Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / third-party / unittest / googletest / include / gtest / internal / gtest-internal.h
bloba04a9201c616de5dc0853a1d33b63a798cad686e
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // The Google C++ Testing and Mocking Framework (Google Test)
32 // This header file declares functions and macros used internally by
33 // Google Test. They are subject to change without notice.
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
42 #include "gtest/internal/gtest-port.h"
44 #ifdef GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif // GTEST_OS_LINUX
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
59 #include <cstdint>
60 #include <functional>
61 #include <iomanip>
62 #include <limits>
63 #include <map>
64 #include <set>
65 #include <string>
66 #include <type_traits>
67 #include <utility>
68 #include <vector>
70 #include "gtest/gtest-message.h"
71 #include "gtest/internal/gtest-filepath.h"
72 #include "gtest/internal/gtest-string.h"
73 #include "gtest/internal/gtest-type-util.h"
75 // Due to C++ preprocessor weirdness, we need double indirection to
76 // concatenate two tokens when one of them is __LINE__. Writing
78 // foo ## __LINE__
80 // will result in the token foo__LINE__, instead of foo followed by
81 // the current line number. For more details, see
82 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
83 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
84 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
86 // Stringifies its argument.
87 // Work around a bug in visual studio which doesn't accept code like this:
89 // #define GTEST_STRINGIFY_(name) #name
90 // #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
91 // MACRO(, x, y)
93 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
94 // This is allowed by the spec.
95 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
96 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
98 namespace proto2 {
99 class MessageLite;
102 namespace testing {
104 // Forward declarations.
106 class AssertionResult; // Result of an assertion.
107 class Message; // Represents a failure message.
108 class Test; // Represents a test.
109 class TestInfo; // Information about a test.
110 class TestPartResult; // Result of a test part.
111 class UnitTest; // A collection of test suites.
113 template <typename T>
114 ::std::string PrintToString(const T& value);
116 namespace internal {
118 struct TraceInfo; // Information about a trace point.
119 class TestInfoImpl; // Opaque implementation of TestInfo
120 class UnitTestImpl; // Opaque implementation of UnitTest
122 // The text used in failure messages to indicate the start of the
123 // stack trace.
124 GTEST_API_ extern const char kStackTraceMarker[];
126 // An IgnoredValue object can be implicitly constructed from ANY value.
127 class IgnoredValue {
128 struct Sink {};
130 public:
131 // This constructor template allows any value to be implicitly
132 // converted to IgnoredValue. The object has no data member and
133 // doesn't try to remember anything about the argument. We
134 // deliberately omit the 'explicit' keyword in order to allow the
135 // conversion to be implicit.
136 // Disable the conversion if T already has a magical conversion operator.
137 // Otherwise we get ambiguity.
138 template <typename T,
139 typename std::enable_if<!std::is_convertible<T, Sink>::value,
140 int>::type = 0>
141 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
144 // Appends the user-supplied message to the Google-Test-generated message.
145 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
146 const Message& user_msg);
148 #if GTEST_HAS_EXCEPTIONS
150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
151 4275 /* an exported class was derived from a class that was not exported */)
153 // This exception is thrown by (and only by) a failed Google Test
154 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
155 // are enabled). We derive it from std::runtime_error, which is for
156 // errors presumably detectable only at run time. Since
157 // std::runtime_error inherits from std::exception, many testing
158 // frameworks know how to extract and print the message inside it.
159 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
160 public:
161 explicit GoogleTestFailureException(const TestPartResult& failure);
164 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
166 #endif // GTEST_HAS_EXCEPTIONS
168 namespace edit_distance {
169 // Returns the optimal edits to go from 'left' to 'right'.
170 // All edits cost the same, with replace having lower priority than
171 // add/remove.
172 // Simple implementation of the Wagner-Fischer algorithm.
173 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
174 enum EditType { kMatch, kAdd, kRemove, kReplace };
175 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
176 const std::vector<size_t>& left, const std::vector<size_t>& right);
178 // Same as above, but the input is represented as strings.
179 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
180 const std::vector<std::string>& left,
181 const std::vector<std::string>& right);
183 // Create a diff of the input strings in Unified diff format.
184 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
185 const std::vector<std::string>& right,
186 size_t context = 2);
188 } // namespace edit_distance
190 // Constructs and returns the message for an equality assertion
191 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
193 // The first four parameters are the expressions used in the assertion
194 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
195 // where foo is 5 and bar is 6, we have:
197 // expected_expression: "foo"
198 // actual_expression: "bar"
199 // expected_value: "5"
200 // actual_value: "6"
202 // The ignoring_case parameter is true if and only if the assertion is a
203 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
204 // be inserted into the message.
205 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
206 const char* actual_expression,
207 const std::string& expected_value,
208 const std::string& actual_value,
209 bool ignoring_case);
211 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
212 GTEST_API_ std::string GetBoolAssertionFailureMessage(
213 const AssertionResult& assertion_result, const char* expression_text,
214 const char* actual_predicate_value, const char* expected_predicate_value);
216 // This template class represents an IEEE floating-point number
217 // (either single-precision or double-precision, depending on the
218 // template parameters).
220 // The purpose of this class is to do more sophisticated number
221 // comparison. (Due to round-off error, etc, it's very unlikely that
222 // two floating-points will be equal exactly. Hence a naive
223 // comparison by the == operation often doesn't work.)
225 // Format of IEEE floating-point:
227 // The most-significant bit being the leftmost, an IEEE
228 // floating-point looks like
230 // sign_bit exponent_bits fraction_bits
232 // Here, sign_bit is a single bit that designates the sign of the
233 // number.
235 // For float, there are 8 exponent bits and 23 fraction bits.
237 // For double, there are 11 exponent bits and 52 fraction bits.
239 // More details can be found at
240 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
242 // Template parameter:
244 // RawType: the raw floating-point type (either float or double)
245 template <typename RawType>
246 class FloatingPoint {
247 public:
248 // Defines the unsigned integer type that has the same size as the
249 // floating point number.
250 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
252 // Constants.
254 // # of bits in a number.
255 static const size_t kBitCount = 8 * sizeof(RawType);
257 // # of fraction bits in a number.
258 static const size_t kFractionBitCount =
259 std::numeric_limits<RawType>::digits - 1;
261 // # of exponent bits in a number.
262 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
264 // The mask for the sign bit.
265 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
267 // The mask for the fraction bits.
268 static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
269 (kExponentBitCount + 1);
271 // The mask for the exponent bits.
272 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
274 // How many ULP's (Units in the Last Place) we want to tolerate when
275 // comparing two numbers. The larger the value, the more error we
276 // allow. A 0 value means that two numbers must be exactly the same
277 // to be considered equal.
279 // The maximum error of a single floating-point operation is 0.5
280 // units in the last place. On Intel CPU's, all floating-point
281 // calculations are done with 80-bit precision, while double has 64
282 // bits. Therefore, 4 should be enough for ordinary use.
284 // See the following article for more details on ULP:
285 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
286 static const uint32_t kMaxUlps = 4;
288 // Constructs a FloatingPoint from a raw floating-point number.
290 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
291 // around may change its bits, although the new value is guaranteed
292 // to be also a NAN. Therefore, don't expect this constructor to
293 // preserve the bits in x when x is a NAN.
294 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
296 // Static methods
298 // Reinterprets a bit pattern as a floating-point number.
300 // This function is needed to test the AlmostEquals() method.
301 static RawType ReinterpretBits(const Bits bits) {
302 FloatingPoint fp(0);
303 fp.u_.bits_ = bits;
304 return fp.u_.value_;
307 // Returns the floating-point number that represent positive infinity.
308 static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
310 // Non-static methods
312 // Returns the bits that represents this number.
313 const Bits& bits() const { return u_.bits_; }
315 // Returns the exponent bits of this number.
316 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
318 // Returns the fraction bits of this number.
319 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
321 // Returns the sign bit of this number.
322 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
324 // Returns true if and only if this is NAN (not a number).
325 bool is_nan() const {
326 // It's a NAN if the exponent bits are all ones and the fraction
327 // bits are not entirely zeros.
328 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
331 // Returns true if and only if this number is at most kMaxUlps ULP's away
332 // from rhs. In particular, this function:
334 // - returns false if either number is (or both are) NAN.
335 // - treats really large numbers as almost equal to infinity.
336 // - thinks +0.0 and -0.0 are 0 DLP's apart.
337 bool AlmostEquals(const FloatingPoint& rhs) const {
338 // The IEEE standard says that any comparison operation involving
339 // a NAN must return false.
340 if (is_nan() || rhs.is_nan()) return false;
342 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
343 kMaxUlps;
346 private:
347 // The data type used to store the actual floating-point number.
348 union FloatingPointUnion {
349 RawType value_; // The raw floating-point number.
350 Bits bits_; // The bits that represent the number.
353 // Converts an integer from the sign-and-magnitude representation to
354 // the biased representation. More precisely, let N be 2 to the
355 // power of (kBitCount - 1), an integer x is represented by the
356 // unsigned number x + N.
358 // For instance,
360 // -N + 1 (the most negative number representable using
361 // sign-and-magnitude) is represented by 1;
362 // 0 is represented by N; and
363 // N - 1 (the biggest number representable using
364 // sign-and-magnitude) is represented by 2N - 1.
366 // Read http://en.wikipedia.org/wiki/Signed_number_representations
367 // for more details on signed number representations.
368 static Bits SignAndMagnitudeToBiased(const Bits& sam) {
369 if (kSignBitMask & sam) {
370 // sam represents a negative number.
371 return ~sam + 1;
372 } else {
373 // sam represents a positive number.
374 return kSignBitMask | sam;
378 // Given two numbers in the sign-and-magnitude representation,
379 // returns the distance between them as an unsigned number.
380 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
381 const Bits& sam2) {
382 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
383 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
384 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
387 FloatingPointUnion u_;
390 // Typedefs the instances of the FloatingPoint template class that we
391 // care to use.
392 typedef FloatingPoint<float> Float;
393 typedef FloatingPoint<double> Double;
395 // In order to catch the mistake of putting tests that use different
396 // test fixture classes in the same test suite, we need to assign
397 // unique IDs to fixture classes and compare them. The TypeId type is
398 // used to hold such IDs. The user should treat TypeId as an opaque
399 // type: the only operation allowed on TypeId values is to compare
400 // them for equality using the == operator.
401 typedef const void* TypeId;
403 template <typename T>
404 class TypeIdHelper {
405 public:
406 // dummy_ must not have a const type. Otherwise an overly eager
407 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
408 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
409 static bool dummy_;
412 template <typename T>
413 bool TypeIdHelper<T>::dummy_ = false;
415 // GetTypeId<T>() returns the ID of type T. Different values will be
416 // returned for different types. Calling the function twice with the
417 // same type argument is guaranteed to return the same ID.
418 template <typename T>
419 TypeId GetTypeId() {
420 // The compiler is required to allocate a different
421 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
422 // the template. Therefore, the address of dummy_ is guaranteed to
423 // be unique.
424 return &(TypeIdHelper<T>::dummy_);
427 // Returns the type ID of ::testing::Test. Always call this instead
428 // of GetTypeId< ::testing::Test>() to get the type ID of
429 // ::testing::Test, as the latter may give the wrong result due to a
430 // suspected linker bug when compiling Google Test as a Mac OS X
431 // framework.
432 GTEST_API_ TypeId GetTestTypeId();
434 // Defines the abstract factory interface that creates instances
435 // of a Test object.
436 class TestFactoryBase {
437 public:
438 virtual ~TestFactoryBase() = default;
440 // Creates a test instance to run. The instance is both created and destroyed
441 // within TestInfoImpl::Run()
442 virtual Test* CreateTest() = 0;
444 protected:
445 TestFactoryBase() {}
447 private:
448 TestFactoryBase(const TestFactoryBase&) = delete;
449 TestFactoryBase& operator=(const TestFactoryBase&) = delete;
452 // This class provides implementation of TestFactoryBase interface.
453 // It is used in TEST and TEST_F macros.
454 template <class TestClass>
455 class TestFactoryImpl : public TestFactoryBase {
456 public:
457 Test* CreateTest() override { return new TestClass; }
460 #ifdef GTEST_OS_WINDOWS
462 // Predicate-formatters for implementing the HRESULT checking macros
463 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
464 // We pass a long instead of HRESULT to avoid causing an
465 // include dependency for the HRESULT type.
466 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
467 long hr); // NOLINT
468 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
469 long hr); // NOLINT
471 #endif // GTEST_OS_WINDOWS
473 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
474 using SetUpTestSuiteFunc = void (*)();
475 using TearDownTestSuiteFunc = void (*)();
477 struct CodeLocation {
478 CodeLocation(const std::string& a_file, int a_line)
479 : file(a_file), line(a_line) {}
481 std::string file;
482 int line;
485 // Helper to identify which setup function for TestCase / TestSuite to call.
486 // Only one function is allowed, either TestCase or TestSute but not both.
488 // Utility functions to help SuiteApiResolver
489 using SetUpTearDownSuiteFuncType = void (*)();
491 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
492 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
493 return a == def ? nullptr : a;
496 template <typename T>
497 // Note that SuiteApiResolver inherits from T because
498 // SetUpTestSuite()/TearDownTestSuite() could be protected. This way
499 // SuiteApiResolver can access them.
500 struct SuiteApiResolver : T {
501 // testing::Test is only forward declared at this point. So we make it a
502 // dependent class for the compiler to be OK with it.
503 using Test =
504 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
506 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
507 int line_num) {
508 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
509 SetUpTearDownSuiteFuncType test_case_fp =
510 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
511 SetUpTearDownSuiteFuncType test_suite_fp =
512 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
514 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
515 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
516 "make sure there is only one present at "
517 << filename << ":" << line_num;
519 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
520 #else
521 (void)(filename);
522 (void)(line_num);
523 return &T::SetUpTestSuite;
524 #endif
527 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
528 int line_num) {
529 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
530 SetUpTearDownSuiteFuncType test_case_fp =
531 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
532 SetUpTearDownSuiteFuncType test_suite_fp =
533 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
535 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
536 << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
537 " please make sure there is only one present at"
538 << filename << ":" << line_num;
540 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
541 #else
542 (void)(filename);
543 (void)(line_num);
544 return &T::TearDownTestSuite;
545 #endif
549 // Creates a new TestInfo object and registers it with Google Test;
550 // returns the created object.
552 // Arguments:
554 // test_suite_name: name of the test suite
555 // name: name of the test
556 // type_param: the name of the test's type parameter, or NULL if
557 // this is not a typed or a type-parameterized test.
558 // value_param: text representation of the test's value parameter,
559 // or NULL if this is not a type-parameterized test.
560 // code_location: code location where the test is defined
561 // fixture_class_id: ID of the test fixture class
562 // set_up_tc: pointer to the function that sets up the test suite
563 // tear_down_tc: pointer to the function that tears down the test suite
564 // factory: pointer to the factory that creates a test object.
565 // The newly created TestInfo instance will assume
566 // ownership of the factory object.
567 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
568 const char* test_suite_name, const char* name, const char* type_param,
569 const char* value_param, CodeLocation code_location,
570 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
571 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
573 // If *pstr starts with the given prefix, modifies *pstr to be right
574 // past the prefix and returns true; otherwise leaves *pstr unchanged
575 // and returns false. None of pstr, *pstr, and prefix can be NULL.
576 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
578 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
579 /* class A needs to have dll-interface to be used by clients of class B */)
581 // State of the definition of a type-parameterized test suite.
582 class GTEST_API_ TypedTestSuitePState {
583 public:
584 TypedTestSuitePState() : registered_(false) {}
586 // Adds the given test name to defined_test_names_ and return true
587 // if the test suite hasn't been registered; otherwise aborts the
588 // program.
589 bool AddTestName(const char* file, int line, const char* case_name,
590 const char* test_name) {
591 if (registered_) {
592 fprintf(stderr,
593 "%s Test %s must be defined before "
594 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
595 FormatFileLocation(file, line).c_str(), test_name, case_name);
596 fflush(stderr);
597 posix::Abort();
599 registered_tests_.insert(
600 ::std::make_pair(test_name, CodeLocation(file, line)));
601 return true;
604 bool TestExists(const std::string& test_name) const {
605 return registered_tests_.count(test_name) > 0;
608 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
609 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
610 GTEST_CHECK_(it != registered_tests_.end());
611 return it->second;
614 // Verifies that registered_tests match the test names in
615 // defined_test_names_; returns registered_tests if successful, or
616 // aborts the program otherwise.
617 const char* VerifyRegisteredTestNames(const char* test_suite_name,
618 const char* file, int line,
619 const char* registered_tests);
621 private:
622 typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
624 bool registered_;
625 RegisteredTestsMap registered_tests_;
628 // Legacy API is deprecated but still available
629 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
630 using TypedTestCasePState = TypedTestSuitePState;
631 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
633 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
635 // Skips to the first non-space char after the first comma in 'str';
636 // returns NULL if no comma is found in 'str'.
637 inline const char* SkipComma(const char* str) {
638 const char* comma = strchr(str, ',');
639 if (comma == nullptr) {
640 return nullptr;
642 while (IsSpace(*(++comma))) {
644 return comma;
647 // Returns the prefix of 'str' before the first comma in it; returns
648 // the entire string if it contains no comma.
649 inline std::string GetPrefixUntilComma(const char* str) {
650 const char* comma = strchr(str, ',');
651 return comma == nullptr ? str : std::string(str, comma);
654 // Splits a given string on a given delimiter, populating a given
655 // vector with the fields.
656 void SplitString(const ::std::string& str, char delimiter,
657 ::std::vector<::std::string>* dest);
659 // The default argument to the template below for the case when the user does
660 // not provide a name generator.
661 struct DefaultNameGenerator {
662 template <typename T>
663 static std::string GetName(int i) {
664 return StreamableToString(i);
668 template <typename Provided = DefaultNameGenerator>
669 struct NameGeneratorSelector {
670 typedef Provided type;
673 template <typename NameGenerator>
674 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
676 template <typename NameGenerator, typename Types>
677 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
678 result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
679 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
680 i + 1);
683 template <typename NameGenerator, typename Types>
684 std::vector<std::string> GenerateNames() {
685 std::vector<std::string> result;
686 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
687 return result;
690 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
691 // registers a list of type-parameterized tests with Google Test. The
692 // return value is insignificant - we just need to return something
693 // such that we can call this function in a namespace scope.
695 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
696 // template parameter. It's defined in gtest-type-util.h.
697 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
698 class TypeParameterizedTest {
699 public:
700 // 'index' is the index of the test in the type list 'Types'
701 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
702 // Types). Valid values for 'index' are [0, N - 1] where N is the
703 // length of Types.
704 static bool Register(const char* prefix, const CodeLocation& code_location,
705 const char* case_name, const char* test_names, int index,
706 const std::vector<std::string>& type_names =
707 GenerateNames<DefaultNameGenerator, Types>()) {
708 typedef typename Types::Head Type;
709 typedef Fixture<Type> FixtureClass;
710 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
712 // First, registers the first type-parameterized test in the type
713 // list.
714 MakeAndRegisterTestInfo(
715 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
716 "/" + type_names[static_cast<size_t>(index)])
717 .c_str(),
718 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
719 GetTypeName<Type>().c_str(),
720 nullptr, // No value parameter.
721 code_location, GetTypeId<FixtureClass>(),
722 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
723 code_location.file.c_str(), code_location.line),
724 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
725 code_location.file.c_str(), code_location.line),
726 new TestFactoryImpl<TestClass>);
728 // Next, recurses (at compile time) with the tail of the type list.
729 return TypeParameterizedTest<Fixture, TestSel,
730 typename Types::Tail>::Register(prefix,
731 code_location,
732 case_name,
733 test_names,
734 index + 1,
735 type_names);
739 // The base case for the compile time recursion.
740 template <GTEST_TEMPLATE_ Fixture, class TestSel>
741 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
742 public:
743 static bool Register(const char* /*prefix*/, const CodeLocation&,
744 const char* /*case_name*/, const char* /*test_names*/,
745 int /*index*/,
746 const std::vector<std::string>& =
747 std::vector<std::string>() /*type_names*/) {
748 return true;
752 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
753 CodeLocation code_location);
754 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
755 const char* case_name);
757 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
758 // registers *all combinations* of 'Tests' and 'Types' with Google
759 // Test. The return value is insignificant - we just need to return
760 // something such that we can call this function in a namespace scope.
761 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
762 class TypeParameterizedTestSuite {
763 public:
764 static bool Register(const char* prefix, CodeLocation code_location,
765 const TypedTestSuitePState* state, const char* case_name,
766 const char* test_names,
767 const std::vector<std::string>& type_names =
768 GenerateNames<DefaultNameGenerator, Types>()) {
769 RegisterTypeParameterizedTestSuiteInstantiation(case_name);
770 std::string test_name =
771 StripTrailingSpaces(GetPrefixUntilComma(test_names));
772 if (!state->TestExists(test_name)) {
773 fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
774 case_name, test_name.c_str(),
775 FormatFileLocation(code_location.file.c_str(), code_location.line)
776 .c_str());
777 fflush(stderr);
778 posix::Abort();
780 const CodeLocation& test_location = state->GetCodeLocation(test_name);
782 typedef typename Tests::Head Head;
784 // First, register the first test in 'Test' for each type in 'Types'.
785 TypeParameterizedTest<Fixture, Head, Types>::Register(
786 prefix, test_location, case_name, test_names, 0, type_names);
788 // Next, recurses (at compile time) with the tail of the test list.
789 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
790 Types>::Register(prefix, code_location,
791 state, case_name,
792 SkipComma(test_names),
793 type_names);
797 // The base case for the compile time recursion.
798 template <GTEST_TEMPLATE_ Fixture, typename Types>
799 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
800 public:
801 static bool Register(const char* /*prefix*/, const CodeLocation&,
802 const TypedTestSuitePState* /*state*/,
803 const char* /*case_name*/, const char* /*test_names*/,
804 const std::vector<std::string>& =
805 std::vector<std::string>() /*type_names*/) {
806 return true;
810 // Returns the current OS stack trace as an std::string.
812 // The maximum number of stack frames to be included is specified by
813 // the gtest_stack_trace_depth flag. The skip_count parameter
814 // specifies the number of top frames to be skipped, which doesn't
815 // count against the number of frames to be included.
817 // For example, if Foo() calls Bar(), which in turn calls
818 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
819 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
820 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
822 // Helpers for suppressing warnings on unreachable code or constant
823 // condition.
825 // Always returns true.
826 GTEST_API_ bool AlwaysTrue();
828 // Always returns false.
829 inline bool AlwaysFalse() { return !AlwaysTrue(); }
831 // Helper for suppressing false warning from Clang on a const char*
832 // variable declared in a conditional expression always being NULL in
833 // the else branch.
834 struct GTEST_API_ ConstCharPtr {
835 ConstCharPtr(const char* str) : value(str) {}
836 operator bool() const { return true; }
837 const char* value;
840 // Helper for declaring std::string within 'if' statement
841 // in pre C++17 build environment.
842 struct TrueWithString {
843 TrueWithString() = default;
844 explicit TrueWithString(const char* str) : value(str) {}
845 explicit TrueWithString(const std::string& str) : value(str) {}
846 explicit operator bool() const { return true; }
847 std::string value;
850 // A simple Linear Congruential Generator for generating random
851 // numbers with a uniform distribution. Unlike rand() and srand(), it
852 // doesn't use global state (and therefore can't interfere with user
853 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
854 // but it's good enough for our purposes.
855 class GTEST_API_ Random {
856 public:
857 static const uint32_t kMaxRange = 1u << 31;
859 explicit Random(uint32_t seed) : state_(seed) {}
861 void Reseed(uint32_t seed) { state_ = seed; }
863 // Generates a random number from [0, range). Crashes if 'range' is
864 // 0 or greater than kMaxRange.
865 uint32_t Generate(uint32_t range);
867 private:
868 uint32_t state_;
869 Random(const Random&) = delete;
870 Random& operator=(const Random&) = delete;
873 // Turns const U&, U&, const U, and U all into U.
874 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
875 typename std::remove_const<typename std::remove_reference<T>::type>::type
877 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
878 // that's true if and only if T has methods DebugString() and ShortDebugString()
879 // that return std::string.
880 template <typename T>
881 class HasDebugStringAndShortDebugString {
882 private:
883 template <typename C>
884 static auto CheckDebugString(C*) -> typename std::is_same<
885 std::string, decltype(std::declval<const C>().DebugString())>::type;
886 template <typename>
887 static std::false_type CheckDebugString(...);
889 template <typename C>
890 static auto CheckShortDebugString(C*) -> typename std::is_same<
891 std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
892 template <typename>
893 static std::false_type CheckShortDebugString(...);
895 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
896 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
898 public:
899 static constexpr bool value =
900 HasDebugStringType::value && HasShortDebugStringType::value;
903 #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
904 template <typename T>
905 constexpr bool HasDebugStringAndShortDebugString<T>::value;
906 #endif
908 // When the compiler sees expression IsContainerTest<C>(0), if C is an
909 // STL-style container class, the first overload of IsContainerTest
910 // will be viable (since both C::iterator* and C::const_iterator* are
911 // valid types and NULL can be implicitly converted to them). It will
912 // be picked over the second overload as 'int' is a perfect match for
913 // the type of argument 0. If C::iterator or C::const_iterator is not
914 // a valid type, the first overload is not viable, and the second
915 // overload will be picked. Therefore, we can determine whether C is
916 // a container class by checking the type of IsContainerTest<C>(0).
917 // The value of the expression is insignificant.
919 // In C++11 mode we check the existence of a const_iterator and that an
920 // iterator is properly implemented for the container.
922 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
923 // The reason is that C++ injects the name of a class as a member of the
924 // class itself (e.g. you can refer to class iterator as either
925 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
926 // only, for example, we would mistakenly think that a class named
927 // iterator is an STL container.
929 // Also note that the simpler approach of overloading
930 // IsContainerTest(typename C::const_iterator*) and
931 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
932 typedef int IsContainer;
933 template <class C,
934 class Iterator = decltype(::std::declval<const C&>().begin()),
935 class = decltype(::std::declval<const C&>().end()),
936 class = decltype(++::std::declval<Iterator&>()),
937 class = decltype(*::std::declval<Iterator>()),
938 class = typename C::const_iterator>
939 IsContainer IsContainerTest(int /* dummy */) {
940 return 0;
943 typedef char IsNotContainer;
944 template <class C>
945 IsNotContainer IsContainerTest(long /* dummy */) {
946 return '\0';
949 // Trait to detect whether a type T is a hash table.
950 // The heuristic used is that the type contains an inner type `hasher` and does
951 // not contain an inner type `reverse_iterator`.
952 // If the container is iterable in reverse, then order might actually matter.
953 template <typename T>
954 struct IsHashTable {
955 private:
956 template <typename U>
957 static char test(typename U::hasher*, typename U::reverse_iterator*);
958 template <typename U>
959 static int test(typename U::hasher*, ...);
960 template <typename U>
961 static char test(...);
963 public:
964 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
967 template <typename T>
968 const bool IsHashTable<T>::value;
970 template <typename C,
971 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
972 struct IsRecursiveContainerImpl;
974 template <typename C>
975 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
977 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
978 // obey the same inconsistencies as the IsContainerTest, namely check if
979 // something is a container is relying on only const_iterator in C++11 and
980 // is relying on both const_iterator and iterator otherwise
981 template <typename C>
982 struct IsRecursiveContainerImpl<C, true> {
983 using value_type = decltype(*std::declval<typename C::const_iterator>());
984 using type =
985 std::is_same<typename std::remove_const<
986 typename std::remove_reference<value_type>::type>::type,
990 // IsRecursiveContainer<Type> is a unary compile-time predicate that
991 // evaluates whether C is a recursive container type. A recursive container
992 // type is a container type whose value_type is equal to the container type
993 // itself. An example for a recursive container type is
994 // boost::filesystem::path, whose iterator has a value_type that is equal to
995 // boost::filesystem::path.
996 template <typename C>
997 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
999 // Utilities for native arrays.
1001 // ArrayEq() compares two k-dimensional native arrays using the
1002 // elements' operator==, where k can be any integer >= 0. When k is
1003 // 0, ArrayEq() degenerates into comparing a single pair of values.
1005 template <typename T, typename U>
1006 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1008 // This generic version is used when k is 0.
1009 template <typename T, typename U>
1010 inline bool ArrayEq(const T& lhs, const U& rhs) {
1011 return lhs == rhs;
1014 // This overload is used when k >= 1.
1015 template <typename T, typename U, size_t N>
1016 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1017 return internal::ArrayEq(lhs, N, rhs);
1020 // This helper reduces code bloat. If we instead put its logic inside
1021 // the previous ArrayEq() function, arrays with different sizes would
1022 // lead to different copies of the template code.
1023 template <typename T, typename U>
1024 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1025 for (size_t i = 0; i != size; i++) {
1026 if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1028 return true;
1031 // Finds the first element in the iterator range [begin, end) that
1032 // equals elem. Element may be a native array type itself.
1033 template <typename Iter, typename Element>
1034 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1035 for (Iter it = begin; it != end; ++it) {
1036 if (internal::ArrayEq(*it, elem)) return it;
1038 return end;
1041 // CopyArray() copies a k-dimensional native array using the elements'
1042 // operator=, where k can be any integer >= 0. When k is 0,
1043 // CopyArray() degenerates into copying a single value.
1045 template <typename T, typename U>
1046 void CopyArray(const T* from, size_t size, U* to);
1048 // This generic version is used when k is 0.
1049 template <typename T, typename U>
1050 inline void CopyArray(const T& from, U* to) {
1051 *to = from;
1054 // This overload is used when k >= 1.
1055 template <typename T, typename U, size_t N>
1056 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1057 internal::CopyArray(from, N, *to);
1060 // This helper reduces code bloat. If we instead put its logic inside
1061 // the previous CopyArray() function, arrays with different sizes
1062 // would lead to different copies of the template code.
1063 template <typename T, typename U>
1064 void CopyArray(const T* from, size_t size, U* to) {
1065 for (size_t i = 0; i != size; i++) {
1066 internal::CopyArray(from[i], to + i);
1070 // The relation between an NativeArray object (see below) and the
1071 // native array it represents.
1072 // We use 2 different structs to allow non-copyable types to be used, as long
1073 // as RelationToSourceReference() is passed.
1074 struct RelationToSourceReference {};
1075 struct RelationToSourceCopy {};
1077 // Adapts a native array to a read-only STL-style container. Instead
1078 // of the complete STL container concept, this adaptor only implements
1079 // members useful for Google Mock's container matchers. New members
1080 // should be added as needed. To simplify the implementation, we only
1081 // support Element being a raw type (i.e. having no top-level const or
1082 // reference modifier). It's the client's responsibility to satisfy
1083 // this requirement. Element can be an array type itself (hence
1084 // multi-dimensional arrays are supported).
1085 template <typename Element>
1086 class NativeArray {
1087 public:
1088 // STL-style container typedefs.
1089 typedef Element value_type;
1090 typedef Element* iterator;
1091 typedef const Element* const_iterator;
1093 // Constructs from a native array. References the source.
1094 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1095 InitRef(array, count);
1098 // Constructs from a native array. Copies the source.
1099 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1100 InitCopy(array, count);
1103 // Copy constructor.
1104 NativeArray(const NativeArray& rhs) {
1105 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1108 ~NativeArray() {
1109 if (clone_ != &NativeArray::InitRef) delete[] array_;
1112 // STL-style container methods.
1113 size_t size() const { return size_; }
1114 const_iterator begin() const { return array_; }
1115 const_iterator end() const { return array_ + size_; }
1116 bool operator==(const NativeArray& rhs) const {
1117 return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1120 private:
1121 static_assert(!std::is_const<Element>::value, "Type must not be const");
1122 static_assert(!std::is_reference<Element>::value,
1123 "Type must not be a reference");
1125 // Initializes this object with a copy of the input.
1126 void InitCopy(const Element* array, size_t a_size) {
1127 Element* const copy = new Element[a_size];
1128 CopyArray(array, a_size, copy);
1129 array_ = copy;
1130 size_ = a_size;
1131 clone_ = &NativeArray::InitCopy;
1134 // Initializes this object with a reference of the input.
1135 void InitRef(const Element* array, size_t a_size) {
1136 array_ = array;
1137 size_ = a_size;
1138 clone_ = &NativeArray::InitRef;
1141 const Element* array_;
1142 size_t size_;
1143 void (NativeArray::*clone_)(const Element*, size_t);
1146 // Backport of std::index_sequence.
1147 template <size_t... Is>
1148 struct IndexSequence {
1149 using type = IndexSequence;
1152 // Double the IndexSequence, and one if plus_one is true.
1153 template <bool plus_one, typename T, size_t sizeofT>
1154 struct DoubleSequence;
1155 template <size_t... I, size_t sizeofT>
1156 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1157 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1159 template <size_t... I, size_t sizeofT>
1160 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1161 using type = IndexSequence<I..., (sizeofT + I)...>;
1164 // Backport of std::make_index_sequence.
1165 // It uses O(ln(N)) instantiation depth.
1166 template <size_t N>
1167 struct MakeIndexSequenceImpl
1168 : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1169 N / 2>::type {};
1171 template <>
1172 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1174 template <size_t N>
1175 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1177 template <typename... T>
1178 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1180 template <size_t>
1181 struct Ignore {
1182 Ignore(...); // NOLINT
1185 template <typename>
1186 struct ElemFromListImpl;
1187 template <size_t... I>
1188 struct ElemFromListImpl<IndexSequence<I...>> {
1189 // We make Ignore a template to solve a problem with MSVC.
1190 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1191 // MSVC doesn't understand how to deal with that pack expansion.
1192 // Use `0 * I` to have a single instantiation of Ignore.
1193 template <typename R>
1194 static R Apply(Ignore<0 * I>..., R (*)(), ...);
1197 template <size_t N, typename... T>
1198 struct ElemFromList {
1199 using type =
1200 decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1201 static_cast<T (*)()>(nullptr)...));
1204 struct FlatTupleConstructTag {};
1206 template <typename... T>
1207 class FlatTuple;
1209 template <typename Derived, size_t I>
1210 struct FlatTupleElemBase;
1212 template <typename... T, size_t I>
1213 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1214 using value_type = typename ElemFromList<I, T...>::type;
1215 FlatTupleElemBase() = default;
1216 template <typename Arg>
1217 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1218 : value(std::forward<Arg>(t)) {}
1219 value_type value;
1222 template <typename Derived, typename Idx>
1223 struct FlatTupleBase;
1225 template <size_t... Idx, typename... T>
1226 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1227 : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1228 using Indices = IndexSequence<Idx...>;
1229 FlatTupleBase() = default;
1230 template <typename... Args>
1231 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1232 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1233 std::forward<Args>(args))... {}
1235 template <size_t I>
1236 const typename ElemFromList<I, T...>::type& Get() const {
1237 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1240 template <size_t I>
1241 typename ElemFromList<I, T...>::type& Get() {
1242 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1245 template <typename F>
1246 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1247 return std::forward<F>(f)(Get<Idx>()...);
1250 template <typename F>
1251 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1252 return std::forward<F>(f)(Get<Idx>()...);
1256 // Analog to std::tuple but with different tradeoffs.
1257 // This class minimizes the template instantiation depth, thus allowing more
1258 // elements than std::tuple would. std::tuple has been seen to require an
1259 // instantiation depth of more than 10x the number of elements in some
1260 // implementations.
1261 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1262 // regardless of T...
1263 // MakeIndexSequence, on the other hand, it is recursive but with an
1264 // instantiation depth of O(ln(N)).
1265 template <typename... T>
1266 class FlatTuple
1267 : private FlatTupleBase<FlatTuple<T...>,
1268 typename MakeIndexSequence<sizeof...(T)>::type> {
1269 using Indices = typename FlatTupleBase<
1270 FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1272 public:
1273 FlatTuple() = default;
1274 template <typename... Args>
1275 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1276 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1278 using FlatTuple::FlatTupleBase::Apply;
1279 using FlatTuple::FlatTupleBase::Get;
1282 // Utility functions to be called with static_assert to induce deprecation
1283 // warnings.
1284 GTEST_INTERNAL_DEPRECATED(
1285 "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1286 "INSTANTIATE_TEST_SUITE_P")
1287 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1289 GTEST_INTERNAL_DEPRECATED(
1290 "TYPED_TEST_CASE_P is deprecated, please use "
1291 "TYPED_TEST_SUITE_P")
1292 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1294 GTEST_INTERNAL_DEPRECATED(
1295 "TYPED_TEST_CASE is deprecated, please use "
1296 "TYPED_TEST_SUITE")
1297 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1299 GTEST_INTERNAL_DEPRECATED(
1300 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1301 "REGISTER_TYPED_TEST_SUITE_P")
1302 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1304 GTEST_INTERNAL_DEPRECATED(
1305 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1306 "INSTANTIATE_TYPED_TEST_SUITE_P")
1307 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1309 } // namespace internal
1310 } // namespace testing
1312 namespace std {
1313 // Some standard library implementations use `struct tuple_size` and some use
1314 // `class tuple_size`. Clang warns about the mismatch.
1315 // https://reviews.llvm.org/D55466
1316 #ifdef __clang__
1317 #pragma clang diagnostic push
1318 #pragma clang diagnostic ignored "-Wmismatched-tags"
1319 #endif
1320 template <typename... Ts>
1321 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1322 : std::integral_constant<size_t, sizeof...(Ts)> {};
1323 #ifdef __clang__
1324 #pragma clang diagnostic pop
1325 #endif
1326 } // namespace std
1328 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1329 ::testing::internal::AssertHelper(result_type, file, line, message) = \
1330 ::testing::Message()
1332 #define GTEST_MESSAGE_(message, result_type) \
1333 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1335 #define GTEST_FATAL_FAILURE_(message) \
1336 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1338 #define GTEST_NONFATAL_FAILURE_(message) \
1339 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1341 #define GTEST_SUCCESS_(message) \
1342 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1344 #define GTEST_SKIP_(message) \
1345 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1347 // Suppress MSVC warning 4072 (unreachable code) for the code following
1348 // statement if it returns or throws (or doesn't return or throw in some
1349 // situations).
1350 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1351 // "else" from attaching to our "if".
1352 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1353 if (::testing::internal::AlwaysTrue()) { \
1354 statement; \
1355 } else /* NOLINT */ \
1356 static_assert(true, "") // User must have a semicolon after expansion.
1358 #if GTEST_HAS_EXCEPTIONS
1360 namespace testing {
1361 namespace internal {
1363 class NeverThrown {
1364 public:
1365 const char* what() const noexcept {
1366 return "this exception should never be thrown";
1370 } // namespace internal
1371 } // namespace testing
1373 #if GTEST_HAS_RTTI
1375 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1377 #else // GTEST_HAS_RTTI
1379 #define GTEST_EXCEPTION_TYPE_(e) \
1380 std::string { "an std::exception-derived error" }
1382 #endif // GTEST_HAS_RTTI
1384 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1385 catch (typename std::conditional< \
1386 std::is_same<typename std::remove_cv<typename std::remove_reference< \
1387 expected_exception>::type>::type, \
1388 std::exception>::value, \
1389 const ::testing::internal::NeverThrown&, const std::exception&>::type \
1390 e) { \
1391 gtest_msg.value = "Expected: " #statement \
1392 " throws an exception of type " #expected_exception \
1393 ".\n Actual: it throws "; \
1394 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1395 gtest_msg.value += " with description \""; \
1396 gtest_msg.value += e.what(); \
1397 gtest_msg.value += "\"."; \
1398 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1401 #else // GTEST_HAS_EXCEPTIONS
1403 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1405 #endif // GTEST_HAS_EXCEPTIONS
1407 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1408 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1409 if (::testing::internal::TrueWithString gtest_msg{}) { \
1410 bool gtest_caught_expected = false; \
1411 try { \
1412 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1413 } catch (expected_exception const&) { \
1414 gtest_caught_expected = true; \
1416 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1417 catch (...) { \
1418 gtest_msg.value = "Expected: " #statement \
1419 " throws an exception of type " #expected_exception \
1420 ".\n Actual: it throws a different type."; \
1421 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1423 if (!gtest_caught_expected) { \
1424 gtest_msg.value = "Expected: " #statement \
1425 " throws an exception of type " #expected_exception \
1426 ".\n Actual: it throws nothing."; \
1427 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1429 } else /*NOLINT*/ \
1430 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
1431 : fail(gtest_msg.value.c_str())
1433 #if GTEST_HAS_EXCEPTIONS
1435 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1436 catch (std::exception const& e) { \
1437 gtest_msg.value = "it throws "; \
1438 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1439 gtest_msg.value += " with description \""; \
1440 gtest_msg.value += e.what(); \
1441 gtest_msg.value += "\"."; \
1442 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1445 #else // GTEST_HAS_EXCEPTIONS
1447 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1449 #endif // GTEST_HAS_EXCEPTIONS
1451 #define GTEST_TEST_NO_THROW_(statement, fail) \
1452 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1453 if (::testing::internal::TrueWithString gtest_msg{}) { \
1454 try { \
1455 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1457 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1458 catch (...) { \
1459 gtest_msg.value = "it throws."; \
1460 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1462 } else \
1463 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \
1464 : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1465 " Actual: " + \
1466 gtest_msg.value) \
1467 .c_str())
1469 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1470 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1471 if (::testing::internal::AlwaysTrue()) { \
1472 bool gtest_caught_any = false; \
1473 try { \
1474 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1475 } catch (...) { \
1476 gtest_caught_any = true; \
1478 if (!gtest_caught_any) { \
1479 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1481 } else \
1482 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \
1483 : fail("Expected: " #statement \
1484 " throws an exception.\n" \
1485 " Actual: it doesn't.")
1487 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1488 // either a boolean expression or an AssertionResult. text is a textual
1489 // representation of expression as it was passed into the EXPECT_TRUE.
1490 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1491 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1492 if (const ::testing::AssertionResult gtest_ar_ = \
1493 ::testing::AssertionResult(expression)) \
1495 else \
1496 fail(::testing::internal::GetBoolAssertionFailureMessage( \
1497 gtest_ar_, text, #actual, #expected) \
1498 .c_str())
1500 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1501 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1502 if (::testing::internal::AlwaysTrue()) { \
1503 const ::testing::internal::HasNewFatalFailureHelper \
1504 gtest_fatal_failure_checker; \
1505 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1506 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1507 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1509 } else /* NOLINT */ \
1510 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \
1511 : fail("Expected: " #statement \
1512 " doesn't generate new fatal " \
1513 "failures in the current thread.\n" \
1514 " Actual: it does.")
1516 // Expands to the name of the class that implements the given test.
1517 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1518 test_suite_name##_##test_name##_Test
1520 // Helper macro for defining tests.
1521 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1522 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
1523 "test_suite_name must not be empty"); \
1524 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
1525 "test_name must not be empty"); \
1526 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1527 : public parent_class { \
1528 public: \
1529 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
1530 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1531 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1532 (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
1533 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1534 const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1535 test_name) &) = delete; /* NOLINT */ \
1536 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1537 (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1538 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1539 GTEST_TEST_CLASS_NAME_(test_suite_name, \
1540 test_name) &&) noexcept = delete; /* NOLINT */ \
1542 private: \
1543 void TestBody() override; \
1544 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
1545 }; \
1547 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1548 test_name)::test_info_ = \
1549 ::testing::internal::MakeAndRegisterTestInfo( \
1550 #test_suite_name, #test_name, nullptr, nullptr, \
1551 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1552 ::testing::internal::SuiteApiResolver< \
1553 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1554 ::testing::internal::SuiteApiResolver< \
1555 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1556 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1557 test_suite_name, test_name)>); \
1558 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1560 #endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_