Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / openmp / runtime / src / kmp_stats.cpp
blob8657bfe18c4469291893f68e0e9de1dc52317d04
1 /** @file kmp_stats.cpp
2 * Statistics gathering and processing.
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp.h"
14 #include "kmp_lock.h"
15 #include "kmp_stats.h"
16 #include "kmp_str.h"
18 #include <algorithm>
19 #include <ctime>
20 #include <iomanip>
21 #include <sstream>
22 #include <stdlib.h> // for atexit
23 #include <cmath>
25 #define STRINGIZE2(x) #x
26 #define STRINGIZE(x) STRINGIZE2(x)
28 #define expandName(name, flags, ignore) {STRINGIZE(name), flags},
29 statInfo timeStat::timerInfo[] = {
30 KMP_FOREACH_TIMER(expandName, 0){"TIMER_LAST", 0}};
31 const statInfo counter::counterInfo[] = {
32 KMP_FOREACH_COUNTER(expandName, 0){"COUNTER_LAST", 0}};
33 #undef expandName
35 #define expandName(ignore1, ignore2, ignore3) {0.0, 0.0, 0.0},
36 kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
37 KMP_FOREACH_TIMER(expandName, 0){0.0, 0.0, 0.0}};
38 #undef expandName
40 const kmp_stats_output_module::rgb_color
41 kmp_stats_output_module::globalColorArray[] = {
42 {1.0, 0.0, 0.0}, // red
43 {1.0, 0.6, 0.0}, // orange
44 {1.0, 1.0, 0.0}, // yellow
45 {0.0, 1.0, 0.0}, // green
46 {0.0, 0.0, 1.0}, // blue
47 {0.6, 0.2, 0.8}, // purple
48 {1.0, 0.0, 1.0}, // magenta
49 {0.0, 0.4, 0.2}, // dark green
50 {1.0, 1.0, 0.6}, // light yellow
51 {0.6, 0.4, 0.6}, // dirty purple
52 {0.0, 1.0, 1.0}, // cyan
53 {1.0, 0.4, 0.8}, // pink
54 {0.5, 0.5, 0.5}, // grey
55 {0.8, 0.7, 0.5}, // brown
56 {0.6, 0.6, 1.0}, // light blue
57 {1.0, 0.7, 0.5}, // peach
58 {0.8, 0.5, 1.0}, // lavender
59 {0.6, 0.0, 0.0}, // dark red
60 {0.7, 0.6, 0.0}, // gold
61 {0.0, 0.0, 0.0} // black
64 // Ensure that the atexit handler only runs once.
65 static uint32_t statsPrinted = 0;
67 // output interface
68 static kmp_stats_output_module *__kmp_stats_global_output = NULL;
70 double logHistogram::binMax[] = {1.e1l, 1.e2l, 1.e3l, 1.e4l, 1.e5l, 1.e6l,
71 1.e7l, 1.e8l, 1.e9l, 1.e10l, 1.e11l, 1.e12l,
72 1.e13l, 1.e14l, 1.e15l, 1.e16l, 1.e17l, 1.e18l,
73 1.e19l, 1.e20l, 1.e21l, 1.e22l, 1.e23l, 1.e24l,
74 1.e25l, 1.e26l, 1.e27l, 1.e28l, 1.e29l, 1.e30l,
75 // Always have infinity be the last value
76 std::numeric_limits<double>::infinity()};
78 /* ************* statistic member functions ************* */
80 void statistic::addSample(double sample) {
81 sample -= offset;
82 KMP_DEBUG_ASSERT(std::isfinite(sample));
84 double delta = sample - meanVal;
86 sampleCount = sampleCount + 1;
87 meanVal = meanVal + delta / sampleCount;
88 m2 = m2 + delta * (sample - meanVal);
90 minVal = std::min(minVal, sample);
91 maxVal = std::max(maxVal, sample);
92 if (collectingHist)
93 hist.addSample(sample);
96 statistic &statistic::operator+=(const statistic &other) {
97 if (other.sampleCount == 0)
98 return *this;
100 if (sampleCount == 0) {
101 *this = other;
102 return *this;
105 uint64_t newSampleCount = sampleCount + other.sampleCount;
106 double dnsc = double(newSampleCount);
107 double dsc = double(sampleCount);
108 double dscBydnsc = dsc / dnsc;
109 double dosc = double(other.sampleCount);
110 double delta = other.meanVal - meanVal;
112 // Try to order these calculations to avoid overflows. If this were Fortran,
113 // then the compiler would not be able to re-order over brackets. In C++ it
114 // may be legal to do that (we certainly hope it doesn't, and CC+ Programming
115 // Language 2nd edition suggests it shouldn't, since it says that exploitation
116 // of associativity can only be made if the operation really is associative
117 // (which floating addition isn't...)).
118 meanVal = meanVal * dscBydnsc + other.meanVal * (1 - dscBydnsc);
119 m2 = m2 + other.m2 + dscBydnsc * dosc * delta * delta;
120 minVal = std::min(minVal, other.minVal);
121 maxVal = std::max(maxVal, other.maxVal);
122 sampleCount = newSampleCount;
123 if (collectingHist)
124 hist += other.hist;
126 return *this;
129 void statistic::scale(double factor) {
130 minVal = minVal * factor;
131 maxVal = maxVal * factor;
132 meanVal = meanVal * factor;
133 m2 = m2 * factor * factor;
134 return;
137 std::string statistic::format(char unit, bool total) const {
138 std::string result = formatSI((double)sampleCount, 9, ' ');
140 if (sampleCount == 0) {
141 result = result + std::string(", ") + formatSI(0.0, 9, unit);
142 result = result + std::string(", ") + formatSI(0.0, 9, unit);
143 result = result + std::string(", ") + formatSI(0.0, 9, unit);
144 if (total)
145 result = result + std::string(", ") + formatSI(0.0, 9, unit);
146 result = result + std::string(", ") + formatSI(0.0, 9, unit);
147 } else {
148 result = result + std::string(", ") + formatSI(minVal, 9, unit);
149 result = result + std::string(", ") + formatSI(meanVal, 9, unit);
150 result = result + std::string(", ") + formatSI(maxVal, 9, unit);
151 if (total)
152 result =
153 result + std::string(", ") + formatSI(meanVal * sampleCount, 9, unit);
154 result = result + std::string(", ") + formatSI(getSD(), 9, unit);
156 return result;
159 /* ************* histogram member functions ************* */
161 // Lowest bin that has anything in it
162 int logHistogram::minBin() const {
163 for (int i = 0; i < numBins; i++) {
164 if (bins[i].count != 0)
165 return i - logOffset;
167 return -logOffset;
170 // Highest bin that has anything in it
171 int logHistogram::maxBin() const {
172 for (int i = numBins - 1; i >= 0; i--) {
173 if (bins[i].count != 0)
174 return i - logOffset;
176 return -logOffset;
179 // Which bin does this sample belong in ?
180 uint32_t logHistogram::findBin(double sample) {
181 double v = std::fabs(sample);
182 // Simply loop up looking which bin to put it in.
183 // According to a micro-architect this is likely to be faster than a binary
184 // search, since
185 // it will only have one branch mis-predict
186 for (int b = 0; b < numBins - 1; b++)
187 if (binMax[b] > v)
188 return b;
189 return numBins - 1;
192 void logHistogram::addSample(double sample) {
193 if (sample == 0.0) {
194 zeroCount += 1;
195 #ifdef KMP_DEBUG
196 _total++;
197 check();
198 #endif
199 return;
201 KMP_DEBUG_ASSERT(std::isfinite(sample));
202 uint32_t bin = findBin(sample);
203 KMP_DEBUG_ASSERT(0 <= bin && bin < numBins);
205 bins[bin].count += 1;
206 bins[bin].total += sample;
207 #ifdef KMP_DEBUG
208 _total++;
209 check();
210 #endif
213 // This may not be the format we want, but it'll do for now
214 std::string logHistogram::format(char unit) const {
215 std::stringstream result;
217 result << "Bin, Count, Total\n";
218 if (zeroCount) {
219 result << "0, " << formatSI(zeroCount, 9, ' ') << ", ",
220 formatSI(0.0, 9, unit);
221 if (count(minBin()) == 0)
222 return result.str();
223 result << "\n";
225 for (int i = minBin(); i <= maxBin(); i++) {
226 result << "10**" << i << "<=v<";
227 if (i + 1 == numBins - 1)
228 result << "infinity, ";
229 else
230 result << "10**" << (i + 1) << ", ";
231 result << formatSI(count(i), 9, ' ') << ", " << formatSI(total(i), 9, unit);
232 if (i != maxBin())
233 result << "\n";
236 return result.str();
239 /* ************* explicitTimer member functions ************* */
241 void explicitTimer::start(tsc_tick_count tick) {
242 startTime = tick;
243 totalPauseTime = 0;
244 if (timeStat::logEvent(timerEnumValue)) {
245 __kmp_stats_thread_ptr->incrementNestValue();
247 return;
250 void explicitTimer::stop(tsc_tick_count tick,
251 kmp_stats_list *stats_ptr /* = nullptr */) {
252 if (startTime.getValue() == 0)
253 return;
255 stat->addSample(((tick - startTime) - totalPauseTime).ticks());
257 if (timeStat::logEvent(timerEnumValue)) {
258 if (!stats_ptr)
259 stats_ptr = __kmp_stats_thread_ptr;
260 stats_ptr->push_event(
261 startTime.getValue() - __kmp_stats_start_time.getValue(),
262 tick.getValue() - __kmp_stats_start_time.getValue(),
263 __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
264 stats_ptr->decrementNestValue();
267 /* We accept the risk that we drop a sample because it really did start at
268 t==0. */
269 startTime = 0;
270 return;
273 /* ************* partitionedTimers member functions ************* */
274 partitionedTimers::partitionedTimers() { timer_stack.reserve(8); }
276 // initialize the partitioned timers to an initial timer
277 void partitionedTimers::init(explicitTimer timer) {
278 KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
279 timer_stack.push_back(timer);
280 timer_stack.back().start(tsc_tick_count::now());
283 // stop/save the current timer, and start the new timer (timer_pair)
284 // There is a special condition where if the current timer is equal to
285 // the one you are trying to push, then it only manipulates the stack,
286 // and it won't stop/start the currently running timer.
287 void partitionedTimers::push(explicitTimer timer) {
288 // get the current timer
289 // pause current timer
290 // push new timer
291 // start the new timer
292 explicitTimer *current_timer, *new_timer;
293 size_t stack_size;
294 KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
295 timer_stack.push_back(timer);
296 stack_size = timer_stack.size();
297 current_timer = &(timer_stack[stack_size - 2]);
298 new_timer = &(timer_stack[stack_size - 1]);
299 tsc_tick_count tick = tsc_tick_count::now();
300 current_timer->pause(tick);
301 new_timer->start(tick);
304 // stop/discard the current timer, and start the previously saved timer
305 void partitionedTimers::pop() {
306 // get the current timer
307 // stop current timer (record event/sample)
308 // pop current timer
309 // get the new current timer and resume
310 explicitTimer *old_timer, *new_timer;
311 size_t stack_size = timer_stack.size();
312 KMP_DEBUG_ASSERT(stack_size > 1);
313 old_timer = &(timer_stack[stack_size - 1]);
314 new_timer = &(timer_stack[stack_size - 2]);
315 tsc_tick_count tick = tsc_tick_count::now();
316 old_timer->stop(tick);
317 new_timer->resume(tick);
318 timer_stack.pop_back();
321 void partitionedTimers::exchange(explicitTimer timer) {
322 // get the current timer
323 // stop current timer (record event/sample)
324 // push new timer
325 // start the new timer
326 explicitTimer *current_timer, *new_timer;
327 size_t stack_size;
328 KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
329 tsc_tick_count tick = tsc_tick_count::now();
330 stack_size = timer_stack.size();
331 current_timer = &(timer_stack[stack_size - 1]);
332 current_timer->stop(tick);
333 timer_stack.pop_back();
334 timer_stack.push_back(timer);
335 new_timer = &(timer_stack[stack_size - 1]);
336 new_timer->start(tick);
339 // Wind up all the currently running timers.
340 // This pops off all the timers from the stack and clears the stack
341 // After this is called, init() must be run again to initialize the
342 // stack of timers
343 void partitionedTimers::windup() {
344 while (timer_stack.size() > 1) {
345 this->pop();
347 // Pop the timer from the init() call
348 if (timer_stack.size() > 0) {
349 timer_stack.back().stop(tsc_tick_count::now());
350 timer_stack.pop_back();
354 /* ************* kmp_stats_event_vector member functions ************* */
356 void kmp_stats_event_vector::deallocate() {
357 __kmp_free(events);
358 internal_size = 0;
359 allocated_size = 0;
360 events = NULL;
363 // This function is for qsort() which requires the compare function to return
364 // either a negative number if event1 < event2, a positive number if event1 >
365 // event2 or zero if event1 == event2. This sorts by start time (lowest to
366 // highest).
367 int compare_two_events(const void *event1, const void *event2) {
368 const kmp_stats_event *ev1 = RCAST(const kmp_stats_event *, event1);
369 const kmp_stats_event *ev2 = RCAST(const kmp_stats_event *, event2);
371 if (ev1->getStart() < ev2->getStart())
372 return -1;
373 else if (ev1->getStart() > ev2->getStart())
374 return 1;
375 else
376 return 0;
379 void kmp_stats_event_vector::sort() {
380 qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
383 /* ************* kmp_stats_list member functions ************* */
385 // returns a pointer to newly created stats node
386 kmp_stats_list *kmp_stats_list::push_back(int gtid) {
387 kmp_stats_list *newnode =
388 (kmp_stats_list *)__kmp_allocate(sizeof(kmp_stats_list));
389 // placement new, only requires space and pointer and initializes (so
390 // __kmp_allocate instead of C++ new[] is used)
391 new (newnode) kmp_stats_list();
392 newnode->setGtid(gtid);
393 newnode->prev = this->prev;
394 newnode->next = this;
395 newnode->prev->next = newnode;
396 newnode->next->prev = newnode;
397 return newnode;
399 void kmp_stats_list::deallocate() {
400 kmp_stats_list *ptr = this->next;
401 kmp_stats_list *delptr = this->next;
402 while (ptr != this) {
403 delptr = ptr;
404 ptr = ptr->next;
405 // placement new means we have to explicitly call destructor.
406 delptr->_event_vector.deallocate();
407 delptr->~kmp_stats_list();
408 __kmp_free(delptr);
411 kmp_stats_list::iterator kmp_stats_list::begin() {
412 kmp_stats_list::iterator it;
413 it.ptr = this->next;
414 return it;
416 kmp_stats_list::iterator kmp_stats_list::end() {
417 kmp_stats_list::iterator it;
418 it.ptr = this;
419 return it;
421 int kmp_stats_list::size() {
422 int retval;
423 kmp_stats_list::iterator it;
424 for (retval = 0, it = begin(); it != end(); it++, retval++) {
426 return retval;
429 /* ************* kmp_stats_list::iterator member functions ************* */
431 kmp_stats_list::iterator::iterator() : ptr(NULL) {}
432 kmp_stats_list::iterator::~iterator() {}
433 kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
434 this->ptr = this->ptr->next;
435 return *this;
437 kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
438 this->ptr = this->ptr->next;
439 return *this;
441 kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
442 this->ptr = this->ptr->prev;
443 return *this;
445 kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
446 this->ptr = this->ptr->prev;
447 return *this;
449 bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator &rhs) {
450 return this->ptr != rhs.ptr;
452 bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator &rhs) {
453 return this->ptr == rhs.ptr;
455 kmp_stats_list *kmp_stats_list::iterator::operator*() const {
456 return this->ptr;
459 /* ************* kmp_stats_output_module functions ************** */
461 const char *kmp_stats_output_module::eventsFileName = NULL;
462 const char *kmp_stats_output_module::plotFileName = NULL;
463 int kmp_stats_output_module::printPerThreadFlag = 0;
464 int kmp_stats_output_module::printPerThreadEventsFlag = 0;
466 static char const *lastName(char *name) {
467 int l = (int)strlen(name);
468 for (int i = l - 1; i >= 0; --i) {
469 if (name[i] == '.')
470 name[i] = '_';
471 if (name[i] == '/')
472 return name + i + 1;
474 return name;
477 /* Read the name of the executable from /proc/self/cmdline */
478 static char const *getImageName(char *buffer, size_t buflen) {
479 FILE *f = fopen("/proc/self/cmdline", "r");
480 buffer[0] = char(0);
481 if (!f)
482 return buffer;
484 // The file contains char(0) delimited words from the commandline.
485 // This just returns the last filename component of the first word on the
486 // line.
487 size_t n = fread(buffer, 1, buflen, f);
488 if (n == 0) {
489 fclose(f);
490 KMP_CHECK_SYSFAIL("fread", 1)
492 fclose(f);
493 buffer[buflen - 1] = char(0);
494 return lastName(buffer);
497 static void getTime(char *buffer, size_t buflen, bool underscores = false) {
498 time_t timer;
500 time(&timer);
502 struct tm *tm_info = localtime(&timer);
503 if (underscores)
504 strftime(buffer, buflen, "%Y-%m-%d_%H%M%S", tm_info);
505 else
506 strftime(buffer, buflen, "%Y-%m-%d %H%M%S", tm_info);
509 /* Generate a stats file name, expanding prototypes */
510 static std::string generateFilename(char const *prototype,
511 char const *imageName) {
512 std::string res;
514 for (int i = 0; prototype[i] != char(0); i++) {
515 char ch = prototype[i];
517 if (ch == '%') {
518 i++;
519 if (prototype[i] == char(0))
520 break;
522 switch (prototype[i]) {
523 case 't': // Insert time and date
525 char date[26];
526 getTime(date, sizeof(date), true);
527 res += date;
528 } break;
529 case 'e': // Insert executable name
530 res += imageName;
531 break;
532 case 'p': // Insert pid
534 std::stringstream ss;
535 ss << getpid();
536 res += ss.str();
537 } break;
538 default:
539 res += prototype[i];
540 break;
542 } else
543 res += ch;
545 return res;
548 // init() is called very near the beginning of execution time in the constructor
549 // of __kmp_stats_global_output
550 void kmp_stats_output_module::init() {
552 char *statsFileName = getenv("KMP_STATS_FILE");
553 eventsFileName = getenv("KMP_STATS_EVENTS_FILE");
554 plotFileName = getenv("KMP_STATS_PLOT_FILE");
555 char *threadStats = getenv("KMP_STATS_THREADS");
556 char *threadEvents = getenv("KMP_STATS_EVENTS");
558 // set the stats output filenames based on environment variables and defaults
559 if (statsFileName) {
560 char imageName[1024];
561 // Process any escapes (e.g., %p, %e, %t) in the name
562 outputFileName = generateFilename(
563 statsFileName, getImageName(&imageName[0], sizeof(imageName)));
565 eventsFileName = eventsFileName ? eventsFileName : "events.dat";
566 plotFileName = plotFileName ? plotFileName : "events.plt";
568 // set the flags based on environment variables matching: true, on, 1, .true.
569 // , .t. , yes
570 printPerThreadFlag = __kmp_str_match_true(threadStats);
571 printPerThreadEventsFlag = __kmp_str_match_true(threadEvents);
573 if (printPerThreadEventsFlag) {
574 // assigns a color to each timer for printing
575 setupEventColors();
576 } else {
577 // will clear flag so that no event will be logged
578 timeStat::clearEventFlags();
582 void kmp_stats_output_module::setupEventColors() {
583 int i;
584 int globalColorIndex = 0;
585 int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
586 for (i = 0; i < TIMER_LAST; i++) {
587 if (timeStat::logEvent((timer_e)i)) {
588 timerColorInfo[i] = globalColorArray[globalColorIndex];
589 globalColorIndex = (globalColorIndex + 1) % numGlobalColors;
594 void kmp_stats_output_module::printTimerStats(FILE *statsOut,
595 statistic const *theStats,
596 statistic const *totalStats) {
597 fprintf(statsOut,
598 "Timer, SampleCount, Min, "
599 "Mean, Max, Total, SD\n");
600 for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
601 statistic const *stat = &theStats[s];
602 char tag = timeStat::noUnits(s) ? ' ' : 'T';
604 fprintf(statsOut, "%-35s, %s\n", timeStat::name(s),
605 stat->format(tag, true).c_str());
607 // Also print the Total_ versions of times.
608 for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
609 char tag = timeStat::noUnits(s) ? ' ' : 'T';
610 if (totalStats && !timeStat::noTotal(s))
611 fprintf(statsOut, "Total_%-29s, %s\n", timeStat::name(s),
612 totalStats[s].format(tag, true).c_str());
615 // Print histogram of statistics
616 if (theStats[0].haveHist()) {
617 fprintf(statsOut, "\nTimer distributions\n");
618 for (int s = 0; s < TIMER_LAST; s++) {
619 statistic const *stat = &theStats[s];
621 if (stat->getCount() != 0) {
622 char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';
624 fprintf(statsOut, "%s\n", timeStat::name(timer_e(s)));
625 fprintf(statsOut, "%s\n", stat->getHist()->format(tag).c_str());
631 void kmp_stats_output_module::printCounterStats(FILE *statsOut,
632 statistic const *theStats) {
633 fprintf(statsOut, "Counter, ThreadCount, Min, Mean, "
634 " Max, Total, SD\n");
635 for (int s = 0; s < COUNTER_LAST; s++) {
636 statistic const *stat = &theStats[s];
637 fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(s)),
638 stat->format(' ', true).c_str());
640 // Print histogram of counters
641 if (theStats[0].haveHist()) {
642 fprintf(statsOut, "\nCounter distributions\n");
643 for (int s = 0; s < COUNTER_LAST; s++) {
644 statistic const *stat = &theStats[s];
646 if (stat->getCount() != 0) {
647 fprintf(statsOut, "%s\n", counter::name(counter_e(s)));
648 fprintf(statsOut, "%s\n", stat->getHist()->format(' ').c_str());
654 void kmp_stats_output_module::printCounters(FILE *statsOut,
655 counter const *theCounters) {
656 // We print all the counters even if they are zero.
657 // That makes it easier to slice them into a spreadsheet if you need to.
658 fprintf(statsOut, "\nCounter, Count\n");
659 for (int c = 0; c < COUNTER_LAST; c++) {
660 counter const *stat = &theCounters[c];
661 fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(c)),
662 formatSI((double)stat->getValue(), 9, ' ').c_str());
666 void kmp_stats_output_module::printEvents(FILE *eventsOut,
667 kmp_stats_event_vector *theEvents,
668 int gtid) {
669 // sort by start time before printing
670 theEvents->sort();
671 for (int i = 0; i < theEvents->size(); i++) {
672 kmp_stats_event ev = theEvents->at(i);
673 rgb_color color = getEventColor(ev.getTimerName());
674 fprintf(eventsOut, "%d %llu %llu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n", gtid,
675 static_cast<unsigned long long>(ev.getStart()),
676 static_cast<unsigned long long>(ev.getStop()),
677 1.2 - (ev.getNestLevel() * 0.2), color.r, color.g, color.b,
678 timeStat::name(ev.getTimerName()));
680 return;
683 void kmp_stats_output_module::windupExplicitTimers() {
684 // Wind up any explicit timers. We assume that it's fair at this point to just
685 // walk all the explicit timers in all threads and say "it's over".
686 // If the timer wasn't running, this won't record anything anyway.
687 kmp_stats_list::iterator it;
688 for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
689 kmp_stats_list *ptr = *it;
690 ptr->getPartitionedTimers()->windup();
691 ptr->endLife();
695 void kmp_stats_output_module::printPloticusFile() {
696 int i;
697 int size = __kmp_stats_list->size();
698 kmp_safe_raii_file_t plotOut(plotFileName, "w+");
699 fprintf(plotOut, "#proc page\n"
700 " pagesize: 15 10\n"
701 " scale: 1.0\n\n");
703 fprintf(plotOut,
704 "#proc getdata\n"
705 " file: %s\n\n",
706 eventsFileName);
708 fprintf(plotOut,
709 "#proc areadef\n"
710 " title: OpenMP Sampling Timeline\n"
711 " titledetails: align=center size=16\n"
712 " rectangle: 1 1 13 9\n"
713 " xautorange: datafield=2,3\n"
714 " yautorange: -1 %d\n\n",
715 size);
717 fprintf(plotOut, "#proc xaxis\n"
718 " stubs: inc\n"
719 " stubdetails: size=12\n"
720 " label: Time (ticks)\n"
721 " labeldetails: size=14\n\n");
723 fprintf(plotOut,
724 "#proc yaxis\n"
725 " stubs: inc 1\n"
726 " stubrange: 0 %d\n"
727 " stubdetails: size=12\n"
728 " label: Thread #\n"
729 " labeldetails: size=14\n\n",
730 size - 1);
732 fprintf(plotOut, "#proc bars\n"
733 " exactcolorfield: 5\n"
734 " axis: x\n"
735 " locfield: 1\n"
736 " segmentfields: 2 3\n"
737 " barwidthfield: 4\n\n");
739 // create legend entries corresponding to the timer color
740 for (i = 0; i < TIMER_LAST; i++) {
741 if (timeStat::logEvent((timer_e)i)) {
742 rgb_color c = getEventColor((timer_e)i);
743 fprintf(plotOut,
744 "#proc legendentry\n"
745 " sampletype: color\n"
746 " label: %s\n"
747 " details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
748 timeStat::name((timer_e)i), c.r, c.g, c.b);
752 fprintf(plotOut, "#proc legend\n"
753 " format: down\n"
754 " location: max max\n\n");
755 return;
758 static void outputEnvVariable(FILE *statsOut, char const *name) {
759 char const *value = getenv(name);
760 fprintf(statsOut, "# %s = %s\n", name, value ? value : "*unspecified*");
763 /* Print some useful information about
764 * the date and time this experiment ran.
765 * the machine on which it ran.
766 We output all of this as stylised comments, though we may decide to parse
767 some of it. */
768 void kmp_stats_output_module::printHeaderInfo(FILE *statsOut) {
769 std::time_t now = std::time(0);
770 char buffer[40];
771 char hostName[80];
773 std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
774 fprintf(statsOut, "# Time of run: %s\n", &buffer[0]);
775 if (gethostname(&hostName[0], sizeof(hostName)) == 0)
776 fprintf(statsOut, "# Hostname: %s\n", &hostName[0]);
777 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
778 fprintf(statsOut, "# CPU: %s\n", &__kmp_cpuinfo.name[0]);
779 fprintf(statsOut, "# Family: %d, Model: %d, Stepping: %d\n",
780 __kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
781 if (__kmp_cpuinfo.frequency == 0)
782 fprintf(statsOut, "# Nominal frequency: Unknown\n");
783 else
784 fprintf(statsOut, "# Nominal frequency: %sz\n",
785 formatSI(double(__kmp_cpuinfo.frequency), 9, 'H').c_str());
786 outputEnvVariable(statsOut, "KMP_HW_SUBSET");
787 outputEnvVariable(statsOut, "KMP_AFFINITY");
788 outputEnvVariable(statsOut, "KMP_BLOCKTIME");
789 outputEnvVariable(statsOut, "KMP_LIBRARY");
790 fprintf(statsOut, "# Production runtime built " __DATE__ " " __TIME__ "\n");
791 #endif
794 void kmp_stats_output_module::outputStats(const char *heading) {
795 // Stop all the explicit timers in all threads
796 // Do this before declaring the local statistics because thay have
797 // constructors so will take time to create.
798 windupExplicitTimers();
800 statistic allStats[TIMER_LAST];
801 statistic totalStats[TIMER_LAST]; /* Synthesized, cross threads versions of
802 normal timer stats */
803 statistic allCounters[COUNTER_LAST];
805 kmp_safe_raii_file_t statsOut;
806 if (!outputFileName.empty()) {
807 statsOut.open(outputFileName.c_str(), "a+");
808 } else {
809 statsOut.set_stderr();
812 kmp_safe_raii_file_t eventsOut;
813 if (eventPrintingEnabled()) {
814 eventsOut.open(eventsFileName, "w+");
817 printHeaderInfo(statsOut);
818 fprintf(statsOut, "%s\n", heading);
819 // Accumulate across threads.
820 kmp_stats_list::iterator it;
821 for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
822 int t = (*it)->getGtid();
823 // Output per thread stats if requested.
824 if (printPerThreadFlag) {
825 fprintf(statsOut, "Thread %d\n", t);
826 printTimerStats(statsOut, (*it)->getTimers(), 0);
827 printCounters(statsOut, (*it)->getCounters());
828 fprintf(statsOut, "\n");
830 // Output per thread events if requested.
831 if (eventPrintingEnabled()) {
832 kmp_stats_event_vector events = (*it)->getEventVector();
833 printEvents(eventsOut, &events, t);
836 // Accumulate timers.
837 for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
838 // See if we should ignore this timer when aggregating
839 if ((timeStat::masterOnly(s) && (t != 0)) || // Timer only valid on
840 // primary thread and this thread is worker
841 (timeStat::workerOnly(s) && (t == 0)) // Timer only valid on worker
842 // and this thread is the primary thread
844 continue;
847 statistic *threadStat = (*it)->getTimer(s);
848 allStats[s] += *threadStat;
850 // Add Total stats for timers that are valid in more than one thread
851 if (!timeStat::noTotal(s))
852 totalStats[s].addSample(threadStat->getTotal());
855 // Accumulate counters.
856 for (counter_e c = counter_e(0); c < COUNTER_LAST; c = counter_e(c + 1)) {
857 if (counter::masterOnly(c) && t != 0)
858 continue;
859 allCounters[c].addSample((double)(*it)->getCounter(c)->getValue());
863 if (eventPrintingEnabled()) {
864 printPloticusFile();
867 fprintf(statsOut, "Aggregate for all threads\n");
868 printTimerStats(statsOut, &allStats[0], &totalStats[0]);
869 fprintf(statsOut, "\n");
870 printCounterStats(statsOut, &allCounters[0]);
873 /* ************* exported C functions ************** */
875 // no name mangling for these functions, we want the c files to be able to get
876 // at these functions
877 extern "C" {
879 void __kmp_reset_stats() {
880 kmp_stats_list::iterator it;
881 for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
882 timeStat *timers = (*it)->getTimers();
883 counter *counters = (*it)->getCounters();
885 for (int t = 0; t < TIMER_LAST; t++)
886 timers[t].reset();
888 for (int c = 0; c < COUNTER_LAST; c++)
889 counters[c].reset();
891 // reset the event vector so all previous events are "erased"
892 (*it)->resetEventVector();
896 // This function will reset all stats and stop all threads' explicit timers if
897 // they haven't been stopped already.
898 void __kmp_output_stats(const char *heading) {
899 __kmp_stats_global_output->outputStats(heading);
900 __kmp_reset_stats();
903 void __kmp_accumulate_stats_at_exit(void) {
904 // Only do this once.
905 if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
906 return;
908 __kmp_output_stats("Statistics on exit");
911 void __kmp_stats_init(void) {
912 __kmp_init_tas_lock(&__kmp_stats_lock);
913 __kmp_stats_start_time = tsc_tick_count::now();
914 __kmp_stats_global_output = new kmp_stats_output_module();
915 __kmp_stats_list = new kmp_stats_list();
918 void __kmp_stats_fini(void) {
919 __kmp_accumulate_stats_at_exit();
920 __kmp_stats_list->deallocate();
921 delete __kmp_stats_global_output;
922 delete __kmp_stats_list;
925 } // extern "C"