2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
21 #include "ompt-specific.h"
24 #if ENABLE_LIBOMPTARGET
25 static void (*tgt_target_nowait_query
)(void **);
27 void __kmp_init_target_task() {
28 *(void **)(&tgt_target_nowait_query
) = KMP_DLSYM("__tgt_target_nowait_query");
32 /* forward declaration */
33 static void __kmp_enable_tasking(kmp_task_team_t
*task_team
,
34 kmp_info_t
*this_thr
);
35 static void __kmp_alloc_task_deque(kmp_info_t
*thread
,
36 kmp_thread_data_t
*thread_data
);
37 static int __kmp_realloc_task_threads_data(kmp_info_t
*thread
,
38 kmp_task_team_t
*task_team
);
39 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid
, kmp_task_t
*ptask
);
41 static kmp_tdg_info_t
*__kmp_find_tdg(kmp_int32 tdg_id
);
42 int __kmp_taskloop_task(int gtid
, void *ptask
);
45 #ifdef BUILD_TIED_TASK_STACK
47 // __kmp_trace_task_stack: print the tied tasks from the task stack in order
50 // gtid: global thread identifier for thread containing stack
51 // thread_data: thread data for task team thread containing stack
52 // threshold: value above which the trace statement triggers
53 // location: string identifying call site of this function (for trace)
54 static void __kmp_trace_task_stack(kmp_int32 gtid
,
55 kmp_thread_data_t
*thread_data
,
56 int threshold
, char *location
) {
57 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
58 kmp_taskdata_t
**stack_top
= task_stack
->ts_top
;
59 kmp_int32 entries
= task_stack
->ts_entries
;
60 kmp_taskdata_t
*tied_task
;
64 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
65 "first_block = %p, stack_top = %p \n",
66 location
, gtid
, entries
, task_stack
->ts_first_block
, stack_top
));
68 KMP_DEBUG_ASSERT(stack_top
!= NULL
);
69 KMP_DEBUG_ASSERT(entries
> 0);
71 while (entries
!= 0) {
72 KMP_DEBUG_ASSERT(stack_top
!= &task_stack
->ts_first_block
.sb_block
[0]);
73 // fix up ts_top if we need to pop from previous block
74 if (entries
& TASK_STACK_INDEX_MASK
== 0) {
75 kmp_stack_block_t
*stack_block
= (kmp_stack_block_t
*)(stack_top
);
77 stack_block
= stack_block
->sb_prev
;
78 stack_top
= &stack_block
->sb_block
[TASK_STACK_BLOCK_SIZE
];
85 tied_task
= *stack_top
;
87 KMP_DEBUG_ASSERT(tied_task
!= NULL
);
88 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
91 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, "
92 "stack_top=%p, tied_task=%p\n",
93 location
, gtid
, entries
, stack_top
, tied_task
));
95 KMP_DEBUG_ASSERT(stack_top
== &task_stack
->ts_first_block
.sb_block
[0]);
98 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
102 // __kmp_init_task_stack: initialize the task stack for the first time
103 // after a thread_data structure is created.
104 // It should not be necessary to do this again (assuming the stack works).
106 // gtid: global thread identifier of calling thread
107 // thread_data: thread data for task team thread containing stack
108 static void __kmp_init_task_stack(kmp_int32 gtid
,
109 kmp_thread_data_t
*thread_data
) {
110 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
111 kmp_stack_block_t
*first_block
;
113 // set up the first block of the stack
114 first_block
= &task_stack
->ts_first_block
;
115 task_stack
->ts_top
= (kmp_taskdata_t
**)first_block
;
116 memset((void *)first_block
, '\0',
117 TASK_STACK_BLOCK_SIZE
* sizeof(kmp_taskdata_t
*));
119 // initialize the stack to be empty
120 task_stack
->ts_entries
= TASK_STACK_EMPTY
;
121 first_block
->sb_next
= NULL
;
122 first_block
->sb_prev
= NULL
;
125 // __kmp_free_task_stack: free the task stack when thread_data is destroyed.
127 // gtid: global thread identifier for calling thread
128 // thread_data: thread info for thread containing stack
129 static void __kmp_free_task_stack(kmp_int32 gtid
,
130 kmp_thread_data_t
*thread_data
) {
131 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
132 kmp_stack_block_t
*stack_block
= &task_stack
->ts_first_block
;
134 KMP_DEBUG_ASSERT(task_stack
->ts_entries
== TASK_STACK_EMPTY
);
135 // free from the second block of the stack
136 while (stack_block
!= NULL
) {
137 kmp_stack_block_t
*next_block
= (stack_block
) ? stack_block
->sb_next
: NULL
;
139 stack_block
->sb_next
= NULL
;
140 stack_block
->sb_prev
= NULL
;
141 if (stack_block
!= &task_stack
->ts_first_block
) {
142 __kmp_thread_free(thread
,
143 stack_block
); // free the block, if not the first
145 stack_block
= next_block
;
147 // initialize the stack to be empty
148 task_stack
->ts_entries
= 0;
149 task_stack
->ts_top
= NULL
;
152 // __kmp_push_task_stack: Push the tied task onto the task stack.
153 // Grow the stack if necessary by allocating another block.
155 // gtid: global thread identifier for calling thread
156 // thread: thread info for thread containing stack
157 // tied_task: the task to push on the stack
158 static void __kmp_push_task_stack(kmp_int32 gtid
, kmp_info_t
*thread
,
159 kmp_taskdata_t
*tied_task
) {
160 // GEH - need to consider what to do if tt_threads_data not allocated yet
161 kmp_thread_data_t
*thread_data
=
162 &thread
->th
.th_task_team
->tt
.tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
163 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
165 if (tied_task
->td_flags
.team_serial
|| tied_task
->td_flags
.tasking_ser
) {
166 return; // Don't push anything on stack if team or team tasks are serialized
169 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
170 KMP_DEBUG_ASSERT(task_stack
->ts_top
!= NULL
);
173 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
174 gtid
, thread
, tied_task
));
176 *(task_stack
->ts_top
) = tied_task
;
178 // Do bookkeeping for next push
179 task_stack
->ts_top
++;
180 task_stack
->ts_entries
++;
182 if (task_stack
->ts_entries
& TASK_STACK_INDEX_MASK
== 0) {
183 // Find beginning of this task block
184 kmp_stack_block_t
*stack_block
=
185 (kmp_stack_block_t
*)(task_stack
->ts_top
- TASK_STACK_BLOCK_SIZE
);
187 // Check if we already have a block
188 if (stack_block
->sb_next
!=
189 NULL
) { // reset ts_top to beginning of next block
190 task_stack
->ts_top
= &stack_block
->sb_next
->sb_block
[0];
191 } else { // Alloc new block and link it up
192 kmp_stack_block_t
*new_block
= (kmp_stack_block_t
*)__kmp_thread_calloc(
193 thread
, sizeof(kmp_stack_block_t
));
195 task_stack
->ts_top
= &new_block
->sb_block
[0];
196 stack_block
->sb_next
= new_block
;
197 new_block
->sb_prev
= stack_block
;
198 new_block
->sb_next
= NULL
;
202 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
203 gtid
, tied_task
, new_block
));
206 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid
,
210 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return
211 // the task, just check to make sure it matches the ending task passed in.
213 // gtid: global thread identifier for the calling thread
214 // thread: thread info structure containing stack
215 // tied_task: the task popped off the stack
216 // ending_task: the task that is ending (should match popped task)
217 static void __kmp_pop_task_stack(kmp_int32 gtid
, kmp_info_t
*thread
,
218 kmp_taskdata_t
*ending_task
) {
219 // GEH - need to consider what to do if tt_threads_data not allocated yet
220 kmp_thread_data_t
*thread_data
=
221 &thread
->th
.th_task_team
->tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
222 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
223 kmp_taskdata_t
*tied_task
;
225 if (ending_task
->td_flags
.team_serial
|| ending_task
->td_flags
.tasking_ser
) {
226 // Don't pop anything from stack if team or team tasks are serialized
230 KMP_DEBUG_ASSERT(task_stack
->ts_top
!= NULL
);
231 KMP_DEBUG_ASSERT(task_stack
->ts_entries
> 0);
233 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid
,
236 // fix up ts_top if we need to pop from previous block
237 if (task_stack
->ts_entries
& TASK_STACK_INDEX_MASK
== 0) {
238 kmp_stack_block_t
*stack_block
= (kmp_stack_block_t
*)(task_stack
->ts_top
);
240 stack_block
= stack_block
->sb_prev
;
241 task_stack
->ts_top
= &stack_block
->sb_block
[TASK_STACK_BLOCK_SIZE
];
244 // finish bookkeeping
245 task_stack
->ts_top
--;
246 task_stack
->ts_entries
--;
248 tied_task
= *(task_stack
->ts_top
);
250 KMP_DEBUG_ASSERT(tied_task
!= NULL
);
251 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
252 KMP_DEBUG_ASSERT(tied_task
== ending_task
); // If we built the stack correctly
254 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid
,
258 #endif /* BUILD_TIED_TASK_STACK */
260 // returns 1 if new task is allowed to execute, 0 otherwise
261 // checks Task Scheduling constraint (if requested) and
262 // mutexinoutset dependencies if any
263 static bool __kmp_task_is_allowed(int gtid
, const kmp_int32 is_constrained
,
264 const kmp_taskdata_t
*tasknew
,
265 const kmp_taskdata_t
*taskcurr
) {
266 if (is_constrained
&& (tasknew
->td_flags
.tiedness
== TASK_TIED
)) {
267 // Check if the candidate obeys the Task Scheduling Constraints (TSC)
268 // only descendant of all deferred tied tasks can be scheduled, checking
269 // the last one is enough, as it in turn is the descendant of all others
270 kmp_taskdata_t
*current
= taskcurr
->td_last_tied
;
271 KMP_DEBUG_ASSERT(current
!= NULL
);
272 // check if the task is not suspended on barrier
273 if (current
->td_flags
.tasktype
== TASK_EXPLICIT
||
274 current
->td_taskwait_thread
> 0) { // <= 0 on barrier
275 kmp_int32 level
= current
->td_level
;
276 kmp_taskdata_t
*parent
= tasknew
->td_parent
;
277 while (parent
!= current
&& parent
->td_level
> level
) {
278 // check generation up to the level of the current task
279 parent
= parent
->td_parent
;
280 KMP_DEBUG_ASSERT(parent
!= NULL
);
282 if (parent
!= current
)
286 // Check mutexinoutset dependencies, acquire locks
287 kmp_depnode_t
*node
= tasknew
->td_depnode
;
289 if (!tasknew
->is_taskgraph
&& UNLIKELY(node
&& (node
->dn
.mtx_num_locks
> 0))) {
291 if (UNLIKELY(node
&& (node
->dn
.mtx_num_locks
> 0))) {
293 for (int i
= 0; i
< node
->dn
.mtx_num_locks
; ++i
) {
294 KMP_DEBUG_ASSERT(node
->dn
.mtx_locks
[i
] != NULL
);
295 if (__kmp_test_lock(node
->dn
.mtx_locks
[i
], gtid
))
297 // could not get the lock, release previous locks
298 for (int j
= i
- 1; j
>= 0; --j
)
299 __kmp_release_lock(node
->dn
.mtx_locks
[j
], gtid
);
302 // negative num_locks means all locks acquired successfully
303 node
->dn
.mtx_num_locks
= -node
->dn
.mtx_num_locks
;
308 // __kmp_realloc_task_deque:
309 // Re-allocates a task deque for a particular thread, copies the content from
310 // the old deque and adjusts the necessary data structures relating to the
311 // deque. This operation must be done with the deque_lock being held
312 static void __kmp_realloc_task_deque(kmp_info_t
*thread
,
313 kmp_thread_data_t
*thread_data
) {
314 kmp_int32 size
= TASK_DEQUE_SIZE(thread_data
->td
);
315 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) == size
);
316 kmp_int32 new_size
= 2 * size
;
318 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
319 "%d] for thread_data %p\n",
320 __kmp_gtid_from_thread(thread
), size
, new_size
, thread_data
));
322 kmp_taskdata_t
**new_deque
=
323 (kmp_taskdata_t
**)__kmp_allocate(new_size
* sizeof(kmp_taskdata_t
*));
326 for (i
= thread_data
->td
.td_deque_head
, j
= 0; j
< size
;
327 i
= (i
+ 1) & TASK_DEQUE_MASK(thread_data
->td
), j
++)
328 new_deque
[j
] = thread_data
->td
.td_deque
[i
];
330 __kmp_free(thread_data
->td
.td_deque
);
332 thread_data
->td
.td_deque_head
= 0;
333 thread_data
->td
.td_deque_tail
= size
;
334 thread_data
->td
.td_deque
= new_deque
;
335 thread_data
->td
.td_deque_size
= new_size
;
338 static kmp_task_pri_t
*__kmp_alloc_task_pri_list() {
339 kmp_task_pri_t
*l
= (kmp_task_pri_t
*)__kmp_allocate(sizeof(kmp_task_pri_t
));
340 kmp_thread_data_t
*thread_data
= &l
->td
;
341 __kmp_init_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
342 thread_data
->td
.td_deque_last_stolen
= -1;
343 KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] "
344 "for thread_data %p\n",
345 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE
, thread_data
));
346 thread_data
->td
.td_deque
= (kmp_taskdata_t
**)__kmp_allocate(
347 INITIAL_TASK_DEQUE_SIZE
* sizeof(kmp_taskdata_t
*));
348 thread_data
->td
.td_deque_size
= INITIAL_TASK_DEQUE_SIZE
;
352 // The function finds the deque of priority tasks with given priority, or
353 // allocates a new deque and put it into sorted (high -> low) list of deques.
354 // Deques of non-default priority tasks are shared between all threads in team,
355 // as opposed to per-thread deques of tasks with default priority.
356 // The function is called under the lock task_team->tt.tt_task_pri_lock.
357 static kmp_thread_data_t
*
358 __kmp_get_priority_deque_data(kmp_task_team_t
*task_team
, kmp_int32 pri
) {
359 kmp_thread_data_t
*thread_data
;
360 kmp_task_pri_t
*lst
= task_team
->tt
.tt_task_pri_list
;
361 if (lst
->priority
== pri
) {
362 // Found queue of tasks with given priority.
363 thread_data
= &lst
->td
;
364 } else if (lst
->priority
< pri
) {
365 // All current priority queues contain tasks with lower priority.
366 // Allocate new one for given priority tasks.
367 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
368 thread_data
= &list
->td
;
369 list
->priority
= pri
;
371 task_team
->tt
.tt_task_pri_list
= list
;
372 } else { // task_team->tt.tt_task_pri_list->priority > pri
373 kmp_task_pri_t
*next_queue
= lst
->next
;
374 while (next_queue
&& next_queue
->priority
> pri
) {
376 next_queue
= lst
->next
;
378 // lst->priority > pri && (next == NULL || pri >= next->priority)
379 if (next_queue
== NULL
) {
380 // No queue with pri priority, need to allocate new one.
381 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
382 thread_data
= &list
->td
;
383 list
->priority
= pri
;
386 } else if (next_queue
->priority
== pri
) {
387 // Found queue of tasks with given priority.
388 thread_data
= &next_queue
->td
;
389 } else { // lst->priority > pri > next->priority
390 // insert newly allocated between existed queues
391 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
392 thread_data
= &list
->td
;
393 list
->priority
= pri
;
394 list
->next
= next_queue
;
401 // __kmp_push_priority_task: Add a task to the team's priority task deque
402 static kmp_int32
__kmp_push_priority_task(kmp_int32 gtid
, kmp_info_t
*thread
,
403 kmp_taskdata_t
*taskdata
,
404 kmp_task_team_t
*task_team
,
406 kmp_thread_data_t
*thread_data
= NULL
;
408 ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n",
409 gtid
, taskdata
, pri
));
411 // Find task queue specific to priority value
412 kmp_task_pri_t
*lst
= task_team
->tt
.tt_task_pri_list
;
413 if (UNLIKELY(lst
== NULL
)) {
414 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
415 if (task_team
->tt
.tt_task_pri_list
== NULL
) {
416 // List of queues is still empty, allocate one.
417 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
418 thread_data
= &list
->td
;
419 list
->priority
= pri
;
421 task_team
->tt
.tt_task_pri_list
= list
;
423 // Other thread initialized a queue. Check if it fits and get thread_data.
424 thread_data
= __kmp_get_priority_deque_data(task_team
, pri
);
426 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
428 if (lst
->priority
== pri
) {
429 // Found queue of tasks with given priority.
430 thread_data
= &lst
->td
;
432 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
433 thread_data
= __kmp_get_priority_deque_data(task_team
, pri
);
434 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
437 KMP_DEBUG_ASSERT(thread_data
);
439 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
440 // Check if deque is full
441 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
442 TASK_DEQUE_SIZE(thread_data
->td
)) {
443 if (__kmp_enable_task_throttling
&&
444 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
445 thread
->th
.th_current_task
)) {
446 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
447 KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning "
448 "TASK_NOT_PUSHED for task %p\n",
450 return TASK_NOT_PUSHED
;
452 // expand deque to push the task which is not allowed to execute
453 __kmp_realloc_task_deque(thread
, thread_data
);
456 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) <
457 TASK_DEQUE_SIZE(thread_data
->td
));
459 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] = taskdata
;
461 thread_data
->td
.td_deque_tail
=
462 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
463 TCW_4(thread_data
->td
.td_deque_ntasks
,
464 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1); // Adjust task count
465 KMP_FSYNC_RELEASING(thread
->th
.th_current_task
); // releasing self
466 KMP_FSYNC_RELEASING(taskdata
); // releasing child
467 KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning "
468 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n",
469 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
470 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
471 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
472 task_team
->tt
.tt_num_task_pri
++; // atomic inc
473 return TASK_SUCCESSFULLY_PUSHED
;
476 // __kmp_push_task: Add a task to the thread's deque
477 static kmp_int32
__kmp_push_task(kmp_int32 gtid
, kmp_task_t
*task
) {
478 kmp_info_t
*thread
= __kmp_threads
[gtid
];
479 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
481 // If we encounter a hidden helper task, and the current thread is not a
482 // hidden helper thread, we have to give the task to any hidden helper thread
483 // starting from its shadow one.
484 if (UNLIKELY(taskdata
->td_flags
.hidden_helper
&&
485 !KMP_HIDDEN_HELPER_THREAD(gtid
))) {
486 kmp_int32 shadow_gtid
= KMP_GTID_TO_SHADOW_GTID(gtid
);
487 __kmpc_give_task(task
, __kmp_tid_from_gtid(shadow_gtid
));
488 // Signal the hidden helper threads.
489 __kmp_hidden_helper_worker_thread_signal();
490 return TASK_SUCCESSFULLY_PUSHED
;
493 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
494 kmp_int32 tid
= __kmp_tid_from_gtid(gtid
);
495 kmp_thread_data_t
*thread_data
;
498 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid
, taskdata
));
500 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
501 // untied task needs to increment counter so that the task structure is not
503 kmp_int32 counter
= 1 + KMP_ATOMIC_INC(&taskdata
->td_untied_count
);
504 KMP_DEBUG_USE_VAR(counter
);
507 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
508 gtid
, counter
, taskdata
));
511 // The first check avoids building task_team thread data if serialized
512 if (UNLIKELY(taskdata
->td_flags
.task_serial
)) {
513 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
514 "TASK_NOT_PUSHED for task %p\n",
516 return TASK_NOT_PUSHED
;
519 // Now that serialized tasks have returned, we can assume that we are not in
520 // immediate exec mode
521 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
522 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team
))) {
523 __kmp_enable_tasking(task_team
, thread
);
525 KMP_DEBUG_ASSERT(TCR_4(task_team
->tt
.tt_found_tasks
) == TRUE
);
526 KMP_DEBUG_ASSERT(TCR_PTR(task_team
->tt
.tt_threads_data
) != NULL
);
528 if (taskdata
->td_flags
.priority_specified
&& task
->data2
.priority
> 0 &&
529 __kmp_max_task_priority
> 0) {
530 int pri
= KMP_MIN(task
->data2
.priority
, __kmp_max_task_priority
);
531 return __kmp_push_priority_task(gtid
, thread
, taskdata
, task_team
, pri
);
534 // Find tasking deque specific to encountering thread
535 thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
537 // No lock needed since only owner can allocate. If the task is hidden_helper,
538 // we don't need it either because we have initialized the dequeue for hidden
539 // helper thread data.
540 if (UNLIKELY(thread_data
->td
.td_deque
== NULL
)) {
541 __kmp_alloc_task_deque(thread
, thread_data
);
545 // Check if deque is full
546 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
547 TASK_DEQUE_SIZE(thread_data
->td
)) {
548 if (__kmp_enable_task_throttling
&&
549 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
550 thread
->th
.th_current_task
)) {
551 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
552 "TASK_NOT_PUSHED for task %p\n",
554 return TASK_NOT_PUSHED
;
556 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
558 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
559 TASK_DEQUE_SIZE(thread_data
->td
)) {
560 // expand deque to push the task which is not allowed to execute
561 __kmp_realloc_task_deque(thread
, thread_data
);
565 // Lock the deque for the task push operation
567 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
568 // Need to recheck as we can get a proxy task from thread outside of OpenMP
569 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
570 TASK_DEQUE_SIZE(thread_data
->td
)) {
571 if (__kmp_enable_task_throttling
&&
572 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
573 thread
->th
.th_current_task
)) {
574 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
575 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
576 "returning TASK_NOT_PUSHED for task %p\n",
578 return TASK_NOT_PUSHED
;
580 // expand deque to push the task which is not allowed to execute
581 __kmp_realloc_task_deque(thread
, thread_data
);
585 // Must have room since no thread can add tasks but calling thread
586 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) <
587 TASK_DEQUE_SIZE(thread_data
->td
));
589 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] =
590 taskdata
; // Push taskdata
592 thread_data
->td
.td_deque_tail
=
593 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
594 TCW_4(thread_data
->td
.td_deque_ntasks
,
595 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1); // Adjust task count
596 KMP_FSYNC_RELEASING(thread
->th
.th_current_task
); // releasing self
597 KMP_FSYNC_RELEASING(taskdata
); // releasing child
598 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
599 "task=%p ntasks=%d head=%u tail=%u\n",
600 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
601 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
603 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
605 return TASK_SUCCESSFULLY_PUSHED
;
608 // __kmp_pop_current_task_from_thread: set up current task from called thread
611 // this_thr: thread structure to set current_task in.
612 void __kmp_pop_current_task_from_thread(kmp_info_t
*this_thr
) {
613 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
614 "this_thread=%p, curtask=%p, "
615 "curtask_parent=%p\n",
616 0, this_thr
, this_thr
->th
.th_current_task
,
617 this_thr
->th
.th_current_task
->td_parent
));
619 this_thr
->th
.th_current_task
= this_thr
->th
.th_current_task
->td_parent
;
621 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
622 "this_thread=%p, curtask=%p, "
623 "curtask_parent=%p\n",
624 0, this_thr
, this_thr
->th
.th_current_task
,
625 this_thr
->th
.th_current_task
->td_parent
));
628 // __kmp_push_current_task_to_thread: set up current task in called thread for a
631 // this_thr: thread structure to set up
632 // team: team for implicit task data
633 // tid: thread within team to set up
634 void __kmp_push_current_task_to_thread(kmp_info_t
*this_thr
, kmp_team_t
*team
,
636 // current task of the thread is a parent of the new just created implicit
638 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
641 tid
, this_thr
, this_thr
->th
.th_current_task
,
642 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
));
644 KMP_DEBUG_ASSERT(this_thr
!= NULL
);
647 if (this_thr
->th
.th_current_task
!= &team
->t
.t_implicit_task_taskdata
[0]) {
648 team
->t
.t_implicit_task_taskdata
[0].td_parent
=
649 this_thr
->th
.th_current_task
;
650 this_thr
->th
.th_current_task
= &team
->t
.t_implicit_task_taskdata
[0];
653 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
=
654 team
->t
.t_implicit_task_taskdata
[0].td_parent
;
655 this_thr
->th
.th_current_task
= &team
->t
.t_implicit_task_taskdata
[tid
];
658 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
661 tid
, this_thr
, this_thr
->th
.th_current_task
,
662 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
));
665 // __kmp_task_start: bookkeeping for a task starting execution
667 // GTID: global thread id of calling thread
668 // task: task starting execution
669 // current_task: task suspending
670 static void __kmp_task_start(kmp_int32 gtid
, kmp_task_t
*task
,
671 kmp_taskdata_t
*current_task
) {
672 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
673 kmp_info_t
*thread
= __kmp_threads
[gtid
];
676 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
677 gtid
, taskdata
, current_task
));
679 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
681 // mark currently executing task as suspended
682 // TODO: GEH - make sure root team implicit task is initialized properly.
683 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
684 current_task
->td_flags
.executing
= 0;
686 // Add task to stack if tied
687 #ifdef BUILD_TIED_TASK_STACK
688 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
689 __kmp_push_task_stack(gtid
, thread
, taskdata
);
691 #endif /* BUILD_TIED_TASK_STACK */
693 // mark starting task as executing and as current task
694 thread
->th
.th_current_task
= taskdata
;
696 KMP_DEBUG_ASSERT(taskdata
->td_flags
.started
== 0 ||
697 taskdata
->td_flags
.tiedness
== TASK_UNTIED
);
698 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 0 ||
699 taskdata
->td_flags
.tiedness
== TASK_UNTIED
);
700 taskdata
->td_flags
.started
= 1;
701 taskdata
->td_flags
.executing
= 1;
702 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
703 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
705 // GEH TODO: shouldn't we pass some sort of location identifier here?
706 // APT: yes, we will pass location here.
707 // need to store current thread state (in a thread or taskdata structure)
708 // before setting work_state, otherwise wrong state is set after end of task
710 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid
, taskdata
));
716 //------------------------------------------------------------------------------
718 // Initialize OMPT fields maintained by a task. This will only be called after
719 // ompt_start_tool, so we already know whether ompt is enabled or not.
721 static inline void __ompt_task_init(kmp_taskdata_t
*task
, int tid
) {
722 // The calls to __ompt_task_init already have the ompt_enabled condition.
723 task
->ompt_task_info
.task_data
.value
= 0;
724 task
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
725 task
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
726 task
->ompt_task_info
.frame
.exit_frame_flags
=
727 ompt_frame_runtime
| ompt_frame_framepointer
;
728 task
->ompt_task_info
.frame
.enter_frame_flags
=
729 ompt_frame_runtime
| ompt_frame_framepointer
;
730 task
->ompt_task_info
.dispatch_chunk
.start
= 0;
731 task
->ompt_task_info
.dispatch_chunk
.iterations
= 0;
734 // __ompt_task_start:
735 // Build and trigger task-begin event
736 static inline void __ompt_task_start(kmp_task_t
*task
,
737 kmp_taskdata_t
*current_task
,
739 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
740 ompt_task_status_t status
= ompt_task_switch
;
741 if (__kmp_threads
[gtid
]->th
.ompt_thread_info
.ompt_task_yielded
) {
742 status
= ompt_task_yield
;
743 __kmp_threads
[gtid
]->th
.ompt_thread_info
.ompt_task_yielded
= 0;
745 /* let OMPT know that we're about to run this task */
746 if (ompt_enabled
.ompt_callback_task_schedule
) {
747 ompt_callbacks
.ompt_callback(ompt_callback_task_schedule
)(
748 &(current_task
->ompt_task_info
.task_data
), status
,
749 &(taskdata
->ompt_task_info
.task_data
));
751 taskdata
->ompt_task_info
.scheduling_parent
= current_task
;
754 // __ompt_task_finish:
755 // Build and trigger final task-schedule event
756 static inline void __ompt_task_finish(kmp_task_t
*task
,
757 kmp_taskdata_t
*resumed_task
,
758 ompt_task_status_t status
) {
759 if (ompt_enabled
.ompt_callback_task_schedule
) {
760 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
761 if (__kmp_omp_cancellation
&& taskdata
->td_taskgroup
&&
762 taskdata
->td_taskgroup
->cancel_request
== cancel_taskgroup
) {
763 status
= ompt_task_cancel
;
766 /* let OMPT know that we're returning to the callee task */
767 ompt_callbacks
.ompt_callback(ompt_callback_task_schedule
)(
768 &(taskdata
->ompt_task_info
.task_data
), status
,
769 (resumed_task
? &(resumed_task
->ompt_task_info
.task_data
) : NULL
));
775 static void __kmpc_omp_task_begin_if0_template(ident_t
*loc_ref
, kmp_int32 gtid
,
778 void *return_address
) {
779 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
780 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
782 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
784 gtid
, loc_ref
, taskdata
, current_task
));
786 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
787 // untied task needs to increment counter so that the task structure is not
789 kmp_int32 counter
= 1 + KMP_ATOMIC_INC(&taskdata
->td_untied_count
);
790 KMP_DEBUG_USE_VAR(counter
);
791 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
792 "incremented for task %p\n",
793 gtid
, counter
, taskdata
));
796 taskdata
->td_flags
.task_serial
=
797 1; // Execute this task immediately, not deferred.
798 __kmp_task_start(gtid
, task
, current_task
);
802 if (current_task
->ompt_task_info
.frame
.enter_frame
.ptr
== NULL
) {
803 current_task
->ompt_task_info
.frame
.enter_frame
.ptr
=
804 taskdata
->ompt_task_info
.frame
.exit_frame
.ptr
= frame_address
;
805 current_task
->ompt_task_info
.frame
.enter_frame_flags
=
806 taskdata
->ompt_task_info
.frame
.exit_frame_flags
=
807 ompt_frame_application
| ompt_frame_framepointer
;
809 if (ompt_enabled
.ompt_callback_task_create
) {
810 ompt_task_info_t
*parent_info
= &(current_task
->ompt_task_info
);
811 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
812 &(parent_info
->task_data
), &(parent_info
->frame
),
813 &(taskdata
->ompt_task_info
.task_data
),
814 ompt_task_explicit
| TASK_TYPE_DETAILS_FORMAT(taskdata
), 0,
817 __ompt_task_start(task
, current_task
, gtid
);
819 #endif // OMPT_SUPPORT
821 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid
,
827 static void __kmpc_omp_task_begin_if0_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
830 void *return_address
) {
831 __kmpc_omp_task_begin_if0_template
<true>(loc_ref
, gtid
, task
, frame_address
,
834 #endif // OMPT_SUPPORT
836 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
839 // loc_ref: source location information; points to beginning of task block.
840 // gtid: global thread number.
841 // task: task thunk for the started task.
842 void __kmpc_omp_task_begin_if0(ident_t
*loc_ref
, kmp_int32 gtid
,
845 if (UNLIKELY(ompt_enabled
.enabled
)) {
846 OMPT_STORE_RETURN_ADDRESS(gtid
);
847 __kmpc_omp_task_begin_if0_ompt(loc_ref
, gtid
, task
,
848 OMPT_GET_FRAME_ADDRESS(1),
849 OMPT_LOAD_RETURN_ADDRESS(gtid
));
853 __kmpc_omp_task_begin_if0_template
<false>(loc_ref
, gtid
, task
, NULL
, NULL
);
857 // __kmpc_omp_task_begin: report that a given task has started execution
858 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
859 void __kmpc_omp_task_begin(ident_t
*loc_ref
, kmp_int32 gtid
, kmp_task_t
*task
) {
860 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
864 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
865 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
), current_task
));
867 __kmp_task_start(gtid
, task
, current_task
);
869 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid
,
870 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
873 #endif // TASK_UNUSED
875 // __kmp_free_task: free the current task space and the space for shareds
877 // gtid: Global thread ID of calling thread
878 // taskdata: task to free
879 // thread: thread data structure of caller
880 static void __kmp_free_task(kmp_int32 gtid
, kmp_taskdata_t
*taskdata
,
881 kmp_info_t
*thread
) {
882 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid
,
885 // Check to make sure all flags and counters have the correct values
886 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
887 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 0);
888 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 1);
889 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
890 KMP_DEBUG_ASSERT(taskdata
->td_allocated_child_tasks
== 0 ||
891 taskdata
->td_flags
.task_serial
== 1);
892 KMP_DEBUG_ASSERT(taskdata
->td_incomplete_child_tasks
== 0);
893 kmp_task_t
*task
= KMP_TASKDATA_TO_TASK(taskdata
);
894 // Clear data to not be re-used later by mistake.
895 task
->data1
.destructors
= NULL
;
896 task
->data2
.priority
= 0;
898 taskdata
->td_flags
.freed
= 1;
900 // do not free tasks in taskgraph
901 if (!taskdata
->is_taskgraph
) {
903 // deallocate the taskdata and shared variable blocks associated with this task
905 __kmp_fast_free(thread
, taskdata
);
906 #else /* ! USE_FAST_MEMORY */
907 __kmp_thread_free(thread
, taskdata
);
911 taskdata
->td_flags
.complete
= 0;
912 taskdata
->td_flags
.started
= 0;
913 taskdata
->td_flags
.freed
= 0;
914 taskdata
->td_flags
.executing
= 0;
915 taskdata
->td_flags
.task_serial
=
916 (taskdata
->td_parent
->td_flags
.final
||
917 taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
);
919 // taskdata->td_allow_completion_event.pending_events_count = 1;
920 KMP_ATOMIC_ST_RLX(&taskdata
->td_untied_count
, 0);
921 KMP_ATOMIC_ST_RLX(&taskdata
->td_incomplete_child_tasks
, 0);
922 // start at one because counts current task and children
923 KMP_ATOMIC_ST_RLX(&taskdata
->td_allocated_child_tasks
, 1);
927 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid
, taskdata
));
930 // __kmp_free_task_and_ancestors: free the current task and ancestors without
933 // gtid: Global thread ID of calling thread
934 // taskdata: task to free
935 // thread: thread data structure of caller
936 static void __kmp_free_task_and_ancestors(kmp_int32 gtid
,
937 kmp_taskdata_t
*taskdata
,
938 kmp_info_t
*thread
) {
939 // Proxy tasks must always be allowed to free their parents
940 // because they can be run in background even in serial mode.
941 kmp_int32 team_serial
=
942 (taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
) &&
943 !taskdata
->td_flags
.proxy
;
944 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
946 kmp_int32 children
= KMP_ATOMIC_DEC(&taskdata
->td_allocated_child_tasks
) - 1;
947 KMP_DEBUG_ASSERT(children
>= 0);
949 // Now, go up the ancestor tree to see if any ancestors can now be freed.
950 while (children
== 0) {
951 kmp_taskdata_t
*parent_taskdata
= taskdata
->td_parent
;
953 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
954 "and freeing itself\n",
957 // --- Deallocate my ancestor task ---
958 __kmp_free_task(gtid
, taskdata
, thread
);
960 taskdata
= parent_taskdata
;
964 // Stop checking ancestors at implicit task instead of walking up ancestor
965 // tree to avoid premature deallocation of ancestors.
966 if (taskdata
->td_flags
.tasktype
== TASK_IMPLICIT
) {
967 if (taskdata
->td_dephash
) { // do we need to cleanup dephash?
968 int children
= KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
);
969 kmp_tasking_flags_t flags_old
= taskdata
->td_flags
;
970 if (children
== 0 && flags_old
.complete
== 1) {
971 kmp_tasking_flags_t flags_new
= flags_old
;
972 flags_new
.complete
= 0;
973 if (KMP_COMPARE_AND_STORE_ACQ32(
974 RCAST(kmp_int32
*, &taskdata
->td_flags
),
975 *RCAST(kmp_int32
*, &flags_old
),
976 *RCAST(kmp_int32
*, &flags_new
))) {
977 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
978 "dephash of implicit task %p\n",
980 // cleanup dephash of finished implicit task
981 __kmp_dephash_free_entries(thread
, taskdata
->td_dephash
);
987 // Predecrement simulated by "- 1" calculation
988 children
= KMP_ATOMIC_DEC(&taskdata
->td_allocated_child_tasks
) - 1;
989 KMP_DEBUG_ASSERT(children
>= 0);
993 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
994 "not freeing it yet\n",
995 gtid
, taskdata
, children
));
998 // Only need to keep track of child task counts if any of the following:
999 // 1. team parallel and tasking not serialized;
1000 // 2. it is a proxy or detachable or hidden helper task
1001 // 3. the children counter of its parent task is greater than 0.
1002 // The reason for the 3rd one is for serialized team that found detached task,
1003 // hidden helper task, T. In this case, the execution of T is still deferred,
1004 // and it is also possible that a regular task depends on T. In this case, if we
1005 // don't track the children, task synchronization will be broken.
1006 static bool __kmp_track_children_task(kmp_taskdata_t
*taskdata
) {
1007 kmp_tasking_flags_t flags
= taskdata
->td_flags
;
1008 bool ret
= !(flags
.team_serial
|| flags
.tasking_ser
);
1009 ret
= ret
|| flags
.proxy
== TASK_PROXY
||
1010 flags
.detachable
== TASK_DETACHABLE
|| flags
.hidden_helper
;
1012 KMP_ATOMIC_LD_ACQ(&taskdata
->td_parent
->td_incomplete_child_tasks
) > 0;
1014 if (taskdata
->td_taskgroup
&& taskdata
->is_taskgraph
)
1015 ret
= ret
|| KMP_ATOMIC_LD_ACQ(&taskdata
->td_taskgroup
->count
) > 0;
1020 // __kmp_task_finish: bookkeeping to do when a task finishes execution
1022 // gtid: global thread ID for calling thread
1023 // task: task to be finished
1024 // resumed_task: task to be resumed. (may be NULL if task is serialized)
1026 // template<ompt>: effectively ompt_enabled.enabled!=0
1027 // the version with ompt=false is inlined, allowing to optimize away all ompt
1028 // code in this case
1029 template <bool ompt
>
1030 static void __kmp_task_finish(kmp_int32 gtid
, kmp_task_t
*task
,
1031 kmp_taskdata_t
*resumed_task
) {
1032 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
1033 kmp_info_t
*thread
= __kmp_threads
[gtid
];
1034 kmp_task_team_t
*task_team
=
1035 thread
->th
.th_task_team
; // might be NULL for serial teams...
1037 // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop
1041 kmp_int32 children
= 0;
1043 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
1045 gtid
, taskdata
, resumed_task
));
1047 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
1050 is_taskgraph
= taskdata
->is_taskgraph
;
1053 // Pop task from stack if tied
1054 #ifdef BUILD_TIED_TASK_STACK
1055 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
1056 __kmp_pop_task_stack(gtid
, thread
, taskdata
);
1058 #endif /* BUILD_TIED_TASK_STACK */
1060 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
1061 // untied task needs to check the counter so that the task structure is not
1062 // freed prematurely
1063 kmp_int32 counter
= KMP_ATOMIC_DEC(&taskdata
->td_untied_count
) - 1;
1066 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
1067 gtid
, counter
, taskdata
));
1069 // untied task is not done, to be continued possibly by other thread, do
1071 if (resumed_task
== NULL
) {
1072 KMP_DEBUG_ASSERT(taskdata
->td_flags
.task_serial
);
1073 resumed_task
= taskdata
->td_parent
; // In a serialized task, the resumed
1074 // task is the parent
1076 thread
->th
.th_current_task
= resumed_task
; // restore current_task
1077 resumed_task
->td_flags
.executing
= 1; // resume previous task
1078 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
1079 "resuming task %p\n",
1080 gtid
, taskdata
, resumed_task
));
1085 // bookkeeping for resuming task:
1086 // GEH - note tasking_ser => task_serial
1088 (taskdata
->td_flags
.tasking_ser
|| taskdata
->td_flags
.task_serial
) ==
1089 taskdata
->td_flags
.task_serial
);
1090 if (taskdata
->td_flags
.task_serial
) {
1091 if (resumed_task
== NULL
) {
1092 resumed_task
= taskdata
->td_parent
; // In a serialized task, the resumed
1093 // task is the parent
1096 KMP_DEBUG_ASSERT(resumed_task
!=
1097 NULL
); // verify that resumed task is passed as argument
1100 /* If the tasks' destructor thunk flag has been set, we need to invoke the
1101 destructor thunk that has been generated by the compiler. The code is
1102 placed here, since at this point other tasks might have been released
1103 hence overlapping the destructor invocations with some other work in the
1104 released tasks. The OpenMP spec is not specific on when the destructors
1105 are invoked, so we should be free to choose. */
1106 if (UNLIKELY(taskdata
->td_flags
.destructors_thunk
)) {
1107 kmp_routine_entry_t destr_thunk
= task
->data1
.destructors
;
1108 KMP_ASSERT(destr_thunk
);
1109 destr_thunk(gtid
, task
);
1112 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
1113 KMP_DEBUG_ASSERT(taskdata
->td_flags
.started
== 1);
1114 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
1116 bool completed
= true;
1117 if (UNLIKELY(taskdata
->td_flags
.detachable
== TASK_DETACHABLE
)) {
1118 if (taskdata
->td_allow_completion_event
.type
==
1119 KMP_EVENT_ALLOW_COMPLETION
) {
1120 // event hasn't been fulfilled yet. Try to detach task.
1121 __kmp_acquire_tas_lock(&taskdata
->td_allow_completion_event
.lock
, gtid
);
1122 if (taskdata
->td_allow_completion_event
.type
==
1123 KMP_EVENT_ALLOW_COMPLETION
) {
1124 // task finished execution
1125 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 1);
1126 taskdata
->td_flags
.executing
= 0; // suspend the finishing task
1129 // For a detached task, which is not completed, we switch back
1130 // the omp_fulfill_event signals completion
1131 // locking is necessary to avoid a race with ompt_task_late_fulfill
1133 __ompt_task_finish(task
, resumed_task
, ompt_task_detach
);
1136 // no access to taskdata after this point!
1137 // __kmp_fulfill_event might free taskdata at any time from now
1139 taskdata
->td_flags
.proxy
= TASK_PROXY
; // proxify!
1142 __kmp_release_tas_lock(&taskdata
->td_allow_completion_event
.lock
, gtid
);
1146 // Tasks with valid target async handles must be re-enqueued.
1147 if (taskdata
->td_target_data
.async_handle
!= NULL
) {
1148 // Note: no need to translate gtid to its shadow. If the current thread is a
1149 // hidden helper one, then the gtid is already correct. Otherwise, hidden
1150 // helper threads are disabled, and gtid refers to a OpenMP thread.
1151 __kmpc_give_task(task
, __kmp_tid_from_gtid(gtid
));
1152 if (KMP_HIDDEN_HELPER_THREAD(gtid
))
1153 __kmp_hidden_helper_worker_thread_signal();
1158 taskdata
->td_flags
.complete
= 1; // mark the task as completed
1160 taskdata
->td_flags
.onced
= 1; // mark the task as ran once already
1164 // This is not a detached task, we are done here
1166 __ompt_task_finish(task
, resumed_task
, ompt_task_complete
);
1168 // TODO: What would be the balance between the conditions in the function
1169 // and an atomic operation?
1170 if (__kmp_track_children_task(taskdata
)) {
1171 __kmp_release_deps(gtid
, taskdata
);
1172 // Predecrement simulated by "- 1" calculation
1176 KMP_ATOMIC_DEC(&taskdata
->td_parent
->td_incomplete_child_tasks
);
1177 KMP_DEBUG_ASSERT(children
>= 0);
1179 if (taskdata
->td_taskgroup
&& !taskdata
->is_taskgraph
)
1181 if (taskdata
->td_taskgroup
)
1183 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
1184 } else if (task_team
&& (task_team
->tt
.tt_found_proxy_tasks
||
1185 task_team
->tt
.tt_hidden_helper_task_encountered
)) {
1186 // if we found proxy or hidden helper tasks there could exist a dependency
1187 // chain with the proxy task as origin
1188 __kmp_release_deps(gtid
, taskdata
);
1190 // td_flags.executing must be marked as 0 after __kmp_release_deps has been
1191 // called. Othertwise, if a task is executed immediately from the
1192 // release_deps code, the flag will be reset to 1 again by this same
1194 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 1);
1195 taskdata
->td_flags
.executing
= 0; // suspend the finishing task
1197 // Decrement the counter of hidden helper tasks to be executed.
1198 if (taskdata
->td_flags
.hidden_helper
) {
1199 // Hidden helper tasks can only be executed by hidden helper threads.
1200 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid
));
1201 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks
);
1206 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
1207 gtid
, taskdata
, children
));
1209 // Free this task and then ancestor tasks if they have no children.
1210 // Restore th_current_task first as suggested by John:
1211 // johnmc: if an asynchronous inquiry peers into the runtime system
1212 // it doesn't see the freed task as the current task.
1213 thread
->th
.th_current_task
= resumed_task
;
1215 __kmp_free_task_and_ancestors(gtid
, taskdata
, thread
);
1217 // TODO: GEH - make sure root team implicit task is initialized properly.
1218 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
1219 resumed_task
->td_flags
.executing
= 1; // resume previous task
1222 if (is_taskgraph
&& __kmp_track_children_task(taskdata
) &&
1223 taskdata
->td_taskgroup
) {
1224 // TDG: we only release taskgroup barrier here because
1225 // free_task_and_ancestors will call
1226 // __kmp_free_task, which resets all task parameters such as
1227 // taskdata->started, etc. If we release the barrier earlier, these
1228 // parameters could be read before being reset. This is not an issue for
1229 // non-TDG implementation because we never reuse a task(data) structure
1230 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
1235 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
1236 gtid
, taskdata
, resumed_task
));
1241 template <bool ompt
>
1242 static void __kmpc_omp_task_complete_if0_template(ident_t
*loc_ref
,
1245 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1246 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1247 KMP_DEBUG_ASSERT(gtid
>= 0);
1248 // this routine will provide task to resume
1249 __kmp_task_finish
<ompt
>(gtid
, task
, NULL
);
1251 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1252 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1256 ompt_frame_t
*ompt_frame
;
1257 __ompt_get_task_info_internal(0, NULL
, NULL
, &ompt_frame
, NULL
, NULL
);
1258 ompt_frame
->enter_frame
= ompt_data_none
;
1259 ompt_frame
->enter_frame_flags
=
1260 ompt_frame_runtime
| ompt_frame_framepointer
;
1269 void __kmpc_omp_task_complete_if0_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
1271 __kmpc_omp_task_complete_if0_template
<true>(loc_ref
, gtid
, task
);
1273 #endif // OMPT_SUPPORT
1275 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1277 // loc_ref: source location information; points to end of task block.
1278 // gtid: global thread number.
1279 // task: task thunk for the completed task.
1280 void __kmpc_omp_task_complete_if0(ident_t
*loc_ref
, kmp_int32 gtid
,
1283 if (UNLIKELY(ompt_enabled
.enabled
)) {
1284 __kmpc_omp_task_complete_if0_ompt(loc_ref
, gtid
, task
);
1288 __kmpc_omp_task_complete_if0_template
<false>(loc_ref
, gtid
, task
);
1292 // __kmpc_omp_task_complete: report that a task has completed execution
1293 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1294 void __kmpc_omp_task_complete(ident_t
*loc_ref
, kmp_int32 gtid
,
1296 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid
,
1297 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1299 __kmp_task_finish
<false>(gtid
, task
,
1300 NULL
); // Not sure how to find task to resume
1302 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid
,
1303 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1306 #endif // TASK_UNUSED
1308 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1309 // task for a given thread
1311 // loc_ref: reference to source location of parallel region
1312 // this_thr: thread data structure corresponding to implicit task
1313 // team: team for this_thr
1314 // tid: thread id of given thread within team
1315 // set_curr_task: TRUE if need to push current task to thread
1316 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to
1317 // have already been done elsewhere.
1318 // TODO: Get better loc_ref. Value passed in may be NULL
1319 void __kmp_init_implicit_task(ident_t
*loc_ref
, kmp_info_t
*this_thr
,
1320 kmp_team_t
*team
, int tid
, int set_curr_task
) {
1321 kmp_taskdata_t
*task
= &team
->t
.t_implicit_task_taskdata
[tid
];
1325 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1326 tid
, team
, task
, set_curr_task
? "TRUE" : "FALSE"));
1328 task
->td_task_id
= KMP_GEN_TASK_ID();
1329 task
->td_team
= team
;
1330 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info
1332 task
->td_ident
= loc_ref
;
1333 task
->td_taskwait_ident
= NULL
;
1334 task
->td_taskwait_counter
= 0;
1335 task
->td_taskwait_thread
= 0;
1337 task
->td_flags
.tiedness
= TASK_TIED
;
1338 task
->td_flags
.tasktype
= TASK_IMPLICIT
;
1339 task
->td_flags
.proxy
= TASK_FULL
;
1341 // All implicit tasks are executed immediately, not deferred
1342 task
->td_flags
.task_serial
= 1;
1343 task
->td_flags
.tasking_ser
= (__kmp_tasking_mode
== tskm_immediate_exec
);
1344 task
->td_flags
.team_serial
= (team
->t
.t_serialized
) ? 1 : 0;
1346 task
->td_flags
.started
= 1;
1347 task
->td_flags
.executing
= 1;
1348 task
->td_flags
.complete
= 0;
1349 task
->td_flags
.freed
= 0;
1351 task
->td_flags
.onced
= 0;
1354 task
->td_depnode
= NULL
;
1355 task
->td_last_tied
= task
;
1356 task
->td_allow_completion_event
.type
= KMP_EVENT_UNINITIALIZED
;
1358 if (set_curr_task
) { // only do this init first time thread is created
1359 KMP_ATOMIC_ST_REL(&task
->td_incomplete_child_tasks
, 0);
1360 // Not used: don't need to deallocate implicit task
1361 KMP_ATOMIC_ST_REL(&task
->td_allocated_child_tasks
, 0);
1362 task
->td_taskgroup
= NULL
; // An implicit task does not have taskgroup
1363 task
->td_dephash
= NULL
;
1364 __kmp_push_current_task_to_thread(this_thr
, team
, tid
);
1366 KMP_DEBUG_ASSERT(task
->td_incomplete_child_tasks
== 0);
1367 KMP_DEBUG_ASSERT(task
->td_allocated_child_tasks
== 0);
1371 if (UNLIKELY(ompt_enabled
.enabled
))
1372 __ompt_task_init(task
, tid
);
1375 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid
,
1379 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1380 // at the end of parallel regions. Some resources are kept for reuse in the next
1383 // thread: thread data structure corresponding to implicit task
1384 void __kmp_finish_implicit_task(kmp_info_t
*thread
) {
1385 kmp_taskdata_t
*task
= thread
->th
.th_current_task
;
1386 if (task
->td_dephash
) {
1388 task
->td_flags
.complete
= 1;
1390 task
->td_flags
.onced
= 1;
1392 children
= KMP_ATOMIC_LD_ACQ(&task
->td_incomplete_child_tasks
);
1393 kmp_tasking_flags_t flags_old
= task
->td_flags
;
1394 if (children
== 0 && flags_old
.complete
== 1) {
1395 kmp_tasking_flags_t flags_new
= flags_old
;
1396 flags_new
.complete
= 0;
1397 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32
*, &task
->td_flags
),
1398 *RCAST(kmp_int32
*, &flags_old
),
1399 *RCAST(kmp_int32
*, &flags_new
))) {
1400 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1401 "dephash of implicit task %p\n",
1402 thread
->th
.th_info
.ds
.ds_gtid
, task
));
1403 __kmp_dephash_free_entries(thread
, task
->td_dephash
);
1409 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1410 // when these are destroyed regions
1412 // thread: thread data structure corresponding to implicit task
1413 void __kmp_free_implicit_task(kmp_info_t
*thread
) {
1414 kmp_taskdata_t
*task
= thread
->th
.th_current_task
;
1415 if (task
&& task
->td_dephash
) {
1416 __kmp_dephash_free(thread
, task
->td_dephash
);
1417 task
->td_dephash
= NULL
;
1421 // Round up a size to a power of two specified by val: Used to insert padding
1422 // between structures co-allocated using a single malloc() call
1423 static size_t __kmp_round_up_to_val(size_t size
, size_t val
) {
1424 if (size
& (val
- 1)) {
1426 if (size
<= KMP_SIZE_T_MAX
- val
) {
1427 size
+= val
; // Round up if there is no overflow.
1431 } // __kmp_round_up_to_va
1433 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1435 // loc_ref: source location information
1436 // gtid: global thread number.
1437 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1438 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1439 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including
1440 // private vars accessed in task.
1441 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed
1443 // task_entry: Pointer to task code entry point generated by compiler.
1444 // returns: a pointer to the allocated kmp_task_t structure (task).
1445 kmp_task_t
*__kmp_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1446 kmp_tasking_flags_t
*flags
,
1447 size_t sizeof_kmp_task_t
, size_t sizeof_shareds
,
1448 kmp_routine_entry_t task_entry
) {
1450 kmp_taskdata_t
*taskdata
;
1451 kmp_info_t
*thread
= __kmp_threads
[gtid
];
1452 kmp_team_t
*team
= thread
->th
.th_team
;
1453 kmp_taskdata_t
*parent_task
= thread
->th
.th_current_task
;
1454 size_t shareds_offset
;
1456 if (UNLIKELY(!TCR_4(__kmp_init_middle
)))
1457 __kmp_middle_initialize();
1459 if (flags
->hidden_helper
) {
1460 if (__kmp_enable_hidden_helper
) {
1461 if (!TCR_4(__kmp_init_hidden_helper
))
1462 __kmp_hidden_helper_initialize();
1464 // If the hidden helper task is not enabled, reset the flag to FALSE.
1465 flags
->hidden_helper
= FALSE
;
1469 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1470 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1471 gtid
, loc_ref
, *((kmp_int32
*)flags
), sizeof_kmp_task_t
,
1472 sizeof_shareds
, task_entry
));
1474 KMP_DEBUG_ASSERT(parent_task
);
1475 if (parent_task
->td_flags
.final
) {
1476 if (flags
->merged_if0
) {
1481 if (flags
->tiedness
== TASK_UNTIED
&& !team
->t
.t_serialized
) {
1482 // Untied task encountered causes the TSC algorithm to check entire deque of
1483 // the victim thread. If no untied task encountered, then checking the head
1484 // of the deque should be enough.
1485 KMP_CHECK_UPDATE(thread
->th
.th_task_team
->tt
.tt_untied_task_encountered
, 1);
1488 // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1489 // the tasking setup
1490 // when that happens is too late.
1491 if (UNLIKELY(flags
->proxy
== TASK_PROXY
||
1492 flags
->detachable
== TASK_DETACHABLE
|| flags
->hidden_helper
)) {
1493 if (flags
->proxy
== TASK_PROXY
) {
1494 flags
->tiedness
= TASK_UNTIED
;
1495 flags
->merged_if0
= 1;
1497 /* are we running in a sequential parallel or tskm_immediate_exec... we need
1498 tasking support enabled */
1499 if ((thread
->th
.th_task_team
) == NULL
) {
1500 /* This should only happen if the team is serialized
1501 setup a task team and propagate it to the thread */
1502 KMP_DEBUG_ASSERT(team
->t
.t_serialized
);
1504 ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1506 // 1 indicates setup the current team regardless of nthreads
1507 __kmp_task_team_setup(thread
, team
, 1);
1508 thread
->th
.th_task_team
= team
->t
.t_task_team
[thread
->th
.th_task_state
];
1510 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
1512 /* tasking must be enabled now as the task might not be pushed */
1513 if (!KMP_TASKING_ENABLED(task_team
)) {
1516 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid
));
1517 __kmp_enable_tasking(task_team
, thread
);
1518 kmp_int32 tid
= thread
->th
.th_info
.ds
.ds_tid
;
1519 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
1520 // No lock needed since only owner can allocate
1521 if (thread_data
->td
.td_deque
== NULL
) {
1522 __kmp_alloc_task_deque(thread
, thread_data
);
1526 if ((flags
->proxy
== TASK_PROXY
|| flags
->detachable
== TASK_DETACHABLE
) &&
1527 task_team
->tt
.tt_found_proxy_tasks
== FALSE
)
1528 TCW_4(task_team
->tt
.tt_found_proxy_tasks
, TRUE
);
1529 if (flags
->hidden_helper
&&
1530 task_team
->tt
.tt_hidden_helper_task_encountered
== FALSE
)
1531 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, TRUE
);
1534 // Calculate shared structure offset including padding after kmp_task_t struct
1535 // to align pointers in shared struct
1536 shareds_offset
= sizeof(kmp_taskdata_t
) + sizeof_kmp_task_t
;
1537 shareds_offset
= __kmp_round_up_to_val(shareds_offset
, sizeof(void *));
1539 // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1540 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid
,
1542 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid
,
1545 // Avoid double allocation here by combining shareds with taskdata
1547 taskdata
= (kmp_taskdata_t
*)__kmp_fast_allocate(thread
, shareds_offset
+
1549 #else /* ! USE_FAST_MEMORY */
1550 taskdata
= (kmp_taskdata_t
*)__kmp_thread_malloc(thread
, shareds_offset
+
1552 #endif /* USE_FAST_MEMORY */
1554 task
= KMP_TASKDATA_TO_TASK(taskdata
);
1556 // Make sure task & taskdata are aligned appropriately
1557 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1558 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)taskdata
) & (sizeof(double) - 1)) == 0);
1559 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
) & (sizeof(double) - 1)) == 0);
1561 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)taskdata
) & (sizeof(_Quad
) - 1)) == 0);
1562 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
) & (sizeof(_Quad
) - 1)) == 0);
1564 if (sizeof_shareds
> 0) {
1565 // Avoid double allocation here by combining shareds with taskdata
1566 task
->shareds
= &((char *)taskdata
)[shareds_offset
];
1567 // Make sure shareds struct is aligned to pointer size
1568 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
->shareds
) & (sizeof(void *) - 1)) ==
1571 task
->shareds
= NULL
;
1573 task
->routine
= task_entry
;
1574 task
->part_id
= 0; // AC: Always start with 0 part id
1576 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
1577 taskdata
->td_team
= thread
->th
.th_team
;
1578 taskdata
->td_alloc_thread
= thread
;
1579 taskdata
->td_parent
= parent_task
;
1580 taskdata
->td_level
= parent_task
->td_level
+ 1; // increment nesting level
1581 KMP_ATOMIC_ST_RLX(&taskdata
->td_untied_count
, 0);
1582 taskdata
->td_ident
= loc_ref
;
1583 taskdata
->td_taskwait_ident
= NULL
;
1584 taskdata
->td_taskwait_counter
= 0;
1585 taskdata
->td_taskwait_thread
= 0;
1586 KMP_DEBUG_ASSERT(taskdata
->td_parent
!= NULL
);
1587 // avoid copying icvs for proxy tasks
1588 if (flags
->proxy
== TASK_FULL
)
1589 copy_icvs(&taskdata
->td_icvs
, &taskdata
->td_parent
->td_icvs
);
1591 taskdata
->td_flags
= *flags
;
1592 taskdata
->td_task_team
= thread
->th
.th_task_team
;
1593 taskdata
->td_size_alloc
= shareds_offset
+ sizeof_shareds
;
1594 taskdata
->td_flags
.tasktype
= TASK_EXPLICIT
;
1595 // If it is hidden helper task, we need to set the team and task team
1597 if (flags
->hidden_helper
) {
1598 kmp_info_t
*shadow_thread
= __kmp_threads
[KMP_GTID_TO_SHADOW_GTID(gtid
)];
1599 taskdata
->td_team
= shadow_thread
->th
.th_team
;
1600 taskdata
->td_task_team
= shadow_thread
->th
.th_task_team
;
1603 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1604 taskdata
->td_flags
.tasking_ser
= (__kmp_tasking_mode
== tskm_immediate_exec
);
1606 // GEH - TODO: fix this to copy parent task's value of team_serial flag
1607 taskdata
->td_flags
.team_serial
= (team
->t
.t_serialized
) ? 1 : 0;
1609 // GEH - Note we serialize the task if the team is serialized to make sure
1610 // implicit parallel region tasks are not left until program termination to
1611 // execute. Also, it helps locality to execute immediately.
1613 taskdata
->td_flags
.task_serial
=
1614 (parent_task
->td_flags
.final
|| taskdata
->td_flags
.team_serial
||
1615 taskdata
->td_flags
.tasking_ser
|| flags
->merged_if0
);
1617 taskdata
->td_flags
.started
= 0;
1618 taskdata
->td_flags
.executing
= 0;
1619 taskdata
->td_flags
.complete
= 0;
1620 taskdata
->td_flags
.freed
= 0;
1622 taskdata
->td_flags
.onced
= 0;
1624 KMP_ATOMIC_ST_RLX(&taskdata
->td_incomplete_child_tasks
, 0);
1625 // start at one because counts current task and children
1626 KMP_ATOMIC_ST_RLX(&taskdata
->td_allocated_child_tasks
, 1);
1627 taskdata
->td_taskgroup
=
1628 parent_task
->td_taskgroup
; // task inherits taskgroup from the parent task
1629 taskdata
->td_dephash
= NULL
;
1630 taskdata
->td_depnode
= NULL
;
1631 taskdata
->td_target_data
.async_handle
= NULL
;
1632 if (flags
->tiedness
== TASK_UNTIED
)
1633 taskdata
->td_last_tied
= NULL
; // will be set when the task is scheduled
1635 taskdata
->td_last_tied
= taskdata
;
1636 taskdata
->td_allow_completion_event
.type
= KMP_EVENT_UNINITIALIZED
;
1638 if (UNLIKELY(ompt_enabled
.enabled
))
1639 __ompt_task_init(taskdata
, gtid
);
1641 // TODO: What would be the balance between the conditions in the function and
1642 // an atomic operation?
1643 if (__kmp_track_children_task(taskdata
)) {
1644 KMP_ATOMIC_INC(&parent_task
->td_incomplete_child_tasks
);
1645 if (parent_task
->td_taskgroup
)
1646 KMP_ATOMIC_INC(&parent_task
->td_taskgroup
->count
);
1647 // Only need to keep track of allocated child tasks for explicit tasks since
1648 // implicit not deallocated
1649 if (taskdata
->td_parent
->td_flags
.tasktype
== TASK_EXPLICIT
) {
1650 KMP_ATOMIC_INC(&taskdata
->td_parent
->td_allocated_child_tasks
);
1652 if (flags
->hidden_helper
) {
1653 taskdata
->td_flags
.task_serial
= FALSE
;
1654 // Increment the number of hidden helper tasks to be executed
1655 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks
);
1660 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
1661 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
) &&
1662 (task_entry
!= (kmp_routine_entry_t
)__kmp_taskloop_task
)) {
1663 taskdata
->is_taskgraph
= 1;
1664 taskdata
->tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
1665 taskdata
->td_task_id
= KMP_ATOMIC_INC(&__kmp_tdg_task_id
);
1668 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1669 gtid
, taskdata
, taskdata
->td_parent
));
1674 kmp_task_t
*__kmpc_omp_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1675 kmp_int32 flags
, size_t sizeof_kmp_task_t
,
1676 size_t sizeof_shareds
,
1677 kmp_routine_entry_t task_entry
) {
1679 kmp_tasking_flags_t
*input_flags
= (kmp_tasking_flags_t
*)&flags
;
1680 __kmp_assert_valid_gtid(gtid
);
1681 input_flags
->native
= FALSE
;
1682 // __kmp_task_alloc() sets up all other runtime flags
1683 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1684 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1685 gtid
, loc_ref
, input_flags
->tiedness
? "tied " : "untied",
1686 input_flags
->proxy
? "proxy" : "",
1687 input_flags
->detachable
? "detachable" : "", sizeof_kmp_task_t
,
1688 sizeof_shareds
, task_entry
));
1690 retval
= __kmp_task_alloc(loc_ref
, gtid
, input_flags
, sizeof_kmp_task_t
,
1691 sizeof_shareds
, task_entry
);
1693 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid
, retval
));
1698 kmp_task_t
*__kmpc_omp_target_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1700 size_t sizeof_kmp_task_t
,
1701 size_t sizeof_shareds
,
1702 kmp_routine_entry_t task_entry
,
1703 kmp_int64 device_id
) {
1704 auto &input_flags
= reinterpret_cast<kmp_tasking_flags_t
&>(flags
);
1705 // target task is untied defined in the specification
1706 input_flags
.tiedness
= TASK_UNTIED
;
1708 if (__kmp_enable_hidden_helper
)
1709 input_flags
.hidden_helper
= TRUE
;
1711 return __kmpc_omp_task_alloc(loc_ref
, gtid
, flags
, sizeof_kmp_task_t
,
1712 sizeof_shareds
, task_entry
);
1717 @param loc_ref location of the original task directive
1718 @param gtid Global Thread ID of encountering thread
1719 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1721 @param naffins Number of affinity items
1722 @param affin_list List of affinity items
1723 @return Returns non-zero if registering affinity information was not successful.
1724 Returns 0 if registration was successful
1725 This entry registers the affinity information attached to a task with the task
1726 thunk structure kmp_taskdata_t.
1729 __kmpc_omp_reg_task_with_affinity(ident_t
*loc_ref
, kmp_int32 gtid
,
1730 kmp_task_t
*new_task
, kmp_int32 naffins
,
1731 kmp_task_affinity_info_t
*affin_list
) {
1735 // __kmp_invoke_task: invoke the specified task
1737 // gtid: global thread ID of caller
1738 // task: the task to invoke
1739 // current_task: the task to resume after task invocation
1740 static void __kmp_invoke_task(kmp_int32 gtid
, kmp_task_t
*task
,
1741 kmp_taskdata_t
*current_task
) {
1742 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
1744 int discard
= 0 /* false */;
1746 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1747 gtid
, taskdata
, current_task
));
1748 KMP_DEBUG_ASSERT(task
);
1749 if (UNLIKELY(taskdata
->td_flags
.proxy
== TASK_PROXY
&&
1750 taskdata
->td_flags
.complete
== 1)) {
1751 // This is a proxy task that was already completed but it needs to run
1752 // its bottom-half finish
1755 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1758 __kmp_bottom_half_finish_proxy(gtid
, task
);
1760 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1761 "proxy task %p, resuming task %p\n",
1762 gtid
, taskdata
, current_task
));
1768 // For untied tasks, the first task executed only calls __kmpc_omp_task and
1769 // does not execute code.
1770 ompt_thread_info_t oldInfo
;
1771 if (UNLIKELY(ompt_enabled
.enabled
)) {
1772 // Store the threads states and restore them after the task
1773 thread
= __kmp_threads
[gtid
];
1774 oldInfo
= thread
->th
.ompt_thread_info
;
1775 thread
->th
.ompt_thread_info
.wait_id
= 0;
1776 thread
->th
.ompt_thread_info
.state
= (thread
->th
.th_team_serialized
)
1777 ? ompt_state_work_serial
1778 : ompt_state_work_parallel
;
1779 taskdata
->ompt_task_info
.frame
.exit_frame
.ptr
= OMPT_GET_FRAME_ADDRESS(0);
1783 // Proxy tasks are not handled by the runtime
1784 if (taskdata
->td_flags
.proxy
!= TASK_PROXY
) {
1785 __kmp_task_start(gtid
, task
, current_task
); // OMPT only if not discarded
1788 // TODO: cancel tasks if the parallel region has also been cancelled
1789 // TODO: check if this sequence can be hoisted above __kmp_task_start
1790 // if cancellation has been enabled for this run ...
1791 if (UNLIKELY(__kmp_omp_cancellation
)) {
1792 thread
= __kmp_threads
[gtid
];
1793 kmp_team_t
*this_team
= thread
->th
.th_team
;
1794 kmp_taskgroup_t
*taskgroup
= taskdata
->td_taskgroup
;
1795 if ((taskgroup
&& taskgroup
->cancel_request
) ||
1796 (this_team
->t
.t_cancel_request
== cancel_parallel
)) {
1797 #if OMPT_SUPPORT && OMPT_OPTIONAL
1798 ompt_data_t
*task_data
;
1799 if (UNLIKELY(ompt_enabled
.ompt_callback_cancel
)) {
1800 __ompt_get_task_info_internal(0, NULL
, &task_data
, NULL
, NULL
, NULL
);
1801 ompt_callbacks
.ompt_callback(ompt_callback_cancel
)(
1803 ((taskgroup
&& taskgroup
->cancel_request
) ? ompt_cancel_taskgroup
1804 : ompt_cancel_parallel
) |
1805 ompt_cancel_discarded_task
,
1809 KMP_COUNT_BLOCK(TASK_cancelled
);
1810 // this task belongs to a task group and we need to cancel it
1811 discard
= 1 /* true */;
1815 // Invoke the task routine and pass in relevant data.
1816 // Thunks generated by gcc take a different argument list.
1818 if (taskdata
->td_flags
.tiedness
== TASK_UNTIED
) {
1819 taskdata
->td_last_tied
= current_task
->td_last_tied
;
1820 KMP_DEBUG_ASSERT(taskdata
->td_last_tied
);
1822 #if KMP_STATS_ENABLED
1823 KMP_COUNT_BLOCK(TASK_executed
);
1824 switch (KMP_GET_THREAD_STATE()) {
1825 case FORK_JOIN_BARRIER
:
1826 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar
);
1829 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar
);
1832 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield
);
1835 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait
);
1838 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup
);
1841 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate
);
1844 #endif // KMP_STATS_ENABLED
1848 if (UNLIKELY(ompt_enabled
.enabled
))
1849 __ompt_task_start(task
, current_task
, gtid
);
1851 #if OMPT_SUPPORT && OMPT_OPTIONAL
1852 if (UNLIKELY(ompt_enabled
.ompt_callback_dispatch
&&
1853 taskdata
->ompt_task_info
.dispatch_chunk
.iterations
> 0)) {
1854 ompt_data_t instance
= ompt_data_none
;
1855 instance
.ptr
= &(taskdata
->ompt_task_info
.dispatch_chunk
);
1856 ompt_team_info_t
*team_info
= __ompt_get_teaminfo(0, NULL
);
1857 ompt_callbacks
.ompt_callback(ompt_callback_dispatch
)(
1858 &(team_info
->parallel_data
), &(taskdata
->ompt_task_info
.task_data
),
1859 ompt_dispatch_taskloop_chunk
, instance
);
1860 taskdata
->ompt_task_info
.dispatch_chunk
= {0, 0};
1862 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1865 if (ompd_state
& OMPD_ENABLE_BP
)
1866 ompd_bp_task_begin();
1869 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1870 kmp_uint64 cur_time
;
1871 kmp_int32 kmp_itt_count_task
=
1872 __kmp_forkjoin_frames_mode
== 3 && !taskdata
->td_flags
.task_serial
&&
1873 current_task
->td_flags
.tasktype
== TASK_IMPLICIT
;
1874 if (kmp_itt_count_task
) {
1875 thread
= __kmp_threads
[gtid
];
1876 // Time outer level explicit task on barrier for adjusting imbalance time
1877 if (thread
->th
.th_bar_arrive_time
)
1878 cur_time
= __itt_get_timestamp();
1880 kmp_itt_count_task
= 0; // thread is not on a barrier - skip timing
1882 KMP_FSYNC_ACQUIRED(taskdata
); // acquired self (new task)
1885 #if ENABLE_LIBOMPTARGET
1886 if (taskdata
->td_target_data
.async_handle
!= NULL
) {
1887 // If we have a valid target async handle, that means that we have already
1888 // executed the task routine once. We must query for the handle completion
1889 // instead of re-executing the routine.
1890 KMP_ASSERT(tgt_target_nowait_query
);
1891 tgt_target_nowait_query(&taskdata
->td_target_data
.async_handle
);
1894 if (task
->routine
!= NULL
) {
1895 #ifdef KMP_GOMP_COMPAT
1896 if (taskdata
->td_flags
.native
) {
1897 ((void (*)(void *))(*(task
->routine
)))(task
->shareds
);
1899 #endif /* KMP_GOMP_COMPAT */
1901 (*(task
->routine
))(gtid
, task
);
1904 KMP_POP_PARTITIONED_TIMER();
1906 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1907 if (kmp_itt_count_task
) {
1908 // Barrier imbalance - adjust arrive time with the task duration
1909 thread
->th
.th_bar_arrive_time
+= (__itt_get_timestamp() - cur_time
);
1911 KMP_FSYNC_CANCEL(taskdata
); // destroy self (just executed)
1912 KMP_FSYNC_RELEASING(taskdata
->td_parent
); // releasing parent
1917 if (ompd_state
& OMPD_ENABLE_BP
)
1921 // Proxy tasks are not handled by the runtime
1922 if (taskdata
->td_flags
.proxy
!= TASK_PROXY
) {
1924 if (UNLIKELY(ompt_enabled
.enabled
)) {
1925 thread
->th
.ompt_thread_info
= oldInfo
;
1926 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
1927 taskdata
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
1929 __kmp_task_finish
<true>(gtid
, task
, current_task
);
1932 __kmp_task_finish
<false>(gtid
, task
, current_task
);
1937 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1938 gtid
, taskdata
, current_task
));
1942 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1944 // loc_ref: location of original task pragma (ignored)
1945 // gtid: Global Thread ID of encountering thread
1946 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1948 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1949 // be resumed later.
1950 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1952 kmp_int32
__kmpc_omp_task_parts(ident_t
*loc_ref
, kmp_int32 gtid
,
1953 kmp_task_t
*new_task
) {
1954 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
1956 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid
,
1957 loc_ref
, new_taskdata
));
1960 kmp_taskdata_t
*parent
;
1961 if (UNLIKELY(ompt_enabled
.enabled
)) {
1962 parent
= new_taskdata
->td_parent
;
1963 if (ompt_enabled
.ompt_callback_task_create
) {
1964 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
1965 &(parent
->ompt_task_info
.task_data
), &(parent
->ompt_task_info
.frame
),
1966 &(new_taskdata
->ompt_task_info
.task_data
), ompt_task_explicit
, 0,
1967 OMPT_GET_RETURN_ADDRESS(0));
1972 /* Should we execute the new task or queue it? For now, let's just always try
1973 to queue it. If the queue fills up, then we'll execute it. */
1975 if (__kmp_push_task(gtid
, new_task
) == TASK_NOT_PUSHED
) // if cannot defer
1976 { // Execute this task immediately
1977 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
1978 new_taskdata
->td_flags
.task_serial
= 1;
1979 __kmp_invoke_task(gtid
, new_task
, current_task
);
1984 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1985 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1986 gtid
, loc_ref
, new_taskdata
));
1989 if (UNLIKELY(ompt_enabled
.enabled
)) {
1990 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
1993 return TASK_CURRENT_NOT_QUEUED
;
1996 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1998 // gtid: Global Thread ID of encountering thread
1999 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
2000 // serialize_immediate: if TRUE then if the task is executed immediately its
2001 // execution will be serialized
2003 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2004 // be resumed later.
2005 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2007 kmp_int32
__kmp_omp_task(kmp_int32 gtid
, kmp_task_t
*new_task
,
2008 bool serialize_immediate
) {
2009 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2012 if (new_taskdata
->is_taskgraph
&&
2013 __kmp_tdg_is_recording(new_taskdata
->tdg
->tdg_status
)) {
2014 kmp_tdg_info_t
*tdg
= new_taskdata
->tdg
;
2015 // extend the record_map if needed
2016 if (new_taskdata
->td_task_id
>= new_taskdata
->tdg
->map_size
) {
2017 __kmp_acquire_bootstrap_lock(&tdg
->graph_lock
);
2018 // map_size could have been updated by another thread if recursive
2020 if (new_taskdata
->td_task_id
>= tdg
->map_size
) {
2021 kmp_uint old_size
= tdg
->map_size
;
2022 kmp_uint new_size
= old_size
* 2;
2023 kmp_node_info_t
*old_record
= tdg
->record_map
;
2024 kmp_node_info_t
*new_record
= (kmp_node_info_t
*)__kmp_allocate(
2025 new_size
* sizeof(kmp_node_info_t
));
2027 KMP_MEMCPY(new_record
, old_record
, old_size
* sizeof(kmp_node_info_t
));
2028 tdg
->record_map
= new_record
;
2030 __kmp_free(old_record
);
2032 for (kmp_int i
= old_size
; i
< new_size
; i
++) {
2033 kmp_int32
*successorsList
= (kmp_int32
*)__kmp_allocate(
2034 __kmp_successors_size
* sizeof(kmp_int32
));
2035 new_record
[i
].task
= nullptr;
2036 new_record
[i
].successors
= successorsList
;
2037 new_record
[i
].nsuccessors
= 0;
2038 new_record
[i
].npredecessors
= 0;
2039 new_record
[i
].successors_size
= __kmp_successors_size
;
2040 KMP_ATOMIC_ST_REL(&new_record
[i
].npredecessors_counter
, 0);
2042 // update the size at the end, so that we avoid other
2043 // threads use old_record while map_size is already updated
2044 tdg
->map_size
= new_size
;
2046 __kmp_release_bootstrap_lock(&tdg
->graph_lock
);
2049 if (tdg
->record_map
[new_taskdata
->td_task_id
].task
== nullptr) {
2050 tdg
->record_map
[new_taskdata
->td_task_id
].task
= new_task
;
2051 tdg
->record_map
[new_taskdata
->td_task_id
].parent_task
=
2052 new_taskdata
->td_parent
;
2053 KMP_ATOMIC_INC(&tdg
->num_tasks
);
2058 /* Should we execute the new task or queue it? For now, let's just always try
2059 to queue it. If the queue fills up, then we'll execute it. */
2060 if (new_taskdata
->td_flags
.proxy
== TASK_PROXY
||
2061 __kmp_push_task(gtid
, new_task
) == TASK_NOT_PUSHED
) // if cannot defer
2062 { // Execute this task immediately
2063 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
2064 if (serialize_immediate
)
2065 new_taskdata
->td_flags
.task_serial
= 1;
2066 __kmp_invoke_task(gtid
, new_task
, current_task
);
2067 } else if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
&&
2068 __kmp_wpolicy_passive
) {
2069 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
2070 kmp_team_t
*team
= this_thr
->th
.th_team
;
2071 kmp_int32 nthreads
= this_thr
->th
.th_team_nproc
;
2072 for (int i
= 0; i
< nthreads
; ++i
) {
2073 kmp_info_t
*thread
= team
->t
.t_threads
[i
];
2074 if (thread
== this_thr
)
2076 if (thread
->th
.th_sleep_loc
!= NULL
) {
2077 __kmp_null_resume_wrapper(thread
);
2078 break; // awake one thread at a time
2082 return TASK_CURRENT_NOT_QUEUED
;
2085 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
2086 // non-thread-switchable task from the parent thread only!
2088 // loc_ref: location of original task pragma (ignored)
2089 // gtid: Global Thread ID of encountering thread
2090 // new_task: non-thread-switchable task thunk allocated by
2091 // __kmp_omp_task_alloc()
2093 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2094 // be resumed later.
2095 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2097 kmp_int32
__kmpc_omp_task(ident_t
*loc_ref
, kmp_int32 gtid
,
2098 kmp_task_t
*new_task
) {
2100 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK
);
2102 #if KMP_DEBUG || OMPT_SUPPORT
2103 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2105 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid
, loc_ref
,
2107 __kmp_assert_valid_gtid(gtid
);
2110 kmp_taskdata_t
*parent
= NULL
;
2111 if (UNLIKELY(ompt_enabled
.enabled
)) {
2112 if (!new_taskdata
->td_flags
.started
) {
2113 OMPT_STORE_RETURN_ADDRESS(gtid
);
2114 parent
= new_taskdata
->td_parent
;
2115 if (!parent
->ompt_task_info
.frame
.enter_frame
.ptr
) {
2116 parent
->ompt_task_info
.frame
.enter_frame
.ptr
=
2117 OMPT_GET_FRAME_ADDRESS(0);
2119 if (ompt_enabled
.ompt_callback_task_create
) {
2120 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
2121 &(parent
->ompt_task_info
.task_data
),
2122 &(parent
->ompt_task_info
.frame
),
2123 &(new_taskdata
->ompt_task_info
.task_data
),
2124 ompt_task_explicit
| TASK_TYPE_DETAILS_FORMAT(new_taskdata
), 0,
2125 OMPT_LOAD_RETURN_ADDRESS(gtid
));
2128 // We are scheduling the continuation of an UNTIED task.
2129 // Scheduling back to the parent task.
2130 __ompt_task_finish(new_task
,
2131 new_taskdata
->ompt_task_info
.scheduling_parent
,
2133 new_taskdata
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
2138 res
= __kmp_omp_task(gtid
, new_task
, true);
2140 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2141 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2142 gtid
, loc_ref
, new_taskdata
));
2144 if (UNLIKELY(ompt_enabled
.enabled
&& parent
!= NULL
)) {
2145 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2151 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
2152 // a taskloop task with the correct OMPT return address
2154 // loc_ref: location of original task pragma (ignored)
2155 // gtid: Global Thread ID of encountering thread
2156 // new_task: non-thread-switchable task thunk allocated by
2157 // __kmp_omp_task_alloc()
2158 // codeptr_ra: return address for OMPT callback
2160 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2161 // be resumed later.
2162 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2164 kmp_int32
__kmp_omp_taskloop_task(ident_t
*loc_ref
, kmp_int32 gtid
,
2165 kmp_task_t
*new_task
, void *codeptr_ra
) {
2167 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK
);
2169 #if KMP_DEBUG || OMPT_SUPPORT
2170 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2172 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid
, loc_ref
,
2176 kmp_taskdata_t
*parent
= NULL
;
2177 if (UNLIKELY(ompt_enabled
.enabled
&& !new_taskdata
->td_flags
.started
)) {
2178 parent
= new_taskdata
->td_parent
;
2179 if (!parent
->ompt_task_info
.frame
.enter_frame
.ptr
)
2180 parent
->ompt_task_info
.frame
.enter_frame
.ptr
= OMPT_GET_FRAME_ADDRESS(0);
2181 if (ompt_enabled
.ompt_callback_task_create
) {
2182 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
2183 &(parent
->ompt_task_info
.task_data
), &(parent
->ompt_task_info
.frame
),
2184 &(new_taskdata
->ompt_task_info
.task_data
),
2185 ompt_task_explicit
| TASK_TYPE_DETAILS_FORMAT(new_taskdata
), 0,
2191 res
= __kmp_omp_task(gtid
, new_task
, true);
2193 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2194 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2195 gtid
, loc_ref
, new_taskdata
));
2197 if (UNLIKELY(ompt_enabled
.enabled
&& parent
!= NULL
)) {
2198 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2204 template <bool ompt
>
2205 static kmp_int32
__kmpc_omp_taskwait_template(ident_t
*loc_ref
, kmp_int32 gtid
,
2206 void *frame_address
,
2207 void *return_address
) {
2208 kmp_taskdata_t
*taskdata
= nullptr;
2210 int thread_finished
= FALSE
;
2211 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT
);
2213 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid
, loc_ref
));
2214 KMP_DEBUG_ASSERT(gtid
>= 0);
2216 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2217 thread
= __kmp_threads
[gtid
];
2218 taskdata
= thread
->th
.th_current_task
;
2220 #if OMPT_SUPPORT && OMPT_OPTIONAL
2221 ompt_data_t
*my_task_data
;
2222 ompt_data_t
*my_parallel_data
;
2225 my_task_data
= &(taskdata
->ompt_task_info
.task_data
);
2226 my_parallel_data
= OMPT_CUR_TEAM_DATA(thread
);
2228 taskdata
->ompt_task_info
.frame
.enter_frame
.ptr
= frame_address
;
2230 if (ompt_enabled
.ompt_callback_sync_region
) {
2231 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2232 ompt_sync_region_taskwait
, ompt_scope_begin
, my_parallel_data
,
2233 my_task_data
, return_address
);
2236 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
2237 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2238 ompt_sync_region_taskwait
, ompt_scope_begin
, my_parallel_data
,
2239 my_task_data
, return_address
);
2242 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2244 // Debugger: The taskwait is active. Store location and thread encountered the
2247 // Note: These values are used by ITT events as well.
2248 #endif /* USE_ITT_BUILD */
2249 taskdata
->td_taskwait_counter
+= 1;
2250 taskdata
->td_taskwait_ident
= loc_ref
;
2251 taskdata
->td_taskwait_thread
= gtid
+ 1;
2254 void *itt_sync_obj
= NULL
;
2256 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2257 #endif /* USE_ITT_NOTIFY */
2258 #endif /* USE_ITT_BUILD */
2261 !taskdata
->td_flags
.team_serial
&& !taskdata
->td_flags
.final
;
2263 must_wait
= must_wait
|| (thread
->th
.th_task_team
!= NULL
&&
2264 thread
->th
.th_task_team
->tt
.tt_found_proxy_tasks
);
2265 // If hidden helper thread is encountered, we must enable wait here.
2268 (__kmp_enable_hidden_helper
&& thread
->th
.th_task_team
!= NULL
&&
2269 thread
->th
.th_task_team
->tt
.tt_hidden_helper_task_encountered
);
2272 kmp_flag_32
<false, false> flag(
2273 RCAST(std::atomic
<kmp_uint32
> *,
2274 &(taskdata
->td_incomplete_child_tasks
)),
2276 while (KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
) != 0) {
2277 flag
.execute_tasks(thread
, gtid
, FALSE
,
2278 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2279 __kmp_task_stealing_constraint
);
2283 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2284 KMP_FSYNC_ACQUIRED(taskdata
); // acquire self - sync with children
2285 #endif /* USE_ITT_BUILD */
2287 // Debugger: The taskwait is completed. Location remains, but thread is
2289 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
;
2291 #if OMPT_SUPPORT && OMPT_OPTIONAL
2293 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
2294 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2295 ompt_sync_region_taskwait
, ompt_scope_end
, my_parallel_data
,
2296 my_task_data
, return_address
);
2298 if (ompt_enabled
.ompt_callback_sync_region
) {
2299 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2300 ompt_sync_region_taskwait
, ompt_scope_end
, my_parallel_data
,
2301 my_task_data
, return_address
);
2303 taskdata
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2305 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2308 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
2309 "returning TASK_CURRENT_NOT_QUEUED\n",
2312 return TASK_CURRENT_NOT_QUEUED
;
2315 #if OMPT_SUPPORT && OMPT_OPTIONAL
2317 static kmp_int32
__kmpc_omp_taskwait_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
2318 void *frame_address
,
2319 void *return_address
) {
2320 return __kmpc_omp_taskwait_template
<true>(loc_ref
, gtid
, frame_address
,
2323 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2325 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2327 kmp_int32
__kmpc_omp_taskwait(ident_t
*loc_ref
, kmp_int32 gtid
) {
2328 #if OMPT_SUPPORT && OMPT_OPTIONAL
2329 if (UNLIKELY(ompt_enabled
.enabled
)) {
2330 OMPT_STORE_RETURN_ADDRESS(gtid
);
2331 return __kmpc_omp_taskwait_ompt(loc_ref
, gtid
, OMPT_GET_FRAME_ADDRESS(0),
2332 OMPT_LOAD_RETURN_ADDRESS(gtid
));
2335 return __kmpc_omp_taskwait_template
<false>(loc_ref
, gtid
, NULL
, NULL
);
2338 // __kmpc_omp_taskyield: switch to a different task
2339 kmp_int32
__kmpc_omp_taskyield(ident_t
*loc_ref
, kmp_int32 gtid
, int end_part
) {
2340 kmp_taskdata_t
*taskdata
= NULL
;
2342 int thread_finished
= FALSE
;
2344 KMP_COUNT_BLOCK(OMP_TASKYIELD
);
2345 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD
);
2347 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2348 gtid
, loc_ref
, end_part
));
2349 __kmp_assert_valid_gtid(gtid
);
2351 if (__kmp_tasking_mode
!= tskm_immediate_exec
&& __kmp_init_parallel
) {
2352 thread
= __kmp_threads
[gtid
];
2353 taskdata
= thread
->th
.th_current_task
;
2354 // Should we model this as a task wait or not?
2355 // Debugger: The taskwait is active. Store location and thread encountered the
2358 // Note: These values are used by ITT events as well.
2359 #endif /* USE_ITT_BUILD */
2360 taskdata
->td_taskwait_counter
+= 1;
2361 taskdata
->td_taskwait_ident
= loc_ref
;
2362 taskdata
->td_taskwait_thread
= gtid
+ 1;
2365 void *itt_sync_obj
= NULL
;
2367 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2368 #endif /* USE_ITT_NOTIFY */
2369 #endif /* USE_ITT_BUILD */
2370 if (!taskdata
->td_flags
.team_serial
) {
2371 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
2372 if (task_team
!= NULL
) {
2373 if (KMP_TASKING_ENABLED(task_team
)) {
2375 if (UNLIKELY(ompt_enabled
.enabled
))
2376 thread
->th
.ompt_thread_info
.ompt_task_yielded
= 1;
2378 __kmp_execute_tasks_32(
2379 thread
, gtid
, (kmp_flag_32
<> *)NULL
, FALSE
,
2380 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2381 __kmp_task_stealing_constraint
);
2383 if (UNLIKELY(ompt_enabled
.enabled
))
2384 thread
->th
.ompt_thread_info
.ompt_task_yielded
= 0;
2390 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2391 #endif /* USE_ITT_BUILD */
2393 // Debugger: The taskwait is completed. Location remains, but thread is
2395 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
;
2398 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2399 "returning TASK_CURRENT_NOT_QUEUED\n",
2402 return TASK_CURRENT_NOT_QUEUED
;
2405 // Task Reduction implementation
2407 // Note: initial implementation didn't take into account the possibility
2408 // to specify omp_orig for initializer of the UDR (user defined reduction).
2409 // Corrected implementation takes into account the omp_orig object.
2410 // Compiler is free to use old implementation if omp_orig is not specified.
2413 @ingroup BASIC_TYPES
2418 Flags for special info per task reduction item.
2420 typedef struct kmp_taskred_flags
{
2421 /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */
2422 unsigned lazy_priv
: 1;
2423 unsigned reserved31
: 31;
2424 } kmp_taskred_flags_t
;
2427 Internal struct for reduction data item related info set up by compiler.
2429 typedef struct kmp_task_red_input
{
2430 void *reduce_shar
; /**< shared between tasks item to reduce into */
2431 size_t reduce_size
; /**< size of data item in bytes */
2432 // three compiler-generated routines (init, fini are optional):
2433 void *reduce_init
; /**< data initialization routine (single parameter) */
2434 void *reduce_fini
; /**< data finalization routine */
2435 void *reduce_comb
; /**< data combiner routine */
2436 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2437 } kmp_task_red_input_t
;
2440 Internal struct for reduction data item related info saved by the library.
2442 typedef struct kmp_taskred_data
{
2443 void *reduce_shar
; /**< shared between tasks item to reduce into */
2444 size_t reduce_size
; /**< size of data item */
2445 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2446 void *reduce_priv
; /**< array of thread specific items */
2447 void *reduce_pend
; /**< end of private data for faster comparison op */
2448 // three compiler-generated routines (init, fini are optional):
2449 void *reduce_comb
; /**< data combiner routine */
2450 void *reduce_init
; /**< data initialization routine (two parameters) */
2451 void *reduce_fini
; /**< data finalization routine */
2452 void *reduce_orig
; /**< original item (can be used in UDR initializer) */
2453 } kmp_taskred_data_t
;
2456 Internal struct for reduction data item related info set up by compiler.
2458 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2460 typedef struct kmp_taskred_input
{
2461 void *reduce_shar
; /**< shared between tasks item to reduce into */
2462 void *reduce_orig
; /**< original reduction item used for initialization */
2463 size_t reduce_size
; /**< size of data item */
2464 // three compiler-generated routines (init, fini are optional):
2465 void *reduce_init
; /**< data initialization routine (two parameters) */
2466 void *reduce_fini
; /**< data finalization routine */
2467 void *reduce_comb
; /**< data combiner routine */
2468 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2469 } kmp_taskred_input_t
;
2474 template <typename T
> void __kmp_assign_orig(kmp_taskred_data_t
&item
, T
&src
);
2476 void __kmp_assign_orig
<kmp_task_red_input_t
>(kmp_taskred_data_t
&item
,
2477 kmp_task_red_input_t
&src
) {
2478 item
.reduce_orig
= NULL
;
2481 void __kmp_assign_orig
<kmp_taskred_input_t
>(kmp_taskred_data_t
&item
,
2482 kmp_taskred_input_t
&src
) {
2483 if (src
.reduce_orig
!= NULL
) {
2484 item
.reduce_orig
= src
.reduce_orig
;
2486 item
.reduce_orig
= src
.reduce_shar
;
2487 } // non-NULL reduce_orig means new interface used
2490 template <typename T
> void __kmp_call_init(kmp_taskred_data_t
&item
, size_t j
);
2492 void __kmp_call_init
<kmp_task_red_input_t
>(kmp_taskred_data_t
&item
,
2494 ((void (*)(void *))item
.reduce_init
)((char *)(item
.reduce_priv
) + offset
);
2497 void __kmp_call_init
<kmp_taskred_input_t
>(kmp_taskred_data_t
&item
,
2499 ((void (*)(void *, void *))item
.reduce_init
)(
2500 (char *)(item
.reduce_priv
) + offset
, item
.reduce_orig
);
2503 template <typename T
>
2504 void *__kmp_task_reduction_init(int gtid
, int num
, T
*data
) {
2505 __kmp_assert_valid_gtid(gtid
);
2506 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2507 kmp_taskgroup_t
*tg
= thread
->th
.th_current_task
->td_taskgroup
;
2508 kmp_uint32 nth
= thread
->th
.th_team_nproc
;
2509 kmp_taskred_data_t
*arr
;
2511 // check input data just in case
2512 KMP_ASSERT(tg
!= NULL
);
2513 KMP_ASSERT(data
!= NULL
);
2514 KMP_ASSERT(num
> 0);
2515 if (nth
== 1 && !__kmp_enable_hidden_helper
) {
2516 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2520 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2522 arr
= (kmp_taskred_data_t
*)__kmp_thread_malloc(
2523 thread
, num
* sizeof(kmp_taskred_data_t
));
2524 for (int i
= 0; i
< num
; ++i
) {
2525 size_t size
= data
[i
].reduce_size
- 1;
2526 // round the size up to cache line per thread-specific item
2527 size
+= CACHE_LINE
- size
% CACHE_LINE
;
2528 KMP_ASSERT(data
[i
].reduce_comb
!= NULL
); // combiner is mandatory
2529 arr
[i
].reduce_shar
= data
[i
].reduce_shar
;
2530 arr
[i
].reduce_size
= size
;
2531 arr
[i
].flags
= data
[i
].flags
;
2532 arr
[i
].reduce_comb
= data
[i
].reduce_comb
;
2533 arr
[i
].reduce_init
= data
[i
].reduce_init
;
2534 arr
[i
].reduce_fini
= data
[i
].reduce_fini
;
2535 __kmp_assign_orig
<T
>(arr
[i
], data
[i
]);
2536 if (!arr
[i
].flags
.lazy_priv
) {
2537 // allocate cache-line aligned block and fill it with zeros
2538 arr
[i
].reduce_priv
= __kmp_allocate(nth
* size
);
2539 arr
[i
].reduce_pend
= (char *)(arr
[i
].reduce_priv
) + nth
* size
;
2540 if (arr
[i
].reduce_init
!= NULL
) {
2541 // initialize all thread-specific items
2542 for (size_t j
= 0; j
< nth
; ++j
) {
2543 __kmp_call_init
<T
>(arr
[i
], j
* size
);
2547 // only allocate space for pointers now,
2548 // objects will be lazily allocated/initialized if/when requested
2549 // note that __kmp_allocate zeroes the allocated memory
2550 arr
[i
].reduce_priv
= __kmp_allocate(nth
* sizeof(void *));
2553 tg
->reduce_data
= (void *)arr
;
2554 tg
->reduce_num_data
= num
;
2560 @param gtid Global thread ID
2561 @param num Number of data items to reduce
2562 @param data Array of data for reduction
2563 @return The taskgroup identifier
2565 Initialize task reduction for the taskgroup.
2567 Note: this entry supposes the optional compiler-generated initializer routine
2568 has single parameter - pointer to object to be initialized. That means
2569 the reduction either does not use omp_orig object, or the omp_orig is accessible
2570 without help of the runtime library.
2572 void *__kmpc_task_reduction_init(int gtid
, int num
, void *data
) {
2574 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
2575 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
)) {
2576 kmp_tdg_info_t
*this_tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
2577 this_tdg
->rec_taskred_data
=
2578 __kmp_allocate(sizeof(kmp_task_red_input_t
) * num
);
2579 this_tdg
->rec_num_taskred
= num
;
2580 KMP_MEMCPY(this_tdg
->rec_taskred_data
, data
,
2581 sizeof(kmp_task_red_input_t
) * num
);
2584 return __kmp_task_reduction_init(gtid
, num
, (kmp_task_red_input_t
*)data
);
2589 @param gtid Global thread ID
2590 @param num Number of data items to reduce
2591 @param data Array of data for reduction
2592 @return The taskgroup identifier
2594 Initialize task reduction for the taskgroup.
2596 Note: this entry supposes the optional compiler-generated initializer routine
2597 has two parameters, pointer to object to be initialized and pointer to omp_orig
2599 void *__kmpc_taskred_init(int gtid
, int num
, void *data
) {
2601 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
2602 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
)) {
2603 kmp_tdg_info_t
*this_tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
2604 this_tdg
->rec_taskred_data
=
2605 __kmp_allocate(sizeof(kmp_task_red_input_t
) * num
);
2606 this_tdg
->rec_num_taskred
= num
;
2607 KMP_MEMCPY(this_tdg
->rec_taskred_data
, data
,
2608 sizeof(kmp_task_red_input_t
) * num
);
2611 return __kmp_task_reduction_init(gtid
, num
, (kmp_taskred_input_t
*)data
);
2614 // Copy task reduction data (except for shared pointers).
2615 template <typename T
>
2616 void __kmp_task_reduction_init_copy(kmp_info_t
*thr
, int num
, T
*data
,
2617 kmp_taskgroup_t
*tg
, void *reduce_data
) {
2618 kmp_taskred_data_t
*arr
;
2619 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2621 thr
, tg
, reduce_data
));
2622 arr
= (kmp_taskred_data_t
*)__kmp_thread_malloc(
2623 thr
, num
* sizeof(kmp_taskred_data_t
));
2624 // threads will share private copies, thunk routines, sizes, flags, etc.:
2625 KMP_MEMCPY(arr
, reduce_data
, num
* sizeof(kmp_taskred_data_t
));
2626 for (int i
= 0; i
< num
; ++i
) {
2627 arr
[i
].reduce_shar
= data
[i
].reduce_shar
; // init unique shared pointers
2629 tg
->reduce_data
= (void *)arr
;
2630 tg
->reduce_num_data
= num
;
2635 @param gtid Global thread ID
2636 @param tskgrp The taskgroup ID (optional)
2637 @param data Shared location of the item
2638 @return The pointer to per-thread data
2640 Get thread-specific location of data item
2642 void *__kmpc_task_reduction_get_th_data(int gtid
, void *tskgrp
, void *data
) {
2643 __kmp_assert_valid_gtid(gtid
);
2644 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2645 kmp_int32 nth
= thread
->th
.th_team_nproc
;
2647 return data
; // nothing to do
2649 kmp_taskgroup_t
*tg
= (kmp_taskgroup_t
*)tskgrp
;
2651 tg
= thread
->th
.th_current_task
->td_taskgroup
;
2652 KMP_ASSERT(tg
!= NULL
);
2653 kmp_taskred_data_t
*arr
= (kmp_taskred_data_t
*)(tg
->reduce_data
);
2654 kmp_int32 num
= tg
->reduce_num_data
;
2655 kmp_int32 tid
= thread
->th
.th_info
.ds
.ds_tid
;
2658 if ((thread
->th
.th_current_task
->is_taskgraph
) &&
2659 (!__kmp_tdg_is_recording(
2660 __kmp_global_tdgs
[__kmp_curr_tdg_idx
]->tdg_status
))) {
2661 tg
= thread
->th
.th_current_task
->td_taskgroup
;
2662 KMP_ASSERT(tg
!= NULL
);
2663 KMP_ASSERT(tg
->reduce_data
!= NULL
);
2664 arr
= (kmp_taskred_data_t
*)(tg
->reduce_data
);
2665 num
= tg
->reduce_num_data
;
2669 KMP_ASSERT(data
!= NULL
);
2670 while (tg
!= NULL
) {
2671 for (int i
= 0; i
< num
; ++i
) {
2672 if (!arr
[i
].flags
.lazy_priv
) {
2673 if (data
== arr
[i
].reduce_shar
||
2674 (data
>= arr
[i
].reduce_priv
&& data
< arr
[i
].reduce_pend
))
2675 return (char *)(arr
[i
].reduce_priv
) + tid
* arr
[i
].reduce_size
;
2677 // check shared location first
2678 void **p_priv
= (void **)(arr
[i
].reduce_priv
);
2679 if (data
== arr
[i
].reduce_shar
)
2681 // check if we get some thread specific location as parameter
2682 for (int j
= 0; j
< nth
; ++j
)
2683 if (data
== p_priv
[j
])
2685 continue; // not found, continue search
2687 if (p_priv
[tid
] == NULL
) {
2688 // allocate thread specific object lazily
2689 p_priv
[tid
] = __kmp_allocate(arr
[i
].reduce_size
);
2690 if (arr
[i
].reduce_init
!= NULL
) {
2691 if (arr
[i
].reduce_orig
!= NULL
) { // new interface
2692 ((void (*)(void *, void *))arr
[i
].reduce_init
)(
2693 p_priv
[tid
], arr
[i
].reduce_orig
);
2694 } else { // old interface (single parameter)
2695 ((void (*)(void *))arr
[i
].reduce_init
)(p_priv
[tid
]);
2702 KMP_ASSERT(tg
->parent
);
2704 arr
= (kmp_taskred_data_t
*)(tg
->reduce_data
);
2705 num
= tg
->reduce_num_data
;
2707 KMP_ASSERT2(0, "Unknown task reduction item");
2708 return NULL
; // ERROR, this line never executed
2711 // Finalize task reduction.
2712 // Called from __kmpc_end_taskgroup()
2713 static void __kmp_task_reduction_fini(kmp_info_t
*th
, kmp_taskgroup_t
*tg
) {
2714 kmp_int32 nth
= th
->th
.th_team_nproc
;
2717 __kmp_enable_hidden_helper
); // should not be called if nth == 1 unless we
2718 // are using hidden helper threads
2719 kmp_taskred_data_t
*arr
= (kmp_taskred_data_t
*)tg
->reduce_data
;
2720 kmp_int32 num
= tg
->reduce_num_data
;
2721 for (int i
= 0; i
< num
; ++i
) {
2722 void *sh_data
= arr
[i
].reduce_shar
;
2723 void (*f_fini
)(void *) = (void (*)(void *))(arr
[i
].reduce_fini
);
2724 void (*f_comb
)(void *, void *) =
2725 (void (*)(void *, void *))(arr
[i
].reduce_comb
);
2726 if (!arr
[i
].flags
.lazy_priv
) {
2727 void *pr_data
= arr
[i
].reduce_priv
;
2728 size_t size
= arr
[i
].reduce_size
;
2729 for (int j
= 0; j
< nth
; ++j
) {
2730 void *priv_data
= (char *)pr_data
+ j
* size
;
2731 f_comb(sh_data
, priv_data
); // combine results
2733 f_fini(priv_data
); // finalize if needed
2736 void **pr_data
= (void **)(arr
[i
].reduce_priv
);
2737 for (int j
= 0; j
< nth
; ++j
) {
2738 if (pr_data
[j
] != NULL
) {
2739 f_comb(sh_data
, pr_data
[j
]); // combine results
2741 f_fini(pr_data
[j
]); // finalize if needed
2742 __kmp_free(pr_data
[j
]);
2746 __kmp_free(arr
[i
].reduce_priv
);
2748 __kmp_thread_free(th
, arr
);
2749 tg
->reduce_data
= NULL
;
2750 tg
->reduce_num_data
= 0;
2753 // Cleanup task reduction data for parallel or worksharing,
2754 // do not touch task private data other threads still working with.
2755 // Called from __kmpc_end_taskgroup()
2756 static void __kmp_task_reduction_clean(kmp_info_t
*th
, kmp_taskgroup_t
*tg
) {
2757 __kmp_thread_free(th
, tg
->reduce_data
);
2758 tg
->reduce_data
= NULL
;
2759 tg
->reduce_num_data
= 0;
2762 template <typename T
>
2763 void *__kmp_task_reduction_modifier_init(ident_t
*loc
, int gtid
, int is_ws
,
2765 __kmp_assert_valid_gtid(gtid
);
2766 kmp_info_t
*thr
= __kmp_threads
[gtid
];
2767 kmp_int32 nth
= thr
->th
.th_team_nproc
;
2768 __kmpc_taskgroup(loc
, gtid
); // form new taskgroup first
2771 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2772 gtid
, thr
->th
.th_current_task
->td_taskgroup
));
2773 return (void *)thr
->th
.th_current_task
->td_taskgroup
;
2775 kmp_team_t
*team
= thr
->th
.th_team
;
2777 kmp_taskgroup_t
*tg
;
2778 reduce_data
= KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_reduce_data
[is_ws
]);
2779 if (reduce_data
== NULL
&&
2780 __kmp_atomic_compare_store(&team
->t
.t_tg_reduce_data
[is_ws
], reduce_data
,
2782 // single thread enters this block to initialize common reduction data
2783 KMP_DEBUG_ASSERT(reduce_data
== NULL
);
2784 // first initialize own data, then make a copy other threads can use
2785 tg
= (kmp_taskgroup_t
*)__kmp_task_reduction_init
<T
>(gtid
, num
, data
);
2786 reduce_data
= __kmp_thread_malloc(thr
, num
* sizeof(kmp_taskred_data_t
));
2787 KMP_MEMCPY(reduce_data
, tg
->reduce_data
, num
* sizeof(kmp_taskred_data_t
));
2788 // fini counters should be 0 at this point
2789 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_fini_counter
[0]) == 0);
2790 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_fini_counter
[1]) == 0);
2791 KMP_ATOMIC_ST_REL(&team
->t
.t_tg_reduce_data
[is_ws
], reduce_data
);
2794 (reduce_data
= KMP_ATOMIC_LD_ACQ(&team
->t
.t_tg_reduce_data
[is_ws
])) ==
2795 (void *)1) { // wait for task reduction initialization
2798 KMP_DEBUG_ASSERT(reduce_data
> (void *)1); // should be valid pointer here
2799 tg
= thr
->th
.th_current_task
->td_taskgroup
;
2800 __kmp_task_reduction_init_copy
<T
>(thr
, num
, data
, tg
, reduce_data
);
2807 @param loc Source location info
2808 @param gtid Global thread ID
2809 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2810 @param num Number of data items to reduce
2811 @param data Array of data for reduction
2812 @return The taskgroup identifier
2814 Initialize task reduction for a parallel or worksharing.
2816 Note: this entry supposes the optional compiler-generated initializer routine
2817 has single parameter - pointer to object to be initialized. That means
2818 the reduction either does not use omp_orig object, or the omp_orig is accessible
2819 without help of the runtime library.
2821 void *__kmpc_task_reduction_modifier_init(ident_t
*loc
, int gtid
, int is_ws
,
2822 int num
, void *data
) {
2823 return __kmp_task_reduction_modifier_init(loc
, gtid
, is_ws
, num
,
2824 (kmp_task_red_input_t
*)data
);
2829 @param loc Source location info
2830 @param gtid Global thread ID
2831 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2832 @param num Number of data items to reduce
2833 @param data Array of data for reduction
2834 @return The taskgroup identifier
2836 Initialize task reduction for a parallel or worksharing.
2838 Note: this entry supposes the optional compiler-generated initializer routine
2839 has two parameters, pointer to object to be initialized and pointer to omp_orig
2841 void *__kmpc_taskred_modifier_init(ident_t
*loc
, int gtid
, int is_ws
, int num
,
2843 return __kmp_task_reduction_modifier_init(loc
, gtid
, is_ws
, num
,
2844 (kmp_taskred_input_t
*)data
);
2849 @param loc Source location info
2850 @param gtid Global thread ID
2851 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2853 Finalize task reduction for a parallel or worksharing.
2855 void __kmpc_task_reduction_modifier_fini(ident_t
*loc
, int gtid
, int is_ws
) {
2856 __kmpc_end_taskgroup(loc
, gtid
);
2859 // __kmpc_taskgroup: Start a new taskgroup
2860 void __kmpc_taskgroup(ident_t
*loc
, int gtid
) {
2861 __kmp_assert_valid_gtid(gtid
);
2862 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2863 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
2864 kmp_taskgroup_t
*tg_new
=
2865 (kmp_taskgroup_t
*)__kmp_thread_malloc(thread
, sizeof(kmp_taskgroup_t
));
2866 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid
, loc
, tg_new
));
2867 KMP_ATOMIC_ST_RLX(&tg_new
->count
, 0);
2868 KMP_ATOMIC_ST_RLX(&tg_new
->cancel_request
, cancel_noreq
);
2869 tg_new
->parent
= taskdata
->td_taskgroup
;
2870 tg_new
->reduce_data
= NULL
;
2871 tg_new
->reduce_num_data
= 0;
2872 tg_new
->gomp_data
= NULL
;
2873 taskdata
->td_taskgroup
= tg_new
;
2875 #if OMPT_SUPPORT && OMPT_OPTIONAL
2876 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region
)) {
2877 void *codeptr
= OMPT_LOAD_RETURN_ADDRESS(gtid
);
2879 codeptr
= OMPT_GET_RETURN_ADDRESS(0);
2880 kmp_team_t
*team
= thread
->th
.th_team
;
2881 ompt_data_t my_task_data
= taskdata
->ompt_task_info
.task_data
;
2882 // FIXME: I think this is wrong for lwt!
2883 ompt_data_t my_parallel_data
= team
->t
.ompt_team_info
.parallel_data
;
2885 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2886 ompt_sync_region_taskgroup
, ompt_scope_begin
, &(my_parallel_data
),
2887 &(my_task_data
), codeptr
);
2892 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2893 // and its descendants are complete
2894 void __kmpc_end_taskgroup(ident_t
*loc
, int gtid
) {
2895 __kmp_assert_valid_gtid(gtid
);
2896 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2897 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
2898 kmp_taskgroup_t
*taskgroup
= taskdata
->td_taskgroup
;
2899 int thread_finished
= FALSE
;
2901 #if OMPT_SUPPORT && OMPT_OPTIONAL
2903 ompt_data_t my_task_data
;
2904 ompt_data_t my_parallel_data
;
2905 void *codeptr
= nullptr;
2906 if (UNLIKELY(ompt_enabled
.enabled
)) {
2907 team
= thread
->th
.th_team
;
2908 my_task_data
= taskdata
->ompt_task_info
.task_data
;
2909 // FIXME: I think this is wrong for lwt!
2910 my_parallel_data
= team
->t
.ompt_team_info
.parallel_data
;
2911 codeptr
= OMPT_LOAD_RETURN_ADDRESS(gtid
);
2913 codeptr
= OMPT_GET_RETURN_ADDRESS(0);
2917 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid
, loc
));
2918 KMP_DEBUG_ASSERT(taskgroup
!= NULL
);
2919 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP
);
2921 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2922 // mark task as waiting not on a barrier
2923 taskdata
->td_taskwait_counter
+= 1;
2924 taskdata
->td_taskwait_ident
= loc
;
2925 taskdata
->td_taskwait_thread
= gtid
+ 1;
2927 // For ITT the taskgroup wait is similar to taskwait until we need to
2929 void *itt_sync_obj
= NULL
;
2931 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2932 #endif /* USE_ITT_NOTIFY */
2933 #endif /* USE_ITT_BUILD */
2935 #if OMPT_SUPPORT && OMPT_OPTIONAL
2936 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region_wait
)) {
2937 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2938 ompt_sync_region_taskgroup
, ompt_scope_begin
, &(my_parallel_data
),
2939 &(my_task_data
), codeptr
);
2943 if (!taskdata
->td_flags
.team_serial
||
2944 (thread
->th
.th_task_team
!= NULL
&&
2945 (thread
->th
.th_task_team
->tt
.tt_found_proxy_tasks
||
2946 thread
->th
.th_task_team
->tt
.tt_hidden_helper_task_encountered
))) {
2947 kmp_flag_32
<false, false> flag(
2948 RCAST(std::atomic
<kmp_uint32
> *, &(taskgroup
->count
)), 0U);
2949 while (KMP_ATOMIC_LD_ACQ(&taskgroup
->count
) != 0) {
2950 flag
.execute_tasks(thread
, gtid
, FALSE
,
2951 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2952 __kmp_task_stealing_constraint
);
2955 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
; // end waiting
2957 #if OMPT_SUPPORT && OMPT_OPTIONAL
2958 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region_wait
)) {
2959 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2960 ompt_sync_region_taskgroup
, ompt_scope_end
, &(my_parallel_data
),
2961 &(my_task_data
), codeptr
);
2966 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2967 KMP_FSYNC_ACQUIRED(taskdata
); // acquire self - sync with descendants
2968 #endif /* USE_ITT_BUILD */
2970 KMP_DEBUG_ASSERT(taskgroup
->count
== 0);
2972 if (taskgroup
->reduce_data
!= NULL
&&
2973 !taskgroup
->gomp_data
) { // need to reduce?
2976 kmp_team_t
*t
= thread
->th
.th_team
;
2977 kmp_taskred_data_t
*arr
= (kmp_taskred_data_t
*)taskgroup
->reduce_data
;
2978 // check if <priv> data of the first reduction variable shared for the team
2979 void *priv0
= arr
[0].reduce_priv
;
2980 if ((reduce_data
= KMP_ATOMIC_LD_ACQ(&t
->t
.t_tg_reduce_data
[0])) != NULL
&&
2981 ((kmp_taskred_data_t
*)reduce_data
)[0].reduce_priv
== priv0
) {
2982 // finishing task reduction on parallel
2983 cnt
= KMP_ATOMIC_INC(&t
->t
.t_tg_fini_counter
[0]);
2984 if (cnt
== thread
->th
.th_team_nproc
- 1) {
2985 // we are the last thread passing __kmpc_reduction_modifier_fini()
2986 // finalize task reduction:
2987 __kmp_task_reduction_fini(thread
, taskgroup
);
2988 // cleanup fields in the team structure:
2989 // TODO: is relaxed store enough here (whole barrier should follow)?
2990 __kmp_thread_free(thread
, reduce_data
);
2991 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_reduce_data
[0], NULL
);
2992 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_fini_counter
[0], 0);
2994 // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2995 // so do not finalize reduction, just clean own copy of the data
2996 __kmp_task_reduction_clean(thread
, taskgroup
);
2998 } else if ((reduce_data
= KMP_ATOMIC_LD_ACQ(&t
->t
.t_tg_reduce_data
[1])) !=
3000 ((kmp_taskred_data_t
*)reduce_data
)[0].reduce_priv
== priv0
) {
3001 // finishing task reduction on worksharing
3002 cnt
= KMP_ATOMIC_INC(&t
->t
.t_tg_fini_counter
[1]);
3003 if (cnt
== thread
->th
.th_team_nproc
- 1) {
3004 // we are the last thread passing __kmpc_reduction_modifier_fini()
3005 __kmp_task_reduction_fini(thread
, taskgroup
);
3006 // cleanup fields in team structure:
3007 // TODO: is relaxed store enough here (whole barrier should follow)?
3008 __kmp_thread_free(thread
, reduce_data
);
3009 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_reduce_data
[1], NULL
);
3010 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_fini_counter
[1], 0);
3012 // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3013 // so do not finalize reduction, just clean own copy of the data
3014 __kmp_task_reduction_clean(thread
, taskgroup
);
3017 // finishing task reduction on taskgroup
3018 __kmp_task_reduction_fini(thread
, taskgroup
);
3021 // Restore parent taskgroup for the current task
3022 taskdata
->td_taskgroup
= taskgroup
->parent
;
3023 __kmp_thread_free(thread
, taskgroup
);
3025 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
3028 #if OMPT_SUPPORT && OMPT_OPTIONAL
3029 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region
)) {
3030 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
3031 ompt_sync_region_taskgroup
, ompt_scope_end
, &(my_parallel_data
),
3032 &(my_task_data
), codeptr
);
3037 static kmp_task_t
*__kmp_get_priority_task(kmp_int32 gtid
,
3038 kmp_task_team_t
*task_team
,
3039 kmp_int32 is_constrained
) {
3040 kmp_task_t
*task
= NULL
;
3041 kmp_taskdata_t
*taskdata
;
3042 kmp_taskdata_t
*current
;
3043 kmp_thread_data_t
*thread_data
;
3044 int ntasks
= task_team
->tt
.tt_num_task_pri
;
3047 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid
));
3051 // decrement num_tasks to "reserve" one task to get for execution
3052 if (__kmp_atomic_compare_store(&task_team
->tt
.tt_num_task_pri
, ntasks
,
3055 ntasks
= task_team
->tt
.tt_num_task_pri
;
3056 } while (ntasks
> 0);
3058 KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n",
3062 // We got a "ticket" to get a "reserved" priority task
3064 kmp_task_pri_t
*list
= task_team
->tt
.tt_task_pri_list
;
3066 KMP_ASSERT(list
!= NULL
);
3067 thread_data
= &list
->td
;
3068 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3069 deque_ntasks
= thread_data
->td
.td_deque_ntasks
;
3070 if (deque_ntasks
== 0) {
3071 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3072 KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n",
3073 __kmp_get_gtid(), thread_data
));
3076 } while (deque_ntasks
== 0);
3077 KMP_DEBUG_ASSERT(deque_ntasks
);
3078 int target
= thread_data
->td
.td_deque_head
;
3079 current
= __kmp_threads
[gtid
]->th
.th_current_task
;
3080 taskdata
= thread_data
->td
.td_deque
[target
];
3081 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3082 // Bump head pointer and Wrap.
3083 thread_data
->td
.td_deque_head
=
3084 (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3086 if (!task_team
->tt
.tt_untied_task_encountered
) {
3087 // The TSC does not allow to steal victim task
3088 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3089 KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task "
3090 "from %p: task_team=%p ntasks=%d head=%u tail=%u\n",
3091 gtid
, thread_data
, task_team
, deque_ntasks
, target
,
3092 thread_data
->td
.td_deque_tail
));
3093 task_team
->tt
.tt_num_task_pri
++; // atomic inc, restore value
3097 // walk through the deque trying to steal any task
3099 for (i
= 1; i
< deque_ntasks
; ++i
) {
3100 target
= (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3101 taskdata
= thread_data
->td
.td_deque
[target
];
3102 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3103 break; // found task to execute
3108 if (taskdata
== NULL
) {
3109 // No appropriate candidate found to execute
3110 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3112 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from "
3113 "%p: task_team=%p ntasks=%d head=%u tail=%u\n",
3114 gtid
, thread_data
, task_team
, deque_ntasks
,
3115 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3116 task_team
->tt
.tt_num_task_pri
++; // atomic inc, restore value
3120 for (i
= i
+ 1; i
< deque_ntasks
; ++i
) {
3121 // shift remaining tasks in the deque left by 1
3122 target
= (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3123 thread_data
->td
.td_deque
[prev
] = thread_data
->td
.td_deque
[target
];
3127 thread_data
->td
.td_deque_tail
==
3128 (kmp_uint32
)((target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
)));
3129 thread_data
->td
.td_deque_tail
= target
; // tail -= 1 (wrapped))
3131 thread_data
->td
.td_deque_ntasks
= deque_ntasks
- 1;
3132 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3133 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3137 // __kmp_remove_my_task: remove a task from my own deque
3138 static kmp_task_t
*__kmp_remove_my_task(kmp_info_t
*thread
, kmp_int32 gtid
,
3139 kmp_task_team_t
*task_team
,
3140 kmp_int32 is_constrained
) {
3142 kmp_taskdata_t
*taskdata
;
3143 kmp_thread_data_t
*thread_data
;
3146 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3147 KMP_DEBUG_ASSERT(task_team
->tt
.tt_threads_data
!=
3148 NULL
); // Caller should check this condition
3150 thread_data
= &task_team
->tt
.tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
3152 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
3153 gtid
, thread_data
->td
.td_deque_ntasks
,
3154 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3156 if (TCR_4(thread_data
->td
.td_deque_ntasks
) == 0) {
3158 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
3159 "ntasks=%d head=%u tail=%u\n",
3160 gtid
, thread_data
->td
.td_deque_ntasks
,
3161 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3165 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3167 if (TCR_4(thread_data
->td
.td_deque_ntasks
) == 0) {
3168 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3170 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
3171 "ntasks=%d head=%u tail=%u\n",
3172 gtid
, thread_data
->td
.td_deque_ntasks
,
3173 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3177 tail
= (thread_data
->td
.td_deque_tail
- 1) &
3178 TASK_DEQUE_MASK(thread_data
->td
); // Wrap index.
3179 taskdata
= thread_data
->td
.td_deque
[tail
];
3181 if (!__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
,
3182 thread
->th
.th_current_task
)) {
3183 // The TSC does not allow to steal victim task
3184 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3186 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
3187 "ntasks=%d head=%u tail=%u\n",
3188 gtid
, thread_data
->td
.td_deque_ntasks
,
3189 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3193 thread_data
->td
.td_deque_tail
= tail
;
3194 TCW_4(thread_data
->td
.td_deque_ntasks
, thread_data
->td
.td_deque_ntasks
- 1);
3196 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3198 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
3199 "ntasks=%d head=%u tail=%u\n",
3200 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
3201 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3203 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3207 // __kmp_steal_task: remove a task from another thread's deque
3208 // Assume that calling thread has already checked existence of
3209 // task_team thread_data before calling this routine.
3210 static kmp_task_t
*__kmp_steal_task(kmp_info_t
*victim_thr
, kmp_int32 gtid
,
3211 kmp_task_team_t
*task_team
,
3212 std::atomic
<kmp_int32
> *unfinished_threads
,
3213 int *thread_finished
,
3214 kmp_int32 is_constrained
) {
3216 kmp_taskdata_t
*taskdata
;
3217 kmp_taskdata_t
*current
;
3218 kmp_thread_data_t
*victim_td
, *threads_data
;
3220 kmp_int32 victim_tid
;
3222 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3224 threads_data
= task_team
->tt
.tt_threads_data
;
3225 KMP_DEBUG_ASSERT(threads_data
!= NULL
); // Caller should check this condition
3227 victim_tid
= victim_thr
->th
.th_info
.ds
.ds_tid
;
3228 victim_td
= &threads_data
[victim_tid
];
3230 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
3231 "task_team=%p ntasks=%d head=%u tail=%u\n",
3232 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3233 victim_td
->td
.td_deque_ntasks
, victim_td
->td
.td_deque_head
,
3234 victim_td
->td
.td_deque_tail
));
3236 if (TCR_4(victim_td
->td
.td_deque_ntasks
) == 0) {
3237 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
3238 "task_team=%p ntasks=%d head=%u tail=%u\n",
3239 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3240 victim_td
->td
.td_deque_ntasks
, victim_td
->td
.td_deque_head
,
3241 victim_td
->td
.td_deque_tail
));
3245 __kmp_acquire_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3247 int ntasks
= TCR_4(victim_td
->td
.td_deque_ntasks
);
3248 // Check again after we acquire the lock
3250 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3251 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
3252 "task_team=%p ntasks=%d head=%u tail=%u\n",
3253 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3254 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3258 KMP_DEBUG_ASSERT(victim_td
->td
.td_deque
!= NULL
);
3259 current
= __kmp_threads
[gtid
]->th
.th_current_task
;
3260 taskdata
= victim_td
->td
.td_deque
[victim_td
->td
.td_deque_head
];
3261 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3262 // Bump head pointer and Wrap.
3263 victim_td
->td
.td_deque_head
=
3264 (victim_td
->td
.td_deque_head
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3266 if (!task_team
->tt
.tt_untied_task_encountered
) {
3267 // The TSC does not allow to steal victim task
3268 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3269 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
3270 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3271 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3272 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3276 // walk through victim's deque trying to steal any task
3277 target
= victim_td
->td
.td_deque_head
;
3279 for (i
= 1; i
< ntasks
; ++i
) {
3280 target
= (target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3281 taskdata
= victim_td
->td
.td_deque
[target
];
3282 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3283 break; // found victim task
3288 if (taskdata
== NULL
) {
3289 // No appropriate candidate to steal found
3290 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3291 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
3292 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3293 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3294 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3298 for (i
= i
+ 1; i
< ntasks
; ++i
) {
3299 // shift remaining tasks in the deque left by 1
3300 target
= (target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3301 victim_td
->td
.td_deque
[prev
] = victim_td
->td
.td_deque
[target
];
3305 victim_td
->td
.td_deque_tail
==
3306 (kmp_uint32
)((target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
)));
3307 victim_td
->td
.td_deque_tail
= target
; // tail -= 1 (wrapped))
3309 if (*thread_finished
) {
3310 // We need to un-mark this victim as a finished victim. This must be done
3311 // before releasing the lock, or else other threads (starting with the
3312 // primary thread victim) might be prematurely released from the barrier!!!
3316 KMP_ATOMIC_INC(unfinished_threads
);
3319 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
3320 gtid
, count
+ 1, task_team
));
3321 *thread_finished
= FALSE
;
3323 TCW_4(victim_td
->td
.td_deque_ntasks
, ntasks
- 1);
3325 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3327 KMP_COUNT_BLOCK(TASK_stolen
);
3329 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
3330 "task_team=%p ntasks=%d head=%u tail=%u\n",
3331 gtid
, taskdata
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3332 ntasks
, victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3334 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3338 // __kmp_execute_tasks_template: Choose and execute tasks until either the
3339 // condition is statisfied (return true) or there are none left (return false).
3341 // final_spin is TRUE if this is the spin at the release barrier.
3342 // thread_finished indicates whether the thread is finished executing all
3343 // the tasks it has on its deque, and is at the release barrier.
3344 // spinner is the location on which to spin.
3345 // spinner == NULL means only execute a single task and return.
3346 // checker is the value to check to terminate the spin.
3348 static inline int __kmp_execute_tasks_template(
3349 kmp_info_t
*thread
, kmp_int32 gtid
, C
*flag
, int final_spin
,
3350 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3351 kmp_int32 is_constrained
) {
3352 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
3353 kmp_thread_data_t
*threads_data
;
3355 kmp_info_t
*other_thread
;
3356 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
3357 std::atomic
<kmp_int32
> *unfinished_threads
;
3358 kmp_int32 nthreads
, victim_tid
= -2, use_own_tasks
= 1, new_victim
= 0,
3359 tid
= thread
->th
.th_info
.ds
.ds_tid
;
3361 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3362 KMP_DEBUG_ASSERT(thread
== __kmp_threads
[gtid
]);
3364 if (task_team
== NULL
|| current_task
== NULL
)
3367 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
3368 "*thread_finished=%d\n",
3369 gtid
, final_spin
, *thread_finished
));
3371 thread
->th
.th_reap_state
= KMP_NOT_SAFE_TO_REAP
;
3372 threads_data
= (kmp_thread_data_t
*)TCR_PTR(task_team
->tt
.tt_threads_data
);
3374 KMP_DEBUG_ASSERT(threads_data
!= NULL
);
3376 nthreads
= task_team
->tt
.tt_nproc
;
3377 unfinished_threads
= &(task_team
->tt
.tt_unfinished_threads
);
3378 KMP_DEBUG_ASSERT(nthreads
> 1 || task_team
->tt
.tt_found_proxy_tasks
||
3379 task_team
->tt
.tt_hidden_helper_task_encountered
);
3380 KMP_DEBUG_ASSERT(*unfinished_threads
>= 0);
3382 while (1) { // Outer loop keeps trying to find tasks in case of single thread
3383 // getting tasks from target constructs
3384 while (1) { // Inner loop to find a task and execute it
3386 if (task_team
->tt
.tt_num_task_pri
) { // get priority task first
3387 task
= __kmp_get_priority_task(gtid
, task_team
, is_constrained
);
3389 if (task
== NULL
&& use_own_tasks
) { // check own queue next
3390 task
= __kmp_remove_my_task(thread
, gtid
, task_team
, is_constrained
);
3392 if ((task
== NULL
) && (nthreads
> 1)) { // Steal a task finally
3395 // Try to steal from the last place I stole from successfully.
3396 if (victim_tid
== -2) { // haven't stolen anything yet
3397 victim_tid
= threads_data
[tid
].td
.td_deque_last_stolen
;
3399 -1) // if we have a last stolen from victim, get the thread
3400 other_thread
= threads_data
[victim_tid
].td
.td_thr
;
3402 if (victim_tid
!= -1) { // found last victim
3404 } else if (!new_victim
) { // no recent steals and we haven't already
3405 // used a new victim; select a random thread
3406 do { // Find a different thread to steal work from.
3407 // Pick a random thread. Initial plan was to cycle through all the
3408 // threads, and only return if we tried to steal from every thread,
3409 // and failed. Arch says that's not such a great idea.
3410 victim_tid
= __kmp_get_random(thread
) % (nthreads
- 1);
3411 if (victim_tid
>= tid
) {
3412 ++victim_tid
; // Adjusts random distribution to exclude self
3414 // Found a potential victim
3415 other_thread
= threads_data
[victim_tid
].td
.td_thr
;
3416 // There is a slight chance that __kmp_enable_tasking() did not wake
3417 // up all threads waiting at the barrier. If victim is sleeping,
3418 // then wake it up. Since we were going to pay the cache miss
3419 // penalty for referencing another thread's kmp_info_t struct
3421 // the check shouldn't cost too much performance at this point. In
3422 // extra barrier mode, tasks do not sleep at the separate tasking
3423 // barrier, so this isn't a problem.
3425 if ((__kmp_tasking_mode
== tskm_task_teams
) &&
3426 (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) &&
3427 (TCR_PTR(CCAST(void *, other_thread
->th
.th_sleep_loc
)) !=
3430 __kmp_null_resume_wrapper(other_thread
);
3431 // A sleeping thread should not have any tasks on it's queue.
3432 // There is a slight possibility that it resumes, steals a task
3433 // from another thread, which spawns more tasks, all in the time
3434 // that it takes this thread to check => don't write an assertion
3435 // that the victim's queue is empty. Try stealing from a
3436 // different thread.
3442 // We have a victim to try to steal from
3443 task
= __kmp_steal_task(other_thread
, gtid
, task_team
,
3444 unfinished_threads
, thread_finished
,
3447 if (task
!= NULL
) { // set last stolen to victim
3448 if (threads_data
[tid
].td
.td_deque_last_stolen
!= victim_tid
) {
3449 threads_data
[tid
].td
.td_deque_last_stolen
= victim_tid
;
3450 // The pre-refactored code did not try more than 1 successful new
3451 // vicitm, unless the last one generated more local tasks;
3452 // new_victim keeps track of this
3455 } else { // No tasks found; unset last_stolen
3456 KMP_CHECK_UPDATE(threads_data
[tid
].td
.td_deque_last_stolen
, -1);
3457 victim_tid
= -2; // no successful victim found
3462 break; // break out of tasking loop
3464 // Found a task; execute it
3465 #if USE_ITT_BUILD && USE_ITT_NOTIFY
3466 if (__itt_sync_create_ptr
|| KMP_ITT_DEBUG
) {
3467 if (itt_sync_obj
== NULL
) { // we are at fork barrier where we could not
3468 // get the object reliably
3469 itt_sync_obj
= __kmp_itt_barrier_object(gtid
, bs_forkjoin_barrier
);
3471 __kmp_itt_task_starting(itt_sync_obj
);
3473 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3474 __kmp_invoke_task(gtid
, task
, current_task
);
3476 if (itt_sync_obj
!= NULL
)
3477 __kmp_itt_task_finished(itt_sync_obj
);
3478 #endif /* USE_ITT_BUILD */
3479 // If this thread is only partway through the barrier and the condition is
3480 // met, then return now, so that the barrier gather/release pattern can
3481 // proceed. If this thread is in the last spin loop in the barrier,
3482 // waiting to be released, we know that the termination condition will not
3483 // be satisfied, so don't waste any cycles checking it.
3484 if (flag
== NULL
|| (!final_spin
&& flag
->done_check())) {
3487 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3491 if (thread
->th
.th_task_team
== NULL
) {
3494 KMP_YIELD(__kmp_library
== library_throughput
); // Yield before next task
3495 // If execution of a stolen task results in more tasks being placed on our
3496 // run queue, reset use_own_tasks
3497 if (!use_own_tasks
&& TCR_4(threads_data
[tid
].td
.td_deque_ntasks
) != 0) {
3498 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3499 "other tasks, restart\n",
3506 // The task source has been exhausted. If in final spin loop of barrier,
3507 // check if termination condition is satisfied. The work queue may be empty
3508 // but there might be proxy tasks still executing.
3510 KMP_ATOMIC_LD_ACQ(¤t_task
->td_incomplete_child_tasks
) == 0) {
3511 // First, decrement the #unfinished threads, if that has not already been
3512 // done. This decrement might be to the spin location, and result in the
3513 // termination condition being satisfied.
3514 if (!*thread_finished
) {
3516 kmp_int32 count
= -1 +
3518 KMP_ATOMIC_DEC(unfinished_threads
);
3519 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3520 "unfinished_threads to %d task_team=%p\n",
3521 gtid
, count
, task_team
));
3522 *thread_finished
= TRUE
;
3525 // It is now unsafe to reference thread->th.th_team !!!
3526 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3527 // thread to pass through the barrier, where it might reset each thread's
3528 // th.th_team field for the next parallel region. If we can steal more
3529 // work, we know that this has not happened yet.
3530 if (flag
!= NULL
&& flag
->done_check()) {
3533 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3539 // If this thread's task team is NULL, primary thread has recognized that
3540 // there are no more tasks; bail out
3541 if (thread
->th
.th_task_team
== NULL
) {
3543 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid
));
3547 // Check the flag again to see if it has already done in case to be trapped
3548 // into infinite loop when a if0 task depends on a hidden helper task
3549 // outside any parallel region. Detached tasks are not impacted in this case
3550 // because the only thread executing this function has to execute the proxy
3551 // task so it is in another code path that has the same check.
3552 if (flag
== NULL
|| (!final_spin
&& flag
->done_check())) {
3554 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3559 // We could be getting tasks from target constructs; if this is the only
3560 // thread, keep trying to execute tasks from own queue
3561 if (nthreads
== 1 &&
3562 KMP_ATOMIC_LD_ACQ(¤t_task
->td_incomplete_child_tasks
))
3566 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid
));
3572 template <bool C
, bool S
>
3573 int __kmp_execute_tasks_32(
3574 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_32
<C
, S
> *flag
, int final_spin
,
3575 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3576 kmp_int32 is_constrained
) {
3577 return __kmp_execute_tasks_template(
3578 thread
, gtid
, flag
, final_spin
,
3579 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3582 template <bool C
, bool S
>
3583 int __kmp_execute_tasks_64(
3584 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_64
<C
, S
> *flag
, int final_spin
,
3585 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3586 kmp_int32 is_constrained
) {
3587 return __kmp_execute_tasks_template(
3588 thread
, gtid
, flag
, final_spin
,
3589 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3592 template <bool C
, bool S
>
3593 int __kmp_atomic_execute_tasks_64(
3594 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_atomic_flag_64
<C
, S
> *flag
,
3595 int final_spin
, int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3596 kmp_int32 is_constrained
) {
3597 return __kmp_execute_tasks_template(
3598 thread
, gtid
, flag
, final_spin
,
3599 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3602 int __kmp_execute_tasks_oncore(
3603 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_oncore
*flag
, int final_spin
,
3604 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3605 kmp_int32 is_constrained
) {
3606 return __kmp_execute_tasks_template(
3607 thread
, gtid
, flag
, final_spin
,
3608 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3612 __kmp_execute_tasks_32
<false, false>(kmp_info_t
*, kmp_int32
,
3613 kmp_flag_32
<false, false> *, int,
3614 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3616 template int __kmp_execute_tasks_64
<false, true>(kmp_info_t
*, kmp_int32
,
3617 kmp_flag_64
<false, true> *,
3619 int *USE_ITT_BUILD_ARG(void *),
3622 template int __kmp_execute_tasks_64
<true, false>(kmp_info_t
*, kmp_int32
,
3623 kmp_flag_64
<true, false> *,
3625 int *USE_ITT_BUILD_ARG(void *),
3628 template int __kmp_atomic_execute_tasks_64
<false, true>(
3629 kmp_info_t
*, kmp_int32
, kmp_atomic_flag_64
<false, true> *, int,
3630 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3632 template int __kmp_atomic_execute_tasks_64
<true, false>(
3633 kmp_info_t
*, kmp_int32
, kmp_atomic_flag_64
<true, false> *, int,
3634 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3636 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3637 // next barrier so they can assist in executing enqueued tasks.
3638 // First thread in allocates the task team atomically.
3639 static void __kmp_enable_tasking(kmp_task_team_t
*task_team
,
3640 kmp_info_t
*this_thr
) {
3641 kmp_thread_data_t
*threads_data
;
3642 int nthreads
, i
, is_init_thread
;
3644 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3645 __kmp_gtid_from_thread(this_thr
)));
3647 KMP_DEBUG_ASSERT(task_team
!= NULL
);
3648 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
!= NULL
);
3650 nthreads
= task_team
->tt
.tt_nproc
;
3651 KMP_DEBUG_ASSERT(nthreads
> 0);
3652 KMP_DEBUG_ASSERT(nthreads
== this_thr
->th
.th_team
->t
.t_nproc
);
3654 // Allocate or increase the size of threads_data if necessary
3655 is_init_thread
= __kmp_realloc_task_threads_data(this_thr
, task_team
);
3657 if (!is_init_thread
) {
3658 // Some other thread already set up the array.
3661 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3662 __kmp_gtid_from_thread(this_thr
)));
3665 threads_data
= (kmp_thread_data_t
*)TCR_PTR(task_team
->tt
.tt_threads_data
);
3666 KMP_DEBUG_ASSERT(threads_data
!= NULL
);
3668 if (__kmp_tasking_mode
== tskm_task_teams
&&
3669 (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
)) {
3670 // Release any threads sleeping at the barrier, so that they can steal
3671 // tasks and execute them. In extra barrier mode, tasks do not sleep
3672 // at the separate tasking barrier, so this isn't a problem.
3673 for (i
= 0; i
< nthreads
; i
++) {
3675 kmp_info_t
*thread
= threads_data
[i
].td
.td_thr
;
3677 if (i
== this_thr
->th
.th_info
.ds
.ds_tid
) {
3680 // Since we haven't locked the thread's suspend mutex lock at this
3681 // point, there is a small window where a thread might be putting
3682 // itself to sleep, but hasn't set the th_sleep_loc field yet.
3683 // To work around this, __kmp_execute_tasks_template() periodically checks
3684 // see if other threads are sleeping (using the same random mechanism that
3685 // is used for task stealing) and awakens them if they are.
3686 if ((sleep_loc
= TCR_PTR(CCAST(void *, thread
->th
.th_sleep_loc
))) !=
3688 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3689 __kmp_gtid_from_thread(this_thr
),
3690 __kmp_gtid_from_thread(thread
)));
3691 __kmp_null_resume_wrapper(thread
);
3693 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3694 __kmp_gtid_from_thread(this_thr
),
3695 __kmp_gtid_from_thread(thread
)));
3700 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3701 __kmp_gtid_from_thread(this_thr
)));
3704 /* // TODO: Check the comment consistency
3705 * Utility routines for "task teams". A task team (kmp_task_t) is kind of
3706 * like a shadow of the kmp_team_t data struct, with a different lifetime.
3707 * After a child * thread checks into a barrier and calls __kmp_release() from
3708 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3709 * longer assume that the kmp_team_t structure is intact (at any moment, the
3710 * primary thread may exit the barrier code and free the team data structure,
3711 * and return the threads to the thread pool).
3713 * This does not work with the tasking code, as the thread is still
3714 * expected to participate in the execution of any tasks that may have been
3715 * spawned my a member of the team, and the thread still needs access to all
3716 * to each thread in the team, so that it can steal work from it.
3718 * Enter the existence of the kmp_task_team_t struct. It employs a reference
3719 * counting mechanism, and is allocated by the primary thread before calling
3720 * __kmp_<barrier_kind>_release, and then is release by the last thread to
3721 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes
3722 * of the kmp_task_team_t structs for consecutive barriers can overlap
3723 * (and will, unless the primary thread is the last thread to exit the barrier
3724 * release phase, which is not typical). The existence of such a struct is
3725 * useful outside the context of tasking.
3727 * We currently use the existence of the threads array as an indicator that
3728 * tasks were spawned since the last barrier. If the structure is to be
3729 * useful outside the context of tasking, then this will have to change, but
3730 * not setting the field minimizes the performance impact of tasking on
3731 * barriers, when no explicit tasks were spawned (pushed, actually).
3734 static kmp_task_team_t
*__kmp_free_task_teams
=
3735 NULL
; // Free list for task_team data structures
3736 // Lock for task team data structures
3737 kmp_bootstrap_lock_t __kmp_task_team_lock
=
3738 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock
);
3740 // __kmp_alloc_task_deque:
3741 // Allocates a task deque for a particular thread, and initialize the necessary
3742 // data structures relating to the deque. This only happens once per thread
3743 // per task team since task teams are recycled. No lock is needed during
3744 // allocation since each thread allocates its own deque.
3745 static void __kmp_alloc_task_deque(kmp_info_t
*thread
,
3746 kmp_thread_data_t
*thread_data
) {
3747 __kmp_init_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3748 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque
== NULL
);
3750 // Initialize last stolen task field to "none"
3751 thread_data
->td
.td_deque_last_stolen
= -1;
3753 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) == 0);
3754 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque_head
== 0);
3755 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque_tail
== 0);
3759 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3760 __kmp_gtid_from_thread(thread
), INITIAL_TASK_DEQUE_SIZE
, thread_data
));
3761 // Allocate space for task deque, and zero the deque
3762 // Cannot use __kmp_thread_calloc() because threads not around for
3763 // kmp_reap_task_team( ).
3764 thread_data
->td
.td_deque
= (kmp_taskdata_t
**)__kmp_allocate(
3765 INITIAL_TASK_DEQUE_SIZE
* sizeof(kmp_taskdata_t
*));
3766 thread_data
->td
.td_deque_size
= INITIAL_TASK_DEQUE_SIZE
;
3769 // __kmp_free_task_deque:
3770 // Deallocates a task deque for a particular thread. Happens at library
3771 // deallocation so don't need to reset all thread data fields.
3772 static void __kmp_free_task_deque(kmp_thread_data_t
*thread_data
) {
3773 if (thread_data
->td
.td_deque
!= NULL
) {
3774 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3775 TCW_4(thread_data
->td
.td_deque_ntasks
, 0);
3776 __kmp_free(thread_data
->td
.td_deque
);
3777 thread_data
->td
.td_deque
= NULL
;
3778 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3781 #ifdef BUILD_TIED_TASK_STACK
3782 // GEH: Figure out what to do here for td_susp_tied_tasks
3783 if (thread_data
->td
.td_susp_tied_tasks
.ts_entries
!= TASK_STACK_EMPTY
) {
3784 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid
), thread_data
);
3786 #endif // BUILD_TIED_TASK_STACK
3789 // __kmp_realloc_task_threads_data:
3790 // Allocates a threads_data array for a task team, either by allocating an
3791 // initial array or enlarging an existing array. Only the first thread to get
3792 // the lock allocs or enlarges the array and re-initializes the array elements.
3793 // That thread returns "TRUE", the rest return "FALSE".
3794 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3795 // The current size is given by task_team -> tt.tt_max_threads.
3796 static int __kmp_realloc_task_threads_data(kmp_info_t
*thread
,
3797 kmp_task_team_t
*task_team
) {
3798 kmp_thread_data_t
**threads_data_p
;
3799 kmp_int32 nthreads
, maxthreads
;
3800 int is_init_thread
= FALSE
;
3802 if (TCR_4(task_team
->tt
.tt_found_tasks
)) {
3803 // Already reallocated and initialized.
3807 threads_data_p
= &task_team
->tt
.tt_threads_data
;
3808 nthreads
= task_team
->tt
.tt_nproc
;
3809 maxthreads
= task_team
->tt
.tt_max_threads
;
3811 // All threads must lock when they encounter the first task of the implicit
3812 // task region to make sure threads_data fields are (re)initialized before
3814 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3816 if (!TCR_4(task_team
->tt
.tt_found_tasks
)) {
3817 // first thread to enable tasking
3818 kmp_team_t
*team
= thread
->th
.th_team
;
3821 is_init_thread
= TRUE
;
3822 if (maxthreads
< nthreads
) {
3824 if (*threads_data_p
!= NULL
) {
3825 kmp_thread_data_t
*old_data
= *threads_data_p
;
3826 kmp_thread_data_t
*new_data
= NULL
;
3830 ("__kmp_realloc_task_threads_data: T#%d reallocating "
3831 "threads data for task_team %p, new_size = %d, old_size = %d\n",
3832 __kmp_gtid_from_thread(thread
), task_team
, nthreads
, maxthreads
));
3833 // Reallocate threads_data to have more elements than current array
3834 // Cannot use __kmp_thread_realloc() because threads not around for
3835 // kmp_reap_task_team( ). Note all new array entries are initialized
3836 // to zero by __kmp_allocate().
3837 new_data
= (kmp_thread_data_t
*)__kmp_allocate(
3838 nthreads
* sizeof(kmp_thread_data_t
));
3839 // copy old data to new data
3840 KMP_MEMCPY_S((void *)new_data
, nthreads
* sizeof(kmp_thread_data_t
),
3841 (void *)old_data
, maxthreads
* sizeof(kmp_thread_data_t
));
3843 #ifdef BUILD_TIED_TASK_STACK
3844 // GEH: Figure out if this is the right thing to do
3845 for (i
= maxthreads
; i
< nthreads
; i
++) {
3846 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3847 __kmp_init_task_stack(__kmp_gtid_from_thread(thread
), thread_data
);
3849 #endif // BUILD_TIED_TASK_STACK
3850 // Install the new data and free the old data
3851 (*threads_data_p
) = new_data
;
3852 __kmp_free(old_data
);
3854 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3855 "threads data for task_team %p, size = %d\n",
3856 __kmp_gtid_from_thread(thread
), task_team
, nthreads
));
3857 // Make the initial allocate for threads_data array, and zero entries
3858 // Cannot use __kmp_thread_calloc() because threads not around for
3859 // kmp_reap_task_team( ).
3860 *threads_data_p
= (kmp_thread_data_t
*)__kmp_allocate(
3861 nthreads
* sizeof(kmp_thread_data_t
));
3862 #ifdef BUILD_TIED_TASK_STACK
3863 // GEH: Figure out if this is the right thing to do
3864 for (i
= 0; i
< nthreads
; i
++) {
3865 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3866 __kmp_init_task_stack(__kmp_gtid_from_thread(thread
), thread_data
);
3868 #endif // BUILD_TIED_TASK_STACK
3870 task_team
->tt
.tt_max_threads
= nthreads
;
3872 // If array has (more than) enough elements, go ahead and use it
3873 KMP_DEBUG_ASSERT(*threads_data_p
!= NULL
);
3876 // initialize threads_data pointers back to thread_info structures
3877 for (i
= 0; i
< nthreads
; i
++) {
3878 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3879 thread_data
->td
.td_thr
= team
->t
.t_threads
[i
];
3881 if (thread_data
->td
.td_deque_last_stolen
>= nthreads
) {
3882 // The last stolen field survives across teams / barrier, and the number
3883 // of threads may have changed. It's possible (likely?) that a new
3884 // parallel region will exhibit the same behavior as previous region.
3885 thread_data
->td
.td_deque_last_stolen
= -1;
3890 TCW_SYNC_4(task_team
->tt
.tt_found_tasks
, TRUE
);
3893 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3894 return is_init_thread
;
3897 // __kmp_free_task_threads_data:
3898 // Deallocates a threads_data array for a task team, including any attached
3899 // tasking deques. Only occurs at library shutdown.
3900 static void __kmp_free_task_threads_data(kmp_task_team_t
*task_team
) {
3901 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3902 if (task_team
->tt
.tt_threads_data
!= NULL
) {
3904 for (i
= 0; i
< task_team
->tt
.tt_max_threads
; i
++) {
3905 __kmp_free_task_deque(&task_team
->tt
.tt_threads_data
[i
]);
3907 __kmp_free(task_team
->tt
.tt_threads_data
);
3908 task_team
->tt
.tt_threads_data
= NULL
;
3910 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3913 // __kmp_free_task_pri_list:
3914 // Deallocates tasking deques used for priority tasks.
3915 // Only occurs at library shutdown.
3916 static void __kmp_free_task_pri_list(kmp_task_team_t
*task_team
) {
3917 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3918 if (task_team
->tt
.tt_task_pri_list
!= NULL
) {
3919 kmp_task_pri_t
*list
= task_team
->tt
.tt_task_pri_list
;
3920 while (list
!= NULL
) {
3921 kmp_task_pri_t
*next
= list
->next
;
3922 __kmp_free_task_deque(&list
->td
);
3926 task_team
->tt
.tt_task_pri_list
= NULL
;
3928 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3931 // __kmp_allocate_task_team:
3932 // Allocates a task team associated with a specific team, taking it from
3933 // the global task team free list if possible. Also initializes data
3935 static kmp_task_team_t
*__kmp_allocate_task_team(kmp_info_t
*thread
,
3937 kmp_task_team_t
*task_team
= NULL
;
3940 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3941 (thread
? __kmp_gtid_from_thread(thread
) : -1), team
));
3943 if (TCR_PTR(__kmp_free_task_teams
) != NULL
) {
3944 // Take a task team from the task team pool
3945 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
3946 if (__kmp_free_task_teams
!= NULL
) {
3947 task_team
= __kmp_free_task_teams
;
3948 TCW_PTR(__kmp_free_task_teams
, task_team
->tt
.tt_next
);
3949 task_team
->tt
.tt_next
= NULL
;
3951 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
3954 if (task_team
== NULL
) {
3955 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3956 "task team for team %p\n",
3957 __kmp_gtid_from_thread(thread
), team
));
3958 // Allocate a new task team if one is not available. Cannot use
3959 // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3960 task_team
= (kmp_task_team_t
*)__kmp_allocate(sizeof(kmp_task_team_t
));
3961 __kmp_init_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3962 __kmp_init_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3963 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3964 // suppress race conditions detection on synchronization flags in debug mode
3965 // this helps to analyze library internals eliminating false positives
3966 __itt_suppress_mark_range(
3967 __itt_suppress_range
, __itt_suppress_threading_errors
,
3968 &task_team
->tt
.tt_found_tasks
, sizeof(task_team
->tt
.tt_found_tasks
));
3969 __itt_suppress_mark_range(__itt_suppress_range
,
3970 __itt_suppress_threading_errors
,
3971 CCAST(kmp_uint32
*, &task_team
->tt
.tt_active
),
3972 sizeof(task_team
->tt
.tt_active
));
3973 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3974 // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3975 // task_team->tt.tt_threads_data = NULL;
3976 // task_team->tt.tt_max_threads = 0;
3977 // task_team->tt.tt_next = NULL;
3980 TCW_4(task_team
->tt
.tt_found_tasks
, FALSE
);
3981 TCW_4(task_team
->tt
.tt_found_proxy_tasks
, FALSE
);
3982 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
3983 task_team
->tt
.tt_nproc
= nthreads
= team
->t
.t_nproc
;
3985 KMP_ATOMIC_ST_REL(&task_team
->tt
.tt_unfinished_threads
, nthreads
);
3986 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
3987 TCW_4(task_team
->tt
.tt_active
, TRUE
);
3989 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3990 "unfinished_threads init'd to %d\n",
3991 (thread
? __kmp_gtid_from_thread(thread
) : -1), task_team
,
3992 KMP_ATOMIC_LD_RLX(&task_team
->tt
.tt_unfinished_threads
)));
3996 // __kmp_free_task_team:
3997 // Frees the task team associated with a specific thread, and adds it
3998 // to the global task team free list.
3999 void __kmp_free_task_team(kmp_info_t
*thread
, kmp_task_team_t
*task_team
) {
4000 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
4001 thread
? __kmp_gtid_from_thread(thread
) : -1, task_team
));
4003 // Put task team back on free list
4004 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
4006 KMP_DEBUG_ASSERT(task_team
->tt
.tt_next
== NULL
);
4007 task_team
->tt
.tt_next
= __kmp_free_task_teams
;
4008 TCW_PTR(__kmp_free_task_teams
, task_team
);
4010 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
4013 // __kmp_reap_task_teams:
4014 // Free all the task teams on the task team free list.
4015 // Should only be done during library shutdown.
4016 // Cannot do anything that needs a thread structure or gtid since they are
4018 void __kmp_reap_task_teams(void) {
4019 kmp_task_team_t
*task_team
;
4021 if (TCR_PTR(__kmp_free_task_teams
) != NULL
) {
4022 // Free all task_teams on the free list
4023 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
4024 while ((task_team
= __kmp_free_task_teams
) != NULL
) {
4025 __kmp_free_task_teams
= task_team
->tt
.tt_next
;
4026 task_team
->tt
.tt_next
= NULL
;
4028 // Free threads_data if necessary
4029 if (task_team
->tt
.tt_threads_data
!= NULL
) {
4030 __kmp_free_task_threads_data(task_team
);
4032 if (task_team
->tt
.tt_task_pri_list
!= NULL
) {
4033 __kmp_free_task_pri_list(task_team
);
4035 __kmp_free(task_team
);
4037 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
4041 // __kmp_wait_to_unref_task_teams:
4042 // Some threads could still be in the fork barrier release code, possibly
4043 // trying to steal tasks. Wait for each thread to unreference its task team.
4044 void __kmp_wait_to_unref_task_teams(void) {
4050 KMP_INIT_YIELD(spins
);
4051 KMP_INIT_BACKOFF(time
);
4056 // TODO: GEH - this may be is wrong because some sync would be necessary
4057 // in case threads are added to the pool during the traversal. Need to
4058 // verify that lock for thread pool is held when calling this routine.
4059 for (thread
= CCAST(kmp_info_t
*, __kmp_thread_pool
); thread
!= NULL
;
4060 thread
= thread
->th
.th_next_pool
) {
4064 if (TCR_PTR(thread
->th
.th_task_team
) == NULL
) {
4065 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
4066 __kmp_gtid_from_thread(thread
)));
4070 // TODO: GEH - add this check for Linux* OS / OS X* as well?
4071 if (!__kmp_is_thread_alive(thread
, &exit_val
)) {
4072 thread
->th
.th_task_team
= NULL
;
4077 done
= FALSE
; // Because th_task_team pointer is not NULL for this thread
4079 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
4080 "unreference task_team\n",
4081 __kmp_gtid_from_thread(thread
)));
4083 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) {
4085 // If the thread is sleeping, awaken it.
4086 if ((sleep_loc
= TCR_PTR(CCAST(void *, thread
->th
.th_sleep_loc
))) !=
4090 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
4091 __kmp_gtid_from_thread(thread
), __kmp_gtid_from_thread(thread
)));
4092 __kmp_null_resume_wrapper(thread
);
4100 // If oversubscribed or have waited a bit, yield.
4101 KMP_YIELD_OVERSUB_ELSE_SPIN(spins
, time
);
4105 void __kmp_shift_task_state_stack(kmp_info_t
*this_thr
, kmp_uint8 value
) {
4106 // Shift values from th_task_state_top+1 to task_state_stack_sz
4107 if (this_thr
->th
.th_task_state_top
+ 1 >=
4108 this_thr
->th
.th_task_state_stack_sz
) { // increase size
4109 kmp_uint32 new_size
= 2 * this_thr
->th
.th_task_state_stack_sz
;
4110 kmp_uint8
*old_stack
, *new_stack
;
4112 new_stack
= (kmp_uint8
*)__kmp_allocate(new_size
);
4113 for (i
= 0; i
<= this_thr
->th
.th_task_state_top
; ++i
) {
4114 new_stack
[i
] = this_thr
->th
.th_task_state_memo_stack
[i
];
4116 // If we need to reallocate do the shift at the same time.
4117 for (; i
< this_thr
->th
.th_task_state_stack_sz
; ++i
) {
4118 new_stack
[i
+ 1] = this_thr
->th
.th_task_state_memo_stack
[i
];
4120 for (i
= this_thr
->th
.th_task_state_stack_sz
; i
< new_size
;
4121 ++i
) { // zero-init rest of stack
4124 old_stack
= this_thr
->th
.th_task_state_memo_stack
;
4125 this_thr
->th
.th_task_state_memo_stack
= new_stack
;
4126 this_thr
->th
.th_task_state_stack_sz
= new_size
;
4127 __kmp_free(old_stack
);
4133 .th_task_state_memo_stack
[this_thr
->th
.th_task_state_stack_sz
];
4135 for (i
= this_thr
->th
.th_task_state_stack_sz
- 1;
4136 i
> this_thr
->th
.th_task_state_top
; i
--, end
--)
4139 this_thr
->th
.th_task_state_memo_stack
[this_thr
->th
.th_task_state_top
+ 1] =
4143 // __kmp_task_team_setup: Create a task_team for the current team, but use
4144 // an already created, unused one if it already exists.
4145 void __kmp_task_team_setup(kmp_info_t
*this_thr
, kmp_team_t
*team
, int always
) {
4146 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4148 // If this task_team hasn't been created yet, allocate it. It will be used in
4149 // the region after the next.
4150 // If it exists, it is the current task team and shouldn't be touched yet as
4151 // it may still be in use.
4152 if (team
->t
.t_task_team
[this_thr
->th
.th_task_state
] == NULL
&&
4153 (always
|| team
->t
.t_nproc
> 1)) {
4154 team
->t
.t_task_team
[this_thr
->th
.th_task_state
] =
4155 __kmp_allocate_task_team(this_thr
, team
);
4156 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
4157 " for team %d at parity=%d\n",
4158 __kmp_gtid_from_thread(this_thr
),
4159 team
->t
.t_task_team
[this_thr
->th
.th_task_state
], team
->t
.t_id
,
4160 this_thr
->th
.th_task_state
));
4162 if (this_thr
->th
.th_task_state
== 1 && always
&& team
->t
.t_nproc
== 1) {
4163 // fix task state stack to adjust for proxy and helper tasks
4164 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack"
4165 " for team %d at parity=%d\n",
4166 __kmp_gtid_from_thread(this_thr
), team
->t
.t_id
,
4167 this_thr
->th
.th_task_state
));
4168 __kmp_shift_task_state_stack(this_thr
, this_thr
->th
.th_task_state
);
4171 // After threads exit the release, they will call sync, and then point to this
4172 // other task_team; make sure it is allocated and properly initialized. As
4173 // threads spin in the barrier release phase, they will continue to use the
4174 // previous task_team struct(above), until they receive the signal to stop
4175 // checking for tasks (they can't safely reference the kmp_team_t struct,
4176 // which could be reallocated by the primary thread). No task teams are formed
4177 // for serialized teams.
4178 if (team
->t
.t_nproc
> 1) {
4179 int other_team
= 1 - this_thr
->th
.th_task_state
;
4180 KMP_DEBUG_ASSERT(other_team
>= 0 && other_team
< 2);
4181 if (team
->t
.t_task_team
[other_team
] == NULL
) { // setup other team as well
4182 team
->t
.t_task_team
[other_team
] =
4183 __kmp_allocate_task_team(this_thr
, team
);
4184 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
4185 "task_team %p for team %d at parity=%d\n",
4186 __kmp_gtid_from_thread(this_thr
),
4187 team
->t
.t_task_team
[other_team
], team
->t
.t_id
, other_team
));
4188 } else { // Leave the old task team struct in place for the upcoming region;
4190 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[other_team
];
4191 if (!task_team
->tt
.tt_active
||
4192 team
->t
.t_nproc
!= task_team
->tt
.tt_nproc
) {
4193 TCW_4(task_team
->tt
.tt_nproc
, team
->t
.t_nproc
);
4194 TCW_4(task_team
->tt
.tt_found_tasks
, FALSE
);
4195 TCW_4(task_team
->tt
.tt_found_proxy_tasks
, FALSE
);
4196 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
4197 KMP_ATOMIC_ST_REL(&task_team
->tt
.tt_unfinished_threads
,
4199 TCW_4(task_team
->tt
.tt_active
, TRUE
);
4201 // if team size has changed, the first thread to enable tasking will
4202 // realloc threads_data if necessary
4203 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
4204 "%p for team %d at parity=%d\n",
4205 __kmp_gtid_from_thread(this_thr
),
4206 team
->t
.t_task_team
[other_team
], team
->t
.t_id
, other_team
));
4210 // For regular thread, task enabling should be called when the task is going
4211 // to be pushed to a dequeue. However, for the hidden helper thread, we need
4212 // it ahead of time so that some operations can be performed without race
4214 if (this_thr
== __kmp_hidden_helper_main_thread
) {
4215 for (int i
= 0; i
< 2; ++i
) {
4216 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[i
];
4217 if (KMP_TASKING_ENABLED(task_team
)) {
4220 __kmp_enable_tasking(task_team
, this_thr
);
4221 for (int j
= 0; j
< task_team
->tt
.tt_nproc
; ++j
) {
4222 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[j
];
4223 if (thread_data
->td
.td_deque
== NULL
) {
4224 __kmp_alloc_task_deque(__kmp_hidden_helper_threads
[j
], thread_data
);
4231 // __kmp_task_team_sync: Propagation of task team data from team to threads
4232 // which happens just after the release phase of a team barrier. This may be
4233 // called by any thread, but only for teams with # threads > 1.
4234 void __kmp_task_team_sync(kmp_info_t
*this_thr
, kmp_team_t
*team
) {
4235 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4237 // Toggle the th_task_state field, to switch which task_team this thread
4239 this_thr
->th
.th_task_state
= (kmp_uint8
)(1 - this_thr
->th
.th_task_state
);
4241 // It is now safe to propagate the task team pointer from the team struct to
4242 // the current thread.
4243 TCW_PTR(this_thr
->th
.th_task_team
,
4244 team
->t
.t_task_team
[this_thr
->th
.th_task_state
]);
4246 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
4247 "%p from Team #%d (parity=%d)\n",
4248 __kmp_gtid_from_thread(this_thr
), this_thr
->th
.th_task_team
,
4249 team
->t
.t_id
, this_thr
->th
.th_task_state
));
4252 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
4253 // barrier gather phase. Only called by primary thread if #threads in team > 1
4254 // or if proxy tasks were created.
4256 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
4257 // by passing in 0 optionally as the last argument. When wait is zero, primary
4258 // thread does not wait for unfinished_threads to reach 0.
4259 void __kmp_task_team_wait(
4260 kmp_info_t
*this_thr
,
4261 kmp_team_t
*team
USE_ITT_BUILD_ARG(void *itt_sync_obj
), int wait
) {
4262 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[this_thr
->th
.th_task_state
];
4264 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4265 KMP_DEBUG_ASSERT(task_team
== this_thr
->th
.th_task_team
);
4267 if ((task_team
!= NULL
) && KMP_TASKING_ENABLED(task_team
)) {
4269 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
4270 "(for unfinished_threads to reach 0) on task_team = %p\n",
4271 __kmp_gtid_from_thread(this_thr
), task_team
));
4272 // Worker threads may have dropped through to release phase, but could
4273 // still be executing tasks. Wait here for tasks to complete. To avoid
4274 // memory contention, only primary thread checks termination condition.
4275 kmp_flag_32
<false, false> flag(
4276 RCAST(std::atomic
<kmp_uint32
> *,
4277 &task_team
->tt
.tt_unfinished_threads
),
4279 flag
.wait(this_thr
, TRUE
USE_ITT_BUILD_ARG(itt_sync_obj
));
4281 // Deactivate the old task team, so that the worker threads will stop
4282 // referencing it while spinning.
4285 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
4286 "setting active to false, setting local and team's pointer to NULL\n",
4287 __kmp_gtid_from_thread(this_thr
), task_team
));
4288 KMP_DEBUG_ASSERT(task_team
->tt
.tt_nproc
> 1 ||
4289 task_team
->tt
.tt_found_proxy_tasks
== TRUE
||
4290 task_team
->tt
.tt_hidden_helper_task_encountered
== TRUE
);
4291 TCW_SYNC_4(task_team
->tt
.tt_found_proxy_tasks
, FALSE
);
4292 TCW_SYNC_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
4293 KMP_CHECK_UPDATE(task_team
->tt
.tt_untied_task_encountered
, 0);
4294 TCW_SYNC_4(task_team
->tt
.tt_active
, FALSE
);
4297 TCW_PTR(this_thr
->th
.th_task_team
, NULL
);
4301 // __kmp_tasking_barrier:
4302 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
4303 // Internal function to execute all tasks prior to a regular barrier or a join
4304 // barrier. It is a full barrier itself, which unfortunately turns regular
4305 // barriers into double barriers and join barriers into 1 1/2 barriers.
4306 void __kmp_tasking_barrier(kmp_team_t
*team
, kmp_info_t
*thread
, int gtid
) {
4307 std::atomic
<kmp_uint32
> *spin
= RCAST(
4308 std::atomic
<kmp_uint32
> *,
4309 &team
->t
.t_task_team
[thread
->th
.th_task_state
]->tt
.tt_unfinished_threads
);
4311 KMP_DEBUG_ASSERT(__kmp_tasking_mode
== tskm_extra_barrier
);
4314 KMP_FSYNC_SPIN_INIT(spin
, NULL
);
4315 #endif /* USE_ITT_BUILD */
4316 kmp_flag_32
<false, false> spin_flag(spin
, 0U);
4317 while (!spin_flag
.execute_tasks(thread
, gtid
, TRUE
,
4318 &flag
USE_ITT_BUILD_ARG(NULL
), 0)) {
4320 // TODO: What about itt_sync_obj??
4321 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin
));
4322 #endif /* USE_ITT_BUILD */
4324 if (TCR_4(__kmp_global
.g
.g_done
)) {
4325 if (__kmp_global
.g
.g_abort
)
4326 __kmp_abort_thread();
4332 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin
));
4333 #endif /* USE_ITT_BUILD */
4336 // __kmp_give_task puts a task into a given thread queue if:
4337 // - the queue for that thread was created
4338 // - there's space in that queue
4339 // Because of this, __kmp_push_task needs to check if there's space after
4341 static bool __kmp_give_task(kmp_info_t
*thread
, kmp_int32 tid
, kmp_task_t
*task
,
4343 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
4344 kmp_task_team_t
*task_team
= taskdata
->td_task_team
;
4346 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
4349 // If task_team is NULL something went really bad...
4350 KMP_DEBUG_ASSERT(task_team
!= NULL
);
4352 bool result
= false;
4353 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
4355 if (thread_data
->td
.td_deque
== NULL
) {
4356 // There's no queue in this thread, go find another one
4357 // We're guaranteed that at least one thread has a queue
4359 ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
4364 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4365 TASK_DEQUE_SIZE(thread_data
->td
)) {
4368 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
4371 // if this deque is bigger than the pass ratio give a chance to another
4373 if (TASK_DEQUE_SIZE(thread_data
->td
) / INITIAL_TASK_DEQUE_SIZE
>= pass
)
4376 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4377 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4378 TASK_DEQUE_SIZE(thread_data
->td
)) {
4379 // expand deque to push the task which is not allowed to execute
4380 __kmp_realloc_task_deque(thread
, thread_data
);
4385 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4387 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4388 TASK_DEQUE_SIZE(thread_data
->td
)) {
4389 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
4393 // if this deque is bigger than the pass ratio give a chance to another
4395 if (TASK_DEQUE_SIZE(thread_data
->td
) / INITIAL_TASK_DEQUE_SIZE
>= pass
)
4396 goto release_and_exit
;
4398 __kmp_realloc_task_deque(thread
, thread_data
);
4402 // lock is held here, and there is space in the deque
4404 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] = taskdata
;
4406 thread_data
->td
.td_deque_tail
=
4407 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
4408 TCW_4(thread_data
->td
.td_deque_ntasks
,
4409 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1);
4412 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
4416 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4421 #define PROXY_TASK_FLAG 0x40000000
4422 /* The finish of the proxy tasks is divided in two pieces:
4423 - the top half is the one that can be done from a thread outside the team
4424 - the bottom half must be run from a thread within the team
4426 In order to run the bottom half the task gets queued back into one of the
4427 threads of the team. Once the td_incomplete_child_task counter of the parent
4428 is decremented the threads can leave the barriers. So, the bottom half needs
4429 to be queued before the counter is decremented. The top half is therefore
4430 divided in two parts:
4431 - things that can be run before queuing the bottom half
4432 - things that must be run after queuing the bottom half
4434 This creates a second race as the bottom half can free the task before the
4435 second top half is executed. To avoid this we use the
4436 td_incomplete_child_task of the proxy task to synchronize the top and bottom
4438 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t
*taskdata
) {
4439 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
4440 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4441 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
4442 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
4444 taskdata
->td_flags
.complete
= 1; // mark the task as completed
4446 taskdata
->td_flags
.onced
= 1;
4449 if (taskdata
->td_taskgroup
)
4450 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
4452 // Create an imaginary children for this task so the bottom half cannot
4453 // release the task before we have completed the second top half
4454 KMP_ATOMIC_OR(&taskdata
->td_incomplete_child_tasks
, PROXY_TASK_FLAG
);
4457 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t
*taskdata
) {
4459 kmp_int32 children
= 0;
4460 // Predecrement simulated by "- 1" calculation
4463 KMP_ATOMIC_DEC(&taskdata
->td_parent
->td_incomplete_child_tasks
);
4464 KMP_DEBUG_ASSERT(children
>= 0);
4466 // Remove the imaginary children
4467 KMP_ATOMIC_AND(&taskdata
->td_incomplete_child_tasks
, ~PROXY_TASK_FLAG
);
4470 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid
, kmp_task_t
*ptask
) {
4471 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4472 kmp_info_t
*thread
= __kmp_threads
[gtid
];
4474 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4475 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
==
4476 1); // top half must run before bottom half
4478 // We need to wait to make sure the top half is finished
4479 // Spinning here should be ok as this should happen quickly
4480 while ((KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
) &
4481 PROXY_TASK_FLAG
) > 0)
4484 __kmp_release_deps(gtid
, taskdata
);
4485 __kmp_free_task_and_ancestors(gtid
, taskdata
, thread
);
4490 @param gtid Global Thread ID of encountering thread
4491 @param ptask Task which execution is completed
4493 Execute the completion of a proxy task from a thread of that is part of the
4494 team. Run first and bottom halves directly.
4496 void __kmpc_proxy_task_completed(kmp_int32 gtid
, kmp_task_t
*ptask
) {
4497 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4498 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4500 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
4502 __kmp_assert_valid_gtid(gtid
);
4503 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4505 __kmp_first_top_half_finish_proxy(taskdata
);
4506 __kmp_second_top_half_finish_proxy(taskdata
);
4507 __kmp_bottom_half_finish_proxy(gtid
, ptask
);
4510 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
4514 void __kmpc_give_task(kmp_task_t
*ptask
, kmp_int32 start
= 0) {
4515 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4516 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4518 // Enqueue task to complete bottom half completion from a thread within the
4519 // corresponding team
4520 kmp_team_t
*team
= taskdata
->td_team
;
4521 kmp_int32 nthreads
= team
->t
.t_nproc
;
4524 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
4525 // but we cannot use __kmp_get_random here
4526 kmp_int32 start_k
= start
% nthreads
;
4528 kmp_int32 k
= start_k
;
4531 // For now we're just linearly trying to find a thread
4532 thread
= team
->t
.t_threads
[k
];
4533 k
= (k
+ 1) % nthreads
;
4535 // we did a full pass through all the threads
4539 } while (!__kmp_give_task(thread
, k
, ptask
, pass
));
4541 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
&& __kmp_wpolicy_passive
) {
4542 // awake at least one thread to execute given task
4543 for (int i
= 0; i
< nthreads
; ++i
) {
4544 thread
= team
->t
.t_threads
[i
];
4545 if (thread
->th
.th_sleep_loc
!= NULL
) {
4546 __kmp_null_resume_wrapper(thread
);
4555 @param ptask Task which execution is completed
4557 Execute the completion of a proxy task from a thread that could not belong to
4560 void __kmpc_proxy_task_completed_ooo(kmp_task_t
*ptask
) {
4561 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4562 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4566 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
4569 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4571 __kmp_first_top_half_finish_proxy(taskdata
);
4573 __kmpc_give_task(ptask
);
4575 __kmp_second_top_half_finish_proxy(taskdata
);
4579 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4583 kmp_event_t
*__kmpc_task_allow_completion_event(ident_t
*loc_ref
, int gtid
,
4585 kmp_taskdata_t
*td
= KMP_TASK_TO_TASKDATA(task
);
4586 if (td
->td_allow_completion_event
.type
== KMP_EVENT_UNINITIALIZED
) {
4587 td
->td_allow_completion_event
.type
= KMP_EVENT_ALLOW_COMPLETION
;
4588 td
->td_allow_completion_event
.ed
.task
= task
;
4589 __kmp_init_tas_lock(&td
->td_allow_completion_event
.lock
);
4591 return &td
->td_allow_completion_event
;
4594 void __kmp_fulfill_event(kmp_event_t
*event
) {
4595 if (event
->type
== KMP_EVENT_ALLOW_COMPLETION
) {
4596 kmp_task_t
*ptask
= event
->ed
.task
;
4597 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4598 bool detached
= false;
4599 int gtid
= __kmp_get_gtid();
4601 // The associated task might have completed or could be completing at this
4603 // We need to take the lock to avoid races
4604 __kmp_acquire_tas_lock(&event
->lock
, gtid
);
4605 if (taskdata
->td_flags
.proxy
== TASK_PROXY
) {
4609 // The OMPT event must occur under mutual exclusion,
4610 // otherwise the tool might access ptask after free
4611 if (UNLIKELY(ompt_enabled
.enabled
))
4612 __ompt_task_finish(ptask
, NULL
, ompt_task_early_fulfill
);
4615 event
->type
= KMP_EVENT_UNINITIALIZED
;
4616 __kmp_release_tas_lock(&event
->lock
, gtid
);
4620 // We free ptask afterwards and know the task is finished,
4621 // so locking is not necessary
4622 if (UNLIKELY(ompt_enabled
.enabled
))
4623 __ompt_task_finish(ptask
, NULL
, ompt_task_late_fulfill
);
4625 // If the task detached complete the proxy task
4627 kmp_team_t
*team
= taskdata
->td_team
;
4628 kmp_info_t
*thread
= __kmp_get_thread();
4629 if (thread
->th
.th_team
== team
) {
4630 __kmpc_proxy_task_completed(gtid
, ptask
);
4636 __kmpc_proxy_task_completed_ooo(ptask
);
4641 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4644 // thread: allocating thread
4645 // task_src: pointer to source task to be duplicated
4646 // taskloop_recur: used only when dealing with taskgraph,
4647 // indicating whether we need to update task->td_task_id
4648 // returns: a pointer to the allocated kmp_task_t structure (task).
4649 kmp_task_t
*__kmp_task_dup_alloc(kmp_info_t
*thread
, kmp_task_t
*task_src
4651 , int taskloop_recur
4655 kmp_taskdata_t
*taskdata
;
4656 kmp_taskdata_t
*taskdata_src
= KMP_TASK_TO_TASKDATA(task_src
);
4657 kmp_taskdata_t
*parent_task
= taskdata_src
->td_parent
; // same parent task
4658 size_t shareds_offset
;
4661 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread
,
4663 KMP_DEBUG_ASSERT(taskdata_src
->td_flags
.proxy
==
4664 TASK_FULL
); // it should not be proxy task
4665 KMP_DEBUG_ASSERT(taskdata_src
->td_flags
.tasktype
== TASK_EXPLICIT
);
4666 task_size
= taskdata_src
->td_size_alloc
;
4668 // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4669 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread
,
4672 taskdata
= (kmp_taskdata_t
*)__kmp_fast_allocate(thread
, task_size
);
4674 taskdata
= (kmp_taskdata_t
*)__kmp_thread_malloc(thread
, task_size
);
4675 #endif /* USE_FAST_MEMORY */
4676 KMP_MEMCPY(taskdata
, taskdata_src
, task_size
);
4678 task
= KMP_TASKDATA_TO_TASK(taskdata
);
4680 // Initialize new task (only specific fields not affected by memcpy)
4682 if (!taskdata
->is_taskgraph
|| taskloop_recur
)
4683 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
4684 else if (taskdata
->is_taskgraph
&&
4685 __kmp_tdg_is_recording(taskdata_src
->tdg
->tdg_status
))
4686 taskdata
->td_task_id
= KMP_ATOMIC_INC(&__kmp_tdg_task_id
);
4688 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
4690 if (task
->shareds
!= NULL
) { // need setup shareds pointer
4691 shareds_offset
= (char *)task_src
->shareds
- (char *)taskdata_src
;
4692 task
->shareds
= &((char *)taskdata
)[shareds_offset
];
4693 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
->shareds
) & (sizeof(void *) - 1)) ==
4696 taskdata
->td_alloc_thread
= thread
;
4697 taskdata
->td_parent
= parent_task
;
4698 // task inherits the taskgroup from the parent task
4699 taskdata
->td_taskgroup
= parent_task
->td_taskgroup
;
4700 // tied task needs to initialize the td_last_tied at creation,
4701 // untied one does this when it is scheduled for execution
4702 if (taskdata
->td_flags
.tiedness
== TASK_TIED
)
4703 taskdata
->td_last_tied
= taskdata
;
4705 // Only need to keep track of child task counts if team parallel and tasking
4707 if (!(taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
)) {
4708 KMP_ATOMIC_INC(&parent_task
->td_incomplete_child_tasks
);
4709 if (parent_task
->td_taskgroup
)
4710 KMP_ATOMIC_INC(&parent_task
->td_taskgroup
->count
);
4711 // Only need to keep track of allocated child tasks for explicit tasks since
4712 // implicit not deallocated
4713 if (taskdata
->td_parent
->td_flags
.tasktype
== TASK_EXPLICIT
)
4714 KMP_ATOMIC_INC(&taskdata
->td_parent
->td_allocated_child_tasks
);
4718 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4719 thread
, taskdata
, taskdata
->td_parent
));
4721 if (UNLIKELY(ompt_enabled
.enabled
))
4722 __ompt_task_init(taskdata
, thread
->th
.th_info
.ds
.ds_gtid
);
4727 // Routine optionally generated by the compiler for setting the lastprivate flag
4728 // and calling needed constructors for private/firstprivate objects
4729 // (used to form taskloop tasks from pattern task)
4730 // Parameters: dest task, src task, lastprivate flag.
4731 typedef void (*p_task_dup_t
)(kmp_task_t
*, kmp_task_t
*, kmp_int32
);
4733 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4735 // class to encapsulate manipulating loop bounds in a taskloop task.
4736 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4737 // the loop bound variables.
4738 class kmp_taskloop_bounds_t
{
4740 const kmp_taskdata_t
*taskdata
;
4741 size_t lower_offset
;
4742 size_t upper_offset
;
4745 kmp_taskloop_bounds_t(kmp_task_t
*_task
, kmp_uint64
*lb
, kmp_uint64
*ub
)
4746 : task(_task
), taskdata(KMP_TASK_TO_TASKDATA(task
)),
4747 lower_offset((char *)lb
- (char *)task
),
4748 upper_offset((char *)ub
- (char *)task
) {
4749 KMP_DEBUG_ASSERT((char *)lb
> (char *)_task
);
4750 KMP_DEBUG_ASSERT((char *)ub
> (char *)_task
);
4752 kmp_taskloop_bounds_t(kmp_task_t
*_task
, const kmp_taskloop_bounds_t
&bounds
)
4753 : task(_task
), taskdata(KMP_TASK_TO_TASKDATA(_task
)),
4754 lower_offset(bounds
.lower_offset
), upper_offset(bounds
.upper_offset
) {}
4755 size_t get_lower_offset() const { return lower_offset
; }
4756 size_t get_upper_offset() const { return upper_offset
; }
4757 kmp_uint64
get_lb() const {
4759 #if defined(KMP_GOMP_COMPAT)
4760 // Intel task just returns the lower bound normally
4761 if (!taskdata
->td_flags
.native
) {
4762 retval
= *(kmp_int64
*)((char *)task
+ lower_offset
);
4764 // GOMP task has to take into account the sizeof(long)
4765 if (taskdata
->td_size_loop_bounds
== 4) {
4766 kmp_int32
*lb
= RCAST(kmp_int32
*, task
->shareds
);
4767 retval
= (kmp_int64
)*lb
;
4769 kmp_int64
*lb
= RCAST(kmp_int64
*, task
->shareds
);
4770 retval
= (kmp_int64
)*lb
;
4775 retval
= *(kmp_int64
*)((char *)task
+ lower_offset
);
4776 #endif // defined(KMP_GOMP_COMPAT)
4779 kmp_uint64
get_ub() const {
4781 #if defined(KMP_GOMP_COMPAT)
4782 // Intel task just returns the upper bound normally
4783 if (!taskdata
->td_flags
.native
) {
4784 retval
= *(kmp_int64
*)((char *)task
+ upper_offset
);
4786 // GOMP task has to take into account the sizeof(long)
4787 if (taskdata
->td_size_loop_bounds
== 4) {
4788 kmp_int32
*ub
= RCAST(kmp_int32
*, task
->shareds
) + 1;
4789 retval
= (kmp_int64
)*ub
;
4791 kmp_int64
*ub
= RCAST(kmp_int64
*, task
->shareds
) + 1;
4792 retval
= (kmp_int64
)*ub
;
4796 retval
= *(kmp_int64
*)((char *)task
+ upper_offset
);
4797 #endif // defined(KMP_GOMP_COMPAT)
4800 void set_lb(kmp_uint64 lb
) {
4801 #if defined(KMP_GOMP_COMPAT)
4802 // Intel task just sets the lower bound normally
4803 if (!taskdata
->td_flags
.native
) {
4804 *(kmp_uint64
*)((char *)task
+ lower_offset
) = lb
;
4806 // GOMP task has to take into account the sizeof(long)
4807 if (taskdata
->td_size_loop_bounds
== 4) {
4808 kmp_uint32
*lower
= RCAST(kmp_uint32
*, task
->shareds
);
4809 *lower
= (kmp_uint32
)lb
;
4811 kmp_uint64
*lower
= RCAST(kmp_uint64
*, task
->shareds
);
4812 *lower
= (kmp_uint64
)lb
;
4816 *(kmp_uint64
*)((char *)task
+ lower_offset
) = lb
;
4817 #endif // defined(KMP_GOMP_COMPAT)
4819 void set_ub(kmp_uint64 ub
) {
4820 #if defined(KMP_GOMP_COMPAT)
4821 // Intel task just sets the upper bound normally
4822 if (!taskdata
->td_flags
.native
) {
4823 *(kmp_uint64
*)((char *)task
+ upper_offset
) = ub
;
4825 // GOMP task has to take into account the sizeof(long)
4826 if (taskdata
->td_size_loop_bounds
== 4) {
4827 kmp_uint32
*upper
= RCAST(kmp_uint32
*, task
->shareds
) + 1;
4828 *upper
= (kmp_uint32
)ub
;
4830 kmp_uint64
*upper
= RCAST(kmp_uint64
*, task
->shareds
) + 1;
4831 *upper
= (kmp_uint64
)ub
;
4835 *(kmp_uint64
*)((char *)task
+ upper_offset
) = ub
;
4836 #endif // defined(KMP_GOMP_COMPAT)
4840 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4842 // loc Source location information
4843 // gtid Global thread ID
4844 // task Pattern task, exposes the loop iteration range
4845 // lb Pointer to loop lower bound in task structure
4846 // ub Pointer to loop upper bound in task structure
4848 // ub_glob Global upper bound (used for lastprivate check)
4849 // num_tasks Number of tasks to execute
4850 // grainsize Number of loop iterations per task
4851 // extras Number of chunks with grainsize+1 iterations
4852 // last_chunk Reduction of grainsize for last task
4853 // tc Iterations count
4854 // task_dup Tasks duplication routine
4855 // codeptr_ra Return address for OMPT events
4856 void __kmp_taskloop_linear(ident_t
*loc
, int gtid
, kmp_task_t
*task
,
4857 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
4858 kmp_uint64 ub_glob
, kmp_uint64 num_tasks
,
4859 kmp_uint64 grainsize
, kmp_uint64 extras
,
4860 kmp_int64 last_chunk
, kmp_uint64 tc
,
4865 KMP_COUNT_BLOCK(OMP_TASKLOOP
);
4866 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling
);
4867 p_task_dup_t ptask_dup
= (p_task_dup_t
)task_dup
;
4868 // compiler provides global bounds here
4869 kmp_taskloop_bounds_t
task_bounds(task
, lb
, ub
);
4870 kmp_uint64 lower
= task_bounds
.get_lb();
4871 kmp_uint64 upper
= task_bounds
.get_ub();
4873 kmp_info_t
*thread
= __kmp_threads
[gtid
];
4874 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
4875 kmp_task_t
*next_task
;
4876 kmp_int32 lastpriv
= 0;
4878 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
4879 (last_chunk
< 0 ? last_chunk
: extras
));
4880 KMP_DEBUG_ASSERT(num_tasks
> extras
);
4881 KMP_DEBUG_ASSERT(num_tasks
> 0);
4882 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4883 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4884 gtid
, num_tasks
, grainsize
, extras
, last_chunk
, lower
, upper
,
4885 ub_glob
, st
, task_dup
));
4887 // Launch num_tasks tasks, assign grainsize iterations each task
4888 for (i
= 0; i
< num_tasks
; ++i
) {
4889 kmp_uint64 chunk_minus_1
;
4891 chunk_minus_1
= grainsize
- 1;
4893 chunk_minus_1
= grainsize
;
4894 --extras
; // first extras iterations get bigger chunk (grainsize+1)
4896 upper
= lower
+ st
* chunk_minus_1
;
4900 if (i
== num_tasks
- 1) {
4901 // schedule the last task, set lastprivate flag if needed
4902 if (st
== 1) { // most common case
4903 KMP_DEBUG_ASSERT(upper
== *ub
);
4904 if (upper
== ub_glob
)
4906 } else if (st
> 0) { // positive loop stride
4907 KMP_DEBUG_ASSERT((kmp_uint64
)st
> *ub
- upper
);
4908 if ((kmp_uint64
)st
> ub_glob
- upper
)
4910 } else { // negative loop stride
4911 KMP_DEBUG_ASSERT(upper
+ st
< *ub
);
4912 if (upper
- ub_glob
< (kmp_uint64
)(-st
))
4918 next_task
= __kmp_task_dup_alloc(thread
, task
, /* taskloop_recur */ 0);
4920 next_task
= __kmp_task_dup_alloc(thread
, task
); // allocate new task
4923 kmp_taskdata_t
*next_taskdata
= KMP_TASK_TO_TASKDATA(next_task
);
4924 kmp_taskloop_bounds_t next_task_bounds
=
4925 kmp_taskloop_bounds_t(next_task
, task_bounds
);
4927 // adjust task-specific bounds
4928 next_task_bounds
.set_lb(lower
);
4929 if (next_taskdata
->td_flags
.native
) {
4930 next_task_bounds
.set_ub(upper
+ (st
> 0 ? 1 : -1));
4932 next_task_bounds
.set_ub(upper
);
4934 if (ptask_dup
!= NULL
) // set lastprivate flag, construct firstprivates,
4936 ptask_dup(next_task
, task
, lastpriv
);
4938 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4939 "upper %lld stride %lld, (offsets %p %p)\n",
4940 gtid
, i
, next_task
, lower
, upper
, st
,
4941 next_task_bounds
.get_lower_offset(),
4942 next_task_bounds
.get_upper_offset()));
4944 __kmp_omp_taskloop_task(NULL
, gtid
, next_task
,
4945 codeptr_ra
); // schedule new task
4947 if (ompt_enabled
.ompt_callback_dispatch
) {
4948 OMPT_GET_DISPATCH_CHUNK(next_taskdata
->ompt_task_info
.dispatch_chunk
,
4951 #endif // OMPT_OPTIONAL
4953 __kmp_omp_task(gtid
, next_task
, true); // schedule new task
4955 lower
= upper
+ st
; // adjust lower bound for the next iteration
4957 // free the pattern task and exit
4958 __kmp_task_start(gtid
, task
, current_task
); // make internal bookkeeping
4959 // do not execute the pattern task, just do internal bookkeeping
4960 __kmp_task_finish
<false>(gtid
, task
, current_task
);
4963 // Structure to keep taskloop parameters for auxiliary task
4964 // kept in the shareds of the task structure.
4965 typedef struct __taskloop_params
{
4972 kmp_uint64 num_tasks
;
4973 kmp_uint64 grainsize
;
4975 kmp_int64 last_chunk
;
4977 kmp_uint64 num_t_min
;
4981 } __taskloop_params_t
;
4983 void __kmp_taskloop_recur(ident_t
*, int, kmp_task_t
*, kmp_uint64
*,
4984 kmp_uint64
*, kmp_int64
, kmp_uint64
, kmp_uint64
,
4985 kmp_uint64
, kmp_uint64
, kmp_int64
, kmp_uint64
,
4992 // Execute part of the taskloop submitted as a task.
4993 int __kmp_taskloop_task(int gtid
, void *ptask
) {
4994 __taskloop_params_t
*p
=
4995 (__taskloop_params_t
*)((kmp_task_t
*)ptask
)->shareds
;
4996 kmp_task_t
*task
= p
->task
;
4997 kmp_uint64
*lb
= p
->lb
;
4998 kmp_uint64
*ub
= p
->ub
;
4999 void *task_dup
= p
->task_dup
;
5000 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5001 kmp_int64 st
= p
->st
;
5002 kmp_uint64 ub_glob
= p
->ub_glob
;
5003 kmp_uint64 num_tasks
= p
->num_tasks
;
5004 kmp_uint64 grainsize
= p
->grainsize
;
5005 kmp_uint64 extras
= p
->extras
;
5006 kmp_int64 last_chunk
= p
->last_chunk
;
5007 kmp_uint64 tc
= p
->tc
;
5008 kmp_uint64 num_t_min
= p
->num_t_min
;
5010 void *codeptr_ra
= p
->codeptr_ra
;
5013 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5014 KMP_DEBUG_ASSERT(task
!= NULL
);
5016 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
5017 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5018 gtid
, taskdata
, num_tasks
, grainsize
, extras
, last_chunk
, *lb
, *ub
,
5021 KMP_DEBUG_ASSERT(num_tasks
* 2 + 1 > num_t_min
);
5022 if (num_tasks
> num_t_min
)
5023 __kmp_taskloop_recur(NULL
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5024 grainsize
, extras
, last_chunk
, tc
, num_t_min
,
5030 __kmp_taskloop_linear(NULL
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5031 grainsize
, extras
, last_chunk
, tc
,
5037 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid
));
5041 // Schedule part of the taskloop as a task,
5042 // execute the rest of the taskloop.
5044 // loc Source location information
5045 // gtid Global thread ID
5046 // task Pattern task, exposes the loop iteration range
5047 // lb Pointer to loop lower bound in task structure
5048 // ub Pointer to loop upper bound in task structure
5050 // ub_glob Global upper bound (used for lastprivate check)
5051 // num_tasks Number of tasks to execute
5052 // grainsize Number of loop iterations per task
5053 // extras Number of chunks with grainsize+1 iterations
5054 // last_chunk Reduction of grainsize for last task
5055 // tc Iterations count
5056 // num_t_min Threshold to launch tasks recursively
5057 // task_dup Tasks duplication routine
5058 // codeptr_ra Return address for OMPT events
5059 void __kmp_taskloop_recur(ident_t
*loc
, int gtid
, kmp_task_t
*task
,
5060 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5061 kmp_uint64 ub_glob
, kmp_uint64 num_tasks
,
5062 kmp_uint64 grainsize
, kmp_uint64 extras
,
5063 kmp_int64 last_chunk
, kmp_uint64 tc
,
5064 kmp_uint64 num_t_min
,
5069 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5070 KMP_DEBUG_ASSERT(task
!= NULL
);
5071 KMP_DEBUG_ASSERT(num_tasks
> num_t_min
);
5073 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
5074 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5075 gtid
, taskdata
, num_tasks
, grainsize
, extras
, last_chunk
, *lb
, *ub
,
5077 p_task_dup_t ptask_dup
= (p_task_dup_t
)task_dup
;
5078 kmp_uint64 lower
= *lb
;
5079 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5080 // kmp_taskdata_t *current_task = thread->th.th_current_task;
5081 kmp_task_t
*next_task
;
5082 size_t lower_offset
=
5083 (char *)lb
- (char *)task
; // remember offset of lb in the task structure
5084 size_t upper_offset
=
5085 (char *)ub
- (char *)task
; // remember offset of ub in the task structure
5087 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
5088 (last_chunk
< 0 ? last_chunk
: extras
));
5089 KMP_DEBUG_ASSERT(num_tasks
> extras
);
5090 KMP_DEBUG_ASSERT(num_tasks
> 0);
5092 // split the loop in two halves
5093 kmp_uint64 lb1
, ub0
, tc0
, tc1
, ext0
, ext1
;
5094 kmp_int64 last_chunk0
= 0, last_chunk1
= 0;
5095 kmp_uint64 gr_size0
= grainsize
;
5096 kmp_uint64 n_tsk0
= num_tasks
>> 1; // num_tasks/2 to execute
5097 kmp_uint64 n_tsk1
= num_tasks
- n_tsk0
; // to schedule as a task
5098 if (last_chunk
< 0) {
5100 last_chunk1
= last_chunk
;
5101 tc0
= grainsize
* n_tsk0
;
5103 } else if (n_tsk0
<= extras
) {
5104 gr_size0
++; // integrate extras into grainsize
5105 ext0
= 0; // no extra iters in 1st half
5106 ext1
= extras
- n_tsk0
; // remaining extras
5107 tc0
= gr_size0
* n_tsk0
;
5109 } else { // n_tsk0 > extras
5110 ext1
= 0; // no extra iters in 2nd half
5112 tc1
= grainsize
* n_tsk1
;
5115 ub0
= lower
+ st
* (tc0
- 1);
5118 // create pattern task for 2nd half of the loop
5120 next_task
= __kmp_task_dup_alloc(thread
, task
,
5121 /* taskloop_recur */ 1);
5123 next_task
= __kmp_task_dup_alloc(thread
, task
); // duplicate the task
5125 // adjust lower bound (upper bound is not changed) for the 2nd half
5126 *(kmp_uint64
*)((char *)next_task
+ lower_offset
) = lb1
;
5127 if (ptask_dup
!= NULL
) // construct firstprivates, etc.
5128 ptask_dup(next_task
, task
, 0);
5129 *ub
= ub0
; // adjust upper bound for the 1st half
5131 // create auxiliary task for 2nd half of the loop
5132 // make sure new task has same parent task as the pattern task
5133 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
5134 thread
->th
.th_current_task
= taskdata
->td_parent
;
5135 kmp_task_t
*new_task
=
5136 __kmpc_omp_task_alloc(loc
, gtid
, 1, 3 * sizeof(void *),
5137 sizeof(__taskloop_params_t
), &__kmp_taskloop_task
);
5138 // restore current task
5139 thread
->th
.th_current_task
= current_task
;
5140 __taskloop_params_t
*p
= (__taskloop_params_t
*)new_task
->shareds
;
5141 p
->task
= next_task
;
5142 p
->lb
= (kmp_uint64
*)((char *)next_task
+ lower_offset
);
5143 p
->ub
= (kmp_uint64
*)((char *)next_task
+ upper_offset
);
5144 p
->task_dup
= task_dup
;
5146 p
->ub_glob
= ub_glob
;
5147 p
->num_tasks
= n_tsk1
;
5148 p
->grainsize
= grainsize
;
5150 p
->last_chunk
= last_chunk1
;
5152 p
->num_t_min
= num_t_min
;
5154 p
->codeptr_ra
= codeptr_ra
;
5158 kmp_taskdata_t
*new_task_data
= KMP_TASK_TO_TASKDATA(new_task
);
5159 new_task_data
->tdg
= taskdata
->tdg
;
5160 new_task_data
->is_taskgraph
= 0;
5164 // schedule new task with correct return address for OMPT events
5165 __kmp_omp_taskloop_task(NULL
, gtid
, new_task
, codeptr_ra
);
5167 __kmp_omp_task(gtid
, new_task
, true); // schedule new task
5170 // execute the 1st half of current subrange
5171 if (n_tsk0
> num_t_min
)
5172 __kmp_taskloop_recur(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, n_tsk0
, gr_size0
,
5173 ext0
, last_chunk0
, tc0
, num_t_min
,
5179 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, n_tsk0
,
5180 gr_size0
, ext0
, last_chunk0
, tc0
,
5186 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid
));
5189 static void __kmp_taskloop(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5190 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5191 int nogroup
, int sched
, kmp_uint64 grainsize
,
5192 int modifier
, void *task_dup
) {
5193 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5194 KMP_DEBUG_ASSERT(task
!= NULL
);
5196 #if OMPT_SUPPORT && OMPT_OPTIONAL
5197 OMPT_STORE_RETURN_ADDRESS(gtid
);
5199 __kmpc_taskgroup(loc
, gtid
);
5203 KMP_ATOMIC_DEC(&__kmp_tdg_task_id
);
5205 // =========================================================================
5206 // calculate loop parameters
5207 kmp_taskloop_bounds_t
task_bounds(task
, lb
, ub
);
5209 // compiler provides global bounds here
5210 kmp_uint64 lower
= task_bounds
.get_lb();
5211 kmp_uint64 upper
= task_bounds
.get_ub();
5212 kmp_uint64 ub_glob
= upper
; // global upper used to calc lastprivate flag
5213 kmp_uint64 num_tasks
= 0, extras
= 0;
5214 kmp_int64 last_chunk
=
5215 0; // reduce grainsize of last task by last_chunk in strict mode
5216 kmp_uint64 num_tasks_min
= __kmp_taskloop_min_tasks
;
5217 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5218 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
5220 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
5221 "grain %llu(%d, %d), dup %p\n",
5222 gtid
, taskdata
, lower
, upper
, st
, grainsize
, sched
, modifier
,
5225 // compute trip count
5226 if (st
== 1) { // most common case
5227 tc
= upper
- lower
+ 1;
5228 } else if (st
< 0) {
5229 tc
= (lower
- upper
) / (-st
) + 1;
5231 tc
= (upper
- lower
) / st
+ 1;
5234 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid
));
5235 // free the pattern task and exit
5236 __kmp_task_start(gtid
, task
, current_task
);
5237 // do not execute anything for zero-trip loop
5238 __kmp_task_finish
<false>(gtid
, task
, current_task
);
5242 #if OMPT_SUPPORT && OMPT_OPTIONAL
5243 ompt_team_info_t
*team_info
= __ompt_get_teaminfo(0, NULL
);
5244 ompt_task_info_t
*task_info
= __ompt_get_task_info_object(0);
5245 if (ompt_enabled
.ompt_callback_work
) {
5246 ompt_callbacks
.ompt_callback(ompt_callback_work
)(
5247 ompt_work_taskloop
, ompt_scope_begin
, &(team_info
->parallel_data
),
5248 &(task_info
->task_data
), tc
, OMPT_GET_RETURN_ADDRESS(0));
5252 if (num_tasks_min
== 0)
5253 // TODO: can we choose better default heuristic?
5255 KMP_MIN(thread
->th
.th_team_nproc
* 10, INITIAL_TASK_DEQUE_SIZE
);
5257 // compute num_tasks/grainsize based on the input provided
5259 case 0: // no schedule clause specified, we can choose the default
5260 // let's try to schedule (team_size*10) tasks
5261 grainsize
= thread
->th
.th_team_nproc
* 10;
5263 case 2: // num_tasks provided
5264 if (grainsize
> tc
) {
5265 num_tasks
= tc
; // too big num_tasks requested, adjust values
5269 num_tasks
= grainsize
;
5270 grainsize
= tc
/ num_tasks
;
5271 extras
= tc
% num_tasks
;
5274 case 1: // grainsize provided
5275 if (grainsize
> tc
) {
5277 grainsize
= tc
; // too big grainsize requested, adjust values
5281 num_tasks
= (tc
+ grainsize
- 1) / grainsize
;
5282 last_chunk
= tc
- (num_tasks
* grainsize
);
5285 num_tasks
= tc
/ grainsize
;
5286 // adjust grainsize for balanced distribution of iterations
5287 grainsize
= tc
/ num_tasks
;
5288 extras
= tc
% num_tasks
;
5293 KMP_ASSERT2(0, "unknown scheduling of taskloop");
5296 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
5297 (last_chunk
< 0 ? last_chunk
: extras
));
5298 KMP_DEBUG_ASSERT(num_tasks
> extras
);
5299 KMP_DEBUG_ASSERT(num_tasks
> 0);
5300 // =========================================================================
5302 // check if clause value first
5303 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
5304 if (if_val
== 0) { // if(0) specified, mark task as serial
5305 taskdata
->td_flags
.task_serial
= 1;
5306 taskdata
->td_flags
.tiedness
= TASK_TIED
; // AC: serial task cannot be untied
5307 // always start serial tasks linearly
5308 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5309 grainsize
, extras
, last_chunk
, tc
,
5311 OMPT_GET_RETURN_ADDRESS(0),
5314 // !taskdata->td_flags.native => currently force linear spawning of tasks
5315 // for GOMP_taskloop
5316 } else if (num_tasks
> num_tasks_min
&& !taskdata
->td_flags
.native
) {
5317 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
5318 "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5319 gtid
, tc
, num_tasks
, num_tasks_min
, grainsize
, extras
,
5321 __kmp_taskloop_recur(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5322 grainsize
, extras
, last_chunk
, tc
, num_tasks_min
,
5324 OMPT_GET_RETURN_ADDRESS(0),
5328 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
5329 "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5330 gtid
, tc
, num_tasks
, num_tasks_min
, grainsize
, extras
,
5332 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5333 grainsize
, extras
, last_chunk
, tc
,
5335 OMPT_GET_RETURN_ADDRESS(0),
5340 #if OMPT_SUPPORT && OMPT_OPTIONAL
5341 if (ompt_enabled
.ompt_callback_work
) {
5342 ompt_callbacks
.ompt_callback(ompt_callback_work
)(
5343 ompt_work_taskloop
, ompt_scope_end
, &(team_info
->parallel_data
),
5344 &(task_info
->task_data
), tc
, OMPT_GET_RETURN_ADDRESS(0));
5349 #if OMPT_SUPPORT && OMPT_OPTIONAL
5350 OMPT_STORE_RETURN_ADDRESS(gtid
);
5352 __kmpc_end_taskgroup(loc
, gtid
);
5354 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid
));
5359 @param loc Source location information
5360 @param gtid Global thread ID
5361 @param task Task structure
5362 @param if_val Value of the if clause
5363 @param lb Pointer to loop lower bound in task structure
5364 @param ub Pointer to loop upper bound in task structure
5365 @param st Loop stride
5366 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise
5367 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
5368 @param grainsize Schedule value if specified
5369 @param task_dup Tasks duplication routine
5371 Execute the taskloop construct.
5373 void __kmpc_taskloop(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5374 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
, int nogroup
,
5375 int sched
, kmp_uint64 grainsize
, void *task_dup
) {
5376 __kmp_assert_valid_gtid(gtid
);
5377 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid
));
5378 __kmp_taskloop(loc
, gtid
, task
, if_val
, lb
, ub
, st
, nogroup
, sched
, grainsize
,
5380 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid
));
5385 @param loc Source location information
5386 @param gtid Global thread ID
5387 @param task Task structure
5388 @param if_val Value of the if clause
5389 @param lb Pointer to loop lower bound in task structure
5390 @param ub Pointer to loop upper bound in task structure
5391 @param st Loop stride
5392 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise
5393 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
5394 @param grainsize Schedule value if specified
5395 @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise
5396 @param task_dup Tasks duplication routine
5398 Execute the taskloop construct.
5400 void __kmpc_taskloop_5(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5401 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5402 int nogroup
, int sched
, kmp_uint64 grainsize
,
5403 int modifier
, void *task_dup
) {
5404 __kmp_assert_valid_gtid(gtid
);
5405 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid
));
5406 __kmp_taskloop(loc
, gtid
, task
, if_val
, lb
, ub
, st
, nogroup
, sched
, grainsize
,
5407 modifier
, task_dup
);
5408 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid
));
5413 @param gtid Global Thread ID of current thread
5414 @return Returns a pointer to the thread's current task async handle. If no task
5415 is present or gtid is invalid, returns NULL.
5417 Acqurires a pointer to the target async handle from the current task.
5419 void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid
) {
5420 if (gtid
== KMP_GTID_DNE
)
5423 kmp_info_t
*thread
= __kmp_thread_from_gtid(gtid
);
5424 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
5429 return &taskdata
->td_target_data
.async_handle
;
5434 @param gtid Global Thread ID of current thread
5435 @return Returns TRUE if the current task being executed of the given thread has
5436 a task team allocated to it. Otherwise, returns FALSE.
5438 Checks if the current thread has a task team.
5440 bool __kmpc_omp_has_task_team(kmp_int32 gtid
) {
5441 if (gtid
== KMP_GTID_DNE
)
5444 kmp_info_t
*thread
= __kmp_thread_from_gtid(gtid
);
5445 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
5450 return taskdata
->td_task_team
!= NULL
;
5454 // __kmp_find_tdg: identify a TDG through its ID
5455 // gtid: Global Thread ID
5456 // tdg_id: ID of the TDG
5457 // returns: If a TDG corresponding to this ID is found and not
5458 // its initial state, return the pointer to it, otherwise nullptr
5459 static kmp_tdg_info_t
*__kmp_find_tdg(kmp_int32 tdg_id
) {
5460 kmp_tdg_info_t
*res
= nullptr;
5461 if (__kmp_max_tdgs
== 0)
5464 if (__kmp_global_tdgs
== NULL
)
5465 __kmp_global_tdgs
= (kmp_tdg_info_t
**)__kmp_allocate(
5466 sizeof(kmp_tdg_info_t
*) * __kmp_max_tdgs
);
5468 if ((__kmp_global_tdgs
[tdg_id
]) &&
5469 (__kmp_global_tdgs
[tdg_id
]->tdg_status
!= KMP_TDG_NONE
))
5470 res
= __kmp_global_tdgs
[tdg_id
];
5474 // __kmp_print_tdg_dot: prints the TDG to a dot file
5475 // tdg: ID of the TDG
5476 void __kmp_print_tdg_dot(kmp_tdg_info_t
*tdg
) {
5477 kmp_int32 tdg_id
= tdg
->tdg_id
;
5478 KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid
, tdg_id
));
5481 sprintf(file_name
, "tdg_%d.dot", tdg_id
);
5482 kmp_safe_raii_file_t
tdg_file(file_name
, "w");
5484 kmp_int32 num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5488 " subgraph cluster {\n"
5491 for (kmp_int32 i
= 0; i
< num_tasks
; i
++) {
5492 fprintf(tdg_file
, " %d[style=bold]\n", i
);
5494 fprintf(tdg_file
, " }\n");
5495 for (kmp_int32 i
= 0; i
< num_tasks
; i
++) {
5496 kmp_int32 nsuccessors
= tdg
->record_map
[i
].nsuccessors
;
5497 kmp_int32
*successors
= tdg
->record_map
[i
].successors
;
5498 if (nsuccessors
> 0) {
5499 for (kmp_int32 j
= 0; j
< nsuccessors
; j
++)
5500 fprintf(tdg_file
, " %d -> %d \n", i
, successors
[j
]);
5503 fprintf(tdg_file
, "}");
5504 KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid
, tdg_id
));
5507 // __kmp_start_record: launch the execution of a previous
5509 // gtid: Global Thread ID
5510 // tdg: ID of the TDG
5511 void __kmp_exec_tdg(kmp_int32 gtid
, kmp_tdg_info_t
*tdg
) {
5512 KMP_DEBUG_ASSERT(tdg
->tdg_status
== KMP_TDG_READY
);
5513 KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid
,
5514 tdg
->tdg_id
, tdg
->num_roots
));
5515 kmp_node_info_t
*this_record_map
= tdg
->record_map
;
5516 kmp_int32
*this_root_tasks
= tdg
->root_tasks
;
5517 kmp_int32 this_num_roots
= tdg
->num_roots
;
5518 kmp_int32 this_num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5520 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5521 kmp_taskdata_t
*parent_task
= thread
->th
.th_current_task
;
5523 if (tdg
->rec_taskred_data
) {
5524 __kmpc_taskred_init(gtid
, tdg
->rec_num_taskred
, tdg
->rec_taskred_data
);
5527 for (kmp_int32 j
= 0; j
< this_num_tasks
; j
++) {
5528 kmp_taskdata_t
*td
= KMP_TASK_TO_TASKDATA(this_record_map
[j
].task
);
5530 td
->td_parent
= parent_task
;
5531 this_record_map
[j
].parent_task
= parent_task
;
5533 kmp_taskgroup_t
*parent_taskgroup
=
5534 this_record_map
[j
].parent_task
->td_taskgroup
;
5536 KMP_ATOMIC_ST_RLX(&this_record_map
[j
].npredecessors_counter
,
5537 this_record_map
[j
].npredecessors
);
5538 KMP_ATOMIC_INC(&this_record_map
[j
].parent_task
->td_incomplete_child_tasks
);
5540 if (parent_taskgroup
) {
5541 KMP_ATOMIC_INC(&parent_taskgroup
->count
);
5542 // The taskgroup is different so we must update it
5543 td
->td_taskgroup
= parent_taskgroup
;
5544 } else if (td
->td_taskgroup
!= nullptr) {
5545 // If the parent doesnt have a taskgroup, remove it from the task
5546 td
->td_taskgroup
= nullptr;
5548 if (this_record_map
[j
].parent_task
->td_flags
.tasktype
== TASK_EXPLICIT
)
5549 KMP_ATOMIC_INC(&this_record_map
[j
].parent_task
->td_allocated_child_tasks
);
5552 for (kmp_int32 j
= 0; j
< this_num_roots
; ++j
) {
5553 __kmp_omp_task(gtid
, this_record_map
[this_root_tasks
[j
]].task
, true);
5555 KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid
,
5556 tdg
->tdg_id
, tdg
->num_roots
));
5559 // __kmp_start_record: set up a TDG structure and turn the
5560 // recording flag to true
5561 // gtid: Global Thread ID of the encountering thread
5562 // input_flags: Flags associated with the TDG
5563 // tdg_id: ID of the TDG to record
5564 static inline void __kmp_start_record(kmp_int32 gtid
,
5565 kmp_taskgraph_flags_t
*flags
,
5567 kmp_tdg_info_t
*tdg
=
5568 (kmp_tdg_info_t
*)__kmp_allocate(sizeof(kmp_tdg_info_t
));
5569 __kmp_global_tdgs
[__kmp_curr_tdg_idx
] = tdg
;
5570 // Initializing the TDG structure
5571 tdg
->tdg_id
= tdg_id
;
5572 tdg
->map_size
= INIT_MAPSIZE
;
5573 tdg
->num_roots
= -1;
5574 tdg
->root_tasks
= nullptr;
5575 tdg
->tdg_status
= KMP_TDG_RECORDING
;
5576 tdg
->rec_num_taskred
= 0;
5577 tdg
->rec_taskred_data
= nullptr;
5578 KMP_ATOMIC_ST_RLX(&tdg
->num_tasks
, 0);
5580 // Initializing the list of nodes in this TDG
5581 kmp_node_info_t
*this_record_map
=
5582 (kmp_node_info_t
*)__kmp_allocate(INIT_MAPSIZE
* sizeof(kmp_node_info_t
));
5583 for (kmp_int32 i
= 0; i
< INIT_MAPSIZE
; i
++) {
5584 kmp_int32
*successorsList
=
5585 (kmp_int32
*)__kmp_allocate(__kmp_successors_size
* sizeof(kmp_int32
));
5586 this_record_map
[i
].task
= nullptr;
5587 this_record_map
[i
].successors
= successorsList
;
5588 this_record_map
[i
].nsuccessors
= 0;
5589 this_record_map
[i
].npredecessors
= 0;
5590 this_record_map
[i
].successors_size
= __kmp_successors_size
;
5591 KMP_ATOMIC_ST_RLX(&this_record_map
[i
].npredecessors_counter
, 0);
5594 __kmp_global_tdgs
[__kmp_curr_tdg_idx
]->record_map
= this_record_map
;
5597 // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark
5598 // the beginning of the record process of a task region
5599 // loc_ref: Location of TDG, not used yet
5600 // gtid: Global Thread ID of the encountering thread
5601 // input_flags: Flags associated with the TDG
5602 // tdg_id: ID of the TDG to record, for now, incremental integer
5603 // returns: 1 if we record, otherwise, 0
5604 kmp_int32
__kmpc_start_record_task(ident_t
*loc_ref
, kmp_int32 gtid
,
5605 kmp_int32 input_flags
, kmp_int32 tdg_id
) {
5608 kmp_taskgraph_flags_t
*flags
= (kmp_taskgraph_flags_t
*)&input_flags
;
5610 ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n",
5611 gtid
, loc_ref
, input_flags
, tdg_id
));
5613 if (__kmp_max_tdgs
== 0) {
5616 ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, "
5617 "__kmp_max_tdgs = 0\n",
5618 gtid
, loc_ref
, input_flags
, tdg_id
));
5622 __kmpc_taskgroup(loc_ref
, gtid
);
5623 if (kmp_tdg_info_t
*tdg
= __kmp_find_tdg(tdg_id
)) {
5624 // TODO: use re_record flag
5625 __kmp_exec_tdg(gtid
, tdg
);
5628 __kmp_curr_tdg_idx
= tdg_id
;
5629 KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx
< __kmp_max_tdgs
);
5630 __kmp_start_record(gtid
, flags
, tdg_id
);
5634 KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n",
5635 gtid
, tdg_id
, res
? "record" : "execute"));
5639 // __kmp_end_record: set up a TDG after recording it
5640 // gtid: Global thread ID
5641 // tdg: Pointer to the TDG
5642 void __kmp_end_record(kmp_int32 gtid
, kmp_tdg_info_t
*tdg
) {
5644 kmp_node_info_t
*this_record_map
= tdg
->record_map
;
5645 kmp_int32 this_num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5646 kmp_int32
*this_root_tasks
=
5647 (kmp_int32
*)__kmp_allocate(this_num_tasks
* sizeof(kmp_int32
));
5648 kmp_int32 this_map_size
= tdg
->map_size
;
5649 kmp_int32 this_num_roots
= 0;
5650 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5652 for (kmp_int32 i
= 0; i
< this_num_tasks
; i
++) {
5653 if (this_record_map
[i
].npredecessors
== 0) {
5654 this_root_tasks
[this_num_roots
++] = i
;
5658 // Update with roots info and mapsize
5659 tdg
->map_size
= this_map_size
;
5660 tdg
->num_roots
= this_num_roots
;
5661 tdg
->root_tasks
= this_root_tasks
;
5662 KMP_DEBUG_ASSERT(tdg
->tdg_status
== KMP_TDG_RECORDING
);
5663 tdg
->tdg_status
= KMP_TDG_READY
;
5665 if (thread
->th
.th_current_task
->td_dephash
) {
5666 __kmp_dephash_free(thread
, thread
->th
.th_current_task
->td_dephash
);
5667 thread
->th
.th_current_task
->td_dephash
= NULL
;
5670 // Reset predecessor counter
5671 for (kmp_int32 i
= 0; i
< this_num_tasks
; i
++) {
5672 KMP_ATOMIC_ST_RLX(&this_record_map
[i
].npredecessors_counter
,
5673 this_record_map
[i
].npredecessors
);
5675 KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id
, 0);
5678 __kmp_print_tdg_dot(tdg
);
5681 // __kmpc_end_record_task: wrapper around __kmp_end_record to mark
5682 // the end of recording phase
5684 // loc_ref: Source location information
5685 // gtid: Global thread ID
5686 // input_flags: Flags attached to the graph
5687 // tdg_id: ID of the TDG just finished recording
5688 void __kmpc_end_record_task(ident_t
*loc_ref
, kmp_int32 gtid
,
5689 kmp_int32 input_flags
, kmp_int32 tdg_id
) {
5690 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(tdg_id
);
5692 KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording"
5693 " tdg=%d with flags=%d\n",
5694 gtid
, loc_ref
, tdg_id
, input_flags
));
5695 if (__kmp_max_tdgs
) {
5696 // TODO: use input_flags->nowait
5697 __kmpc_end_taskgroup(loc_ref
, gtid
);
5698 if (__kmp_tdg_is_recording(tdg
->tdg_status
))
5699 __kmp_end_record(gtid
, tdg
);
5701 KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording"
5702 " tdg=%d, its status is now READY\n",
5703 gtid
, loc_ref
, tdg_id
));