Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / openmp / runtime / src / kmp_barrier.cpp
blob281b8e9c2883d04a8d9743ef4d44054dc3e014e3
1 /*
2 * kmp_barrier.cpp
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp_wait_release.h"
14 #include "kmp_barrier.h"
15 #include "kmp_itt.h"
16 #include "kmp_os.h"
17 #include "kmp_stats.h"
18 #include "ompt-specific.h"
19 // for distributed barrier
20 #include "kmp_affinity.h"
22 #if KMP_MIC
23 #include <immintrin.h>
24 #define USE_NGO_STORES 1
25 #endif // KMP_MIC
27 #if KMP_MIC && USE_NGO_STORES
28 // ICV copying
29 #define ngo_load(src) __m512d Vt = _mm512_load_pd((void *)(src))
30 #define ngo_store_icvs(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt)
31 #define ngo_store_go(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt)
32 #define ngo_sync() __asm__ volatile("lock; addl $0,0(%%rsp)" ::: "memory")
33 #else
34 #define ngo_load(src) ((void)0)
35 #define ngo_store_icvs(dst, src) copy_icvs((dst), (src))
36 #define ngo_store_go(dst, src) KMP_MEMCPY((dst), (src), CACHE_LINE)
37 #define ngo_sync() ((void)0)
38 #endif /* KMP_MIC && USE_NGO_STORES */
40 void __kmp_print_structure(void); // Forward declaration
42 // ---------------------------- Barrier Algorithms ----------------------------
43 // Distributed barrier
45 // Compute how many threads to have polling each cache-line.
46 // We want to limit the number of writes to IDEAL_GO_RESOLUTION.
47 void distributedBarrier::computeVarsForN(size_t n) {
48 int nsockets = 1;
49 if (__kmp_topology) {
50 int socket_level = __kmp_topology->get_level(KMP_HW_SOCKET);
51 int core_level = __kmp_topology->get_level(KMP_HW_CORE);
52 int ncores_per_socket =
53 __kmp_topology->calculate_ratio(core_level, socket_level);
54 nsockets = __kmp_topology->get_count(socket_level);
56 if (nsockets <= 0)
57 nsockets = 1;
58 if (ncores_per_socket <= 0)
59 ncores_per_socket = 1;
61 threads_per_go = ncores_per_socket >> 1;
62 if (!fix_threads_per_go) {
63 // Minimize num_gos
64 if (threads_per_go > 4) {
65 if (KMP_OPTIMIZE_FOR_REDUCTIONS) {
66 threads_per_go = threads_per_go >> 1;
68 if (threads_per_go > 4 && nsockets == 1)
69 threads_per_go = threads_per_go >> 1;
72 if (threads_per_go == 0)
73 threads_per_go = 1;
74 fix_threads_per_go = true;
75 num_gos = n / threads_per_go;
76 if (n % threads_per_go)
77 num_gos++;
78 if (nsockets == 1 || num_gos == 1)
79 num_groups = 1;
80 else {
81 num_groups = num_gos / nsockets;
82 if (num_gos % nsockets)
83 num_groups++;
85 if (num_groups <= 0)
86 num_groups = 1;
87 gos_per_group = num_gos / num_groups;
88 if (num_gos % num_groups)
89 gos_per_group++;
90 threads_per_group = threads_per_go * gos_per_group;
91 } else {
92 num_gos = n / threads_per_go;
93 if (n % threads_per_go)
94 num_gos++;
95 if (num_gos == 1)
96 num_groups = 1;
97 else {
98 num_groups = num_gos / 2;
99 if (num_gos % 2)
100 num_groups++;
102 gos_per_group = num_gos / num_groups;
103 if (num_gos % num_groups)
104 gos_per_group++;
105 threads_per_group = threads_per_go * gos_per_group;
109 void distributedBarrier::computeGo(size_t n) {
110 // Minimize num_gos
111 for (num_gos = 1;; num_gos++)
112 if (IDEAL_CONTENTION * num_gos >= n)
113 break;
114 threads_per_go = n / num_gos;
115 if (n % num_gos)
116 threads_per_go++;
117 while (num_gos > MAX_GOS) {
118 threads_per_go++;
119 num_gos = n / threads_per_go;
120 if (n % threads_per_go)
121 num_gos++;
123 computeVarsForN(n);
126 // This function is to resize the barrier arrays when the new number of threads
127 // exceeds max_threads, which is the current size of all the arrays
128 void distributedBarrier::resize(size_t nthr) {
129 KMP_DEBUG_ASSERT(nthr > max_threads);
131 // expand to requested size * 2
132 max_threads = nthr * 2;
134 // allocate arrays to new max threads
135 for (int i = 0; i < MAX_ITERS; ++i) {
136 if (flags[i])
137 flags[i] = (flags_s *)KMP_INTERNAL_REALLOC(flags[i],
138 max_threads * sizeof(flags_s));
139 else
140 flags[i] = (flags_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(flags_s));
143 if (go)
144 go = (go_s *)KMP_INTERNAL_REALLOC(go, max_threads * sizeof(go_s));
145 else
146 go = (go_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(go_s));
148 if (iter)
149 iter = (iter_s *)KMP_INTERNAL_REALLOC(iter, max_threads * sizeof(iter_s));
150 else
151 iter = (iter_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(iter_s));
153 if (sleep)
154 sleep =
155 (sleep_s *)KMP_INTERNAL_REALLOC(sleep, max_threads * sizeof(sleep_s));
156 else
157 sleep = (sleep_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(sleep_s));
160 // This function is to set all the go flags that threads might be waiting
161 // on, and when blocktime is not infinite, it should be followed by a wake-up
162 // call to each thread
163 kmp_uint64 distributedBarrier::go_release() {
164 kmp_uint64 next_go = iter[0].iter + distributedBarrier::MAX_ITERS;
165 for (size_t j = 0; j < num_gos; j++) {
166 go[j].go.store(next_go);
168 return next_go;
171 void distributedBarrier::go_reset() {
172 for (size_t j = 0; j < max_threads; ++j) {
173 for (size_t i = 0; i < distributedBarrier::MAX_ITERS; ++i) {
174 flags[i][j].stillNeed = 1;
176 go[j].go.store(0);
177 iter[j].iter = 0;
181 // This function inits/re-inits the distributed barrier for a particular number
182 // of threads. If a resize of arrays is needed, it calls the resize function.
183 void distributedBarrier::init(size_t nthr) {
184 size_t old_max = max_threads;
185 if (nthr > max_threads) { // need more space in arrays
186 resize(nthr);
189 for (size_t i = 0; i < max_threads; i++) {
190 for (size_t j = 0; j < distributedBarrier::MAX_ITERS; j++) {
191 flags[j][i].stillNeed = 1;
193 go[i].go.store(0);
194 iter[i].iter = 0;
195 if (i >= old_max)
196 sleep[i].sleep = false;
199 // Recalculate num_gos, etc. based on new nthr
200 computeVarsForN(nthr);
202 num_threads = nthr;
204 if (team_icvs == NULL)
205 team_icvs = __kmp_allocate(sizeof(kmp_internal_control_t));
208 // This function is used only when KMP_BLOCKTIME is not infinite.
209 // static
210 void __kmp_dist_barrier_wakeup(enum barrier_type bt, kmp_team_t *team,
211 size_t start, size_t stop, size_t inc,
212 size_t tid) {
213 KMP_DEBUG_ASSERT(__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME);
214 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
215 return;
217 kmp_info_t **other_threads = team->t.t_threads;
218 for (size_t thr = start; thr < stop; thr += inc) {
219 KMP_DEBUG_ASSERT(other_threads[thr]);
220 int gtid = other_threads[thr]->th.th_info.ds.ds_gtid;
221 // Wake up worker regardless of if it appears to be sleeping or not
222 __kmp_atomic_resume_64(gtid, (kmp_atomic_flag_64<> *)NULL);
226 static void __kmp_dist_barrier_gather(
227 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
228 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
229 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_gather);
230 kmp_team_t *team;
231 distributedBarrier *b;
232 kmp_info_t **other_threads;
233 kmp_uint64 my_current_iter, my_next_iter;
234 kmp_uint32 nproc;
235 bool group_leader;
237 team = this_thr->th.th_team;
238 nproc = this_thr->th.th_team_nproc;
239 other_threads = team->t.t_threads;
240 b = team->t.b;
241 my_current_iter = b->iter[tid].iter;
242 my_next_iter = (my_current_iter + 1) % distributedBarrier::MAX_ITERS;
243 group_leader = ((tid % b->threads_per_group) == 0);
245 KA_TRACE(20,
246 ("__kmp_dist_barrier_gather: T#%d(%d:%d) enter; barrier type %d\n",
247 gtid, team->t.t_id, tid, bt));
249 #if USE_ITT_BUILD && USE_ITT_NOTIFY
250 // Barrier imbalance - save arrive time to the thread
251 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) {
252 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time =
253 __itt_get_timestamp();
255 #endif
257 if (group_leader) {
258 // Start from the thread after the group leader
259 size_t group_start = tid + 1;
260 size_t group_end = tid + b->threads_per_group;
261 size_t threads_pending = 0;
263 if (group_end > nproc)
264 group_end = nproc;
265 do { // wait for threads in my group
266 threads_pending = 0;
267 // Check all the flags every time to avoid branch misspredict
268 for (size_t thr = group_start; thr < group_end; thr++) {
269 // Each thread uses a different cache line
270 threads_pending += b->flags[my_current_iter][thr].stillNeed;
272 // Execute tasks here
273 if (__kmp_tasking_mode != tskm_immediate_exec) {
274 kmp_task_team_t *task_team = this_thr->th.th_task_team;
275 if (task_team != NULL) {
276 if (TCR_SYNC_4(task_team->tt.tt_active)) {
277 if (KMP_TASKING_ENABLED(task_team)) {
278 int tasks_completed = FALSE;
279 __kmp_atomic_execute_tasks_64(
280 this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE,
281 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
282 } else
283 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
285 } else {
286 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
287 } // if
289 if (TCR_4(__kmp_global.g.g_done)) {
290 if (__kmp_global.g.g_abort)
291 __kmp_abort_thread();
292 break;
293 } else if (__kmp_tasking_mode != tskm_immediate_exec &&
294 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
295 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
297 } while (threads_pending > 0);
299 if (reduce) { // Perform reduction if needed
300 OMPT_REDUCTION_DECL(this_thr, gtid);
301 OMPT_REDUCTION_BEGIN;
302 // Group leader reduces all threads in group
303 for (size_t thr = group_start; thr < group_end; thr++) {
304 (*reduce)(this_thr->th.th_local.reduce_data,
305 other_threads[thr]->th.th_local.reduce_data);
307 OMPT_REDUCTION_END;
310 // Set flag for next iteration
311 b->flags[my_next_iter][tid].stillNeed = 1;
312 // Each thread uses a different cache line; resets stillNeed to 0 to
313 // indicate it has reached the barrier
314 b->flags[my_current_iter][tid].stillNeed = 0;
316 do { // wait for all group leaders
317 threads_pending = 0;
318 for (size_t thr = 0; thr < nproc; thr += b->threads_per_group) {
319 threads_pending += b->flags[my_current_iter][thr].stillNeed;
321 // Execute tasks here
322 if (__kmp_tasking_mode != tskm_immediate_exec) {
323 kmp_task_team_t *task_team = this_thr->th.th_task_team;
324 if (task_team != NULL) {
325 if (TCR_SYNC_4(task_team->tt.tt_active)) {
326 if (KMP_TASKING_ENABLED(task_team)) {
327 int tasks_completed = FALSE;
328 __kmp_atomic_execute_tasks_64(
329 this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE,
330 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
331 } else
332 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
334 } else {
335 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
336 } // if
338 if (TCR_4(__kmp_global.g.g_done)) {
339 if (__kmp_global.g.g_abort)
340 __kmp_abort_thread();
341 break;
342 } else if (__kmp_tasking_mode != tskm_immediate_exec &&
343 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
344 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
346 } while (threads_pending > 0);
348 if (reduce) { // Perform reduction if needed
349 if (KMP_MASTER_TID(tid)) { // Master reduces over group leaders
350 OMPT_REDUCTION_DECL(this_thr, gtid);
351 OMPT_REDUCTION_BEGIN;
352 for (size_t thr = b->threads_per_group; thr < nproc;
353 thr += b->threads_per_group) {
354 (*reduce)(this_thr->th.th_local.reduce_data,
355 other_threads[thr]->th.th_local.reduce_data);
357 OMPT_REDUCTION_END;
360 } else {
361 // Set flag for next iteration
362 b->flags[my_next_iter][tid].stillNeed = 1;
363 // Each thread uses a different cache line; resets stillNeed to 0 to
364 // indicate it has reached the barrier
365 b->flags[my_current_iter][tid].stillNeed = 0;
368 KMP_MFENCE();
370 KA_TRACE(20,
371 ("__kmp_dist_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n",
372 gtid, team->t.t_id, tid, bt));
375 static void __kmp_dist_barrier_release(
376 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
377 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
378 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_release);
379 kmp_team_t *team;
380 distributedBarrier *b;
381 kmp_bstate_t *thr_bar;
382 kmp_uint64 my_current_iter, next_go;
383 size_t my_go_index;
384 bool group_leader;
386 KA_TRACE(20, ("__kmp_dist_barrier_release: T#%d(%d) enter; barrier type %d\n",
387 gtid, tid, bt));
389 thr_bar = &this_thr->th.th_bar[bt].bb;
391 if (!KMP_MASTER_TID(tid)) {
392 // workers and non-master group leaders need to check their presence in team
393 do {
394 if (this_thr->th.th_used_in_team.load() != 1 &&
395 this_thr->th.th_used_in_team.load() != 3) {
396 // Thread is not in use in a team. Wait on location in tid's thread
397 // struct. The 0 value tells anyone looking that this thread is spinning
398 // or sleeping until this location becomes 3 again; 3 is the transition
399 // state to get to 1 which is waiting on go and being in the team
400 kmp_flag_32<false, false> my_flag(&(this_thr->th.th_used_in_team), 3);
401 if (KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 2,
402 0) ||
403 this_thr->th.th_used_in_team.load() == 0) {
404 my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj));
406 #if USE_ITT_BUILD && USE_ITT_NOTIFY
407 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) {
408 // In fork barrier where we could not get the object reliably
409 itt_sync_obj =
410 __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1);
411 // Cancel wait on previous parallel region...
412 __kmp_itt_task_starting(itt_sync_obj);
414 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
415 return;
417 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
418 if (itt_sync_obj != NULL)
419 // Call prepare as early as possible for "new" barrier
420 __kmp_itt_task_finished(itt_sync_obj);
421 } else
422 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
423 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
424 return;
426 if (this_thr->th.th_used_in_team.load() != 1 &&
427 this_thr->th.th_used_in_team.load() != 3) // spurious wake-up?
428 continue;
429 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
430 return;
432 // At this point, the thread thinks it is in use in a team, or in
433 // transition to be used in a team, but it might have reached this barrier
434 // before it was marked unused by the team. Unused threads are awoken and
435 // shifted to wait on local thread struct elsewhere. It also might reach
436 // this point by being picked up for use by a different team. Either way,
437 // we need to update the tid.
438 tid = __kmp_tid_from_gtid(gtid);
439 team = this_thr->th.th_team;
440 KMP_DEBUG_ASSERT(tid >= 0);
441 KMP_DEBUG_ASSERT(team);
442 b = team->t.b;
443 my_current_iter = b->iter[tid].iter;
444 next_go = my_current_iter + distributedBarrier::MAX_ITERS;
445 my_go_index = tid / b->threads_per_go;
446 if (this_thr->th.th_used_in_team.load() == 3) {
447 KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 3, 1);
449 // Check if go flag is set
450 if (b->go[my_go_index].go.load() != next_go) {
451 // Wait on go flag on team
452 kmp_atomic_flag_64<false, true> my_flag(
453 &(b->go[my_go_index].go), next_go, &(b->sleep[tid].sleep));
454 my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj));
455 KMP_DEBUG_ASSERT(my_current_iter == b->iter[tid].iter ||
456 b->iter[tid].iter == 0);
457 KMP_DEBUG_ASSERT(b->sleep[tid].sleep == false);
460 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
461 return;
462 // At this point, the thread's go location was set. This means the primary
463 // thread is safely in the barrier, and so this thread's data is
464 // up-to-date, but we should check again that this thread is really in
465 // use in the team, as it could have been woken up for the purpose of
466 // changing team size, or reaping threads at shutdown.
467 if (this_thr->th.th_used_in_team.load() == 1)
468 break;
469 } while (1);
471 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
472 return;
474 group_leader = ((tid % b->threads_per_group) == 0);
475 if (group_leader) {
476 // Tell all the threads in my group they can go!
477 for (size_t go_idx = my_go_index + 1;
478 go_idx < my_go_index + b->gos_per_group; go_idx++) {
479 b->go[go_idx].go.store(next_go);
481 // Fence added so that workers can see changes to go. sfence inadequate.
482 KMP_MFENCE();
485 #if KMP_BARRIER_ICV_PUSH
486 if (propagate_icvs) { // copy ICVs to final dest
487 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team,
488 tid, FALSE);
489 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
490 (kmp_internal_control_t *)team->t.b->team_icvs);
491 copy_icvs(&thr_bar->th_fixed_icvs,
492 &team->t.t_implicit_task_taskdata[tid].td_icvs);
494 #endif
495 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && group_leader) {
496 // This thread is now awake and participating in the barrier;
497 // wake up the other threads in the group
498 size_t nproc = this_thr->th.th_team_nproc;
499 size_t group_end = tid + b->threads_per_group;
500 if (nproc < group_end)
501 group_end = nproc;
502 __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid);
504 } else { // Primary thread
505 team = this_thr->th.th_team;
506 b = team->t.b;
507 my_current_iter = b->iter[tid].iter;
508 next_go = my_current_iter + distributedBarrier::MAX_ITERS;
509 #if KMP_BARRIER_ICV_PUSH
510 if (propagate_icvs) {
511 // primary thread has ICVs in final destination; copy
512 copy_icvs(&thr_bar->th_fixed_icvs,
513 &team->t.t_implicit_task_taskdata[tid].td_icvs);
515 #endif
516 // Tell all the group leaders they can go!
517 for (size_t go_idx = 0; go_idx < b->num_gos; go_idx += b->gos_per_group) {
518 b->go[go_idx].go.store(next_go);
521 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
522 // Wake-up the group leaders
523 size_t nproc = this_thr->th.th_team_nproc;
524 __kmp_dist_barrier_wakeup(bt, team, tid + b->threads_per_group, nproc,
525 b->threads_per_group, tid);
528 // Tell all the threads in my group they can go!
529 for (size_t go_idx = 1; go_idx < b->gos_per_group; go_idx++) {
530 b->go[go_idx].go.store(next_go);
533 // Fence added so that workers can see changes to go. sfence inadequate.
534 KMP_MFENCE();
536 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
537 // Wake-up the other threads in my group
538 size_t nproc = this_thr->th.th_team_nproc;
539 size_t group_end = tid + b->threads_per_group;
540 if (nproc < group_end)
541 group_end = nproc;
542 __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid);
545 // Update to next iteration
546 KMP_ASSERT(my_current_iter == b->iter[tid].iter);
547 b->iter[tid].iter = (b->iter[tid].iter + 1) % distributedBarrier::MAX_ITERS;
549 KA_TRACE(
550 20, ("__kmp_dist_barrier_release: T#%d(%d:%d) exit for barrier type %d\n",
551 gtid, team->t.t_id, tid, bt));
554 // Linear Barrier
555 template <bool cancellable = false>
556 static bool __kmp_linear_barrier_gather_template(
557 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
558 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
559 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_gather);
560 kmp_team_t *team = this_thr->th.th_team;
561 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
562 kmp_info_t **other_threads = team->t.t_threads;
564 KA_TRACE(
566 ("__kmp_linear_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n",
567 gtid, team->t.t_id, tid, bt));
568 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]);
570 #if USE_ITT_BUILD && USE_ITT_NOTIFY
571 // Barrier imbalance - save arrive time to the thread
572 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) {
573 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time =
574 __itt_get_timestamp();
576 #endif
577 // We now perform a linear reduction to signal that all of the threads have
578 // arrived.
579 if (!KMP_MASTER_TID(tid)) {
580 KA_TRACE(20,
581 ("__kmp_linear_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d)"
582 "arrived(%p): %llu => %llu\n",
583 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(0, team),
584 team->t.t_id, 0, &thr_bar->b_arrived, thr_bar->b_arrived,
585 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP));
586 // Mark arrival to primary thread
587 /* After performing this write, a worker thread may not assume that the team
588 is valid any more - it could be deallocated by the primary thread at any
589 time. */
590 kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[0]);
591 flag.release();
592 } else {
593 kmp_balign_team_t *team_bar = &team->t.t_bar[bt];
594 int nproc = this_thr->th.th_team_nproc;
595 int i;
596 // Don't have to worry about sleep bit here or atomic since team setting
597 kmp_uint64 new_state = team_bar->b_arrived + KMP_BARRIER_STATE_BUMP;
599 // Collect all the worker team member threads.
600 for (i = 1; i < nproc; ++i) {
601 #if KMP_CACHE_MANAGE
602 // Prefetch next thread's arrived count
603 if (i + 1 < nproc)
604 KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_arrived);
605 #endif /* KMP_CACHE_MANAGE */
606 KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%d) "
607 "arrived(%p) == %llu\n",
608 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team),
609 team->t.t_id, i,
610 &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state));
612 // Wait for worker thread to arrive
613 if (cancellable) {
614 kmp_flag_64<true, false> flag(
615 &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state);
616 if (flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)))
617 return true;
618 } else {
619 kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_arrived,
620 new_state);
621 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
623 #if USE_ITT_BUILD && USE_ITT_NOTIFY
624 // Barrier imbalance - write min of the thread time and the other thread
625 // time to the thread.
626 if (__kmp_forkjoin_frames_mode == 2) {
627 this_thr->th.th_bar_min_time = KMP_MIN(
628 this_thr->th.th_bar_min_time, other_threads[i]->th.th_bar_min_time);
630 #endif
631 if (reduce) {
632 KA_TRACE(100,
633 ("__kmp_linear_barrier_gather: T#%d(%d:%d) += T#%d(%d:%d)\n",
634 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team),
635 team->t.t_id, i));
636 OMPT_REDUCTION_DECL(this_thr, gtid);
637 OMPT_REDUCTION_BEGIN;
638 (*reduce)(this_thr->th.th_local.reduce_data,
639 other_threads[i]->th.th_local.reduce_data);
640 OMPT_REDUCTION_END;
643 // Don't have to worry about sleep bit here or atomic since team setting
644 team_bar->b_arrived = new_state;
645 KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) set team %d "
646 "arrived(%p) = %llu\n",
647 gtid, team->t.t_id, tid, team->t.t_id, &team_bar->b_arrived,
648 new_state));
650 KA_TRACE(
652 ("__kmp_linear_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n",
653 gtid, team->t.t_id, tid, bt));
654 return false;
657 template <bool cancellable = false>
658 static bool __kmp_linear_barrier_release_template(
659 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
660 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
661 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_release);
662 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
663 kmp_team_t *team;
665 if (KMP_MASTER_TID(tid)) {
666 unsigned int i;
667 kmp_uint32 nproc = this_thr->th.th_team_nproc;
668 kmp_info_t **other_threads;
670 team = __kmp_threads[gtid]->th.th_team;
671 KMP_DEBUG_ASSERT(team != NULL);
672 other_threads = team->t.t_threads;
674 KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d(%d:%d) primary enter for "
675 "barrier type %d\n",
676 gtid, team->t.t_id, tid, bt));
678 if (nproc > 1) {
679 #if KMP_BARRIER_ICV_PUSH
681 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy);
682 if (propagate_icvs) {
683 ngo_load(&team->t.t_implicit_task_taskdata[0].td_icvs);
684 for (i = 1; i < nproc; ++i) {
685 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[i],
686 team, i, FALSE);
687 ngo_store_icvs(&team->t.t_implicit_task_taskdata[i].td_icvs,
688 &team->t.t_implicit_task_taskdata[0].td_icvs);
690 ngo_sync();
693 #endif // KMP_BARRIER_ICV_PUSH
695 // Now, release all of the worker threads
696 for (i = 1; i < nproc; ++i) {
697 #if KMP_CACHE_MANAGE
698 // Prefetch next thread's go flag
699 if (i + 1 < nproc)
700 KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_go);
701 #endif /* KMP_CACHE_MANAGE */
702 KA_TRACE(
704 ("__kmp_linear_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%d) "
705 "go(%p): %u => %u\n",
706 gtid, team->t.t_id, tid, other_threads[i]->th.th_info.ds.ds_gtid,
707 team->t.t_id, i, &other_threads[i]->th.th_bar[bt].bb.b_go,
708 other_threads[i]->th.th_bar[bt].bb.b_go,
709 other_threads[i]->th.th_bar[bt].bb.b_go + KMP_BARRIER_STATE_BUMP));
710 kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_go,
711 other_threads[i]);
712 flag.release();
715 } else { // Wait for the PRIMARY thread to release us
716 KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d wait go(%p) == %u\n",
717 gtid, &thr_bar->b_go, KMP_BARRIER_STATE_BUMP));
718 if (cancellable) {
719 kmp_flag_64<true, false> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP);
720 if (flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)))
721 return true;
722 } else {
723 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP);
724 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
726 #if USE_ITT_BUILD && USE_ITT_NOTIFY
727 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) {
728 // In a fork barrier; cannot get the object reliably (or ITTNOTIFY is
729 // disabled)
730 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1);
731 // Cancel wait on previous parallel region...
732 __kmp_itt_task_starting(itt_sync_obj);
734 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
735 return false;
737 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
738 if (itt_sync_obj != NULL)
739 // Call prepare as early as possible for "new" barrier
740 __kmp_itt_task_finished(itt_sync_obj);
741 } else
742 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
743 // Early exit for reaping threads releasing forkjoin barrier
744 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
745 return false;
746 // The worker thread may now assume that the team is valid.
747 #ifdef KMP_DEBUG
748 tid = __kmp_tid_from_gtid(gtid);
749 team = __kmp_threads[gtid]->th.th_team;
750 #endif
751 KMP_DEBUG_ASSERT(team != NULL);
752 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE);
753 KA_TRACE(20,
754 ("__kmp_linear_barrier_release: T#%d(%d:%d) set go(%p) = %u\n",
755 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE));
756 KMP_MB(); // Flush all pending memory write invalidates.
758 KA_TRACE(
760 ("__kmp_linear_barrier_release: T#%d(%d:%d) exit for barrier type %d\n",
761 gtid, team->t.t_id, tid, bt));
762 return false;
765 static void __kmp_linear_barrier_gather(
766 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
767 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
768 __kmp_linear_barrier_gather_template<false>(
769 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj));
772 static bool __kmp_linear_barrier_gather_cancellable(
773 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
774 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
775 return __kmp_linear_barrier_gather_template<true>(
776 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj));
779 static void __kmp_linear_barrier_release(
780 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
781 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
782 __kmp_linear_barrier_release_template<false>(
783 bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj));
786 static bool __kmp_linear_barrier_release_cancellable(
787 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
788 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
789 return __kmp_linear_barrier_release_template<true>(
790 bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj));
793 // Tree barrier
794 static void __kmp_tree_barrier_gather(
795 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
796 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
797 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_gather);
798 kmp_team_t *team = this_thr->th.th_team;
799 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
800 kmp_info_t **other_threads = team->t.t_threads;
801 kmp_uint32 nproc = this_thr->th.th_team_nproc;
802 kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt];
803 kmp_uint32 branch_factor = 1 << branch_bits;
804 kmp_uint32 child;
805 kmp_uint32 child_tid;
806 kmp_uint64 new_state = 0;
808 KA_TRACE(
809 20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n",
810 gtid, team->t.t_id, tid, bt));
811 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]);
813 #if USE_ITT_BUILD && USE_ITT_NOTIFY
814 // Barrier imbalance - save arrive time to the thread
815 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) {
816 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time =
817 __itt_get_timestamp();
819 #endif
820 // Perform tree gather to wait until all threads have arrived; reduce any
821 // required data as we go
822 child_tid = (tid << branch_bits) + 1;
823 if (child_tid < nproc) {
824 // Parent threads wait for all their children to arrive
825 new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP;
826 child = 1;
827 do {
828 kmp_info_t *child_thr = other_threads[child_tid];
829 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
830 #if KMP_CACHE_MANAGE
831 // Prefetch next thread's arrived count
832 if (child + 1 <= branch_factor && child_tid + 1 < nproc)
833 KMP_CACHE_PREFETCH(
834 &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_arrived);
835 #endif /* KMP_CACHE_MANAGE */
836 KA_TRACE(20,
837 ("__kmp_tree_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) "
838 "arrived(%p) == %llu\n",
839 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
840 team->t.t_id, child_tid, &child_bar->b_arrived, new_state));
841 // Wait for child to arrive
842 kmp_flag_64<> flag(&child_bar->b_arrived, new_state);
843 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
844 #if USE_ITT_BUILD && USE_ITT_NOTIFY
845 // Barrier imbalance - write min of the thread time and a child time to
846 // the thread.
847 if (__kmp_forkjoin_frames_mode == 2) {
848 this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time,
849 child_thr->th.th_bar_min_time);
851 #endif
852 if (reduce) {
853 KA_TRACE(100,
854 ("__kmp_tree_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n",
855 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
856 team->t.t_id, child_tid));
857 OMPT_REDUCTION_DECL(this_thr, gtid);
858 OMPT_REDUCTION_BEGIN;
859 (*reduce)(this_thr->th.th_local.reduce_data,
860 child_thr->th.th_local.reduce_data);
861 OMPT_REDUCTION_END;
863 child++;
864 child_tid++;
865 } while (child <= branch_factor && child_tid < nproc);
868 if (!KMP_MASTER_TID(tid)) { // Worker threads
869 kmp_int32 parent_tid = (tid - 1) >> branch_bits;
871 KA_TRACE(20,
872 ("__kmp_tree_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) "
873 "arrived(%p): %llu => %llu\n",
874 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team),
875 team->t.t_id, parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived,
876 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP));
878 // Mark arrival to parent thread
879 /* After performing this write, a worker thread may not assume that the team
880 is valid any more - it could be deallocated by the primary thread at any
881 time. */
882 kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[parent_tid]);
883 flag.release();
884 } else {
885 // Need to update the team arrived pointer if we are the primary thread
886 if (nproc > 1) // New value was already computed above
887 team->t.t_bar[bt].b_arrived = new_state;
888 else
889 team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP;
890 KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) set team %d "
891 "arrived(%p) = %llu\n",
892 gtid, team->t.t_id, tid, team->t.t_id,
893 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived));
895 KA_TRACE(20,
896 ("__kmp_tree_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n",
897 gtid, team->t.t_id, tid, bt));
900 static void __kmp_tree_barrier_release(
901 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
902 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
903 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_release);
904 kmp_team_t *team;
905 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
906 kmp_uint32 nproc;
907 kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt];
908 kmp_uint32 branch_factor = 1 << branch_bits;
909 kmp_uint32 child;
910 kmp_uint32 child_tid;
912 // Perform a tree release for all of the threads that have been gathered
913 if (!KMP_MASTER_TID(
914 tid)) { // Handle fork barrier workers who aren't part of a team yet
915 KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d wait go(%p) == %u\n", gtid,
916 &thr_bar->b_go, KMP_BARRIER_STATE_BUMP));
917 // Wait for parent thread to release us
918 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP);
919 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
920 #if USE_ITT_BUILD && USE_ITT_NOTIFY
921 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) {
922 // In fork barrier where we could not get the object reliably (or
923 // ITTNOTIFY is disabled)
924 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1);
925 // Cancel wait on previous parallel region...
926 __kmp_itt_task_starting(itt_sync_obj);
928 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
929 return;
931 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
932 if (itt_sync_obj != NULL)
933 // Call prepare as early as possible for "new" barrier
934 __kmp_itt_task_finished(itt_sync_obj);
935 } else
936 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
937 // Early exit for reaping threads releasing forkjoin barrier
938 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
939 return;
941 // The worker thread may now assume that the team is valid.
942 team = __kmp_threads[gtid]->th.th_team;
943 KMP_DEBUG_ASSERT(team != NULL);
944 tid = __kmp_tid_from_gtid(gtid);
946 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE);
947 KA_TRACE(20,
948 ("__kmp_tree_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid,
949 team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE));
950 KMP_MB(); // Flush all pending memory write invalidates.
951 } else {
952 team = __kmp_threads[gtid]->th.th_team;
953 KMP_DEBUG_ASSERT(team != NULL);
954 KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d(%d:%d) primary enter for "
955 "barrier type %d\n",
956 gtid, team->t.t_id, tid, bt));
958 nproc = this_thr->th.th_team_nproc;
959 child_tid = (tid << branch_bits) + 1;
961 if (child_tid < nproc) {
962 kmp_info_t **other_threads = team->t.t_threads;
963 child = 1;
964 // Parent threads release all their children
965 do {
966 kmp_info_t *child_thr = other_threads[child_tid];
967 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
968 #if KMP_CACHE_MANAGE
969 // Prefetch next thread's go count
970 if (child + 1 <= branch_factor && child_tid + 1 < nproc)
971 KMP_CACHE_PREFETCH(
972 &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_go);
973 #endif /* KMP_CACHE_MANAGE */
975 #if KMP_BARRIER_ICV_PUSH
977 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy);
978 if (propagate_icvs) {
979 __kmp_init_implicit_task(team->t.t_ident,
980 team->t.t_threads[child_tid], team,
981 child_tid, FALSE);
982 copy_icvs(&team->t.t_implicit_task_taskdata[child_tid].td_icvs,
983 &team->t.t_implicit_task_taskdata[0].td_icvs);
986 #endif // KMP_BARRIER_ICV_PUSH
987 KA_TRACE(20,
988 ("__kmp_tree_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)"
989 "go(%p): %u => %u\n",
990 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
991 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go,
992 child_bar->b_go + KMP_BARRIER_STATE_BUMP));
993 // Release child from barrier
994 kmp_flag_64<> flag(&child_bar->b_go, child_thr);
995 flag.release();
996 child++;
997 child_tid++;
998 } while (child <= branch_factor && child_tid < nproc);
1000 KA_TRACE(
1001 20, ("__kmp_tree_barrier_release: T#%d(%d:%d) exit for barrier type %d\n",
1002 gtid, team->t.t_id, tid, bt));
1005 // Hyper Barrier
1006 static void __kmp_hyper_barrier_gather(
1007 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
1008 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
1009 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_gather);
1010 kmp_team_t *team = this_thr->th.th_team;
1011 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
1012 kmp_info_t **other_threads = team->t.t_threads;
1013 kmp_uint64 new_state = KMP_BARRIER_UNUSED_STATE;
1014 kmp_uint32 num_threads = this_thr->th.th_team_nproc;
1015 kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt];
1016 kmp_uint32 branch_factor = 1 << branch_bits;
1017 kmp_uint32 offset;
1018 kmp_uint32 level;
1020 KA_TRACE(
1022 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n",
1023 gtid, team->t.t_id, tid, bt));
1024 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]);
1026 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1027 // Barrier imbalance - save arrive time to the thread
1028 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) {
1029 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time =
1030 __itt_get_timestamp();
1032 #endif
1033 /* Perform a hypercube-embedded tree gather to wait until all of the threads
1034 have arrived, and reduce any required data as we go. */
1035 kmp_flag_64<> p_flag(&thr_bar->b_arrived);
1036 for (level = 0, offset = 1; offset < num_threads;
1037 level += branch_bits, offset <<= branch_bits) {
1038 kmp_uint32 child;
1039 kmp_uint32 child_tid;
1041 if (((tid >> level) & (branch_factor - 1)) != 0) {
1042 kmp_int32 parent_tid = tid & ~((1 << (level + branch_bits)) - 1);
1044 KMP_MB(); // Synchronize parent and child threads.
1045 KA_TRACE(20,
1046 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) "
1047 "arrived(%p): %llu => %llu\n",
1048 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team),
1049 team->t.t_id, parent_tid, &thr_bar->b_arrived,
1050 thr_bar->b_arrived,
1051 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP));
1052 // Mark arrival to parent thread
1053 /* After performing this write (in the last iteration of the enclosing for
1054 loop), a worker thread may not assume that the team is valid any more
1055 - it could be deallocated by the primary thread at any time. */
1056 p_flag.set_waiter(other_threads[parent_tid]);
1057 p_flag.release();
1058 break;
1061 // Parent threads wait for children to arrive
1062 if (new_state == KMP_BARRIER_UNUSED_STATE)
1063 new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP;
1064 for (child = 1, child_tid = tid + (1 << level);
1065 child < branch_factor && child_tid < num_threads;
1066 child++, child_tid += (1 << level)) {
1067 kmp_info_t *child_thr = other_threads[child_tid];
1068 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1069 #if KMP_CACHE_MANAGE
1070 kmp_uint32 next_child_tid = child_tid + (1 << level);
1071 // Prefetch next thread's arrived count
1072 if (child + 1 < branch_factor && next_child_tid < num_threads)
1073 KMP_CACHE_PREFETCH(
1074 &other_threads[next_child_tid]->th.th_bar[bt].bb.b_arrived);
1075 #endif /* KMP_CACHE_MANAGE */
1076 KA_TRACE(20,
1077 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) "
1078 "arrived(%p) == %llu\n",
1079 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
1080 team->t.t_id, child_tid, &child_bar->b_arrived, new_state));
1081 // Wait for child to arrive
1082 kmp_flag_64<> c_flag(&child_bar->b_arrived, new_state);
1083 c_flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1084 KMP_MB(); // Synchronize parent and child threads.
1085 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1086 // Barrier imbalance - write min of the thread time and a child time to
1087 // the thread.
1088 if (__kmp_forkjoin_frames_mode == 2) {
1089 this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time,
1090 child_thr->th.th_bar_min_time);
1092 #endif
1093 if (reduce) {
1094 KA_TRACE(100,
1095 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n",
1096 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
1097 team->t.t_id, child_tid));
1098 OMPT_REDUCTION_DECL(this_thr, gtid);
1099 OMPT_REDUCTION_BEGIN;
1100 (*reduce)(this_thr->th.th_local.reduce_data,
1101 child_thr->th.th_local.reduce_data);
1102 OMPT_REDUCTION_END;
1107 if (KMP_MASTER_TID(tid)) {
1108 // Need to update the team arrived pointer if we are the primary thread
1109 if (new_state == KMP_BARRIER_UNUSED_STATE)
1110 team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP;
1111 else
1112 team->t.t_bar[bt].b_arrived = new_state;
1113 KA_TRACE(20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) set team %d "
1114 "arrived(%p) = %llu\n",
1115 gtid, team->t.t_id, tid, team->t.t_id,
1116 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived));
1118 KA_TRACE(
1119 20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n",
1120 gtid, team->t.t_id, tid, bt));
1123 // The reverse versions seem to beat the forward versions overall
1124 #define KMP_REVERSE_HYPER_BAR
1125 static void __kmp_hyper_barrier_release(
1126 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
1127 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
1128 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_release);
1129 kmp_team_t *team;
1130 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
1131 kmp_info_t **other_threads;
1132 kmp_uint32 num_threads;
1133 kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt];
1134 kmp_uint32 branch_factor = 1 << branch_bits;
1135 kmp_uint32 child;
1136 kmp_uint32 child_tid;
1137 kmp_uint32 offset;
1138 kmp_uint32 level;
1140 /* Perform a hypercube-embedded tree release for all of the threads that have
1141 been gathered. If KMP_REVERSE_HYPER_BAR is defined (default) the threads
1142 are released in the reverse order of the corresponding gather, otherwise
1143 threads are released in the same order. */
1144 if (KMP_MASTER_TID(tid)) { // primary thread
1145 team = __kmp_threads[gtid]->th.th_team;
1146 KMP_DEBUG_ASSERT(team != NULL);
1147 KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) primary enter for "
1148 "barrier type %d\n",
1149 gtid, team->t.t_id, tid, bt));
1150 #if KMP_BARRIER_ICV_PUSH
1151 if (propagate_icvs) { // primary already has ICVs in final destination; copy
1152 copy_icvs(&thr_bar->th_fixed_icvs,
1153 &team->t.t_implicit_task_taskdata[tid].td_icvs);
1155 #endif
1156 } else { // Handle fork barrier workers who aren't part of a team yet
1157 KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d wait go(%p) == %u\n", gtid,
1158 &thr_bar->b_go, KMP_BARRIER_STATE_BUMP));
1159 // Wait for parent thread to release us
1160 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP);
1161 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
1162 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1163 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) {
1164 // In fork barrier where we could not get the object reliably
1165 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1);
1166 // Cancel wait on previous parallel region...
1167 __kmp_itt_task_starting(itt_sync_obj);
1169 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
1170 return;
1172 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
1173 if (itt_sync_obj != NULL)
1174 // Call prepare as early as possible for "new" barrier
1175 __kmp_itt_task_finished(itt_sync_obj);
1176 } else
1177 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
1178 // Early exit for reaping threads releasing forkjoin barrier
1179 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
1180 return;
1182 // The worker thread may now assume that the team is valid.
1183 team = __kmp_threads[gtid]->th.th_team;
1184 KMP_DEBUG_ASSERT(team != NULL);
1185 tid = __kmp_tid_from_gtid(gtid);
1187 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE);
1188 KA_TRACE(20,
1189 ("__kmp_hyper_barrier_release: T#%d(%d:%d) set go(%p) = %u\n",
1190 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE));
1191 KMP_MB(); // Flush all pending memory write invalidates.
1193 num_threads = this_thr->th.th_team_nproc;
1194 other_threads = team->t.t_threads;
1196 #ifdef KMP_REVERSE_HYPER_BAR
1197 // Count up to correct level for parent
1198 for (level = 0, offset = 1;
1199 offset < num_threads && (((tid >> level) & (branch_factor - 1)) == 0);
1200 level += branch_bits, offset <<= branch_bits)
1203 // Now go down from there
1204 for (level -= branch_bits, offset >>= branch_bits; offset != 0;
1205 level -= branch_bits, offset >>= branch_bits)
1206 #else
1207 // Go down the tree, level by level
1208 for (level = 0, offset = 1; offset < num_threads;
1209 level += branch_bits, offset <<= branch_bits)
1210 #endif // KMP_REVERSE_HYPER_BAR
1212 #ifdef KMP_REVERSE_HYPER_BAR
1213 /* Now go in reverse order through the children, highest to lowest.
1214 Initial setting of child is conservative here. */
1215 child = num_threads >> ((level == 0) ? level : level - 1);
1216 for (child = (child < branch_factor - 1) ? child : branch_factor - 1,
1217 child_tid = tid + (child << level);
1218 child >= 1; child--, child_tid -= (1 << level))
1219 #else
1220 if (((tid >> level) & (branch_factor - 1)) != 0)
1221 // No need to go lower than this, since this is the level parent would be
1222 // notified
1223 break;
1224 // Iterate through children on this level of the tree
1225 for (child = 1, child_tid = tid + (1 << level);
1226 child < branch_factor && child_tid < num_threads;
1227 child++, child_tid += (1 << level))
1228 #endif // KMP_REVERSE_HYPER_BAR
1230 if (child_tid >= num_threads)
1231 continue; // Child doesn't exist so keep going
1232 else {
1233 kmp_info_t *child_thr = other_threads[child_tid];
1234 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1235 #if KMP_CACHE_MANAGE
1236 kmp_uint32 next_child_tid = child_tid - (1 << level);
1237 // Prefetch next thread's go count
1238 #ifdef KMP_REVERSE_HYPER_BAR
1239 if (child - 1 >= 1 && next_child_tid < num_threads)
1240 #else
1241 if (child + 1 < branch_factor && next_child_tid < num_threads)
1242 #endif // KMP_REVERSE_HYPER_BAR
1243 KMP_CACHE_PREFETCH(
1244 &other_threads[next_child_tid]->th.th_bar[bt].bb.b_go);
1245 #endif /* KMP_CACHE_MANAGE */
1247 #if KMP_BARRIER_ICV_PUSH
1248 if (propagate_icvs) // push my fixed ICVs to my child
1249 copy_icvs(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs);
1250 #endif // KMP_BARRIER_ICV_PUSH
1252 KA_TRACE(
1254 ("__kmp_hyper_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)"
1255 "go(%p): %u => %u\n",
1256 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
1257 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go,
1258 child_bar->b_go + KMP_BARRIER_STATE_BUMP));
1259 // Release child from barrier
1260 kmp_flag_64<> flag(&child_bar->b_go, child_thr);
1261 flag.release();
1265 #if KMP_BARRIER_ICV_PUSH
1266 if (propagate_icvs &&
1267 !KMP_MASTER_TID(tid)) { // copy ICVs locally to final dest
1268 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid,
1269 FALSE);
1270 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
1271 &thr_bar->th_fixed_icvs);
1273 #endif
1274 KA_TRACE(
1276 ("__kmp_hyper_barrier_release: T#%d(%d:%d) exit for barrier type %d\n",
1277 gtid, team->t.t_id, tid, bt));
1280 // Hierarchical Barrier
1282 // Initialize thread barrier data
1283 /* Initializes/re-initializes the hierarchical barrier data stored on a thread.
1284 Performs the minimum amount of initialization required based on how the team
1285 has changed. Returns true if leaf children will require both on-core and
1286 traditional wake-up mechanisms. For example, if the team size increases,
1287 threads already in the team will respond to on-core wakeup on their parent
1288 thread, but threads newly added to the team will only be listening on the
1289 their local b_go. */
1290 static bool __kmp_init_hierarchical_barrier_thread(enum barrier_type bt,
1291 kmp_bstate_t *thr_bar,
1292 kmp_uint32 nproc, int gtid,
1293 int tid, kmp_team_t *team) {
1294 // Checks to determine if (re-)initialization is needed
1295 bool uninitialized = thr_bar->team == NULL;
1296 bool team_changed = team != thr_bar->team;
1297 bool team_sz_changed = nproc != thr_bar->nproc;
1298 bool tid_changed = tid != thr_bar->old_tid;
1299 bool retval = false;
1301 if (uninitialized || team_sz_changed) {
1302 __kmp_get_hierarchy(nproc, thr_bar);
1305 if (uninitialized || team_sz_changed || tid_changed) {
1306 thr_bar->my_level = thr_bar->depth - 1; // default for primary thread
1307 thr_bar->parent_tid = -1; // default for primary thread
1308 if (!KMP_MASTER_TID(tid)) {
1309 // if not primary thread, find parent thread in hierarchy
1310 kmp_uint32 d = 0;
1311 while (d < thr_bar->depth) { // find parent based on level of thread in
1312 // hierarchy, and note level
1313 kmp_uint32 rem;
1314 if (d == thr_bar->depth - 2) { // reached level right below the primary
1315 thr_bar->parent_tid = 0;
1316 thr_bar->my_level = d;
1317 break;
1318 } else if ((rem = tid % thr_bar->skip_per_level[d + 1]) != 0) {
1319 // TODO: can we make the above op faster?
1320 // thread is not a subtree root at next level, so this is max
1321 thr_bar->parent_tid = tid - rem;
1322 thr_bar->my_level = d;
1323 break;
1325 ++d;
1328 __kmp_type_convert(7 - ((tid - thr_bar->parent_tid) /
1329 (thr_bar->skip_per_level[thr_bar->my_level])),
1330 &(thr_bar->offset));
1331 thr_bar->old_tid = tid;
1332 thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING;
1333 thr_bar->team = team;
1334 thr_bar->parent_bar =
1335 &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb;
1337 if (uninitialized || team_changed || tid_changed) {
1338 thr_bar->team = team;
1339 thr_bar->parent_bar =
1340 &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb;
1341 retval = true;
1343 if (uninitialized || team_sz_changed || tid_changed) {
1344 thr_bar->nproc = nproc;
1345 thr_bar->leaf_kids = thr_bar->base_leaf_kids;
1346 if (thr_bar->my_level == 0)
1347 thr_bar->leaf_kids = 0;
1348 if (thr_bar->leaf_kids && (kmp_uint32)tid + thr_bar->leaf_kids + 1 > nproc)
1349 __kmp_type_convert(nproc - tid - 1, &(thr_bar->leaf_kids));
1350 thr_bar->leaf_state = 0;
1351 for (int i = 0; i < thr_bar->leaf_kids; ++i)
1352 ((char *)&(thr_bar->leaf_state))[7 - i] = 1;
1354 return retval;
1357 static void __kmp_hierarchical_barrier_gather(
1358 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
1359 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
1360 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_gather);
1361 kmp_team_t *team = this_thr->th.th_team;
1362 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
1363 kmp_uint32 nproc = this_thr->th.th_team_nproc;
1364 kmp_info_t **other_threads = team->t.t_threads;
1365 kmp_uint64 new_state = 0;
1367 int level = team->t.t_level;
1368 if (other_threads[0]
1369 ->th.th_teams_microtask) // are we inside the teams construct?
1370 if (this_thr->th.th_teams_size.nteams > 1)
1371 ++level; // level was not increased in teams construct for team_of_masters
1372 if (level == 1)
1373 thr_bar->use_oncore_barrier = 1;
1374 else
1375 thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested
1377 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) enter for "
1378 "barrier type %d\n",
1379 gtid, team->t.t_id, tid, bt));
1380 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]);
1382 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1383 // Barrier imbalance - save arrive time to the thread
1384 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) {
1385 this_thr->th.th_bar_arrive_time = __itt_get_timestamp();
1387 #endif
1389 (void)__kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid, tid,
1390 team);
1392 if (thr_bar->my_level) { // not a leaf (my_level==0 means leaf)
1393 kmp_int32 child_tid;
1394 new_state =
1395 (kmp_uint64)team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP;
1396 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1397 thr_bar->use_oncore_barrier) {
1398 if (thr_bar->leaf_kids) {
1399 // First, wait for leaf children to check-in on my b_arrived flag
1400 kmp_uint64 leaf_state =
1401 KMP_MASTER_TID(tid)
1402 ? thr_bar->b_arrived | thr_bar->leaf_state
1403 : team->t.t_bar[bt].b_arrived | thr_bar->leaf_state;
1404 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) waiting "
1405 "for leaf kids\n",
1406 gtid, team->t.t_id, tid));
1407 kmp_flag_64<> flag(&thr_bar->b_arrived, leaf_state);
1408 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1409 if (reduce) {
1410 OMPT_REDUCTION_DECL(this_thr, gtid);
1411 OMPT_REDUCTION_BEGIN;
1412 for (child_tid = tid + 1; child_tid <= tid + thr_bar->leaf_kids;
1413 ++child_tid) {
1414 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += "
1415 "T#%d(%d:%d)\n",
1416 gtid, team->t.t_id, tid,
1417 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1418 child_tid));
1419 (*reduce)(this_thr->th.th_local.reduce_data,
1420 other_threads[child_tid]->th.th_local.reduce_data);
1422 OMPT_REDUCTION_END;
1424 // clear leaf_state bits
1425 KMP_TEST_THEN_AND64(&thr_bar->b_arrived, ~(thr_bar->leaf_state));
1427 // Next, wait for higher level children on each child's b_arrived flag
1428 for (kmp_uint32 d = 1; d < thr_bar->my_level;
1429 ++d) { // gather lowest level threads first, but skip 0
1430 kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1],
1431 skip = thr_bar->skip_per_level[d];
1432 if (last > nproc)
1433 last = nproc;
1434 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) {
1435 kmp_info_t *child_thr = other_threads[child_tid];
1436 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1437 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait "
1438 "T#%d(%d:%d) "
1439 "arrived(%p) == %llu\n",
1440 gtid, team->t.t_id, tid,
1441 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1442 child_tid, &child_bar->b_arrived, new_state));
1443 kmp_flag_64<> flag(&child_bar->b_arrived, new_state);
1444 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1445 if (reduce) {
1446 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += "
1447 "T#%d(%d:%d)\n",
1448 gtid, team->t.t_id, tid,
1449 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1450 child_tid));
1451 (*reduce)(this_thr->th.th_local.reduce_data,
1452 child_thr->th.th_local.reduce_data);
1456 } else { // Blocktime is not infinite
1457 for (kmp_uint32 d = 0; d < thr_bar->my_level;
1458 ++d) { // Gather lowest level threads first
1459 kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1],
1460 skip = thr_bar->skip_per_level[d];
1461 if (last > nproc)
1462 last = nproc;
1463 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) {
1464 kmp_info_t *child_thr = other_threads[child_tid];
1465 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1466 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait "
1467 "T#%d(%d:%d) "
1468 "arrived(%p) == %llu\n",
1469 gtid, team->t.t_id, tid,
1470 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1471 child_tid, &child_bar->b_arrived, new_state));
1472 kmp_flag_64<> flag(&child_bar->b_arrived, new_state);
1473 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1474 if (reduce) {
1475 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += "
1476 "T#%d(%d:%d)\n",
1477 gtid, team->t.t_id, tid,
1478 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1479 child_tid));
1480 (*reduce)(this_thr->th.th_local.reduce_data,
1481 child_thr->th.th_local.reduce_data);
1487 // All subordinates are gathered; now release parent if not primary thread
1489 if (!KMP_MASTER_TID(tid)) { // worker threads release parent in hierarchy
1490 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) releasing"
1491 " T#%d(%d:%d) arrived(%p): %llu => %llu\n",
1492 gtid, team->t.t_id, tid,
1493 __kmp_gtid_from_tid(thr_bar->parent_tid, team), team->t.t_id,
1494 thr_bar->parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived,
1495 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP));
1496 /* Mark arrival to parent: After performing this write, a worker thread may
1497 not assume that the team is valid any more - it could be deallocated by
1498 the primary thread at any time. */
1499 if (thr_bar->my_level || __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ||
1500 !thr_bar->use_oncore_barrier) { // Parent is waiting on my b_arrived
1501 // flag; release it
1502 kmp_flag_64<> flag(&thr_bar->b_arrived,
1503 other_threads[thr_bar->parent_tid]);
1504 flag.release();
1505 } else {
1506 // Leaf does special release on "offset" bits of parent's b_arrived flag
1507 thr_bar->b_arrived = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP;
1508 kmp_flag_oncore flag(&thr_bar->parent_bar->b_arrived,
1509 thr_bar->offset + 1);
1510 flag.set_waiter(other_threads[thr_bar->parent_tid]);
1511 flag.release();
1513 } else { // Primary thread needs to update the team's b_arrived value
1514 team->t.t_bar[bt].b_arrived = new_state;
1515 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) set team %d "
1516 "arrived(%p) = %llu\n",
1517 gtid, team->t.t_id, tid, team->t.t_id,
1518 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived));
1520 // Is the team access below unsafe or just technically invalid?
1521 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) exit for "
1522 "barrier type %d\n",
1523 gtid, team->t.t_id, tid, bt));
1526 static void __kmp_hierarchical_barrier_release(
1527 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid,
1528 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
1529 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_release);
1530 kmp_team_t *team;
1531 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb;
1532 kmp_uint32 nproc;
1533 bool team_change = false; // indicates on-core barrier shouldn't be used
1535 if (KMP_MASTER_TID(tid)) {
1536 team = __kmp_threads[gtid]->th.th_team;
1537 KMP_DEBUG_ASSERT(team != NULL);
1538 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) primary "
1539 "entered barrier type %d\n",
1540 gtid, team->t.t_id, tid, bt));
1541 } else { // Worker threads
1542 // Wait for parent thread to release me
1543 if (!thr_bar->use_oncore_barrier ||
1544 __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || thr_bar->my_level != 0 ||
1545 thr_bar->team == NULL) {
1546 // Use traditional method of waiting on my own b_go flag
1547 thr_bar->wait_flag = KMP_BARRIER_OWN_FLAG;
1548 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP);
1549 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
1550 TCW_8(thr_bar->b_go,
1551 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time
1552 } else { // Thread barrier data is initialized, this is a leaf, blocktime is
1553 // infinite, not nested
1554 // Wait on my "offset" bits on parent's b_go flag
1555 thr_bar->wait_flag = KMP_BARRIER_PARENT_FLAG;
1556 kmp_flag_oncore flag(&thr_bar->parent_bar->b_go, KMP_BARRIER_STATE_BUMP,
1557 thr_bar->offset + 1, bt,
1558 this_thr USE_ITT_BUILD_ARG(itt_sync_obj));
1559 flag.wait(this_thr, TRUE);
1560 if (thr_bar->wait_flag ==
1561 KMP_BARRIER_SWITCHING) { // Thread was switched to own b_go
1562 TCW_8(thr_bar->b_go,
1563 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time
1564 } else { // Reset my bits on parent's b_go flag
1565 (RCAST(volatile char *,
1566 &(thr_bar->parent_bar->b_go)))[thr_bar->offset + 1] = 0;
1569 thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING;
1570 // Early exit for reaping threads releasing forkjoin barrier
1571 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done))
1572 return;
1573 // The worker thread may now assume that the team is valid.
1574 team = __kmp_threads[gtid]->th.th_team;
1575 KMP_DEBUG_ASSERT(team != NULL);
1576 tid = __kmp_tid_from_gtid(gtid);
1578 KA_TRACE(
1580 ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) set go(%p) = %u\n",
1581 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE));
1582 KMP_MB(); // Flush all pending memory write invalidates.
1585 nproc = this_thr->th.th_team_nproc;
1586 int level = team->t.t_level;
1587 if (team->t.t_threads[0]
1588 ->th.th_teams_microtask) { // are we inside the teams construct?
1589 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
1590 this_thr->th.th_teams_level == level)
1591 ++level; // level was not increased in teams construct for team_of_workers
1592 if (this_thr->th.th_teams_size.nteams > 1)
1593 ++level; // level was not increased in teams construct for team_of_masters
1595 if (level == 1)
1596 thr_bar->use_oncore_barrier = 1;
1597 else
1598 thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested
1600 // If the team size has increased, we still communicate with old leaves via
1601 // oncore barrier.
1602 unsigned short int old_leaf_kids = thr_bar->leaf_kids;
1603 kmp_uint64 old_leaf_state = thr_bar->leaf_state;
1604 team_change = __kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid,
1605 tid, team);
1606 // But if the entire team changes, we won't use oncore barrier at all
1607 if (team_change)
1608 old_leaf_kids = 0;
1610 #if KMP_BARRIER_ICV_PUSH
1611 if (propagate_icvs) {
1612 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid,
1613 FALSE);
1614 if (KMP_MASTER_TID(
1615 tid)) { // primary already has copy in final destination; copy
1616 copy_icvs(&thr_bar->th_fixed_icvs,
1617 &team->t.t_implicit_task_taskdata[tid].td_icvs);
1618 } else if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1619 thr_bar->use_oncore_barrier) { // optimization for inf blocktime
1620 if (!thr_bar->my_level) // I'm a leaf in the hierarchy (my_level==0)
1621 // leaves (on-core children) pull parent's fixed ICVs directly to local
1622 // ICV store
1623 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
1624 &thr_bar->parent_bar->th_fixed_icvs);
1625 // non-leaves will get ICVs piggybacked with b_go via NGO store
1626 } else { // blocktime is not infinite; pull ICVs from parent's fixed ICVs
1627 if (thr_bar->my_level) // not a leaf; copy ICVs to my fixed ICVs child can
1628 // access
1629 copy_icvs(&thr_bar->th_fixed_icvs, &thr_bar->parent_bar->th_fixed_icvs);
1630 else // leaves copy parent's fixed ICVs directly to local ICV store
1631 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
1632 &thr_bar->parent_bar->th_fixed_icvs);
1635 #endif // KMP_BARRIER_ICV_PUSH
1637 // Now, release my children
1638 if (thr_bar->my_level) { // not a leaf
1639 kmp_int32 child_tid;
1640 kmp_uint32 last;
1641 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1642 thr_bar->use_oncore_barrier) {
1643 if (KMP_MASTER_TID(tid)) { // do a flat release
1644 // Set local b_go to bump children via NGO store of the cache line
1645 // containing IVCs and b_go.
1646 thr_bar->b_go = KMP_BARRIER_STATE_BUMP;
1647 // Use ngo stores if available; b_go piggybacks in the last 8 bytes of
1648 // the cache line
1649 ngo_load(&thr_bar->th_fixed_icvs);
1650 // This loops over all the threads skipping only the leaf nodes in the
1651 // hierarchy
1652 for (child_tid = thr_bar->skip_per_level[1]; child_tid < (int)nproc;
1653 child_tid += thr_bar->skip_per_level[1]) {
1654 kmp_bstate_t *child_bar =
1655 &team->t.t_threads[child_tid]->th.th_bar[bt].bb;
1656 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) "
1657 "releasing T#%d(%d:%d)"
1658 " go(%p): %u => %u\n",
1659 gtid, team->t.t_id, tid,
1660 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1661 child_tid, &child_bar->b_go, child_bar->b_go,
1662 child_bar->b_go + KMP_BARRIER_STATE_BUMP));
1663 // Use ngo store (if available) to both store ICVs and release child
1664 // via child's b_go
1665 ngo_store_go(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs);
1667 ngo_sync();
1669 TCW_8(thr_bar->b_go,
1670 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time
1671 // Now, release leaf children
1672 if (thr_bar->leaf_kids) { // if there are any
1673 // We test team_change on the off-chance that the level 1 team changed.
1674 if (team_change ||
1675 old_leaf_kids < thr_bar->leaf_kids) { // some old, some new
1676 if (old_leaf_kids) { // release old leaf kids
1677 thr_bar->b_go |= old_leaf_state;
1679 // Release new leaf kids
1680 last = tid + thr_bar->skip_per_level[1];
1681 if (last > nproc)
1682 last = nproc;
1683 for (child_tid = tid + 1 + old_leaf_kids; child_tid < (int)last;
1684 ++child_tid) { // skip_per_level[0]=1
1685 kmp_info_t *child_thr = team->t.t_threads[child_tid];
1686 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1687 KA_TRACE(
1689 ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) releasing"
1690 " T#%d(%d:%d) go(%p): %u => %u\n",
1691 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team),
1692 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go,
1693 child_bar->b_go + KMP_BARRIER_STATE_BUMP));
1694 // Release child using child's b_go flag
1695 kmp_flag_64<> flag(&child_bar->b_go, child_thr);
1696 flag.release();
1698 } else { // Release all children at once with leaf_state bits on my own
1699 // b_go flag
1700 thr_bar->b_go |= thr_bar->leaf_state;
1703 } else { // Blocktime is not infinite; do a simple hierarchical release
1704 for (int d = thr_bar->my_level - 1; d >= 0;
1705 --d) { // Release highest level threads first
1706 last = tid + thr_bar->skip_per_level[d + 1];
1707 kmp_uint32 skip = thr_bar->skip_per_level[d];
1708 if (last > nproc)
1709 last = nproc;
1710 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) {
1711 kmp_info_t *child_thr = team->t.t_threads[child_tid];
1712 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb;
1713 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) "
1714 "releasing T#%d(%d:%d) go(%p): %u => %u\n",
1715 gtid, team->t.t_id, tid,
1716 __kmp_gtid_from_tid(child_tid, team), team->t.t_id,
1717 child_tid, &child_bar->b_go, child_bar->b_go,
1718 child_bar->b_go + KMP_BARRIER_STATE_BUMP));
1719 // Release child using child's b_go flag
1720 kmp_flag_64<> flag(&child_bar->b_go, child_thr);
1721 flag.release();
1725 #if KMP_BARRIER_ICV_PUSH
1726 if (propagate_icvs && !KMP_MASTER_TID(tid))
1727 // non-leaves copy ICVs from fixed ICVs to local dest
1728 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
1729 &thr_bar->th_fixed_icvs);
1730 #endif // KMP_BARRIER_ICV_PUSH
1732 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) exit for "
1733 "barrier type %d\n",
1734 gtid, team->t.t_id, tid, bt));
1737 // End of Barrier Algorithms
1739 // type traits for cancellable value
1740 // if cancellable is true, then is_cancellable is a normal boolean variable
1741 // if cancellable is false, then is_cancellable is a compile time constant
1742 template <bool cancellable> struct is_cancellable {};
1743 template <> struct is_cancellable<true> {
1744 bool value;
1745 is_cancellable() : value(false) {}
1746 is_cancellable(bool b) : value(b) {}
1747 is_cancellable &operator=(bool b) {
1748 value = b;
1749 return *this;
1751 operator bool() const { return value; }
1753 template <> struct is_cancellable<false> {
1754 is_cancellable &operator=(bool b) { return *this; }
1755 constexpr operator bool() const { return false; }
1758 // Internal function to do a barrier.
1759 /* If is_split is true, do a split barrier, otherwise, do a plain barrier
1760 If reduce is non-NULL, do a split reduction barrier, otherwise, do a split
1761 barrier
1762 When cancellable = false,
1763 Returns 0 if primary thread, 1 if worker thread.
1764 When cancellable = true
1765 Returns 0 if not cancelled, 1 if cancelled. */
1766 template <bool cancellable = false>
1767 static int __kmp_barrier_template(enum barrier_type bt, int gtid, int is_split,
1768 size_t reduce_size, void *reduce_data,
1769 void (*reduce)(void *, void *)) {
1770 KMP_TIME_PARTITIONED_BLOCK(OMP_plain_barrier);
1771 KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER);
1772 int tid = __kmp_tid_from_gtid(gtid);
1773 kmp_info_t *this_thr = __kmp_threads[gtid];
1774 kmp_team_t *team = this_thr->th.th_team;
1775 int status = 0;
1776 is_cancellable<cancellable> cancelled;
1777 #if OMPT_SUPPORT && OMPT_OPTIONAL
1778 ompt_data_t *my_task_data;
1779 ompt_data_t *my_parallel_data;
1780 void *return_address;
1781 ompt_sync_region_t barrier_kind;
1782 #endif
1784 KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) has arrived\n", gtid,
1785 __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid)));
1787 #if OMPT_SUPPORT
1788 if (ompt_enabled.enabled) {
1789 #if OMPT_OPTIONAL
1790 my_task_data = OMPT_CUR_TASK_DATA(this_thr);
1791 my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr);
1792 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
1793 barrier_kind = __ompt_get_barrier_kind(bt, this_thr);
1794 if (ompt_enabled.ompt_callback_sync_region) {
1795 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1796 barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data,
1797 return_address);
1799 if (ompt_enabled.ompt_callback_sync_region_wait) {
1800 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1801 barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data,
1802 return_address);
1804 #endif
1805 // It is OK to report the barrier state after the barrier begin callback.
1806 // According to the OMPT specification, a compliant implementation may
1807 // even delay reporting this state until the barrier begins to wait.
1808 this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier;
1810 #endif
1812 if (!team->t.t_serialized) {
1813 #if USE_ITT_BUILD
1814 // This value will be used in itt notify events below.
1815 void *itt_sync_obj = NULL;
1816 #if USE_ITT_NOTIFY
1817 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
1818 itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1);
1819 #endif
1820 #endif /* USE_ITT_BUILD */
1821 if (__kmp_tasking_mode == tskm_extra_barrier) {
1822 __kmp_tasking_barrier(team, this_thr, gtid);
1823 KA_TRACE(15,
1824 ("__kmp_barrier: T#%d(%d:%d) past tasking barrier\n", gtid,
1825 __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid)));
1828 /* Copy the blocktime info to the thread, where __kmp_wait_template() can
1829 access it when the team struct is not guaranteed to exist. */
1830 // See note about the corresponding code in __kmp_join_barrier() being
1831 // performance-critical.
1832 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
1833 #if KMP_USE_MONITOR
1834 this_thr->th.th_team_bt_intervals =
1835 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals;
1836 this_thr->th.th_team_bt_set =
1837 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set;
1838 #else
1839 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid);
1840 #endif
1843 #if USE_ITT_BUILD
1844 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
1845 __kmp_itt_barrier_starting(gtid, itt_sync_obj);
1846 #endif /* USE_ITT_BUILD */
1847 #if USE_DEBUGGER
1848 // Let the debugger know: the thread arrived to the barrier and waiting.
1849 if (KMP_MASTER_TID(tid)) { // Primary thread counter stored in team struct
1850 team->t.t_bar[bt].b_master_arrived += 1;
1851 } else {
1852 this_thr->th.th_bar[bt].bb.b_worker_arrived += 1;
1853 } // if
1854 #endif /* USE_DEBUGGER */
1855 if (reduce != NULL) {
1856 // KMP_DEBUG_ASSERT( is_split == TRUE ); // #C69956
1857 this_thr->th.th_local.reduce_data = reduce_data;
1860 if (KMP_MASTER_TID(tid) && __kmp_tasking_mode != tskm_immediate_exec)
1861 // use 0 to only setup the current team if nthreads > 1
1862 __kmp_task_team_setup(this_thr, team, 0);
1864 if (cancellable) {
1865 cancelled = __kmp_linear_barrier_gather_cancellable(
1866 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1867 } else {
1868 switch (__kmp_barrier_gather_pattern[bt]) {
1869 case bp_dist_bar: {
1870 __kmp_dist_barrier_gather(bt, this_thr, gtid, tid,
1871 reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1872 break;
1874 case bp_hyper_bar: {
1875 // don't set branch bits to 0; use linear
1876 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]);
1877 __kmp_hyper_barrier_gather(bt, this_thr, gtid, tid,
1878 reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1879 break;
1881 case bp_hierarchical_bar: {
1882 __kmp_hierarchical_barrier_gather(
1883 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1884 break;
1886 case bp_tree_bar: {
1887 // don't set branch bits to 0; use linear
1888 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]);
1889 __kmp_tree_barrier_gather(bt, this_thr, gtid, tid,
1890 reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1891 break;
1893 default: {
1894 __kmp_linear_barrier_gather(bt, this_thr, gtid, tid,
1895 reduce USE_ITT_BUILD_ARG(itt_sync_obj));
1900 KMP_MB();
1902 if (KMP_MASTER_TID(tid)) {
1903 status = 0;
1904 if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) {
1905 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj));
1907 #if USE_DEBUGGER
1908 // Let the debugger know: All threads are arrived and starting leaving the
1909 // barrier.
1910 team->t.t_bar[bt].b_team_arrived += 1;
1911 #endif
1913 if (__kmp_omp_cancellation) {
1914 kmp_int32 cancel_request = KMP_ATOMIC_LD_RLX(&team->t.t_cancel_request);
1915 // Reset cancellation flag for worksharing constructs
1916 if (cancel_request == cancel_loop ||
1917 cancel_request == cancel_sections) {
1918 KMP_ATOMIC_ST_RLX(&team->t.t_cancel_request, cancel_noreq);
1921 #if USE_ITT_BUILD
1922 /* TODO: In case of split reduction barrier, primary thread may send
1923 acquired event early, before the final summation into the shared
1924 variable is done (final summation can be a long operation for array
1925 reductions). */
1926 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
1927 __kmp_itt_barrier_middle(gtid, itt_sync_obj);
1928 #endif /* USE_ITT_BUILD */
1929 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1930 // Barrier - report frame end (only if active_level == 1)
1931 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
1932 __kmp_forkjoin_frames_mode &&
1933 (this_thr->th.th_teams_microtask == NULL || // either not in teams
1934 this_thr->th.th_teams_size.nteams == 1) && // or inside single team
1935 team->t.t_active_level == 1) {
1936 ident_t *loc = __kmp_threads[gtid]->th.th_ident;
1937 kmp_uint64 cur_time = __itt_get_timestamp();
1938 kmp_info_t **other_threads = team->t.t_threads;
1939 int nproc = this_thr->th.th_team_nproc;
1940 int i;
1941 switch (__kmp_forkjoin_frames_mode) {
1942 case 1:
1943 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0,
1944 loc, nproc);
1945 this_thr->th.th_frame_time = cur_time;
1946 break;
1947 case 2: // AC 2015-01-19: currently does not work for hierarchical (to
1948 // be fixed)
1949 __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time,
1950 1, loc, nproc);
1951 break;
1952 case 3:
1953 if (__itt_metadata_add_ptr) {
1954 // Initialize with primary thread's wait time
1955 kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time;
1956 // Set arrive time to zero to be able to check it in
1957 // __kmp_invoke_task(); the same is done inside the loop below
1958 this_thr->th.th_bar_arrive_time = 0;
1959 for (i = 1; i < nproc; ++i) {
1960 delta += (cur_time - other_threads[i]->th.th_bar_arrive_time);
1961 other_threads[i]->th.th_bar_arrive_time = 0;
1963 __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time,
1964 cur_time, delta,
1965 (kmp_uint64)(reduce != NULL));
1967 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0,
1968 loc, nproc);
1969 this_thr->th.th_frame_time = cur_time;
1970 break;
1973 #endif /* USE_ITT_BUILD */
1974 } else {
1975 status = 1;
1976 #if USE_ITT_BUILD
1977 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
1978 __kmp_itt_barrier_middle(gtid, itt_sync_obj);
1979 #endif /* USE_ITT_BUILD */
1981 if ((status == 1 || !is_split) && !cancelled) {
1982 if (cancellable) {
1983 cancelled = __kmp_linear_barrier_release_cancellable(
1984 bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1985 } else {
1986 switch (__kmp_barrier_release_pattern[bt]) {
1987 case bp_dist_bar: {
1988 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]);
1989 __kmp_dist_barrier_release(bt, this_thr, gtid, tid,
1990 FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1991 break;
1993 case bp_hyper_bar: {
1994 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]);
1995 __kmp_hyper_barrier_release(bt, this_thr, gtid, tid,
1996 FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
1997 break;
1999 case bp_hierarchical_bar: {
2000 __kmp_hierarchical_barrier_release(
2001 bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
2002 break;
2004 case bp_tree_bar: {
2005 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]);
2006 __kmp_tree_barrier_release(bt, this_thr, gtid, tid,
2007 FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
2008 break;
2010 default: {
2011 __kmp_linear_barrier_release(bt, this_thr, gtid, tid,
2012 FALSE USE_ITT_BUILD_ARG(itt_sync_obj));
2016 if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) {
2017 __kmp_task_team_sync(this_thr, team);
2021 #if USE_ITT_BUILD
2022 /* GEH: TODO: Move this under if-condition above and also include in
2023 __kmp_end_split_barrier(). This will more accurately represent the actual
2024 release time of the threads for split barriers. */
2025 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
2026 __kmp_itt_barrier_finished(gtid, itt_sync_obj);
2027 #endif /* USE_ITT_BUILD */
2028 } else { // Team is serialized.
2029 status = 0;
2030 if (__kmp_tasking_mode != tskm_immediate_exec) {
2031 if (this_thr->th.th_task_team != NULL) {
2032 #if USE_ITT_NOTIFY
2033 void *itt_sync_obj = NULL;
2034 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2035 itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1);
2036 __kmp_itt_barrier_starting(gtid, itt_sync_obj);
2038 #endif
2040 KMP_DEBUG_ASSERT(
2041 this_thr->th.th_task_team->tt.tt_found_proxy_tasks == TRUE ||
2042 this_thr->th.th_task_team->tt.tt_hidden_helper_task_encountered ==
2043 TRUE);
2044 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj));
2045 __kmp_task_team_setup(this_thr, team, 0);
2047 #if USE_ITT_BUILD
2048 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
2049 __kmp_itt_barrier_finished(gtid, itt_sync_obj);
2050 #endif /* USE_ITT_BUILD */
2054 KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) is leaving with return value %d\n",
2055 gtid, __kmp_team_from_gtid(gtid)->t.t_id,
2056 __kmp_tid_from_gtid(gtid), status));
2058 #if OMPT_SUPPORT
2059 if (ompt_enabled.enabled) {
2060 #if OMPT_OPTIONAL
2061 if (ompt_enabled.ompt_callback_sync_region_wait) {
2062 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2063 barrier_kind, ompt_scope_end, my_parallel_data, my_task_data,
2064 return_address);
2066 if (ompt_enabled.ompt_callback_sync_region) {
2067 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2068 barrier_kind, ompt_scope_end, my_parallel_data, my_task_data,
2069 return_address);
2071 #endif
2072 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
2074 #endif
2076 if (cancellable)
2077 return (int)cancelled;
2078 return status;
2081 // Returns 0 if primary thread, 1 if worker thread.
2082 int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
2083 size_t reduce_size, void *reduce_data,
2084 void (*reduce)(void *, void *)) {
2085 return __kmp_barrier_template<>(bt, gtid, is_split, reduce_size, reduce_data,
2086 reduce);
2089 #if defined(KMP_GOMP_COMPAT)
2090 // Returns 1 if cancelled, 0 otherwise
2091 int __kmp_barrier_gomp_cancel(int gtid) {
2092 if (__kmp_omp_cancellation) {
2093 int cancelled = __kmp_barrier_template<true>(bs_plain_barrier, gtid, FALSE,
2094 0, NULL, NULL);
2095 if (cancelled) {
2096 int tid = __kmp_tid_from_gtid(gtid);
2097 kmp_info_t *this_thr = __kmp_threads[gtid];
2098 if (KMP_MASTER_TID(tid)) {
2099 // Primary thread does not need to revert anything
2100 } else {
2101 // Workers need to revert their private b_arrived flag
2102 this_thr->th.th_bar[bs_plain_barrier].bb.b_arrived -=
2103 KMP_BARRIER_STATE_BUMP;
2106 return cancelled;
2108 __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
2109 return FALSE;
2111 #endif
2113 void __kmp_end_split_barrier(enum barrier_type bt, int gtid) {
2114 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_end_split_barrier);
2115 KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER);
2116 KMP_DEBUG_ASSERT(bt < bs_last_barrier);
2117 int tid = __kmp_tid_from_gtid(gtid);
2118 kmp_info_t *this_thr = __kmp_threads[gtid];
2119 kmp_team_t *team = this_thr->th.th_team;
2121 if (!team->t.t_serialized) {
2122 if (KMP_MASTER_GTID(gtid)) {
2123 switch (__kmp_barrier_release_pattern[bt]) {
2124 case bp_dist_bar: {
2125 __kmp_dist_barrier_release(bt, this_thr, gtid, tid,
2126 FALSE USE_ITT_BUILD_ARG(NULL));
2127 break;
2129 case bp_hyper_bar: {
2130 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]);
2131 __kmp_hyper_barrier_release(bt, this_thr, gtid, tid,
2132 FALSE USE_ITT_BUILD_ARG(NULL));
2133 break;
2135 case bp_hierarchical_bar: {
2136 __kmp_hierarchical_barrier_release(bt, this_thr, gtid, tid,
2137 FALSE USE_ITT_BUILD_ARG(NULL));
2138 break;
2140 case bp_tree_bar: {
2141 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]);
2142 __kmp_tree_barrier_release(bt, this_thr, gtid, tid,
2143 FALSE USE_ITT_BUILD_ARG(NULL));
2144 break;
2146 default: {
2147 __kmp_linear_barrier_release(bt, this_thr, gtid, tid,
2148 FALSE USE_ITT_BUILD_ARG(NULL));
2151 if (__kmp_tasking_mode != tskm_immediate_exec) {
2152 __kmp_task_team_sync(this_thr, team);
2153 } // if
2158 void __kmp_join_barrier(int gtid) {
2159 KMP_TIME_PARTITIONED_BLOCK(OMP_join_barrier);
2160 KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER);
2162 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
2164 kmp_info_t *this_thr = __kmp_threads[gtid];
2165 kmp_team_t *team;
2166 int tid;
2167 #ifdef KMP_DEBUG
2168 int team_id;
2169 #endif /* KMP_DEBUG */
2170 #if USE_ITT_BUILD
2171 void *itt_sync_obj = NULL;
2172 #if USE_ITT_NOTIFY
2173 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) // Don't call routine without need
2174 // Get object created at fork_barrier
2175 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2176 #endif
2177 #endif /* USE_ITT_BUILD */
2178 #if ((USE_ITT_BUILD && USE_ITT_NOTIFY) || defined KMP_DEBUG)
2179 int nproc = this_thr->th.th_team_nproc;
2180 #endif
2181 KMP_MB();
2183 // Get current info
2184 team = this_thr->th.th_team;
2185 KMP_DEBUG_ASSERT(nproc == team->t.t_nproc);
2186 tid = __kmp_tid_from_gtid(gtid);
2187 #ifdef KMP_DEBUG
2188 team_id = team->t.t_id;
2189 kmp_info_t *master_thread = this_thr->th.th_team_master;
2190 if (master_thread != team->t.t_threads[0]) {
2191 __kmp_print_structure();
2193 #endif /* KMP_DEBUG */
2194 KMP_DEBUG_ASSERT(master_thread == team->t.t_threads[0]);
2195 KMP_MB();
2197 // Verify state
2198 KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_team));
2199 KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_root));
2200 KMP_DEBUG_ASSERT(this_thr == team->t.t_threads[tid]);
2201 KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) arrived at join barrier\n",
2202 gtid, team_id, tid));
2204 #if OMPT_SUPPORT
2205 if (ompt_enabled.enabled) {
2206 #if OMPT_OPTIONAL
2207 ompt_data_t *my_task_data;
2208 ompt_data_t *my_parallel_data;
2209 void *codeptr = NULL;
2210 int ds_tid = this_thr->th.th_info.ds.ds_tid;
2211 if (KMP_MASTER_TID(ds_tid) &&
2212 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
2213 ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
2214 codeptr = team->t.ompt_team_info.master_return_address;
2215 my_task_data = OMPT_CUR_TASK_DATA(this_thr);
2216 my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr);
2217 if (ompt_enabled.ompt_callback_sync_region) {
2218 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2219 ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data,
2220 my_task_data, codeptr);
2222 if (ompt_enabled.ompt_callback_sync_region_wait) {
2223 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2224 ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data,
2225 my_task_data, codeptr);
2227 if (!KMP_MASTER_TID(ds_tid))
2228 this_thr->th.ompt_thread_info.task_data = *OMPT_CUR_TASK_DATA(this_thr);
2229 #endif
2230 this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier_implicit;
2232 #endif
2234 if (__kmp_tasking_mode == tskm_extra_barrier) {
2235 __kmp_tasking_barrier(team, this_thr, gtid);
2236 KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) past tasking barrier\n",
2237 gtid, team_id, tid));
2239 #ifdef KMP_DEBUG
2240 if (__kmp_tasking_mode != tskm_immediate_exec) {
2241 KA_TRACE(20, ("__kmp_join_barrier: T#%d, old team = %d, old task_team = "
2242 "%p, th_task_team = %p\n",
2243 __kmp_gtid_from_thread(this_thr), team_id,
2244 team->t.t_task_team[this_thr->th.th_task_state],
2245 this_thr->th.th_task_team));
2246 if (this_thr->th.th_task_team)
2247 KMP_DEBUG_ASSERT(this_thr->th.th_task_team ==
2248 team->t.t_task_team[this_thr->th.th_task_state]);
2250 #endif /* KMP_DEBUG */
2252 /* Copy the blocktime info to the thread, where __kmp_wait_template() can
2253 access it when the team struct is not guaranteed to exist. Doing these
2254 loads causes a cache miss slows down EPCC parallel by 2x. As a workaround,
2255 we do not perform the copy if blocktime=infinite, since the values are not
2256 used by __kmp_wait_template() in that case. */
2257 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
2258 #if KMP_USE_MONITOR
2259 this_thr->th.th_team_bt_intervals =
2260 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals;
2261 this_thr->th.th_team_bt_set =
2262 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set;
2263 #else
2264 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid);
2265 #endif
2268 #if USE_ITT_BUILD
2269 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
2270 __kmp_itt_barrier_starting(gtid, itt_sync_obj);
2271 #endif /* USE_ITT_BUILD */
2273 switch (__kmp_barrier_gather_pattern[bs_forkjoin_barrier]) {
2274 case bp_dist_bar: {
2275 __kmp_dist_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid,
2276 NULL USE_ITT_BUILD_ARG(itt_sync_obj));
2277 break;
2279 case bp_hyper_bar: {
2280 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]);
2281 __kmp_hyper_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid,
2282 NULL USE_ITT_BUILD_ARG(itt_sync_obj));
2283 break;
2285 case bp_hierarchical_bar: {
2286 __kmp_hierarchical_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid,
2287 NULL USE_ITT_BUILD_ARG(itt_sync_obj));
2288 break;
2290 case bp_tree_bar: {
2291 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]);
2292 __kmp_tree_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid,
2293 NULL USE_ITT_BUILD_ARG(itt_sync_obj));
2294 break;
2296 default: {
2297 __kmp_linear_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid,
2298 NULL USE_ITT_BUILD_ARG(itt_sync_obj));
2302 /* From this point on, the team data structure may be deallocated at any time
2303 by the primary thread - it is unsafe to reference it in any of the worker
2304 threads. Any per-team data items that need to be referenced before the
2305 end of the barrier should be moved to the kmp_task_team_t structs. */
2306 if (KMP_MASTER_TID(tid)) {
2307 if (__kmp_tasking_mode != tskm_immediate_exec) {
2308 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj));
2310 if (__kmp_display_affinity) {
2311 KMP_CHECK_UPDATE(team->t.t_display_affinity, 0);
2313 #if KMP_STATS_ENABLED
2314 // Have primary thread flag the workers to indicate they are now waiting for
2315 // next parallel region, Also wake them up so they switch their timers to
2316 // idle.
2317 for (int i = 0; i < team->t.t_nproc; ++i) {
2318 kmp_info_t *team_thread = team->t.t_threads[i];
2319 if (team_thread == this_thr)
2320 continue;
2321 team_thread->th.th_stats->setIdleFlag();
2322 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME &&
2323 team_thread->th.th_sleep_loc != NULL)
2324 __kmp_null_resume_wrapper(team_thread);
2326 #endif
2327 #if USE_ITT_BUILD
2328 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
2329 __kmp_itt_barrier_middle(gtid, itt_sync_obj);
2330 #endif /* USE_ITT_BUILD */
2332 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2333 // Join barrier - report frame end
2334 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2335 __kmp_forkjoin_frames_mode &&
2336 (this_thr->th.th_teams_microtask == NULL || // either not in teams
2337 this_thr->th.th_teams_size.nteams == 1) && // or inside single team
2338 team->t.t_active_level == 1) {
2339 kmp_uint64 cur_time = __itt_get_timestamp();
2340 ident_t *loc = team->t.t_ident;
2341 kmp_info_t **other_threads = team->t.t_threads;
2342 switch (__kmp_forkjoin_frames_mode) {
2343 case 1:
2344 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0,
2345 loc, nproc);
2346 break;
2347 case 2:
2348 __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time, 1,
2349 loc, nproc);
2350 break;
2351 case 3:
2352 if (__itt_metadata_add_ptr) {
2353 // Initialize with primary thread's wait time
2354 kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time;
2355 // Set arrive time to zero to be able to check it in
2356 // __kmp_invoke_task(); the same is done inside the loop below
2357 this_thr->th.th_bar_arrive_time = 0;
2358 for (int i = 1; i < nproc; ++i) {
2359 delta += (cur_time - other_threads[i]->th.th_bar_arrive_time);
2360 other_threads[i]->th.th_bar_arrive_time = 0;
2362 __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time,
2363 cur_time, delta, 0);
2365 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0,
2366 loc, nproc);
2367 this_thr->th.th_frame_time = cur_time;
2368 break;
2371 #endif /* USE_ITT_BUILD */
2373 #if USE_ITT_BUILD
2374 else {
2375 if (__itt_sync_create_ptr || KMP_ITT_DEBUG)
2376 __kmp_itt_barrier_middle(gtid, itt_sync_obj);
2378 #endif /* USE_ITT_BUILD */
2380 #if KMP_DEBUG
2381 if (KMP_MASTER_TID(tid)) {
2382 KA_TRACE(
2384 ("__kmp_join_barrier: T#%d(%d:%d) says all %d team threads arrived\n",
2385 gtid, team_id, tid, nproc));
2387 #endif /* KMP_DEBUG */
2389 // TODO now, mark worker threads as done so they may be disbanded
2390 KMP_MB(); // Flush all pending memory write invalidates.
2391 KA_TRACE(10,
2392 ("__kmp_join_barrier: T#%d(%d:%d) leaving\n", gtid, team_id, tid));
2396 // TODO release worker threads' fork barriers as we are ready instead of all at
2397 // once
2398 void __kmp_fork_barrier(int gtid, int tid) {
2399 KMP_TIME_PARTITIONED_BLOCK(OMP_fork_barrier);
2400 KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER);
2401 kmp_info_t *this_thr = __kmp_threads[gtid];
2402 kmp_team_t *team = (tid == 0) ? this_thr->th.th_team : NULL;
2403 #if USE_ITT_BUILD
2404 void *itt_sync_obj = NULL;
2405 #endif /* USE_ITT_BUILD */
2406 if (team)
2408 KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) has arrived\n", gtid,
2409 (team != NULL) ? team->t.t_id : -1, tid));
2411 // th_team pointer only valid for primary thread here
2412 if (KMP_MASTER_TID(tid)) {
2413 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2414 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2415 // Create itt barrier object
2416 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 1);
2417 __kmp_itt_barrier_middle(gtid, itt_sync_obj); // Call acquired/releasing
2419 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2421 #ifdef KMP_DEBUG
2422 KMP_DEBUG_ASSERT(team);
2423 kmp_info_t **other_threads = team->t.t_threads;
2424 int i;
2426 // Verify state
2427 KMP_MB();
2429 for (i = 1; i < team->t.t_nproc; ++i) {
2430 KA_TRACE(500,
2431 ("__kmp_fork_barrier: T#%d(%d:0) checking T#%d(%d:%d) fork go "
2432 "== %u.\n",
2433 gtid, team->t.t_id, other_threads[i]->th.th_info.ds.ds_gtid,
2434 team->t.t_id, other_threads[i]->th.th_info.ds.ds_tid,
2435 other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go));
2436 KMP_DEBUG_ASSERT(
2437 (TCR_4(other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go) &
2438 ~(KMP_BARRIER_SLEEP_STATE)) == KMP_INIT_BARRIER_STATE);
2439 KMP_DEBUG_ASSERT(other_threads[i]->th.th_team == team);
2441 #endif
2443 if (__kmp_tasking_mode != tskm_immediate_exec) {
2444 // 0 indicates setup current task team if nthreads > 1
2445 __kmp_task_team_setup(this_thr, team, 0);
2448 /* The primary thread may have changed its blocktime between join barrier
2449 and fork barrier. Copy the blocktime info to the thread, where
2450 __kmp_wait_template() can access it when the team struct is not
2451 guaranteed to exist. */
2452 // See note about the corresponding code in __kmp_join_barrier() being
2453 // performance-critical
2454 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
2455 #if KMP_USE_MONITOR
2456 this_thr->th.th_team_bt_intervals =
2457 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals;
2458 this_thr->th.th_team_bt_set =
2459 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set;
2460 #else
2461 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid);
2462 #endif
2464 } // primary thread
2466 switch (__kmp_barrier_release_pattern[bs_forkjoin_barrier]) {
2467 case bp_dist_bar: {
2468 __kmp_dist_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid,
2469 TRUE USE_ITT_BUILD_ARG(NULL));
2470 break;
2472 case bp_hyper_bar: {
2473 KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]);
2474 __kmp_hyper_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid,
2475 TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
2476 break;
2478 case bp_hierarchical_bar: {
2479 __kmp_hierarchical_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid,
2480 TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
2481 break;
2483 case bp_tree_bar: {
2484 KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]);
2485 __kmp_tree_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid,
2486 TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
2487 break;
2489 default: {
2490 __kmp_linear_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid,
2491 TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
2495 #if OMPT_SUPPORT
2496 if (ompt_enabled.enabled &&
2497 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
2498 int ds_tid = this_thr->th.th_info.ds.ds_tid;
2499 ompt_data_t *task_data = (team)
2500 ? OMPT_CUR_TASK_DATA(this_thr)
2501 : &(this_thr->th.ompt_thread_info.task_data);
2502 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
2503 #if OMPT_OPTIONAL
2504 void *codeptr = NULL;
2505 if (KMP_MASTER_TID(ds_tid) &&
2506 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
2507 ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
2508 codeptr = team ? team->t.ompt_team_info.master_return_address : NULL;
2509 if (ompt_enabled.ompt_callback_sync_region_wait) {
2510 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2511 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
2512 codeptr);
2514 if (ompt_enabled.ompt_callback_sync_region) {
2515 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2516 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
2517 codeptr);
2519 #endif
2520 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
2521 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2522 ompt_scope_end, NULL, task_data, 0, ds_tid,
2523 ompt_task_implicit); // TODO: Can this be ompt_task_initial?
2526 #endif
2528 // Early exit for reaping threads releasing forkjoin barrier
2529 if (TCR_4(__kmp_global.g.g_done)) {
2530 this_thr->th.th_task_team = NULL;
2532 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2533 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2534 if (!KMP_MASTER_TID(tid)) {
2535 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2536 if (itt_sync_obj)
2537 __kmp_itt_barrier_finished(gtid, itt_sync_obj);
2540 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2541 KA_TRACE(10, ("__kmp_fork_barrier: T#%d is leaving early\n", gtid));
2542 return;
2545 /* We can now assume that a valid team structure has been allocated by the
2546 primary thread and propagated to all worker threads. The current thread,
2547 however, may not be part of the team, so we can't blindly assume that the
2548 team pointer is non-null. */
2549 team = (kmp_team_t *)TCR_PTR(this_thr->th.th_team);
2550 KMP_DEBUG_ASSERT(team != NULL);
2551 tid = __kmp_tid_from_gtid(gtid);
2553 #if KMP_BARRIER_ICV_PULL
2554 /* Primary thread's copy of the ICVs was set up on the implicit taskdata in
2555 __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's
2556 implicit task has this data before this function is called. We cannot
2557 modify __kmp_fork_call() to look at the fixed ICVs in the primary thread's
2558 thread struct, because it is not always the case that the threads arrays
2559 have been allocated when __kmp_fork_call() is executed. */
2561 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy);
2562 if (!KMP_MASTER_TID(tid)) { // primary thread already has ICVs
2563 // Copy the initial ICVs from the primary thread's thread struct to the
2564 // implicit task for this tid.
2565 KA_TRACE(10,
2566 ("__kmp_fork_barrier: T#%d(%d) is PULLing ICVs\n", gtid, tid));
2567 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team,
2568 tid, FALSE);
2569 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs,
2570 &team->t.t_threads[0]
2571 ->th.th_bar[bs_forkjoin_barrier]
2572 .bb.th_fixed_icvs);
2575 #endif // KMP_BARRIER_ICV_PULL
2577 if (__kmp_tasking_mode != tskm_immediate_exec) {
2578 __kmp_task_team_sync(this_thr, team);
2581 #if KMP_AFFINITY_SUPPORTED
2582 kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
2583 if (proc_bind == proc_bind_intel) {
2584 // Call dynamic affinity settings
2585 if (__kmp_affinity.type == affinity_balanced && team->t.t_size_changed) {
2586 __kmp_balanced_affinity(this_thr, team->t.t_nproc);
2588 } else if (proc_bind != proc_bind_false) {
2589 if (this_thr->th.th_new_place == this_thr->th.th_current_place) {
2590 KA_TRACE(100, ("__kmp_fork_barrier: T#%d already in correct place %d\n",
2591 __kmp_gtid_from_thread(this_thr),
2592 this_thr->th.th_current_place));
2593 } else {
2594 __kmp_affinity_bind_place(gtid);
2597 #endif // KMP_AFFINITY_SUPPORTED
2598 // Perform the display affinity functionality
2599 if (__kmp_display_affinity) {
2600 if (team->t.t_display_affinity
2601 #if KMP_AFFINITY_SUPPORTED
2602 || (__kmp_affinity.type == affinity_balanced && team->t.t_size_changed)
2603 #endif
2605 // NULL means use the affinity-format-var ICV
2606 __kmp_aux_display_affinity(gtid, NULL);
2607 this_thr->th.th_prev_num_threads = team->t.t_nproc;
2608 this_thr->th.th_prev_level = team->t.t_level;
2611 if (!KMP_MASTER_TID(tid))
2612 KMP_CHECK_UPDATE(this_thr->th.th_def_allocator, team->t.t_def_allocator);
2614 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2615 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2616 if (!KMP_MASTER_TID(tid)) {
2617 // Get correct barrier object
2618 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2619 __kmp_itt_barrier_finished(gtid, itt_sync_obj); // Workers call acquired
2620 } // (prepare called inside barrier_release)
2622 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2623 KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) is leaving\n", gtid,
2624 team->t.t_id, tid));
2627 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
2628 kmp_internal_control_t *new_icvs, ident_t *loc) {
2629 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_setup_icv_copy);
2631 KMP_DEBUG_ASSERT(team && new_nproc && new_icvs);
2632 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
2634 /* Primary thread's copy of the ICVs was set up on the implicit taskdata in
2635 __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's
2636 implicit task has this data before this function is called. */
2637 #if KMP_BARRIER_ICV_PULL
2638 /* Copy ICVs to primary thread's thread structure into th_fixed_icvs (which
2639 remains untouched), where all of the worker threads can access them and
2640 make their own copies after the barrier. */
2641 KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be
2642 // allocated at this point
2643 copy_icvs(
2644 &team->t.t_threads[0]->th.th_bar[bs_forkjoin_barrier].bb.th_fixed_icvs,
2645 new_icvs);
2646 KF_TRACE(10, ("__kmp_setup_icv_copy: PULL: T#%d this_thread=%p team=%p\n", 0,
2647 team->t.t_threads[0], team));
2648 #elif KMP_BARRIER_ICV_PUSH
2649 // The ICVs will be propagated in the fork barrier, so nothing needs to be
2650 // done here.
2651 KF_TRACE(10, ("__kmp_setup_icv_copy: PUSH: T#%d this_thread=%p team=%p\n", 0,
2652 team->t.t_threads[0], team));
2653 #else
2654 // Copy the ICVs to each of the non-primary threads. This takes O(nthreads)
2655 // time.
2656 ngo_load(new_icvs);
2657 KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be
2658 // allocated at this point
2659 for (int f = 1; f < new_nproc; ++f) { // Skip the primary thread
2660 // TODO: GEH - pass in better source location info since usually NULL here
2661 KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n",
2662 f, team->t.t_threads[f], team));
2663 __kmp_init_implicit_task(loc, team->t.t_threads[f], team, f, FALSE);
2664 ngo_store_icvs(&team->t.t_implicit_task_taskdata[f].td_icvs, new_icvs);
2665 KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n",
2666 f, team->t.t_threads[f], team));
2668 ngo_sync();
2669 #endif // KMP_BARRIER_ICV_PULL