[memprof] Use a new constructor of IndexedAllocationInfo (NFC) (#116920)
[llvm-project.git] / lld / ELF / CallGraphSort.cpp
blob35c59d6edb2ad10d0369933dd09349e15c46c27b
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// The file is responsible for sorting sections using LLVM call graph profile
10 /// data by placing frequently executed code sections together. The goal of the
11 /// placement is to improve the runtime performance of the final executable by
12 /// arranging code sections so that i-TLB misses and i-cache misses are reduced.
13 ///
14 /// The algorithm first builds a call graph based on the profile data and then
15 /// iteratively merges "chains" (ordered lists) of input sections which will be
16 /// laid out as a unit. There are two implementations for deciding how to
17 /// merge a pair of chains:
18 /// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows
19 /// "Optimizing Function Placement for Large-Scale Data-Center Applications"
20 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
21 /// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which
22 /// typically produces layouts with higher locality, and hence, yields fewer
23 /// instruction cache misses on large binaries.
24 //===----------------------------------------------------------------------===//
26 #include "CallGraphSort.h"
27 #include "InputFiles.h"
28 #include "InputSection.h"
29 #include "Symbols.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Transforms/Utils/CodeLayout.h"
33 #include <numeric>
35 using namespace llvm;
36 using namespace lld;
37 using namespace lld::elf;
39 namespace {
40 struct Edge {
41 int from;
42 uint64_t weight;
45 struct Cluster {
46 Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
48 double getDensity() const {
49 if (size == 0)
50 return 0;
51 return double(weight) / double(size);
54 int next;
55 int prev;
56 uint64_t size;
57 uint64_t weight = 0;
58 uint64_t initialWeight = 0;
59 Edge bestPred = {-1, 0};
62 /// Implementation of the Call-Chain Clustering (C^3). The goal of this
63 /// algorithm is to improve runtime performance of the executable by arranging
64 /// code sections such that page table and i-cache misses are minimized.
65 ///
66 /// Definitions:
67 /// * Cluster
68 /// * An ordered list of input sections which are laid out as a unit. At the
69 /// beginning of the algorithm each input section has its own cluster and
70 /// the weight of the cluster is the sum of the weight of all incoming
71 /// edges.
72 /// * Call-Chain Clustering (C³) Heuristic
73 /// * Defines when and how clusters are combined. Pick the highest weighted
74 /// input section then add it to its most likely predecessor if it wouldn't
75 /// penalize it too much.
76 /// * Density
77 /// * The weight of the cluster divided by the size of the cluster. This is a
78 /// proxy for the amount of execution time spent per byte of the cluster.
79 ///
80 /// It does so given a call graph profile by the following:
81 /// * Build a weighted call graph from the call graph profile
82 /// * Sort input sections by weight
83 /// * For each input section starting with the highest weight
84 /// * Find its most likely predecessor cluster
85 /// * Check if the combined cluster would be too large, or would have too low
86 /// a density.
87 /// * If not, then combine the clusters.
88 /// * Sort non-empty clusters by density
89 class CallGraphSort {
90 public:
91 CallGraphSort(Ctx &);
93 DenseMap<const InputSectionBase *, int> run();
95 private:
96 Ctx &ctx;
97 std::vector<Cluster> clusters;
98 std::vector<const InputSectionBase *> sections;
101 // Maximum amount the combined cluster density can be worse than the original
102 // cluster to consider merging.
103 constexpr int MAX_DENSITY_DEGRADATION = 8;
105 // Maximum cluster size in bytes.
106 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
107 } // end anonymous namespace
109 using SectionPair =
110 std::pair<const InputSectionBase *, const InputSectionBase *>;
112 // Take the edge list in ctx.arg.callGraphProfile, resolve symbol names to
113 // Symbols, and generate a graph between InputSections with the provided
114 // weights.
115 CallGraphSort::CallGraphSort(Ctx &ctx) : ctx(ctx) {
116 MapVector<SectionPair, uint64_t> &profile = ctx.arg.callGraphProfile;
117 DenseMap<const InputSectionBase *, int> secToCluster;
119 auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
120 auto res = secToCluster.try_emplace(isec, clusters.size());
121 if (res.second) {
122 sections.push_back(isec);
123 clusters.emplace_back(clusters.size(), isec->getSize());
125 return res.first->second;
128 // Create the graph.
129 for (std::pair<SectionPair, uint64_t> &c : profile) {
130 const auto *fromSB = cast<InputSectionBase>(c.first.first);
131 const auto *toSB = cast<InputSectionBase>(c.first.second);
132 uint64_t weight = c.second;
134 // Ignore edges between input sections belonging to different output
135 // sections. This is done because otherwise we would end up with clusters
136 // containing input sections that can't actually be placed adjacently in the
137 // output. This messes with the cluster size and density calculations. We
138 // would also end up moving input sections in other output sections without
139 // moving them closer to what calls them.
140 if (fromSB->getOutputSection() != toSB->getOutputSection())
141 continue;
143 int from = getOrCreateNode(fromSB);
144 int to = getOrCreateNode(toSB);
146 clusters[to].weight += weight;
148 if (from == to)
149 continue;
151 // Remember the best edge.
152 Cluster &toC = clusters[to];
153 if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
154 toC.bestPred.from = from;
155 toC.bestPred.weight = weight;
158 for (Cluster &c : clusters)
159 c.initialWeight = c.weight;
162 // It's bad to merge clusters which would degrade the density too much.
163 static bool isNewDensityBad(Cluster &a, Cluster &b) {
164 double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
165 return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
168 // Find the leader of V's belonged cluster (represented as an equivalence
169 // class). We apply union-find path-halving technique (simple to implement) in
170 // the meantime as it decreases depths and the time complexity.
171 static int getLeader(int *leaders, int v) {
172 while (leaders[v] != v) {
173 leaders[v] = leaders[leaders[v]];
174 v = leaders[v];
176 return v;
179 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
180 Cluster &from, int fromIdx) {
181 int tail1 = into.prev, tail2 = from.prev;
182 into.prev = tail2;
183 cs[tail2].next = intoIdx;
184 from.prev = tail1;
185 cs[tail1].next = fromIdx;
186 into.size += from.size;
187 into.weight += from.weight;
188 from.size = 0;
189 from.weight = 0;
192 // Group InputSections into clusters using the Call-Chain Clustering heuristic
193 // then sort the clusters by density.
194 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
195 std::vector<int> sorted(clusters.size());
196 std::unique_ptr<int[]> leaders(new int[clusters.size()]);
198 std::iota(leaders.get(), leaders.get() + clusters.size(), 0);
199 std::iota(sorted.begin(), sorted.end(), 0);
200 llvm::stable_sort(sorted, [&](int a, int b) {
201 return clusters[a].getDensity() > clusters[b].getDensity();
204 for (int l : sorted) {
205 // The cluster index is the same as the index of its leader here because
206 // clusters[L] has not been merged into another cluster yet.
207 Cluster &c = clusters[l];
209 // Don't consider merging if the edge is unlikely.
210 if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
211 continue;
213 int predL = getLeader(leaders.get(), c.bestPred.from);
214 if (l == predL)
215 continue;
217 Cluster *predC = &clusters[predL];
218 if (c.size + predC->size > MAX_CLUSTER_SIZE)
219 continue;
221 if (isNewDensityBad(*predC, c))
222 continue;
224 leaders[l] = predL;
225 mergeClusters(clusters, *predC, predL, c, l);
228 // Sort remaining non-empty clusters by density.
229 sorted.clear();
230 for (int i = 0, e = (int)clusters.size(); i != e; ++i)
231 if (clusters[i].size > 0)
232 sorted.push_back(i);
233 llvm::stable_sort(sorted, [&](int a, int b) {
234 return clusters[a].getDensity() > clusters[b].getDensity();
237 DenseMap<const InputSectionBase *, int> orderMap;
238 int curOrder = 1;
239 for (int leader : sorted) {
240 for (int i = leader;;) {
241 orderMap[sections[i]] = curOrder++;
242 i = clusters[i].next;
243 if (i == leader)
244 break;
247 if (!ctx.arg.printSymbolOrder.empty()) {
248 std::error_code ec;
249 raw_fd_ostream os(ctx.arg.printSymbolOrder, ec, sys::fs::OF_None);
250 if (ec) {
251 ErrAlways(ctx) << "cannot open " << ctx.arg.printSymbolOrder << ": "
252 << ec.message();
253 return orderMap;
256 // Print the symbols ordered by C3, in the order of increasing curOrder
257 // Instead of sorting all the orderMap, just repeat the loops above.
258 for (int leader : sorted)
259 for (int i = leader;;) {
260 // Search all the symbols in the file of the section
261 // and find out a Defined symbol with name that is within the section.
262 for (Symbol *sym : sections[i]->file->getSymbols())
263 if (!sym->isSection()) // Filter out section-type symbols here.
264 if (auto *d = dyn_cast<Defined>(sym))
265 if (sections[i] == d->section)
266 os << sym->getName() << "\n";
267 i = clusters[i].next;
268 if (i == leader)
269 break;
273 return orderMap;
276 // Sort sections by the profile data using the Cache-Directed Sort algorithm.
277 // The placement is done by optimizing the locality by co-locating frequently
278 // executed code sections together.
279 DenseMap<const InputSectionBase *, int>
280 elf::computeCacheDirectedSortOrder(Ctx &ctx) {
281 SmallVector<uint64_t, 0> funcSizes;
282 SmallVector<uint64_t, 0> funcCounts;
283 SmallVector<codelayout::EdgeCount, 0> callCounts;
284 SmallVector<uint64_t, 0> callOffsets;
285 SmallVector<const InputSectionBase *, 0> sections;
286 DenseMap<const InputSectionBase *, size_t> secToTargetId;
288 auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t {
289 auto res = secToTargetId.try_emplace(inSec, sections.size());
290 if (res.second) {
291 // inSec does not appear before in the graph.
292 sections.push_back(inSec);
293 funcSizes.push_back(inSec->getSize());
294 funcCounts.push_back(0);
296 return res.first->second;
299 // Create the graph.
300 for (std::pair<SectionPair, uint64_t> &c : ctx.arg.callGraphProfile) {
301 const InputSectionBase *fromSB = cast<InputSectionBase>(c.first.first);
302 const InputSectionBase *toSB = cast<InputSectionBase>(c.first.second);
303 // Ignore edges between input sections belonging to different sections.
304 if (fromSB->getOutputSection() != toSB->getOutputSection())
305 continue;
307 uint64_t weight = c.second;
308 // Ignore edges with zero weight.
309 if (weight == 0)
310 continue;
312 size_t from = getOrCreateNode(fromSB);
313 size_t to = getOrCreateNode(toSB);
314 // Ignore self-edges (recursive calls).
315 if (from == to)
316 continue;
318 callCounts.push_back({from, to, weight});
319 // Assume that the jump is at the middle of the input section. The profile
320 // data does not contain jump offsets.
321 callOffsets.push_back((funcSizes[from] + 1) / 2);
322 funcCounts[to] += weight;
325 // Run the layout algorithm.
326 std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout(
327 funcSizes, funcCounts, callCounts, callOffsets);
329 // Create the final order.
330 DenseMap<const InputSectionBase *, int> orderMap;
331 int curOrder = 1;
332 for (uint64_t secIdx : sortedSections)
333 orderMap[sections[secIdx]] = curOrder++;
335 return orderMap;
338 // Sort sections by the profile data provided by --callgraph-profile-file.
340 // This first builds a call graph based on the profile data then merges sections
341 // according either to the C³ or Cache-Directed-Sort ordering algorithm.
342 DenseMap<const InputSectionBase *, int>
343 elf::computeCallGraphProfileOrder(Ctx &ctx) {
344 if (ctx.arg.callGraphProfileSort == CGProfileSortKind::Cdsort)
345 return computeCacheDirectedSortOrder(ctx);
346 return CallGraphSort(ctx).run();