERAND(writemaskRegister)
599 if (HasVEX_4V)
600 // FIXME: In AVX, the register below becomes the one encoded
601 // in ModRMVEX and the one above the one in the VEX.VVVV field
602 HANDLE_OPERAND(vvvvRegister)
604 HANDLE_OPERAND(rmRegister)
605 HANDLE_OPTIONAL(immediate)
606 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
607 break;
608 case X86Local::MRMSrcReg4VOp3:
609 assert(numPhysicalOperands == 3 &&
610 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
611 HANDLE_OPERAND(roRegister)
612 HANDLE_OPERAND(rmRegister)
613 HANDLE_OPERAND(vvvvRegister)
614 break;
615 case X86Local::MRMSrcRegOp4:
616 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
617 "Unexpected number of operands for MRMSrcRegOp4Frm");
618 HANDLE_OPERAND(roRegister)
619 HANDLE_OPERAND(vvvvRegister)
620 HANDLE_OPERAND(immediate) // Register in imm[7:4]
621 HANDLE_OPERAND(rmRegister)
622 HANDLE_OPTIONAL(immediate)
623 break;
624 case X86Local::MRMSrcRegCC:
625 assert(numPhysicalOperands == 3 &&
626 "Unexpected number of operands for MRMSrcRegCC");
627 HANDLE_OPERAND(roRegister)
628 HANDLE_OPERAND(rmRegister)
629 HANDLE_OPERAND(opcodeModifier)
630 break;
631 case X86Local::MRMSrcMem:
632 case X86Local::MRMSrcMemFSIB:
633 // Operand 1 is a register operand in the Reg/Opcode field.
634 // Operand 2 is a memory operand (possibly SIB-extended)
635 // - In AVX, there is a register operand in the VEX.vvvv field here -
636 // Operand 3 (optional) is an immediate.
638 assert(numPhysicalOperands >= 2 + additionalOperands &&
639 numPhysicalOperands <= 4 + additionalOperands &&
640 "Unexpected number of operands for MRMSrcMemFrm");
642 HANDLE_OPERAND(roRegister)
644 if (HasEVEX_K)
645 HANDLE_OPERAND(writemaskRegister)
647 if (HasVEX_4V)
648 // FIXME: In AVX, the register below becomes the one encoded
649 // in ModRMVEX and the one above the one in the VEX.VVVV field
650 HANDLE_OPERAND(vvvvRegister)
652 HANDLE_OPERAND(memory)
653 HANDLE_OPTIONAL(immediate)
654 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
655 break;
656 case X86Local::MRMSrcMem4VOp3:
657 assert(numPhysicalOperands == 3 &&
658 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
659 HANDLE_OPERAND(roRegister)
660 HANDLE_OPERAND(memory)
661 HANDLE_OPERAND(vvvvRegister)
662 break;
663 case X86Local::MRMSrcMemOp4:
664 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
665 "Unexpected number of operands for MRMSrcMemOp4Frm");
666 HANDLE_OPERAND(roRegister)
667 HANDLE_OPERAND(vvvvRegister)
668 HANDLE_OPERAND(immediate) // Register in imm[7:4]
669 HANDLE_OPERAND(memory)
670 HANDLE_OPTIONAL(immediate)
671 break;
672 case X86Local::MRMSrcMemCC:
673 assert(numPhysicalOperands == 3 &&
674 "Unexpected number of operands for MRMSrcMemCC");
675 HANDLE_OPERAND(roRegister)
676 HANDLE_OPERAND(memory)
677 HANDLE_OPERAND(opcodeModifier)
678 break;
679 case X86Local::MRMXrCC:
680 assert(numPhysicalOperands == 2 &&
681 "Unexpected number of operands for MRMXrCC");
682 HANDLE_OPERAND(rmRegister)
683 HANDLE_OPERAND(opcodeModifier)
684 break;
685 case X86Local::MRMr0:
686 // Operand 1 is a register operand in the R/M field.
687 HANDLE_OPERAND(roRegister)
688 break;
689 case X86Local::MRMXr:
690 case X86Local::MRM0r:
691 case X86Local::MRM1r:
692 case X86Local::MRM2r:
693 case X86Local::MRM3r:
694 case X86Local::MRM4r:
695 case X86Local::MRM5r:
696 case X86Local::MRM6r:
697 case X86Local::MRM7r:
698 // Operand 1 is a register operand in the R/M field.
699 // Operand 2 (optional) is an immediate or relocation.
700 // Operand 3 (optional) is an immediate.
701 assert(numPhysicalOperands >= 0 + additionalOperands &&
702 numPhysicalOperands <= 3 + additionalOperands &&
703 "Unexpected number of operands for MRMnr");
705 if (HasVEX_4V)
706 HANDLE_OPERAND(vvvvRegister)
708 if (HasEVEX_K)
709 HANDLE_OPERAND(writemaskRegister)
710 HANDLE_OPTIONAL(rmRegister)
711 HANDLE_OPTIONAL(relocation)
712 HANDLE_OPTIONAL(immediate)
713 break;
714 case X86Local::MRMXmCC:
715 assert(numPhysicalOperands == 2 &&
716 "Unexpected number of operands for MRMXm");
717 HANDLE_OPERAND(memory)
718 HANDLE_OPERAND(opcodeModifier)
719 break;
720 case X86Local::MRMXm:
721 case X86Local::MRM0m:
722 case X86Local::MRM1m:
723 case X86Local::MRM2m:
724 case X86Local::MRM3m:
725 case X86Local::MRM4m:
726 case X86Local::MRM5m:
727 case X86Local::MRM6m:
728 case X86Local::MRM7m:
729 // Operand 1 is a memory operand (possibly SIB-extended)
730 // Operand 2 (optional) is an immediate or relocation.
731 assert(numPhysicalOperands >= 1 + additionalOperands &&
732 numPhysicalOperands <= 2 + additionalOperands &&
733 "Unexpected number of operands for MRMnm");
735 if (HasVEX_4V)
736 HANDLE_OPERAND(vvvvRegister)
737 if (HasEVEX_K)
738 HANDLE_OPERAND(writemaskRegister)
739 HANDLE_OPERAND(memory)
740 HANDLE_OPTIONAL(relocation)
741 break;
742 case X86Local::RawFrmImm8:
743 // operand 1 is a 16-bit immediate
744 // operand 2 is an 8-bit immediate
745 assert(numPhysicalOperands == 2 &&
746 "Unexpected number of operands for X86Local::RawFrmImm8");
747 HANDLE_OPERAND(immediate)
748 HANDLE_OPERAND(immediate)
749 break;
750 case X86Local::RawFrmImm16:
751 // operand 1 is a 16-bit immediate
752 // operand 2 is a 16-bit immediate
753 HANDLE_OPERAND(immediate)
754 HANDLE_OPERAND(immediate)
755 break;
756 case X86Local::MRM0X:
757 case X86Local::MRM1X:
758 case X86Local::MRM2X:
759 case X86Local::MRM3X:
760 case X86Local::MRM4X:
761 case X86Local::MRM5X:
762 case X86Local::MRM6X:
763 case X86Local::MRM7X:
764 #define MAP(from, to) case X86Local::MRM_##from:
765 X86_INSTR_MRM_MAPPING
766 #undef MAP
767 HANDLE_OPTIONAL(relocation)
768 break;
771 #undef HANDLE_OPERAND
772 #undef HANDLE_OPTIONAL
775 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
776 // Special cases where the LLVM tables are not complete
778 #define MAP(from, to) \
779 case X86Local::MRM_##from:
781 std::optional<OpcodeType> opcodeType;
782 switch (OpMap) {
783 default: llvm_unreachable("Invalid map!");
784 case X86Local::OB: opcodeType = ONEBYTE; break;
785 case X86Local::TB: opcodeType = TWOBYTE; break;
786 case X86Local::T8: opcodeType = THREEBYTE_38; break;
787 case X86Local::TA: opcodeType = THREEBYTE_3A; break;
788 case X86Local::XOP8: opcodeType = XOP8_MAP; break;
789 case X86Local::XOP9: opcodeType = XOP9_MAP; break;
790 case X86Local::XOPA: opcodeType = XOPA_MAP; break;
791 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
792 case X86Local::T_MAP5: opcodeType = MAP5; break;
793 case X86Local::T_MAP6: opcodeType = MAP6; break;
794 case X86Local::T_MAP7: opcodeType = MAP7; break;
797 std::unique_ptr<ModRMFilter> filter;
798 switch (Form) {
799 default: llvm_unreachable("Invalid form!");
800 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
801 case X86Local::RawFrm:
802 case X86Local::AddRegFrm:
803 case X86Local::RawFrmMemOffs:
804 case X86Local::RawFrmSrc:
805 case X86Local::RawFrmDst:
806 case X86Local::RawFrmDstSrc:
807 case X86Local::RawFrmImm8:
808 case X86Local::RawFrmImm16:
809 case X86Local::AddCCFrm:
810 case X86Local::PrefixByte:
811 filter = std::make_unique<DumbFilter>();
812 break;
813 case X86Local::MRMDestReg:
814 case X86Local::MRMSrcReg:
815 case X86Local::MRMSrcReg4VOp3:
816 case X86Local::MRMSrcRegOp4:
817 case X86Local::MRMSrcRegCC:
818 case X86Local::MRMXrCC:
819 case X86Local::MRMXr:
820 filter = std::make_unique<ModFilter>(true);
821 break;
822 case X86Local::MRMDestMem:
823 case X86Local::MRMDestMem4VOp3CC:
824 case X86Local::MRMDestMemFSIB:
825 case X86Local::MRMSrcMem:
826 case X86Local::MRMSrcMemFSIB:
827 case X86Local::MRMSrcMem4VOp3:
828 case X86Local::MRMSrcMemOp4:
829 case X86Local::MRMSrcMemCC:
830 case X86Local::MRMXmCC:
831 case X86Local::MRMXm:
832 filter = std::make_unique<ModFilter>(false);
833 break;
834 case X86Local::MRM0r: case X86Local::MRM1r:
835 case X86Local::MRM2r: case X86Local::MRM3r:
836 case X86Local::MRM4r: case X86Local::MRM5r:
837 case X86Local::MRM6r: case X86Local::MRM7r:
838 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
839 break;
840 case X86Local::MRM0X: case X86Local::MRM1X:
841 case X86Local::MRM2X: case X86Local::MRM3X:
842 case X86Local::MRM4X: case X86Local::MRM5X:
843 case X86Local::MRM6X: case X86Local::MRM7X:
844 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
845 break;
846 case X86Local::MRMr0:
847 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
848 break;
849 case X86Local::MRM0m: case X86Local::MRM1m:
850 case X86Local::MRM2m: case X86Local::MRM3m:
851 case X86Local::MRM4m: case X86Local::MRM5m:
852 case X86Local::MRM6m: case X86Local::MRM7m:
853 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
854 break;
855 X86_INSTR_MRM_MAPPING
856 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
857 break;
858 } // switch (Form)
860 uint8_t opcodeToSet = Opcode;
862 unsigned AddressSize = 0;
863 switch (AdSize) {
864 case X86Local::AdSize16: AddressSize = 16; break;
865 case X86Local::AdSize32: AddressSize = 32; break;
866 case X86Local::AdSize64: AddressSize = 64; break;
869 assert(opcodeType && "Opcode type not set");
870 assert(filter && "Filter not set");
872 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
873 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
874 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm ||
875 Form == X86Local::MRMDestMem4VOp3CC) {
876 uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16;
877 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
879 uint8_t currentOpcode;
881 for (currentOpcode = opcodeToSet;
882 currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode)
883 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
884 UID, Is32Bit, OpPrefix == 0,
885 IgnoresVEX_L || EncodeRC,
886 IgnoresW, AddressSize);
887 } else {
888 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
889 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
890 IgnoresW, AddressSize);
893 #undef MAP
896 #define TYPE(str, type) if (s == str) return type;
897 OperandType RecognizableInstr::typeFromString(const std::string &s,
898 bool hasREX_W,
899 uint8_t OpSize) {
900 if(hasREX_W) {
901 // For instructions with a REX_W prefix, a declared 32-bit register encoding
902 // is special.
903 TYPE("GR32", TYPE_R32)
905 if(OpSize == X86Local::OpSize16) {
906 // For OpSize16 instructions, a declared 16-bit register or
907 // immediate encoding is special.
908 TYPE("GR16", TYPE_Rv)
909 } else if(OpSize == X86Local::OpSize32) {
910 // For OpSize32 instructions, a declared 32-bit register or
911 // immediate encoding is special.
912 TYPE("GR32", TYPE_Rv)
914 TYPE("i16mem", TYPE_M)
915 TYPE("i16imm", TYPE_IMM)
916 TYPE("i16i8imm", TYPE_IMM)
917 TYPE("GR16", TYPE_R16)
918 TYPE("GR16orGR32orGR64", TYPE_R16)
919 TYPE("i32mem", TYPE_M)
920 TYPE("i32imm", TYPE_IMM)
921 TYPE("i32i8imm", TYPE_IMM)
922 TYPE("GR32", TYPE_R32)
923 TYPE("GR32orGR64", TYPE_R32)
924 TYPE("i64mem", TYPE_M)
925 TYPE("i64i32imm", TYPE_IMM)
926 TYPE("i64i8imm", TYPE_IMM)
927 TYPE("GR64", TYPE_R64)
928 TYPE("i8mem", TYPE_M)
929 TYPE("i8imm", TYPE_IMM)
930 TYPE("u4imm", TYPE_UIMM8)
931 TYPE("u8imm", TYPE_UIMM8)
932 TYPE("i16u8imm", TYPE_UIMM8)
933 TYPE("i32u8imm", TYPE_UIMM8)
934 TYPE("i64u8imm", TYPE_UIMM8)
935 TYPE("GR8", TYPE_R8)
936 TYPE("VR128", TYPE_XMM)
937 TYPE("VR128X", TYPE_XMM)
938 TYPE("f128mem", TYPE_M)
939 TYPE("f256mem", TYPE_M)
940 TYPE("f512mem", TYPE_M)
941 TYPE("FR128", TYPE_XMM)
942 TYPE("FR64", TYPE_XMM)
943 TYPE("FR64X", TYPE_XMM)
944 TYPE("f64mem", TYPE_M)
945 TYPE("sdmem", TYPE_M)
946 TYPE("FR16X", TYPE_XMM)
947 TYPE("FR32", TYPE_XMM)
948 TYPE("FR32X", TYPE_XMM)
949 TYPE("f32mem", TYPE_M)
950 TYPE("f16mem", TYPE_M)
951 TYPE("ssmem", TYPE_M)
952 TYPE("shmem", TYPE_M)
953 TYPE("RST", TYPE_ST)
954 TYPE("RSTi", TYPE_ST)
955 TYPE("i128mem", TYPE_M)
956 TYPE("i256mem", TYPE_M)
957 TYPE("i512mem", TYPE_M)
958 TYPE("i512mem_GR16", TYPE_M)
959 TYPE("i512mem_GR32", TYPE_M)
960 TYPE("i512mem_GR64", TYPE_M)
961 TYPE("i64i32imm_brtarget", TYPE_REL)
962 TYPE("i16imm_brtarget", TYPE_REL)
963 TYPE("i32imm_brtarget", TYPE_REL)
964 TYPE("ccode", TYPE_IMM)
965 TYPE("AVX512RC", TYPE_IMM)
966 TYPE("brtarget32", TYPE_REL)
967 TYPE("brtarget16", TYPE_REL)
968 TYPE("brtarget8", TYPE_REL)
969 TYPE("f80mem", TYPE_M)
970 TYPE("lea64_32mem", TYPE_M)
971 TYPE("lea64mem", TYPE_M)
972 TYPE("VR64", TYPE_MM64)
973 TYPE("i64imm", TYPE_IMM)
974 TYPE("anymem", TYPE_M)
975 TYPE("opaquemem", TYPE_M)
976 TYPE("sibmem", TYPE_MSIB)
977 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
978 TYPE("DEBUG_REG", TYPE_DEBUGREG)
979 TYPE("CONTROL_REG", TYPE_CONTROLREG)
980 TYPE("srcidx8", TYPE_SRCIDX)
981 TYPE("srcidx16", TYPE_SRCIDX)
982 TYPE("srcidx32", TYPE_SRCIDX)
983 TYPE("srcidx64", TYPE_SRCIDX)
984 TYPE("dstidx8", TYPE_DSTIDX)
985 TYPE("dstidx16", TYPE_DSTIDX)
986 TYPE("dstidx32", TYPE_DSTIDX)
987 TYPE("dstidx64", TYPE_DSTIDX)
988 TYPE("offset16_8", TYPE_MOFFS)
989 TYPE("offset16_16", TYPE_MOFFS)
990 TYPE("offset16_32", TYPE_MOFFS)
991 TYPE("offset32_8", TYPE_MOFFS)
992 TYPE("offset32_16", TYPE_MOFFS)
993 TYPE("offset32_32", TYPE_MOFFS)
994 TYPE("offset32_64", TYPE_MOFFS)
995 TYPE("offset64_8", TYPE_MOFFS)
996 TYPE("offset64_16", TYPE_MOFFS)
997 TYPE("offset64_32", TYPE_MOFFS)
998 TYPE("offset64_64", TYPE_MOFFS)
999 TYPE("VR256", TYPE_YMM)
1000 TYPE("VR256X", TYPE_YMM)
1001 TYPE("VR512", TYPE_ZMM)
1002 TYPE("VK1", TYPE_VK)
1003 TYPE("VK1WM", TYPE_VK)
1004 TYPE("VK2", TYPE_VK)
1005 TYPE("VK2WM", TYPE_VK)
1006 TYPE("VK4", TYPE_VK)
1007 TYPE("VK4WM", TYPE_VK)
1008 TYPE("VK8", TYPE_VK)
1009 TYPE("VK8WM", TYPE_VK)
1010 TYPE("VK16", TYPE_VK)
1011 TYPE("VK16WM", TYPE_VK)
1012 TYPE("VK32", TYPE_VK)
1013 TYPE("VK32WM", TYPE_VK)
1014 TYPE("VK64", TYPE_VK)
1015 TYPE("VK64WM", TYPE_VK)
1016 TYPE("VK1Pair", TYPE_VK_PAIR)
1017 TYPE("VK2Pair", TYPE_VK_PAIR)
1018 TYPE("VK4Pair", TYPE_VK_PAIR)
1019 TYPE("VK8Pair", TYPE_VK_PAIR)
1020 TYPE("VK16Pair", TYPE_VK_PAIR)
1021 TYPE("vx64mem", TYPE_MVSIBX)
1022 TYPE("vx128mem", TYPE_MVSIBX)
1023 TYPE("vx256mem", TYPE_MVSIBX)
1024 TYPE("vy128mem", TYPE_MVSIBY)
1025 TYPE("vy256mem", TYPE_MVSIBY)
1026 TYPE("vx64xmem", TYPE_MVSIBX)
1027 TYPE("vx128xmem", TYPE_MVSIBX)
1028 TYPE("vx256xmem", TYPE_MVSIBX)
1029 TYPE("vy128xmem", TYPE_MVSIBY)
1030 TYPE("vy256xmem", TYPE_MVSIBY)
1031 TYPE("vy512xmem", TYPE_MVSIBY)
1032 TYPE("vz256mem", TYPE_MVSIBZ)
1033 TYPE("vz512mem", TYPE_MVSIBZ)
1034 TYPE("BNDR", TYPE_BNDR)
1035 TYPE("TILE", TYPE_TMM)
1036 errs() << "Unhandled type string " << s << "\n";
1037 llvm_unreachable("Unhandled type string");
1039 #undef TYPE
1041 #define ENCODING(str, encoding) if (s == str) return encoding;
1042 OperandEncoding
1043 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1044 uint8_t OpSize) {
1045 if(OpSize != X86Local::OpSize16) {
1046 // For instructions without an OpSize prefix, a declared 16-bit register or
1047 // immediate encoding is special.
1048 ENCODING("i16imm", ENCODING_IW)
1050 ENCODING("i32i8imm", ENCODING_IB)
1051 ENCODING("AVX512RC", ENCODING_IRC)
1052 ENCODING("i16imm", ENCODING_Iv)
1053 ENCODING("i16i8imm", ENCODING_IB)
1054 ENCODING("i32imm", ENCODING_Iv)
1055 ENCODING("i64i32imm", ENCODING_ID)
1056 ENCODING("i64i8imm", ENCODING_IB)
1057 ENCODING("i8imm", ENCODING_IB)
1058 ENCODING("u4imm", ENCODING_IB)
1059 ENCODING("u8imm", ENCODING_IB)
1060 ENCODING("i16u8imm", ENCODING_IB)
1061 ENCODING("i32u8imm", ENCODING_IB)
1062 ENCODING("i64u8imm", ENCODING_IB)
1063 // This is not a typo. Instructions like BLENDVPD put
1064 // register IDs in 8-bit immediates nowadays.
1065 ENCODING("FR32", ENCODING_IB)
1066 ENCODING("FR64", ENCODING_IB)
1067 ENCODING("FR128", ENCODING_IB)
1068 ENCODING("VR128", ENCODING_IB)
1069 ENCODING("VR256", ENCODING_IB)
1070 ENCODING("FR16X", ENCODING_IB)
1071 ENCODING("FR32X", ENCODING_IB)
1072 ENCODING("FR64X", ENCODING_IB)
1073 ENCODING("VR128X", ENCODING_IB)
1074 ENCODING("VR256X", ENCODING_IB)
1075 ENCODING("VR512", ENCODING_IB)
1076 ENCODING("TILE", ENCODING_IB)
1077 errs() << "Unhandled immediate encoding " << s << "\n";
1078 llvm_unreachable("Unhandled immediate encoding");
1081 OperandEncoding
1082 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1083 uint8_t OpSize) {
1084 ENCODING("RST", ENCODING_FP)
1085 ENCODING("RSTi", ENCODING_FP)
1086 ENCODING("GR16", ENCODING_RM)
1087 ENCODING("GR16orGR32orGR64",ENCODING_RM)
1088 ENCODING("GR32", ENCODING_RM)
1089 ENCODING("GR32orGR64", ENCODING_RM)
1090 ENCODING("GR64", ENCODING_RM)
1091 ENCODING("GR8", ENCODING_RM)
1092 ENCODING("VR128", ENCODING_RM)
1093 ENCODING("VR128X", ENCODING_RM)
1094 ENCODING("FR128", ENCODING_RM)
1095 ENCODING("FR64", ENCODING_RM)
1096 ENCODING("FR32", ENCODING_RM)
1097 ENCODING("FR64X", ENCODING_RM)
1098 ENCODING("FR32X", ENCODING_RM)
1099 ENCODING("FR16X", ENCODING_RM)
1100 ENCODING("VR64", ENCODING_RM)
1101 ENCODING("VR256", ENCODING_RM)
1102 ENCODING("VR256X", ENCODING_RM)
1103 ENCODING("VR512", ENCODING_RM)
1104 ENCODING("VK1", ENCODING_RM)
1105 ENCODING("VK2", ENCODING_RM)
1106 ENCODING("VK4", ENCODING_RM)
1107 ENCODING("VK8", ENCODING_RM)
1108 ENCODING("VK16", ENCODING_RM)
1109 ENCODING("VK32", ENCODING_RM)
1110 ENCODING("VK64", ENCODING_RM)
1111 ENCODING("BNDR", ENCODING_RM)
1112 ENCODING("TILE", ENCODING_RM)
1113 errs() << "Unhandled R/M register encoding " << s << "\n";
1114 llvm_unreachable("Unhandled R/M register encoding");
1117 OperandEncoding
1118 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1119 uint8_t OpSize) {
1120 ENCODING("GR16", ENCODING_REG)
1121 ENCODING("GR16orGR32orGR64",ENCODING_REG)
1122 ENCODING("GR32", ENCODING_REG)
1123 ENCODING("GR32orGR64", ENCODING_REG)
1124 ENCODING("GR64", ENCODING_REG)
1125 ENCODING("GR8", ENCODING_REG)
1126 ENCODING("VR128", ENCODING_REG)
1127 ENCODING("FR128", ENCODING_REG)
1128 ENCODING("FR64", ENCODING_REG)
1129 ENCODING("FR32", ENCODING_REG)
1130 ENCODING("VR64", ENCODING_REG)
1131 ENCODING("SEGMENT_REG", ENCODING_REG)
1132 ENCODING("DEBUG_REG", ENCODING_REG)
1133 ENCODING("CONTROL_REG", ENCODING_REG)
1134 ENCODING("VR256", ENCODING_REG)
1135 ENCODING("VR256X", ENCODING_REG)
1136 ENCODING("VR128X", ENCODING_REG)
1137 ENCODING("FR64X", ENCODING_REG)
1138 ENCODING("FR32X", ENCODING_REG)
1139 ENCODING("FR16X", ENCODING_REG)
1140 ENCODING("VR512", ENCODING_REG)
1141 ENCODING("VK1", ENCODING_REG)
1142 ENCODING("VK2", ENCODING_REG)
1143 ENCODING("VK4", ENCODING_REG)
1144 ENCODING("VK8", ENCODING_REG)
1145 ENCODING("VK16", ENCODING_REG)
1146 ENCODING("VK32", ENCODING_REG)
1147 ENCODING("VK64", ENCODING_REG)
1148 ENCODING("VK1Pair", ENCODING_REG)
1149 ENCODING("VK2Pair", ENCODING_REG)
1150 ENCODING("VK4Pair", ENCODING_REG)
1151 ENCODING("VK8Pair", ENCODING_REG)
1152 ENCODING("VK16Pair", ENCODING_REG)
1153 ENCODING("VK1WM", ENCODING_REG)
1154 ENCODING("VK2WM", ENCODING_REG)
1155 ENCODING("VK4WM", ENCODING_REG)
1156 ENCODING("VK8WM", ENCODING_REG)
1157 ENCODING("VK16WM", ENCODING_REG)
1158 ENCODING("VK32WM", ENCODING_REG)
1159 ENCODING("VK64WM", ENCODING_REG)
1160 ENCODING("BNDR", ENCODING_REG)
1161 ENCODING("TILE", ENCODING_REG)
1162 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1163 llvm_unreachable("Unhandled reg/opcode register encoding");
1166 OperandEncoding
1167 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1168 uint8_t OpSize) {
1169 ENCODING("GR32", ENCODING_VVVV)
1170 ENCODING("GR64", ENCODING_VVVV)
1171 ENCODING("FR32", ENCODING_VVVV)
1172 ENCODING("FR128", ENCODING_VVVV)
1173 ENCODING("FR64", ENCODING_VVVV)
1174 ENCODING("VR128", ENCODING_VVVV)
1175 ENCODING("VR256", ENCODING_VVVV)
1176 ENCODING("FR16X", ENCODING_VVVV)
1177 ENCODING("FR32X", ENCODING_VVVV)
1178 ENCODING("FR64X", ENCODING_VVVV)
1179 ENCODING("VR128X", ENCODING_VVVV)
1180 ENCODING("VR256X", ENCODING_VVVV)
1181 ENCODING("VR512", ENCODING_VVVV)
1182 ENCODING("VK1", ENCODING_VVVV)
1183 ENCODING("VK2", ENCODING_VVVV)
1184 ENCODING("VK4", ENCODING_VVVV)
1185 ENCODING("VK8", ENCODING_VVVV)
1186 ENCODING("VK16", ENCODING_VVVV)
1187 ENCODING("VK32", ENCODING_VVVV)
1188 ENCODING("VK64", ENCODING_VVVV)
1189 ENCODING("TILE", ENCODING_VVVV)
1190 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1191 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1194 OperandEncoding
1195 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1196 uint8_t OpSize) {
1197 ENCODING("VK1WM", ENCODING_WRITEMASK)
1198 ENCODING("VK2WM", ENCODING_WRITEMASK)
1199 ENCODING("VK4WM", ENCODING_WRITEMASK)
1200 ENCODING("VK8WM", ENCODING_WRITEMASK)
1201 ENCODING("VK16WM", ENCODING_WRITEMASK)
1202 ENCODING("VK32WM", ENCODING_WRITEMASK)
1203 ENCODING("VK64WM", ENCODING_WRITEMASK)
1204 errs() << "Unhandled mask register encoding " << s << "\n";
1205 llvm_unreachable("Unhandled mask register encoding");
1208 OperandEncoding
1209 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1210 uint8_t OpSize) {
1211 ENCODING("i16mem", ENCODING_RM)
1212 ENCODING("i32mem", ENCODING_RM)
1213 ENCODING("i64mem", ENCODING_RM)
1214 ENCODING("i8mem", ENCODING_RM)
1215 ENCODING("shmem", ENCODING_RM)
1216 ENCODING("ssmem", ENCODING_RM)
1217 ENCODING("sdmem", ENCODING_RM)
1218 ENCODING("f128mem", ENCODING_RM)
1219 ENCODING("f256mem", ENCODING_RM)
1220 ENCODING("f512mem", ENCODING_RM)
1221 ENCODING("f64mem", ENCODING_RM)
1222 ENCODING("f32mem", ENCODING_RM)
1223 ENCODING("f16mem", ENCODING_RM)
1224 ENCODING("i128mem", ENCODING_RM)
1225 ENCODING("i256mem", ENCODING_RM)
1226 ENCODING("i512mem", ENCODING_RM)
1227 ENCODING("i512mem_GR16", ENCODING_RM)
1228 ENCODING("i512mem_GR32", ENCODING_RM)
1229 ENCODING("i512mem_GR64", ENCODING_RM)
1230 ENCODING("f80mem", ENCODING_RM)
1231 ENCODING("lea64_32mem", ENCODING_RM)
1232 ENCODING("lea64mem", ENCODING_RM)
1233 ENCODING("anymem", ENCODING_RM)
1234 ENCODING("opaquemem", ENCODING_RM)
1235 ENCODING("sibmem", ENCODING_SIB)
1236 ENCODING("vx64mem", ENCODING_VSIB)
1237 ENCODING("vx128mem", ENCODING_VSIB)
1238 ENCODING("vx256mem", ENCODING_VSIB)
1239 ENCODING("vy128mem", ENCODING_VSIB)
1240 ENCODING("vy256mem", ENCODING_VSIB)
1241 ENCODING("vx64xmem", ENCODING_VSIB)
1242 ENCODING("vx128xmem", ENCODING_VSIB)
1243 ENCODING("vx256xmem", ENCODING_VSIB)
1244 ENCODING("vy128xmem", ENCODING_VSIB)
1245 ENCODING("vy256xmem", ENCODING_VSIB)
1246 ENCODING("vy512xmem", ENCODING_VSIB)
1247 ENCODING("vz256mem", ENCODING_VSIB)
1248 ENCODING("vz512mem", ENCODING_VSIB)
1249 errs() << "Unhandled memory encoding " << s << "\n";
1250 llvm_unreachable("Unhandled memory encoding");
1253 OperandEncoding
1254 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1255 uint8_t OpSize) {
1256 if(OpSize != X86Local::OpSize16) {
1257 // For instructions without an OpSize prefix, a declared 16-bit register or
1258 // immediate encoding is special.
1259 ENCODING("i16imm", ENCODING_IW)
1261 ENCODING("i16imm", ENCODING_Iv)
1262 ENCODING("i16i8imm", ENCODING_IB)
1263 ENCODING("i32imm", ENCODING_Iv)
1264 ENCODING("i32i8imm", ENCODING_IB)
1265 ENCODING("i64i32imm", ENCODING_ID)
1266 ENCODING("i64i8imm", ENCODING_IB)
1267 ENCODING("i8imm", ENCODING_IB)
1268 ENCODING("u8imm", ENCODING_IB)
1269 ENCODING("i16u8imm", ENCODING_IB)
1270 ENCODING("i32u8imm", ENCODING_IB)
1271 ENCODING("i64u8imm", ENCODING_IB)
1272 ENCODING("i64i32imm_brtarget", ENCODING_ID)
1273 ENCODING("i16imm_brtarget", ENCODING_IW)
1274 ENCODING("i32imm_brtarget", ENCODING_ID)
1275 ENCODING("brtarget32", ENCODING_ID)
1276 ENCODING("brtarget16", ENCODING_IW)
1277 ENCODING("brtarget8", ENCODING_IB)
1278 ENCODING("i64imm", ENCODING_IO)
1279 ENCODING("offset16_8", ENCODING_Ia)
1280 ENCODING("offset16_16", ENCODING_Ia)
1281 ENCODING("offset16_32", ENCODING_Ia)
1282 ENCODING("offset32_8", ENCODING_Ia)
1283 ENCODING("offset32_16", ENCODING_Ia)
1284 ENCODING("offset32_32", ENCODING_Ia)
1285 ENCODING("offset32_64", ENCODING_Ia)
1286 ENCODING("offset64_8", ENCODING_Ia)
1287 ENCODING("offset64_16", ENCODING_Ia)
1288 ENCODING("offset64_32", ENCODING_Ia)
1289 ENCODING("offset64_64", ENCODING_Ia)
1290 ENCODING("srcidx8", ENCODING_SI)
1291 ENCODING("srcidx16", ENCODING_SI)
1292 ENCODING("srcidx32", ENCODING_SI)
1293 ENCODING("srcidx64", ENCODING_SI)
1294 ENCODING("dstidx8", ENCODING_DI)
1295 ENCODING("dstidx16", ENCODING_DI)
1296 ENCODING("dstidx32", ENCODING_DI)
1297 ENCODING("dstidx64", ENCODING_DI)
1298 errs() << "Unhandled relocation encoding " << s << "\n";
1299 llvm_unreachable("Unhandled relocation encoding");
1302 OperandEncoding
1303 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1304 uint8_t OpSize) {
1305 ENCODING("GR32", ENCODING_Rv)
1306 ENCODING("GR64", ENCODING_RO)
1307 ENCODING("GR16", ENCODING_Rv)
1308 ENCODING("GR8", ENCODING_RB)
1309 ENCODING("ccode", ENCODING_CC)
1310 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1311 llvm_unreachable("Unhandled opcode modifier encoding");
1313 #undef ENCODING