Revert rGe6ccb57bb3f6b761f2310e97fd6ca99eff42f73e "[SLP] Add cost model for `llvm...
[llvm-project.git] / lld / MachO / InputFiles.cpp
blob89405d21878a2e4da72f1c22529a477a14af2c5d
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
42 //===----------------------------------------------------------------------===//
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/Path.h"
70 #include "llvm/Support/TarWriter.h"
71 #include "llvm/Support/TimeProfiler.h"
72 #include "llvm/TextAPI/Architecture.h"
73 #include "llvm/TextAPI/InterfaceFile.h"
75 #include <type_traits>
77 using namespace llvm;
78 using namespace llvm::MachO;
79 using namespace llvm::support::endian;
80 using namespace llvm::sys;
81 using namespace lld;
82 using namespace lld::macho;
84 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
85 std::string lld::toString(const InputFile *f) {
86 if (!f)
87 return "<internal>";
89 // Multiple dylibs can be defined in one .tbd file.
90 if (auto dylibFile = dyn_cast<DylibFile>(f))
91 if (f->getName().endswith(".tbd"))
92 return (f->getName() + "(" + dylibFile->installName + ")").str();
94 if (f->archiveName.empty())
95 return std::string(f->getName());
96 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99 std::string lld::toString(const Section &sec) {
100 return (toString(sec.file) + ":(" + sec.name + ")").str();
103 SetVector<InputFile *> macho::inputFiles;
104 std::unique_ptr<TarWriter> macho::tar;
105 int InputFile::idCount = 0;
107 static VersionTuple decodeVersion(uint32_t version) {
108 unsigned major = version >> 16;
109 unsigned minor = (version >> 8) & 0xffu;
110 unsigned subMinor = version & 0xffu;
111 return VersionTuple(major, minor, subMinor);
114 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
115 if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
116 return {};
118 const char *hdr = input->mb.getBufferStart();
120 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
121 std::vector<PlatformInfo> platformInfos;
122 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
123 PlatformInfo info;
124 info.target.Platform = static_cast<PlatformType>(cmd->platform);
125 info.minimum = decodeVersion(cmd->minos);
126 platformInfos.emplace_back(std::move(info));
128 for (auto *cmd : findCommands<version_min_command>(
129 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
130 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
131 PlatformInfo info;
132 switch (cmd->cmd) {
133 case LC_VERSION_MIN_MACOSX:
134 info.target.Platform = PLATFORM_MACOS;
135 break;
136 case LC_VERSION_MIN_IPHONEOS:
137 info.target.Platform = PLATFORM_IOS;
138 break;
139 case LC_VERSION_MIN_TVOS:
140 info.target.Platform = PLATFORM_TVOS;
141 break;
142 case LC_VERSION_MIN_WATCHOS:
143 info.target.Platform = PLATFORM_WATCHOS;
144 break;
146 info.minimum = decodeVersion(cmd->version);
147 platformInfos.emplace_back(std::move(info));
150 return platformInfos;
153 static bool checkCompatibility(const InputFile *input) {
154 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
155 if (platformInfos.empty())
156 return true;
158 auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
159 return removeSimulator(info.target.Platform) ==
160 removeSimulator(config->platform());
162 if (it == platformInfos.end()) {
163 std::string platformNames;
164 raw_string_ostream os(platformNames);
165 interleave(
166 platformInfos, os,
167 [&](const PlatformInfo &info) {
168 os << getPlatformName(info.target.Platform);
170 "/");
171 error(toString(input) + " has platform " + platformNames +
172 Twine(", which is different from target platform ") +
173 getPlatformName(config->platform()));
174 return false;
177 if (it->minimum > config->platformInfo.minimum)
178 warn(toString(input) + " has version " + it->minimum.getAsString() +
179 ", which is newer than target minimum of " +
180 config->platformInfo.minimum.getAsString());
182 return true;
185 // This cache mostly exists to store system libraries (and .tbds) as they're
186 // loaded, rather than the input archives, which are already cached at a higher
187 // level, and other files like the filelist that are only read once.
188 // Theoretically this caching could be more efficient by hoisting it, but that
189 // would require altering many callers to track the state.
190 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
191 // Open a given file path and return it as a memory-mapped file.
192 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
193 CachedHashStringRef key(path);
194 auto entry = cachedReads.find(key);
195 if (entry != cachedReads.end())
196 return entry->second;
198 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
199 if (std::error_code ec = mbOrErr.getError()) {
200 error("cannot open " + path + ": " + ec.message());
201 return None;
204 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
205 MemoryBufferRef mbref = mb->getMemBufferRef();
206 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
208 // If this is a regular non-fat file, return it.
209 const char *buf = mbref.getBufferStart();
210 const auto *hdr = reinterpret_cast<const fat_header *>(buf);
211 if (mbref.getBufferSize() < sizeof(uint32_t) ||
212 read32be(&hdr->magic) != FAT_MAGIC) {
213 if (tar)
214 tar->append(relativeToRoot(path), mbref.getBuffer());
215 return cachedReads[key] = mbref;
218 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
220 // Object files and archive files may be fat files, which contain multiple
221 // real files for different CPU ISAs. Here, we search for a file that matches
222 // with the current link target and returns it as a MemoryBufferRef.
223 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
225 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
226 if (reinterpret_cast<const char *>(arch + i + 1) >
227 buf + mbref.getBufferSize()) {
228 error(path + ": fat_arch struct extends beyond end of file");
229 return None;
232 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
233 read32be(&arch[i].cpusubtype) != target->cpuSubtype)
234 continue;
236 uint32_t offset = read32be(&arch[i].offset);
237 uint32_t size = read32be(&arch[i].size);
238 if (offset + size > mbref.getBufferSize())
239 error(path + ": slice extends beyond end of file");
240 if (tar)
241 tar->append(relativeToRoot(path), mbref.getBuffer());
242 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
243 path.copy(bAlloc));
246 error("unable to find matching architecture in " + path);
247 return None;
250 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
251 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
253 // Some sections comprise of fixed-size records, so instead of splitting them at
254 // symbol boundaries, we split them based on size. Records are distinct from
255 // literals in that they may contain references to other sections, instead of
256 // being leaf nodes in the InputSection graph.
258 // Note that "record" is a term I came up with. In contrast, "literal" is a term
259 // used by the Mach-O format.
260 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
261 if (name == section_names::compactUnwind) {
262 if (segname == segment_names::ld)
263 return target->wordSize == 8 ? 32 : 20;
265 if (config->icfLevel == ICFLevel::none)
266 return {};
268 if (name == section_names::cfString && segname == segment_names::data)
269 return target->wordSize == 8 ? 32 : 16;
270 if (name == section_names::objcClassRefs && segname == segment_names::data)
271 return target->wordSize;
272 return {};
275 static Error parseCallGraph(ArrayRef<uint8_t> data,
276 std::vector<CallGraphEntry> &callGraph) {
277 TimeTraceScope timeScope("Parsing call graph section");
278 BinaryStreamReader reader(data, support::little);
279 while (!reader.empty()) {
280 uint32_t fromIndex, toIndex;
281 uint64_t count;
282 if (Error err = reader.readInteger(fromIndex))
283 return err;
284 if (Error err = reader.readInteger(toIndex))
285 return err;
286 if (Error err = reader.readInteger(count))
287 return err;
288 callGraph.emplace_back(fromIndex, toIndex, count);
290 return Error::success();
293 // Parse the sequence of sections within a single LC_SEGMENT(_64).
294 // Split each section into subsections.
295 template <class SectionHeader>
296 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
297 sections.reserve(sectionHeaders.size());
298 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
300 for (const SectionHeader &sec : sectionHeaders) {
301 StringRef name =
302 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
303 StringRef segname =
304 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
305 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
306 if (sec.align >= 32) {
307 error("alignment " + std::to_string(sec.align) + " of section " + name +
308 " is too large");
309 continue;
311 Section &section = *sections.back();
312 uint32_t align = 1 << sec.align;
313 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
314 : buf + sec.offset,
315 static_cast<size_t>(sec.size)};
317 auto splitRecords = [&](int recordSize) -> void {
318 if (data.empty())
319 return;
320 Subsections &subsections = section.subsections;
321 subsections.reserve(data.size() / recordSize);
322 for (uint64_t off = 0; off < data.size(); off += recordSize) {
323 auto *isec = make<ConcatInputSection>(
324 section, data.slice(off, recordSize), align);
325 subsections.push_back({off, isec});
327 section.doneSplitting = true;
330 if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
331 (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
332 if (sec.nreloc && config->dedupLiterals)
333 fatal(toString(this) + " contains relocations in " + sec.segname + "," +
334 sec.sectname +
335 ", so LLD cannot deduplicate literals. Try re-running without "
336 "--deduplicate-literals.");
338 InputSection *isec;
339 if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
340 isec = make<CStringInputSection>(section, data, align);
341 // FIXME: parallelize this?
342 cast<CStringInputSection>(isec)->splitIntoPieces();
343 } else {
344 isec = make<WordLiteralInputSection>(section, data, align);
346 section.subsections.push_back({0, isec});
347 } else if (auto recordSize = getRecordSize(segname, name)) {
348 splitRecords(*recordSize);
349 } else if (config->parseEhFrames && name == section_names::ehFrame &&
350 segname == segment_names::text) {
351 splitEhFrames(data, *sections.back());
352 } else if (segname == segment_names::llvm) {
353 if (config->callGraphProfileSort && name == section_names::cgProfile)
354 checkError(parseCallGraph(data, callGraph));
355 // ld64 does not appear to emit contents from sections within the __LLVM
356 // segment. Symbols within those sections point to bitcode metadata
357 // instead of actual symbols. Global symbols within those sections could
358 // have the same name without causing duplicate symbol errors. To avoid
359 // spurious duplicate symbol errors, we do not parse these sections.
360 // TODO: Evaluate whether the bitcode metadata is needed.
361 } else {
362 if (name == section_names::addrSig)
363 addrSigSection = sections.back();
365 auto *isec = make<ConcatInputSection>(section, data, align);
366 if (isDebugSection(isec->getFlags()) &&
367 isec->getSegName() == segment_names::dwarf) {
368 // Instead of emitting DWARF sections, we emit STABS symbols to the
369 // object files that contain them. We filter them out early to avoid
370 // parsing their relocations unnecessarily.
371 debugSections.push_back(isec);
372 } else {
373 section.subsections.push_back({0, isec});
379 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
380 EhReader reader(this, data, /*dataOff=*/0, target->wordSize);
381 size_t off = 0;
382 while (off < reader.size()) {
383 uint64_t frameOff = off;
384 uint64_t length = reader.readLength(&off);
385 if (length == 0)
386 break;
387 uint64_t fullLength = length + (off - frameOff);
388 off += length;
389 // We hard-code an alignment of 1 here because we don't actually want our
390 // EH frames to be aligned to the section alignment. EH frame decoders don't
391 // expect this alignment. Moreover, each EH frame must start where the
392 // previous one ends, and where it ends is indicated by the length field.
393 // Unless we update the length field (troublesome), we should keep the
394 // alignment to 1.
395 // Note that we still want to preserve the alignment of the overall section,
396 // just not of the individual EH frames.
397 ehFrameSection.subsections.push_back(
398 {frameOff, make<ConcatInputSection>(ehFrameSection,
399 data.slice(frameOff, fullLength),
400 /*align=*/1)});
402 ehFrameSection.doneSplitting = true;
405 template <class T>
406 static Section *findContainingSection(const std::vector<Section *> &sections,
407 T *offset) {
408 static_assert(std::is_same<uint64_t, T>::value ||
409 std::is_same<uint32_t, T>::value,
410 "unexpected type for offset");
411 auto it = std::prev(llvm::upper_bound(
412 sections, *offset,
413 [](uint64_t value, const Section *sec) { return value < sec->addr; }));
414 *offset -= (*it)->addr;
415 return *it;
418 // Find the subsection corresponding to the greatest section offset that is <=
419 // that of the given offset.
421 // offset: an offset relative to the start of the original InputSection (before
422 // any subsection splitting has occurred). It will be updated to represent the
423 // same location as an offset relative to the start of the containing
424 // subsection.
425 template <class T>
426 static InputSection *findContainingSubsection(const Section &section,
427 T *offset) {
428 static_assert(std::is_same<uint64_t, T>::value ||
429 std::is_same<uint32_t, T>::value,
430 "unexpected type for offset");
431 auto it = std::prev(llvm::upper_bound(
432 section.subsections, *offset,
433 [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
434 *offset -= it->offset;
435 return it->isec;
438 // Find a symbol at offset `off` within `isec`.
439 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
440 uint64_t off) {
441 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
442 return d->value < off;
444 // The offset should point at the exact address of a symbol (with no addend.)
445 if (it == isec->symbols.end() || (*it)->value != off) {
446 assert(isec->wasCoalesced);
447 return nullptr;
449 return *it;
452 template <class SectionHeader>
453 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
454 relocation_info rel) {
455 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
456 bool valid = true;
457 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
458 valid = false;
459 return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
460 std::to_string(rel.r_address) + " of " + sec.segname + "," +
461 sec.sectname + " in " + toString(file))
462 .str();
465 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
466 error(message("must be extern"));
467 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
468 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
469 "be PC-relative"));
470 if (isThreadLocalVariables(sec.flags) &&
471 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
472 error(message("not allowed in thread-local section, must be UNSIGNED"));
473 if (rel.r_length < 2 || rel.r_length > 3 ||
474 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
475 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
476 error(message("has width " + std::to_string(1 << rel.r_length) +
477 " bytes, but must be " +
478 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
479 " bytes"));
481 return valid;
484 template <class SectionHeader>
485 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
486 const SectionHeader &sec, Section &section) {
487 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
488 ArrayRef<relocation_info> relInfos(
489 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
491 Subsections &subsections = section.subsections;
492 auto subsecIt = subsections.rbegin();
493 for (size_t i = 0; i < relInfos.size(); i++) {
494 // Paired relocations serve as Mach-O's method for attaching a
495 // supplemental datum to a primary relocation record. ELF does not
496 // need them because the *_RELOC_RELA records contain the extra
497 // addend field, vs. *_RELOC_REL which omit the addend.
499 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
500 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
501 // datum for each is a symbolic address. The result is the offset
502 // between two addresses.
504 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
505 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
506 // base symbolic address.
508 // Note: X86 does not use *_RELOC_ADDEND because it can embed an
509 // addend into the instruction stream. On X86, a relocatable address
510 // field always occupies an entire contiguous sequence of byte(s),
511 // so there is no need to merge opcode bits with address
512 // bits. Therefore, it's easy and convenient to store addends in the
513 // instruction-stream bytes that would otherwise contain zeroes. By
514 // contrast, RISC ISAs such as ARM64 mix opcode bits with with
515 // address bits so that bitwise arithmetic is necessary to extract
516 // and insert them. Storing addends in the instruction stream is
517 // possible, but inconvenient and more costly at link time.
519 relocation_info relInfo = relInfos[i];
520 bool isSubtrahend =
521 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
522 int64_t pairedAddend = 0;
523 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
524 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
525 relInfo = relInfos[++i];
527 assert(i < relInfos.size());
528 if (!validateRelocationInfo(this, sec, relInfo))
529 continue;
530 if (relInfo.r_address & R_SCATTERED)
531 fatal("TODO: Scattered relocations not supported");
533 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
534 assert(!(embeddedAddend && pairedAddend));
535 int64_t totalAddend = pairedAddend + embeddedAddend;
536 Reloc r;
537 r.type = relInfo.r_type;
538 r.pcrel = relInfo.r_pcrel;
539 r.length = relInfo.r_length;
540 r.offset = relInfo.r_address;
541 if (relInfo.r_extern) {
542 r.referent = symbols[relInfo.r_symbolnum];
543 r.addend = isSubtrahend ? 0 : totalAddend;
544 } else {
545 assert(!isSubtrahend);
546 const SectionHeader &referentSecHead =
547 sectionHeaders[relInfo.r_symbolnum - 1];
548 uint64_t referentOffset;
549 if (relInfo.r_pcrel) {
550 // The implicit addend for pcrel section relocations is the pcrel offset
551 // in terms of the addresses in the input file. Here we adjust it so
552 // that it describes the offset from the start of the referent section.
553 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
554 // have pcrel section relocations. We may want to factor this out into
555 // the arch-specific .cpp file.
556 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
557 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
558 referentSecHead.addr;
559 } else {
560 // The addend for a non-pcrel relocation is its absolute address.
561 referentOffset = totalAddend - referentSecHead.addr;
563 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
564 &referentOffset);
565 r.addend = referentOffset;
568 // Find the subsection that this relocation belongs to.
569 // Though not required by the Mach-O format, clang and gcc seem to emit
570 // relocations in order, so let's take advantage of it. However, ld64 emits
571 // unsorted relocations (in `-r` mode), so we have a fallback for that
572 // uncommon case.
573 InputSection *subsec;
574 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
575 ++subsecIt;
576 if (subsecIt == subsections.rend() ||
577 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
578 subsec = findContainingSubsection(section, &r.offset);
579 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
580 // for the other relocations.
581 subsecIt = subsections.rend();
582 } else {
583 subsec = subsecIt->isec;
584 r.offset -= subsecIt->offset;
586 subsec->relocs.push_back(r);
588 if (isSubtrahend) {
589 relocation_info minuendInfo = relInfos[++i];
590 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
591 // attached to the same address.
592 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
593 relInfo.r_address == minuendInfo.r_address);
594 Reloc p;
595 p.type = minuendInfo.r_type;
596 if (minuendInfo.r_extern) {
597 p.referent = symbols[minuendInfo.r_symbolnum];
598 p.addend = totalAddend;
599 } else {
600 uint64_t referentOffset =
601 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
602 p.referent = findContainingSubsection(
603 *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
604 p.addend = referentOffset;
606 subsec->relocs.push_back(p);
611 template <class NList>
612 static macho::Symbol *createDefined(const NList &sym, StringRef name,
613 InputSection *isec, uint64_t value,
614 uint64_t size) {
615 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
616 // N_EXT: Global symbols. These go in the symbol table during the link,
617 // and also in the export table of the output so that the dynamic
618 // linker sees them.
619 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
620 // symbol table during the link so that duplicates are
621 // either reported (for non-weak symbols) or merged
622 // (for weak symbols), but they do not go in the export
623 // table of the output.
624 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
625 // object files) may produce them. LLD does not yet support -r.
626 // These are translation-unit scoped, identical to the `0` case.
627 // 0: Translation-unit scoped. These are not in the symbol table during
628 // link, and not in the export table of the output either.
629 bool isWeakDefCanBeHidden =
630 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
632 if (sym.n_type & N_EXT) {
633 bool isPrivateExtern = sym.n_type & N_PEXT;
634 // lld's behavior for merging symbols is slightly different from ld64:
635 // ld64 picks the winning symbol based on several criteria (see
636 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
637 // just merges metadata and keeps the contents of the first symbol
638 // with that name (see SymbolTable::addDefined). For:
639 // * inline function F in a TU built with -fvisibility-inlines-hidden
640 // * and inline function F in another TU built without that flag
641 // ld64 will pick the one from the file built without
642 // -fvisibility-inlines-hidden.
643 // lld will instead pick the one listed first on the link command line and
644 // give it visibility as if the function was built without
645 // -fvisibility-inlines-hidden.
646 // If both functions have the same contents, this will have the same
647 // behavior. If not, it won't, but the input had an ODR violation in
648 // that case.
650 // Similarly, merging a symbol
651 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
652 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
653 // should produce one
654 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
655 // with ld64's semantics, because it means the non-private-extern
656 // definition will continue to take priority if more private extern
657 // definitions are encountered. With lld's semantics there's no observable
658 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
659 // that's privateExtern -- neither makes it into the dynamic symbol table,
660 // unless the autohide symbol is explicitly exported.
661 // But if a symbol is both privateExtern and autohide then it can't
662 // be exported.
663 // So we nullify the autohide flag when privateExtern is present
664 // and promote the symbol to privateExtern when it is not already.
665 if (isWeakDefCanBeHidden && isPrivateExtern)
666 isWeakDefCanBeHidden = false;
667 else if (isWeakDefCanBeHidden)
668 isPrivateExtern = true;
669 return symtab->addDefined(
670 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
671 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
672 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
673 isWeakDefCanBeHidden);
675 assert(!isWeakDefCanBeHidden &&
676 "weak_def_can_be_hidden on already-hidden symbol?");
677 bool includeInSymtab =
678 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
679 return make<Defined>(
680 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
681 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
682 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
683 sym.n_desc & N_NO_DEAD_STRIP);
686 // Absolute symbols are defined symbols that do not have an associated
687 // InputSection. They cannot be weak.
688 template <class NList>
689 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
690 StringRef name) {
691 if (sym.n_type & N_EXT) {
692 return symtab->addDefined(
693 name, file, nullptr, sym.n_value, /*size=*/0,
694 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
695 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
696 /*isWeakDefCanBeHidden=*/false);
698 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
699 /*isWeakDef=*/false,
700 /*isExternal=*/false, /*isPrivateExtern=*/false,
701 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
702 /*isReferencedDynamically=*/false,
703 sym.n_desc & N_NO_DEAD_STRIP);
706 template <class NList>
707 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
708 StringRef name) {
709 uint8_t type = sym.n_type & N_TYPE;
710 switch (type) {
711 case N_UNDF:
712 return sym.n_value == 0
713 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
714 : symtab->addCommon(name, this, sym.n_value,
715 1 << GET_COMM_ALIGN(sym.n_desc),
716 sym.n_type & N_PEXT);
717 case N_ABS:
718 return createAbsolute(sym, this, name);
719 case N_PBUD:
720 case N_INDR:
721 error("TODO: support symbols of type " + std::to_string(type));
722 return nullptr;
723 case N_SECT:
724 llvm_unreachable(
725 "N_SECT symbols should not be passed to parseNonSectionSymbol");
726 default:
727 llvm_unreachable("invalid symbol type");
731 template <class NList> static bool isUndef(const NList &sym) {
732 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
735 template <class LP>
736 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
737 ArrayRef<typename LP::nlist> nList,
738 const char *strtab, bool subsectionsViaSymbols) {
739 using NList = typename LP::nlist;
741 // Groups indices of the symbols by the sections that contain them.
742 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
743 symbols.resize(nList.size());
744 SmallVector<unsigned, 32> undefineds;
745 for (uint32_t i = 0; i < nList.size(); ++i) {
746 const NList &sym = nList[i];
748 // Ignore debug symbols for now.
749 // FIXME: may need special handling.
750 if (sym.n_type & N_STAB)
751 continue;
753 StringRef name = strtab + sym.n_strx;
754 if ((sym.n_type & N_TYPE) == N_SECT) {
755 Subsections &subsections = sections[sym.n_sect - 1]->subsections;
756 // parseSections() may have chosen not to parse this section.
757 if (subsections.empty())
758 continue;
759 symbolsBySection[sym.n_sect - 1].push_back(i);
760 } else if (isUndef(sym)) {
761 undefineds.push_back(i);
762 } else {
763 symbols[i] = parseNonSectionSymbol(sym, name);
767 for (size_t i = 0; i < sections.size(); ++i) {
768 Subsections &subsections = sections[i]->subsections;
769 if (subsections.empty())
770 continue;
771 std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
772 uint64_t sectionAddr = sectionHeaders[i].addr;
773 uint32_t sectionAlign = 1u << sectionHeaders[i].align;
775 // Some sections have already been split into subsections during
776 // parseSections(), so we simply need to match Symbols to the corresponding
777 // subsection here.
778 if (sections[i]->doneSplitting) {
779 for (size_t j = 0; j < symbolIndices.size(); ++j) {
780 uint32_t symIndex = symbolIndices[j];
781 const NList &sym = nList[symIndex];
782 StringRef name = strtab + sym.n_strx;
783 uint64_t symbolOffset = sym.n_value - sectionAddr;
784 InputSection *isec =
785 findContainingSubsection(*sections[i], &symbolOffset);
786 if (symbolOffset != 0) {
787 error(toString(*sections[i]) + ": symbol " + name +
788 " at misaligned offset");
789 continue;
791 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
793 continue;
795 sections[i]->doneSplitting = true;
797 // Calculate symbol sizes and create subsections by splitting the sections
798 // along symbol boundaries.
799 // We populate subsections by repeatedly splitting the last (highest
800 // address) subsection.
801 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
802 return nList[lhs].n_value < nList[rhs].n_value;
804 for (size_t j = 0; j < symbolIndices.size(); ++j) {
805 uint32_t symIndex = symbolIndices[j];
806 const NList &sym = nList[symIndex];
807 StringRef name = strtab + sym.n_strx;
808 Subsection &subsec = subsections.back();
809 InputSection *isec = subsec.isec;
811 uint64_t subsecAddr = sectionAddr + subsec.offset;
812 size_t symbolOffset = sym.n_value - subsecAddr;
813 uint64_t symbolSize =
814 j + 1 < symbolIndices.size()
815 ? nList[symbolIndices[j + 1]].n_value - sym.n_value
816 : isec->data.size() - symbolOffset;
817 // There are 4 cases where we do not need to create a new subsection:
818 // 1. If the input file does not use subsections-via-symbols.
819 // 2. Multiple symbols at the same address only induce one subsection.
820 // (The symbolOffset == 0 check covers both this case as well as
821 // the first loop iteration.)
822 // 3. Alternative entry points do not induce new subsections.
823 // 4. If we have a literal section (e.g. __cstring and __literal4).
824 if (!subsectionsViaSymbols || symbolOffset == 0 ||
825 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
826 symbols[symIndex] =
827 createDefined(sym, name, isec, symbolOffset, symbolSize);
828 continue;
830 auto *concatIsec = cast<ConcatInputSection>(isec);
832 auto *nextIsec = make<ConcatInputSection>(*concatIsec);
833 nextIsec->wasCoalesced = false;
834 if (isZeroFill(isec->getFlags())) {
835 // Zero-fill sections have NULL data.data() non-zero data.size()
836 nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
837 isec->data = {nullptr, symbolOffset};
838 } else {
839 nextIsec->data = isec->data.slice(symbolOffset);
840 isec->data = isec->data.slice(0, symbolOffset);
843 // By construction, the symbol will be at offset zero in the new
844 // subsection.
845 symbols[symIndex] =
846 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
847 // TODO: ld64 appears to preserve the original alignment as well as each
848 // subsection's offset from the last aligned address. We should consider
849 // emulating that behavior.
850 nextIsec->align = MinAlign(sectionAlign, sym.n_value);
851 subsections.push_back({sym.n_value - sectionAddr, nextIsec});
855 // Undefined symbols can trigger recursive fetch from Archives due to
856 // LazySymbols. Process defined symbols first so that the relative order
857 // between a defined symbol and an undefined symbol does not change the
858 // symbol resolution behavior. In addition, a set of interconnected symbols
859 // will all be resolved to the same file, instead of being resolved to
860 // different files.
861 for (unsigned i : undefineds) {
862 const NList &sym = nList[i];
863 StringRef name = strtab + sym.n_strx;
864 symbols[i] = parseNonSectionSymbol(sym, name);
868 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
869 StringRef sectName)
870 : InputFile(OpaqueKind, mb) {
871 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
872 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
873 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
874 sectName.take_front(16),
875 /*flags=*/0, /*addr=*/0));
876 Section &section = *sections.back();
877 ConcatInputSection *isec = make<ConcatInputSection>(section, data);
878 isec->live = true;
879 section.subsections.push_back({0, isec});
882 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
883 bool lazy)
884 : InputFile(ObjKind, mb, lazy), modTime(modTime) {
885 this->archiveName = std::string(archiveName);
886 if (lazy) {
887 if (target->wordSize == 8)
888 parseLazy<LP64>();
889 else
890 parseLazy<ILP32>();
891 } else {
892 if (target->wordSize == 8)
893 parse<LP64>();
894 else
895 parse<ILP32>();
899 template <class LP> void ObjFile::parse() {
900 using Header = typename LP::mach_header;
901 using SegmentCommand = typename LP::segment_command;
902 using SectionHeader = typename LP::section;
903 using NList = typename LP::nlist;
905 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
906 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
908 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
909 if (arch != config->arch()) {
910 auto msg = config->errorForArchMismatch
911 ? static_cast<void (*)(const Twine &)>(error)
912 : warn;
913 msg(toString(this) + " has architecture " + getArchitectureName(arch) +
914 " which is incompatible with target architecture " +
915 getArchitectureName(config->arch()));
916 return;
919 if (!checkCompatibility(this))
920 return;
922 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
923 StringRef data{reinterpret_cast<const char *>(cmd + 1),
924 cmd->cmdsize - sizeof(linker_option_command)};
925 parseLCLinkerOption(this, cmd->count, data);
928 ArrayRef<SectionHeader> sectionHeaders;
929 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
930 auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
931 sectionHeaders = ArrayRef<SectionHeader>{
932 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
933 parseSections(sectionHeaders);
936 // TODO: Error on missing LC_SYMTAB?
937 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
938 auto *c = reinterpret_cast<const symtab_command *>(cmd);
939 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
940 c->nsyms);
941 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
942 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
943 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
946 // The relocations may refer to the symbols, so we parse them after we have
947 // parsed all the symbols.
948 for (size_t i = 0, n = sections.size(); i < n; ++i)
949 if (!sections[i]->subsections.empty())
950 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
952 parseDebugInfo();
954 Section *ehFrameSection = nullptr;
955 Section *compactUnwindSection = nullptr;
956 for (Section *sec : sections) {
957 Section **s = StringSwitch<Section **>(sec->name)
958 .Case(section_names::compactUnwind, &compactUnwindSection)
959 .Case(section_names::ehFrame, &ehFrameSection)
960 .Default(nullptr);
961 if (s)
962 *s = sec;
964 if (compactUnwindSection)
965 registerCompactUnwind(*compactUnwindSection);
966 if (config->parseEhFrames && ehFrameSection)
967 registerEhFrames(*ehFrameSection);
970 template <class LP> void ObjFile::parseLazy() {
971 using Header = typename LP::mach_header;
972 using NList = typename LP::nlist;
974 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
975 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
976 const load_command *cmd = findCommand(hdr, LC_SYMTAB);
977 if (!cmd)
978 return;
979 auto *c = reinterpret_cast<const symtab_command *>(cmd);
980 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
981 c->nsyms);
982 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
983 symbols.resize(nList.size());
984 for (auto it : llvm::enumerate(nList)) {
985 const NList &sym = it.value();
986 if ((sym.n_type & N_EXT) && !isUndef(sym)) {
987 // TODO: Bound checking
988 StringRef name = strtab + sym.n_strx;
989 symbols[it.index()] = symtab->addLazyObject(name, *this);
990 if (!lazy)
991 break;
996 void ObjFile::parseDebugInfo() {
997 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
998 if (!dObj)
999 return;
1001 auto *ctx = make<DWARFContext>(
1002 std::move(dObj), "",
1003 [&](Error err) {
1004 warn(toString(this) + ": " + toString(std::move(err)));
1006 [&](Error warning) {
1007 warn(toString(this) + ": " + toString(std::move(warning)));
1010 // TODO: Since object files can contain a lot of DWARF info, we should verify
1011 // that we are parsing just the info we need
1012 const DWARFContext::compile_unit_range &units = ctx->compile_units();
1013 // FIXME: There can be more than one compile unit per object file. See
1014 // PR48637.
1015 auto it = units.begin();
1016 compileUnit = it->get();
1019 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1020 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1021 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1022 if (!cmd)
1023 return {};
1024 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1025 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1026 c->datasize / sizeof(data_in_code_entry)};
1029 // Create pointers from symbols to their associated compact unwind entries.
1030 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1031 for (const Subsection &subsection : compactUnwindSection.subsections) {
1032 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1033 // Hack!! Since each CUE contains a different function address, if ICF
1034 // operated naively and compared the entire contents of each CUE, entries
1035 // with identical unwind info but belonging to different functions would
1036 // never be considered equivalent. To work around this problem, we slice
1037 // away the function address here. (Note that we do not adjust the offsets
1038 // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
1039 // to correctly handle these truncated input sections.
1040 isec->data = isec->data.slice(target->wordSize);
1041 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1042 // llvm-mc omits CU entries for functions that need DWARF encoding, but
1043 // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1044 // CU entries from the DWARF info during the output phase.
1045 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
1046 continue;
1048 ConcatInputSection *referentIsec;
1049 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1050 Reloc &r = *it;
1051 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1052 if (r.offset != 0) {
1053 ++it;
1054 continue;
1056 uint64_t add = r.addend;
1057 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1058 // Check whether the symbol defined in this file is the prevailing one.
1059 // Skip if it is e.g. a weak def that didn't prevail.
1060 if (sym->getFile() != this) {
1061 ++it;
1062 continue;
1064 add += sym->value;
1065 referentIsec = cast<ConcatInputSection>(sym->isec);
1066 } else {
1067 referentIsec =
1068 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1070 // Unwind info lives in __DATA, and finalization of __TEXT will occur
1071 // before finalization of __DATA. Moreover, the finalization of unwind
1072 // info depends on the exact addresses that it references. So it is safe
1073 // for compact unwind to reference addresses in __TEXT, but not addresses
1074 // in any other segment.
1075 if (referentIsec->getSegName() != segment_names::text)
1076 error(isec->getLocation(r.offset) + " references section " +
1077 referentIsec->getName() + " which is not in segment __TEXT");
1078 // The functionAddress relocations are typically section relocations.
1079 // However, unwind info operates on a per-symbol basis, so we search for
1080 // the function symbol here.
1081 Defined *d = findSymbolAtOffset(referentIsec, add);
1082 if (!d) {
1083 ++it;
1084 continue;
1086 d->unwindEntry = isec;
1087 // Since we've sliced away the functionAddress, we should remove the
1088 // corresponding relocation too. Given that clang emits relocations in
1089 // reverse order of address, this relocation should be at the end of the
1090 // vector for most of our input object files, so this is typically an O(1)
1091 // operation.
1092 it = isec->relocs.erase(it);
1097 struct CIE {
1098 macho::Symbol *personalitySymbol = nullptr;
1099 bool fdesHaveLsda = false;
1100 bool fdesHaveAug = false;
1103 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1104 size_t off) {
1105 // Handling the full generality of possible DWARF encodings would be a major
1106 // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1107 // DWARF and handle just that.
1108 constexpr uint8_t expectedPersonalityEnc =
1109 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1110 constexpr uint8_t expectedPointerEnc =
1111 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr;
1113 CIE cie;
1114 uint8_t version = reader.readByte(&off);
1115 if (version != 1 && version != 3)
1116 fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1117 StringRef aug = reader.readString(&off);
1118 reader.skipLeb128(&off); // skip code alignment
1119 reader.skipLeb128(&off); // skip data alignment
1120 reader.skipLeb128(&off); // skip return address register
1121 reader.skipLeb128(&off); // skip aug data length
1122 uint64_t personalityAddrOff = 0;
1123 for (char c : aug) {
1124 switch (c) {
1125 case 'z':
1126 cie.fdesHaveAug = true;
1127 break;
1128 case 'P': {
1129 uint8_t personalityEnc = reader.readByte(&off);
1130 if (personalityEnc != expectedPersonalityEnc)
1131 reader.failOn(off, "unexpected personality encoding 0x" +
1132 Twine::utohexstr(personalityEnc));
1133 personalityAddrOff = off;
1134 off += 4;
1135 break;
1137 case 'L': {
1138 cie.fdesHaveLsda = true;
1139 uint8_t lsdaEnc = reader.readByte(&off);
1140 if (lsdaEnc != expectedPointerEnc)
1141 reader.failOn(off, "unexpected LSDA encoding 0x" +
1142 Twine::utohexstr(lsdaEnc));
1143 break;
1145 case 'R': {
1146 uint8_t pointerEnc = reader.readByte(&off);
1147 if (pointerEnc != expectedPointerEnc)
1148 reader.failOn(off, "unexpected pointer encoding 0x" +
1149 Twine::utohexstr(pointerEnc));
1150 break;
1152 default:
1153 break;
1156 if (personalityAddrOff != 0) {
1157 auto personalityRelocIt =
1158 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1159 return r.offset == personalityAddrOff;
1161 if (personalityRelocIt == isec->relocs.end())
1162 reader.failOn(off, "Failed to locate relocation for personality symbol");
1163 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1165 return cie;
1168 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1169 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1170 // This function recovers the target address from the subtractors, essentially
1171 // performing the inverse operation of EhRelocator.
1173 // Concretely, we expect our relocations to write the value of `PC -
1174 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1175 // points to a symbol plus an addend.
1177 // It is important that the minuend relocation point to a symbol within the
1178 // same section as the fixup value, since sections may get moved around.
1180 // For example, for arm64, llvm-mc emits relocations for the target function
1181 // address like so:
1183 // ltmp:
1184 // <CIE start>
1185 // ...
1186 // <CIE end>
1187 // ... multiple FDEs ...
1188 // <FDE start>
1189 // <target function address - (ltmp + pcrel offset)>
1190 // ...
1192 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1193 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1194 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1195 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1196 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1198 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1199 // to `PC`.
1200 template <bool Invert = false>
1201 Defined *
1202 targetSymFromCanonicalSubtractor(const InputSection *isec,
1203 std::vector<macho::Reloc>::iterator relocIt) {
1204 macho::Reloc &subtrahend = *relocIt;
1205 macho::Reloc &minuend = *std::next(relocIt);
1206 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1207 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1208 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1209 // addend.
1210 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1211 Defined *target =
1212 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1213 if (!pcSym) {
1214 auto *targetIsec =
1215 cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1216 target = findSymbolAtOffset(targetIsec, minuend.addend);
1218 if (Invert)
1219 std::swap(pcSym, target);
1220 if (pcSym->isec == isec) {
1221 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1222 fatal("invalid FDE relocation in __eh_frame");
1223 } else {
1224 // Ensure the pcReloc points to a symbol within the current EH frame.
1225 // HACK: we should really verify that the original relocation's semantics
1226 // are preserved. In particular, we should have
1227 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1228 // have an easy way to access the offsets from this point in the code; some
1229 // refactoring is needed for that.
1230 macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1231 pcReloc.referent = isec->symbols[0];
1232 assert(isec->symbols[0]->value == 0);
1233 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1235 return target;
1238 Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1239 uint64_t addr) {
1240 Section *sec = findContainingSection(sections, &addr);
1241 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1242 return findSymbolAtOffset(isec, addr);
1245 // For symbols that don't have compact unwind info, associate them with the more
1246 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1248 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1249 // description of its format.
1251 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1252 // are relocations which are implicitly encoded as offsets in the section data.
1253 // We convert them into explicit Reloc structs so that the EH frames can be
1254 // handled just like a regular ConcatInputSection later in our output phase.
1256 // We also need to handle the case where our input object file has explicit
1257 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1258 // look for the "abs-ified" relocation if an explicit relocation is absent.
1259 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1260 DenseMap<const InputSection *, CIE> cieMap;
1261 for (const Subsection &subsec : ehFrameSection.subsections) {
1262 auto *isec = cast<ConcatInputSection>(subsec.isec);
1263 uint64_t isecOff = subsec.offset;
1265 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1266 // that all EH frames have an associated symbol so that we can generate
1267 // subtractor relocs that reference them.
1268 if (isec->symbols.size() == 0)
1269 isec->symbols.push_back(make<Defined>(
1270 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
1271 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1272 /*includeInSymtab=*/false, /*isThumb=*/false,
1273 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1274 else if (isec->symbols[0]->value != 0)
1275 fatal("found symbol at unexpected offset in __eh_frame");
1277 EhReader reader(this, isec->data, subsec.offset, target->wordSize);
1278 size_t dataOff = 0; // Offset from the start of the EH frame.
1279 reader.skipValidLength(&dataOff); // readLength() already validated this.
1280 // cieOffOff is the offset from the start of the EH frame to the cieOff
1281 // value, which is itself an offset from the current PC to a CIE.
1282 const size_t cieOffOff = dataOff;
1284 EhRelocator ehRelocator(isec);
1285 auto cieOffRelocIt = llvm::find_if(
1286 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1287 InputSection *cieIsec = nullptr;
1288 if (cieOffRelocIt != isec->relocs.end()) {
1289 // We already have an explicit relocation for the CIE offset.
1290 cieIsec =
1291 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1292 ->isec;
1293 dataOff += sizeof(uint32_t);
1294 } else {
1295 // If we haven't found a relocation, then the CIE offset is most likely
1296 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1297 // and generate a Reloc struct.
1298 uint32_t cieMinuend = reader.readU32(&dataOff);
1299 if (cieMinuend == 0)
1300 cieIsec = isec;
1301 else {
1302 uint32_t cieOff = isecOff + dataOff - cieMinuend;
1303 cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1304 if (cieIsec == nullptr)
1305 fatal("failed to find CIE");
1307 if (cieIsec != isec)
1308 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1309 /*length=*/2);
1311 if (cieIsec == isec) {
1312 cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1313 continue;
1316 // Offset of the function address within the EH frame.
1317 const size_t funcAddrOff = dataOff;
1318 uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr +
1319 isecOff + funcAddrOff;
1320 uint32_t funcLength = reader.readPointer(&dataOff);
1321 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1322 assert(cieMap.count(cieIsec));
1323 const CIE &cie = cieMap[cieIsec];
1324 Optional<uint64_t> lsdaAddrOpt;
1325 if (cie.fdesHaveAug) {
1326 reader.skipLeb128(&dataOff);
1327 lsdaAddrOff = dataOff;
1328 if (cie.fdesHaveLsda) {
1329 uint64_t lsdaOff = reader.readPointer(&dataOff);
1330 if (lsdaOff != 0) // FIXME possible to test this?
1331 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1335 auto funcAddrRelocIt = isec->relocs.end();
1336 auto lsdaAddrRelocIt = isec->relocs.end();
1337 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1338 if (it->offset == funcAddrOff)
1339 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1340 else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1341 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1344 Defined *funcSym;
1345 if (funcAddrRelocIt != isec->relocs.end()) {
1346 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1347 } else {
1348 funcSym = findSymbolAtAddress(sections, funcAddr);
1349 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1351 // The symbol has been coalesced, or already has a compact unwind entry.
1352 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1353 // We must prune unused FDEs for correctness, so we cannot rely on
1354 // -dead_strip being enabled.
1355 isec->live = false;
1356 continue;
1359 InputSection *lsdaIsec = nullptr;
1360 if (lsdaAddrRelocIt != isec->relocs.end()) {
1361 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1362 } else if (lsdaAddrOpt) {
1363 uint64_t lsdaAddr = *lsdaAddrOpt;
1364 Section *sec = findContainingSection(sections, &lsdaAddr);
1365 lsdaIsec =
1366 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1367 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1370 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1371 funcSym->unwindEntry = isec;
1372 ehRelocator.commit();
1376 // The path can point to either a dylib or a .tbd file.
1377 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1378 Optional<MemoryBufferRef> mbref = readFile(path);
1379 if (!mbref) {
1380 error("could not read dylib file at " + path);
1381 return nullptr;
1383 return loadDylib(*mbref, umbrella);
1386 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1387 // the first document storing child pointers to the rest of them. When we are
1388 // processing a given TBD file, we store that top-level document in
1389 // currentTopLevelTapi. When processing re-exports, we search its children for
1390 // potentially matching documents in the same TBD file. Note that the children
1391 // themselves don't point to further documents, i.e. this is a two-level tree.
1393 // Re-exports can either refer to on-disk files, or to documents within .tbd
1394 // files.
1395 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1396 const InterfaceFile *currentTopLevelTapi) {
1397 // Search order:
1398 // 1. Install name basename in -F / -L directories.
1400 StringRef stem = path::stem(path);
1401 SmallString<128> frameworkName;
1402 path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1403 bool isFramework = path.endswith(frameworkName);
1404 if (isFramework) {
1405 for (StringRef dir : config->frameworkSearchPaths) {
1406 SmallString<128> candidate = dir;
1407 path::append(candidate, frameworkName);
1408 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1409 return loadDylib(*dylibPath, umbrella);
1411 } else if (Optional<StringRef> dylibPath = findPathCombination(
1412 stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1413 return loadDylib(*dylibPath, umbrella);
1416 // 2. As absolute path.
1417 if (path::is_absolute(path, path::Style::posix))
1418 for (StringRef root : config->systemLibraryRoots)
1419 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1420 return loadDylib(*dylibPath, umbrella);
1422 // 3. As relative path.
1424 // TODO: Handle -dylib_file
1426 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1427 SmallString<128> newPath;
1428 if (config->outputType == MH_EXECUTE &&
1429 path.consume_front("@executable_path/")) {
1430 // ld64 allows overriding this with the undocumented flag -executable_path.
1431 // lld doesn't currently implement that flag.
1432 // FIXME: Consider using finalOutput instead of outputFile.
1433 path::append(newPath, path::parent_path(config->outputFile), path);
1434 path = newPath;
1435 } else if (path.consume_front("@loader_path/")) {
1436 fs::real_path(umbrella->getName(), newPath);
1437 path::remove_filename(newPath);
1438 path::append(newPath, path);
1439 path = newPath;
1440 } else if (path.startswith("@rpath/")) {
1441 for (StringRef rpath : umbrella->rpaths) {
1442 newPath.clear();
1443 if (rpath.consume_front("@loader_path/")) {
1444 fs::real_path(umbrella->getName(), newPath);
1445 path::remove_filename(newPath);
1447 path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1448 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1449 return loadDylib(*dylibPath, umbrella);
1453 // FIXME: Should this be further up?
1454 if (currentTopLevelTapi) {
1455 for (InterfaceFile &child :
1456 make_pointee_range(currentTopLevelTapi->documents())) {
1457 assert(child.documents().empty());
1458 if (path == child.getInstallName()) {
1459 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1460 /*explicitlyLinked=*/false);
1461 file->parseReexports(child);
1462 return file;
1467 if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1468 return loadDylib(*dylibPath, umbrella);
1470 return nullptr;
1473 // If a re-exported dylib is public (lives in /usr/lib or
1474 // /System/Library/Frameworks), then it is considered implicitly linked: we
1475 // should bind to its symbols directly instead of via the re-exporting umbrella
1476 // library.
1477 static bool isImplicitlyLinked(StringRef path) {
1478 if (!config->implicitDylibs)
1479 return false;
1481 if (path::parent_path(path) == "/usr/lib")
1482 return true;
1484 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1485 if (path.consume_front("/System/Library/Frameworks/")) {
1486 StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1487 return path::filename(path) == frameworkName;
1490 return false;
1493 static void loadReexport(StringRef path, DylibFile *umbrella,
1494 const InterfaceFile *currentTopLevelTapi) {
1495 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1496 if (!reexport)
1497 error("unable to locate re-export with install name " + path);
1500 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1501 bool isBundleLoader, bool explicitlyLinked)
1502 : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1503 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1504 assert(!isBundleLoader || !umbrella);
1505 if (umbrella == nullptr)
1506 umbrella = this;
1507 this->umbrella = umbrella;
1509 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1510 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1512 // Initialize installName.
1513 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1514 auto *c = reinterpret_cast<const dylib_command *>(cmd);
1515 currentVersion = read32le(&c->dylib.current_version);
1516 compatibilityVersion = read32le(&c->dylib.compatibility_version);
1517 installName =
1518 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1519 } else if (!isBundleLoader) {
1520 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1521 // so it's OK.
1522 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1523 return;
1526 if (config->printEachFile)
1527 message(toString(this));
1528 inputFiles.insert(this);
1530 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1532 if (!checkCompatibility(this))
1533 return;
1535 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1537 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1538 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1539 rpaths.push_back(rpath);
1542 // Initialize symbols.
1543 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1544 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1545 auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1546 struct TrieEntry {
1547 StringRef name;
1548 uint64_t flags;
1551 std::vector<TrieEntry> entries;
1552 // Find all the $ld$* symbols to process first.
1553 parseTrie(buf + c->export_off, c->export_size,
1554 [&](const Twine &name, uint64_t flags) {
1555 StringRef savedName = saver().save(name);
1556 if (handleLDSymbol(savedName))
1557 return;
1558 entries.push_back({savedName, flags});
1561 // Process the "normal" symbols.
1562 for (TrieEntry &entry : entries) {
1563 if (exportingFile->hiddenSymbols.contains(
1564 CachedHashStringRef(entry.name)))
1565 continue;
1567 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1568 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1570 symbols.push_back(
1571 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1574 } else {
1575 error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1576 return;
1580 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1581 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1582 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1583 target->headerSize;
1584 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1585 auto *cmd = reinterpret_cast<const load_command *>(p);
1586 p += cmd->cmdsize;
1588 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1589 cmd->cmd == LC_REEXPORT_DYLIB) {
1590 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1591 StringRef reexportPath =
1592 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1593 loadReexport(reexportPath, exportingFile, nullptr);
1596 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1597 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1598 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1599 if (config->namespaceKind == NamespaceKind::flat &&
1600 cmd->cmd == LC_LOAD_DYLIB) {
1601 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1602 StringRef dylibPath =
1603 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1604 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1605 if (!dylib)
1606 error(Twine("unable to locate library '") + dylibPath +
1607 "' loaded from '" + toString(this) + "' for -flat_namespace");
1612 // Some versions of Xcode ship with .tbd files that don't have the right
1613 // platform settings.
1614 constexpr std::array<StringRef, 3> skipPlatformChecks{
1615 "/usr/lib/system/libsystem_kernel.dylib",
1616 "/usr/lib/system/libsystem_platform.dylib",
1617 "/usr/lib/system/libsystem_pthread.dylib"};
1619 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1620 bool explicitlyLinked) {
1621 // Catalyst outputs can link against implicitly linked macOS-only libraries.
1622 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1623 return false;
1624 return is_contained(interface.targets(),
1625 MachO::Target(config->arch(), PLATFORM_MACOS));
1628 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1629 bool isBundleLoader, bool explicitlyLinked)
1630 : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1631 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1632 // FIXME: Add test for the missing TBD code path.
1634 if (umbrella == nullptr)
1635 umbrella = this;
1636 this->umbrella = umbrella;
1638 installName = saver().save(interface.getInstallName());
1639 compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1640 currentVersion = interface.getCurrentVersion().rawValue();
1642 if (config->printEachFile)
1643 message(toString(this));
1644 inputFiles.insert(this);
1646 if (!is_contained(skipPlatformChecks, installName) &&
1647 !is_contained(interface.targets(), config->platformInfo.target) &&
1648 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1649 error(toString(this) + " is incompatible with " +
1650 std::string(config->platformInfo.target));
1651 return;
1654 checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1656 exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1657 auto addSymbol = [&](const Twine &name) -> void {
1658 StringRef savedName = saver().save(name);
1659 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1660 return;
1662 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1663 /*isWeakDef=*/false,
1664 /*isTlv=*/false));
1667 std::vector<const llvm::MachO::Symbol *> normalSymbols;
1668 normalSymbols.reserve(interface.symbolsCount());
1669 for (const auto *symbol : interface.symbols()) {
1670 if (!symbol->getArchitectures().has(config->arch()))
1671 continue;
1672 if (handleLDSymbol(symbol->getName()))
1673 continue;
1675 switch (symbol->getKind()) {
1676 case SymbolKind::GlobalSymbol: // Fallthrough
1677 case SymbolKind::ObjectiveCClass: // Fallthrough
1678 case SymbolKind::ObjectiveCClassEHType: // Fallthrough
1679 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1680 normalSymbols.push_back(symbol);
1684 // TODO(compnerd) filter out symbols based on the target platform
1685 // TODO: handle weak defs, thread locals
1686 for (const auto *symbol : normalSymbols) {
1687 switch (symbol->getKind()) {
1688 case SymbolKind::GlobalSymbol:
1689 addSymbol(symbol->getName());
1690 break;
1691 case SymbolKind::ObjectiveCClass:
1692 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1693 // want to emulate that.
1694 addSymbol(objc::klass + symbol->getName());
1695 addSymbol(objc::metaclass + symbol->getName());
1696 break;
1697 case SymbolKind::ObjectiveCClassEHType:
1698 addSymbol(objc::ehtype + symbol->getName());
1699 break;
1700 case SymbolKind::ObjectiveCInstanceVariable:
1701 addSymbol(objc::ivar + symbol->getName());
1702 break;
1707 void DylibFile::parseReexports(const InterfaceFile &interface) {
1708 const InterfaceFile *topLevel =
1709 interface.getParent() == nullptr ? &interface : interface.getParent();
1710 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1711 InterfaceFile::const_target_range targets = intfRef.targets();
1712 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1713 is_contained(targets, config->platformInfo.target))
1714 loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1718 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1719 // name, compatibility version or hide/add symbols) for specific target
1720 // versions.
1721 bool DylibFile::handleLDSymbol(StringRef originalName) {
1722 if (!originalName.startswith("$ld$"))
1723 return false;
1725 StringRef action;
1726 StringRef name;
1727 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1728 if (action == "previous")
1729 handleLDPreviousSymbol(name, originalName);
1730 else if (action == "install_name")
1731 handleLDInstallNameSymbol(name, originalName);
1732 else if (action == "hide")
1733 handleLDHideSymbol(name, originalName);
1734 return true;
1737 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1738 // originalName: $ld$ previous $ <installname> $ <compatversion> $
1739 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1740 StringRef installName;
1741 StringRef compatVersion;
1742 StringRef platformStr;
1743 StringRef startVersion;
1744 StringRef endVersion;
1745 StringRef symbolName;
1746 StringRef rest;
1748 std::tie(installName, name) = name.split('$');
1749 std::tie(compatVersion, name) = name.split('$');
1750 std::tie(platformStr, name) = name.split('$');
1751 std::tie(startVersion, name) = name.split('$');
1752 std::tie(endVersion, name) = name.split('$');
1753 std::tie(symbolName, rest) = name.split('$');
1754 // TODO: ld64 contains some logic for non-empty symbolName as well.
1755 if (!symbolName.empty())
1756 return;
1757 unsigned platform;
1758 if (platformStr.getAsInteger(10, platform) ||
1759 platform != static_cast<unsigned>(config->platform()))
1760 return;
1762 VersionTuple start;
1763 if (start.tryParse(startVersion)) {
1764 warn("failed to parse start version, symbol '" + originalName +
1765 "' ignored");
1766 return;
1768 VersionTuple end;
1769 if (end.tryParse(endVersion)) {
1770 warn("failed to parse end version, symbol '" + originalName + "' ignored");
1771 return;
1773 if (config->platformInfo.minimum < start ||
1774 config->platformInfo.minimum >= end)
1775 return;
1777 this->installName = saver().save(installName);
1779 if (!compatVersion.empty()) {
1780 VersionTuple cVersion;
1781 if (cVersion.tryParse(compatVersion)) {
1782 warn("failed to parse compatibility version, symbol '" + originalName +
1783 "' ignored");
1784 return;
1786 compatibilityVersion = encodeVersion(cVersion);
1790 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1791 StringRef originalName) {
1792 // originalName: $ld$ install_name $ os<version> $ install_name
1793 StringRef condition, installName;
1794 std::tie(condition, installName) = name.split('$');
1795 VersionTuple version;
1796 if (!condition.consume_front("os") || version.tryParse(condition))
1797 warn("failed to parse os version, symbol '" + originalName + "' ignored");
1798 else if (version == config->platformInfo.minimum)
1799 this->installName = saver().save(installName);
1802 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
1803 StringRef symbolName;
1804 bool shouldHide = true;
1805 if (name.startswith("os")) {
1806 // If it's hidden based on versions.
1807 name = name.drop_front(2);
1808 StringRef minVersion;
1809 std::tie(minVersion, symbolName) = name.split('$');
1810 VersionTuple versionTup;
1811 if (versionTup.tryParse(minVersion)) {
1812 warn("Failed to parse hidden version, symbol `" + originalName +
1813 "` ignored.");
1814 return;
1816 shouldHide = versionTup == config->platformInfo.minimum;
1817 } else {
1818 symbolName = name;
1821 if (shouldHide)
1822 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
1825 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1826 if (config->applicationExtension && !dylibIsAppExtensionSafe)
1827 warn("using '-application_extension' with unsafe dylib: " + toString(this));
1830 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1831 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1833 void ArchiveFile::addLazySymbols() {
1834 for (const object::Archive::Symbol &sym : file->symbols())
1835 symtab->addLazyArchive(sym.getName(), this, sym);
1838 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1839 uint32_t modTime,
1840 StringRef archiveName,
1841 uint64_t offsetInArchive) {
1842 if (config->zeroModTime)
1843 modTime = 0;
1845 switch (identify_magic(mb.getBuffer())) {
1846 case file_magic::macho_object:
1847 return make<ObjFile>(mb, modTime, archiveName);
1848 case file_magic::bitcode:
1849 return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1850 default:
1851 return createStringError(inconvertibleErrorCode(),
1852 mb.getBufferIdentifier() +
1853 " has unhandled file type");
1857 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1858 if (!seen.insert(c.getChildOffset()).second)
1859 return Error::success();
1861 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1862 if (!mb)
1863 return mb.takeError();
1865 // Thin archives refer to .o files, so --reproduce needs the .o files too.
1866 if (tar && c.getParent()->isThin())
1867 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1869 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1870 if (!modTime)
1871 return modTime.takeError();
1873 Expected<InputFile *> file =
1874 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1876 if (!file)
1877 return file.takeError();
1879 inputFiles.insert(*file);
1880 printArchiveMemberLoad(reason, *file);
1881 return Error::success();
1884 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1885 object::Archive::Child c =
1886 CHECK(sym.getMember(), toString(this) +
1887 ": could not get the member defining symbol " +
1888 toMachOString(sym));
1890 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1891 // and become invalid after that call. Copy it to the stack so we can refer
1892 // to it later.
1893 const object::Archive::Symbol symCopy = sym;
1895 // ld64 doesn't demangle sym here even with -demangle.
1896 // Match that: intentionally don't call toMachOString().
1897 if (Error e = fetch(c, symCopy.getName()))
1898 error(toString(this) + ": could not get the member defining symbol " +
1899 toMachOString(symCopy) + ": " + toString(std::move(e)));
1902 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1903 BitcodeFile &file) {
1904 StringRef name = saver().save(objSym.getName());
1906 if (objSym.isUndefined())
1907 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
1909 // TODO: Write a test demonstrating why computing isPrivateExtern before
1910 // LTO compilation is important.
1911 bool isPrivateExtern = false;
1912 switch (objSym.getVisibility()) {
1913 case GlobalValue::HiddenVisibility:
1914 isPrivateExtern = true;
1915 break;
1916 case GlobalValue::ProtectedVisibility:
1917 error(name + " has protected visibility, which is not supported by Mach-O");
1918 break;
1919 case GlobalValue::DefaultVisibility:
1920 break;
1922 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
1924 if (objSym.isCommon())
1925 return symtab->addCommon(name, &file, objSym.getCommonSize(),
1926 objSym.getCommonAlignment(), isPrivateExtern);
1928 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1929 /*size=*/0, objSym.isWeak(), isPrivateExtern,
1930 /*isThumb=*/false,
1931 /*isReferencedDynamically=*/false,
1932 /*noDeadStrip=*/false,
1933 /*isWeakDefCanBeHidden=*/false);
1936 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1937 uint64_t offsetInArchive, bool lazy)
1938 : InputFile(BitcodeKind, mb, lazy) {
1939 this->archiveName = std::string(archiveName);
1940 std::string path = mb.getBufferIdentifier().str();
1941 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1942 // name. If two members with the same name are provided, this causes a
1943 // collision and ThinLTO can't proceed.
1944 // So, we append the archive name to disambiguate two members with the same
1945 // name from multiple different archives, and offset within the archive to
1946 // disambiguate two members of the same name from a single archive.
1947 MemoryBufferRef mbref(mb.getBuffer(),
1948 saver().save(archiveName.empty()
1949 ? path
1950 : archiveName +
1951 sys::path::filename(path) +
1952 utostr(offsetInArchive)));
1954 obj = check(lto::InputFile::create(mbref));
1955 if (lazy)
1956 parseLazy();
1957 else
1958 parse();
1961 void BitcodeFile::parse() {
1962 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1963 // "winning" symbol will then be marked as Prevailing at LTO compilation
1964 // time.
1965 symbols.clear();
1966 for (const lto::InputFile::Symbol &objSym : obj->symbols())
1967 symbols.push_back(createBitcodeSymbol(objSym, *this));
1970 void BitcodeFile::parseLazy() {
1971 symbols.resize(obj->symbols().size());
1972 for (auto it : llvm::enumerate(obj->symbols())) {
1973 const lto::InputFile::Symbol &objSym = it.value();
1974 if (!objSym.isUndefined()) {
1975 symbols[it.index()] =
1976 symtab->addLazyObject(saver().save(objSym.getName()), *this);
1977 if (!lazy)
1978 break;
1983 void macho::extract(InputFile &file, StringRef reason) {
1984 assert(file.lazy);
1985 file.lazy = false;
1986 printArchiveMemberLoad(reason, &file);
1987 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
1988 bitcode->parse();
1989 } else {
1990 auto &f = cast<ObjFile>(file);
1991 if (target->wordSize == 8)
1992 f.parse<LP64>();
1993 else
1994 f.parse<ILP32>();
1998 template void ObjFile::parse<LP64>();