1 //===- InputFiles.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
42 //===----------------------------------------------------------------------===//
44 #include "InputFiles.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
57 #include "SyntheticSections.h"
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/Path.h"
70 #include "llvm/Support/TarWriter.h"
71 #include "llvm/Support/TimeProfiler.h"
72 #include "llvm/TextAPI/Architecture.h"
73 #include "llvm/TextAPI/InterfaceFile.h"
75 #include <type_traits>
78 using namespace llvm::MachO
;
79 using namespace llvm::support::endian
;
80 using namespace llvm::sys
;
82 using namespace lld::macho
;
84 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
85 std::string
lld::toString(const InputFile
*f
) {
89 // Multiple dylibs can be defined in one .tbd file.
90 if (auto dylibFile
= dyn_cast
<DylibFile
>(f
))
91 if (f
->getName().endswith(".tbd"))
92 return (f
->getName() + "(" + dylibFile
->installName
+ ")").str();
94 if (f
->archiveName
.empty())
95 return std::string(f
->getName());
96 return (f
->archiveName
+ "(" + path::filename(f
->getName()) + ")").str();
99 std::string
lld::toString(const Section
&sec
) {
100 return (toString(sec
.file
) + ":(" + sec
.name
+ ")").str();
103 SetVector
<InputFile
*> macho::inputFiles
;
104 std::unique_ptr
<TarWriter
> macho::tar
;
105 int InputFile::idCount
= 0;
107 static VersionTuple
decodeVersion(uint32_t version
) {
108 unsigned major
= version
>> 16;
109 unsigned minor
= (version
>> 8) & 0xffu
;
110 unsigned subMinor
= version
& 0xffu
;
111 return VersionTuple(major
, minor
, subMinor
);
114 static std::vector
<PlatformInfo
> getPlatformInfos(const InputFile
*input
) {
115 if (!isa
<ObjFile
>(input
) && !isa
<DylibFile
>(input
))
118 const char *hdr
= input
->mb
.getBufferStart();
120 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
121 std::vector
<PlatformInfo
> platformInfos
;
122 for (auto *cmd
: findCommands
<build_version_command
>(hdr
, LC_BUILD_VERSION
)) {
124 info
.target
.Platform
= static_cast<PlatformType
>(cmd
->platform
);
125 info
.minimum
= decodeVersion(cmd
->minos
);
126 platformInfos
.emplace_back(std::move(info
));
128 for (auto *cmd
: findCommands
<version_min_command
>(
129 hdr
, LC_VERSION_MIN_MACOSX
, LC_VERSION_MIN_IPHONEOS
,
130 LC_VERSION_MIN_TVOS
, LC_VERSION_MIN_WATCHOS
)) {
133 case LC_VERSION_MIN_MACOSX
:
134 info
.target
.Platform
= PLATFORM_MACOS
;
136 case LC_VERSION_MIN_IPHONEOS
:
137 info
.target
.Platform
= PLATFORM_IOS
;
139 case LC_VERSION_MIN_TVOS
:
140 info
.target
.Platform
= PLATFORM_TVOS
;
142 case LC_VERSION_MIN_WATCHOS
:
143 info
.target
.Platform
= PLATFORM_WATCHOS
;
146 info
.minimum
= decodeVersion(cmd
->version
);
147 platformInfos
.emplace_back(std::move(info
));
150 return platformInfos
;
153 static bool checkCompatibility(const InputFile
*input
) {
154 std::vector
<PlatformInfo
> platformInfos
= getPlatformInfos(input
);
155 if (platformInfos
.empty())
158 auto it
= find_if(platformInfos
, [&](const PlatformInfo
&info
) {
159 return removeSimulator(info
.target
.Platform
) ==
160 removeSimulator(config
->platform());
162 if (it
== platformInfos
.end()) {
163 std::string platformNames
;
164 raw_string_ostream
os(platformNames
);
167 [&](const PlatformInfo
&info
) {
168 os
<< getPlatformName(info
.target
.Platform
);
171 error(toString(input
) + " has platform " + platformNames
+
172 Twine(", which is different from target platform ") +
173 getPlatformName(config
->platform()));
177 if (it
->minimum
> config
->platformInfo
.minimum
)
178 warn(toString(input
) + " has version " + it
->minimum
.getAsString() +
179 ", which is newer than target minimum of " +
180 config
->platformInfo
.minimum
.getAsString());
185 // This cache mostly exists to store system libraries (and .tbds) as they're
186 // loaded, rather than the input archives, which are already cached at a higher
187 // level, and other files like the filelist that are only read once.
188 // Theoretically this caching could be more efficient by hoisting it, but that
189 // would require altering many callers to track the state.
190 DenseMap
<CachedHashStringRef
, MemoryBufferRef
> macho::cachedReads
;
191 // Open a given file path and return it as a memory-mapped file.
192 Optional
<MemoryBufferRef
> macho::readFile(StringRef path
) {
193 CachedHashStringRef
key(path
);
194 auto entry
= cachedReads
.find(key
);
195 if (entry
!= cachedReads
.end())
196 return entry
->second
;
198 ErrorOr
<std::unique_ptr
<MemoryBuffer
>> mbOrErr
= MemoryBuffer::getFile(path
);
199 if (std::error_code ec
= mbOrErr
.getError()) {
200 error("cannot open " + path
+ ": " + ec
.message());
204 std::unique_ptr
<MemoryBuffer
> &mb
= *mbOrErr
;
205 MemoryBufferRef mbref
= mb
->getMemBufferRef();
206 make
<std::unique_ptr
<MemoryBuffer
>>(std::move(mb
)); // take mb ownership
208 // If this is a regular non-fat file, return it.
209 const char *buf
= mbref
.getBufferStart();
210 const auto *hdr
= reinterpret_cast<const fat_header
*>(buf
);
211 if (mbref
.getBufferSize() < sizeof(uint32_t) ||
212 read32be(&hdr
->magic
) != FAT_MAGIC
) {
214 tar
->append(relativeToRoot(path
), mbref
.getBuffer());
215 return cachedReads
[key
] = mbref
;
218 llvm::BumpPtrAllocator
&bAlloc
= lld::bAlloc();
220 // Object files and archive files may be fat files, which contain multiple
221 // real files for different CPU ISAs. Here, we search for a file that matches
222 // with the current link target and returns it as a MemoryBufferRef.
223 const auto *arch
= reinterpret_cast<const fat_arch
*>(buf
+ sizeof(*hdr
));
225 for (uint32_t i
= 0, n
= read32be(&hdr
->nfat_arch
); i
< n
; ++i
) {
226 if (reinterpret_cast<const char *>(arch
+ i
+ 1) >
227 buf
+ mbref
.getBufferSize()) {
228 error(path
+ ": fat_arch struct extends beyond end of file");
232 if (read32be(&arch
[i
].cputype
) != static_cast<uint32_t>(target
->cpuType
) ||
233 read32be(&arch
[i
].cpusubtype
) != target
->cpuSubtype
)
236 uint32_t offset
= read32be(&arch
[i
].offset
);
237 uint32_t size
= read32be(&arch
[i
].size
);
238 if (offset
+ size
> mbref
.getBufferSize())
239 error(path
+ ": slice extends beyond end of file");
241 tar
->append(relativeToRoot(path
), mbref
.getBuffer());
242 return cachedReads
[key
] = MemoryBufferRef(StringRef(buf
+ offset
, size
),
246 error("unable to find matching architecture in " + path
);
250 InputFile::InputFile(Kind kind
, const InterfaceFile
&interface
)
251 : id(idCount
++), fileKind(kind
), name(saver().save(interface
.getPath())) {}
253 // Some sections comprise of fixed-size records, so instead of splitting them at
254 // symbol boundaries, we split them based on size. Records are distinct from
255 // literals in that they may contain references to other sections, instead of
256 // being leaf nodes in the InputSection graph.
258 // Note that "record" is a term I came up with. In contrast, "literal" is a term
259 // used by the Mach-O format.
260 static Optional
<size_t> getRecordSize(StringRef segname
, StringRef name
) {
261 if (name
== section_names::compactUnwind
) {
262 if (segname
== segment_names::ld
)
263 return target
->wordSize
== 8 ? 32 : 20;
265 if (config
->icfLevel
== ICFLevel::none
)
268 if (name
== section_names::cfString
&& segname
== segment_names::data
)
269 return target
->wordSize
== 8 ? 32 : 16;
270 if (name
== section_names::objcClassRefs
&& segname
== segment_names::data
)
271 return target
->wordSize
;
275 static Error
parseCallGraph(ArrayRef
<uint8_t> data
,
276 std::vector
<CallGraphEntry
> &callGraph
) {
277 TimeTraceScope
timeScope("Parsing call graph section");
278 BinaryStreamReader
reader(data
, support::little
);
279 while (!reader
.empty()) {
280 uint32_t fromIndex
, toIndex
;
282 if (Error err
= reader
.readInteger(fromIndex
))
284 if (Error err
= reader
.readInteger(toIndex
))
286 if (Error err
= reader
.readInteger(count
))
288 callGraph
.emplace_back(fromIndex
, toIndex
, count
);
290 return Error::success();
293 // Parse the sequence of sections within a single LC_SEGMENT(_64).
294 // Split each section into subsections.
295 template <class SectionHeader
>
296 void ObjFile::parseSections(ArrayRef
<SectionHeader
> sectionHeaders
) {
297 sections
.reserve(sectionHeaders
.size());
298 auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
300 for (const SectionHeader
&sec
: sectionHeaders
) {
302 StringRef(sec
.sectname
, strnlen(sec
.sectname
, sizeof(sec
.sectname
)));
304 StringRef(sec
.segname
, strnlen(sec
.segname
, sizeof(sec
.segname
)));
305 sections
.push_back(make
<Section
>(this, segname
, name
, sec
.flags
, sec
.addr
));
306 if (sec
.align
>= 32) {
307 error("alignment " + std::to_string(sec
.align
) + " of section " + name
+
311 Section
§ion
= *sections
.back();
312 uint32_t align
= 1 << sec
.align
;
313 ArrayRef
<uint8_t> data
= {isZeroFill(sec
.flags
) ? nullptr
315 static_cast<size_t>(sec
.size
)};
317 auto splitRecords
= [&](int recordSize
) -> void {
320 Subsections
&subsections
= section
.subsections
;
321 subsections
.reserve(data
.size() / recordSize
);
322 for (uint64_t off
= 0; off
< data
.size(); off
+= recordSize
) {
323 auto *isec
= make
<ConcatInputSection
>(
324 section
, data
.slice(off
, recordSize
), align
);
325 subsections
.push_back({off
, isec
});
327 section
.doneSplitting
= true;
330 if (sectionType(sec
.flags
) == S_CSTRING_LITERALS
||
331 (config
->dedupLiterals
&& isWordLiteralSection(sec
.flags
))) {
332 if (sec
.nreloc
&& config
->dedupLiterals
)
333 fatal(toString(this) + " contains relocations in " + sec
.segname
+ "," +
335 ", so LLD cannot deduplicate literals. Try re-running without "
336 "--deduplicate-literals.");
339 if (sectionType(sec
.flags
) == S_CSTRING_LITERALS
) {
340 isec
= make
<CStringInputSection
>(section
, data
, align
);
341 // FIXME: parallelize this?
342 cast
<CStringInputSection
>(isec
)->splitIntoPieces();
344 isec
= make
<WordLiteralInputSection
>(section
, data
, align
);
346 section
.subsections
.push_back({0, isec
});
347 } else if (auto recordSize
= getRecordSize(segname
, name
)) {
348 splitRecords(*recordSize
);
349 } else if (config
->parseEhFrames
&& name
== section_names::ehFrame
&&
350 segname
== segment_names::text
) {
351 splitEhFrames(data
, *sections
.back());
352 } else if (segname
== segment_names::llvm
) {
353 if (config
->callGraphProfileSort
&& name
== section_names::cgProfile
)
354 checkError(parseCallGraph(data
, callGraph
));
355 // ld64 does not appear to emit contents from sections within the __LLVM
356 // segment. Symbols within those sections point to bitcode metadata
357 // instead of actual symbols. Global symbols within those sections could
358 // have the same name without causing duplicate symbol errors. To avoid
359 // spurious duplicate symbol errors, we do not parse these sections.
360 // TODO: Evaluate whether the bitcode metadata is needed.
362 if (name
== section_names::addrSig
)
363 addrSigSection
= sections
.back();
365 auto *isec
= make
<ConcatInputSection
>(section
, data
, align
);
366 if (isDebugSection(isec
->getFlags()) &&
367 isec
->getSegName() == segment_names::dwarf
) {
368 // Instead of emitting DWARF sections, we emit STABS symbols to the
369 // object files that contain them. We filter them out early to avoid
370 // parsing their relocations unnecessarily.
371 debugSections
.push_back(isec
);
373 section
.subsections
.push_back({0, isec
});
379 void ObjFile::splitEhFrames(ArrayRef
<uint8_t> data
, Section
&ehFrameSection
) {
380 EhReader
reader(this, data
, /*dataOff=*/0, target
->wordSize
);
382 while (off
< reader
.size()) {
383 uint64_t frameOff
= off
;
384 uint64_t length
= reader
.readLength(&off
);
387 uint64_t fullLength
= length
+ (off
- frameOff
);
389 // We hard-code an alignment of 1 here because we don't actually want our
390 // EH frames to be aligned to the section alignment. EH frame decoders don't
391 // expect this alignment. Moreover, each EH frame must start where the
392 // previous one ends, and where it ends is indicated by the length field.
393 // Unless we update the length field (troublesome), we should keep the
395 // Note that we still want to preserve the alignment of the overall section,
396 // just not of the individual EH frames.
397 ehFrameSection
.subsections
.push_back(
398 {frameOff
, make
<ConcatInputSection
>(ehFrameSection
,
399 data
.slice(frameOff
, fullLength
),
402 ehFrameSection
.doneSplitting
= true;
406 static Section
*findContainingSection(const std::vector
<Section
*> §ions
,
408 static_assert(std::is_same
<uint64_t, T
>::value
||
409 std::is_same
<uint32_t, T
>::value
,
410 "unexpected type for offset");
411 auto it
= std::prev(llvm::upper_bound(
413 [](uint64_t value
, const Section
*sec
) { return value
< sec
->addr
; }));
414 *offset
-= (*it
)->addr
;
418 // Find the subsection corresponding to the greatest section offset that is <=
419 // that of the given offset.
421 // offset: an offset relative to the start of the original InputSection (before
422 // any subsection splitting has occurred). It will be updated to represent the
423 // same location as an offset relative to the start of the containing
426 static InputSection
*findContainingSubsection(const Section
§ion
,
428 static_assert(std::is_same
<uint64_t, T
>::value
||
429 std::is_same
<uint32_t, T
>::value
,
430 "unexpected type for offset");
431 auto it
= std::prev(llvm::upper_bound(
432 section
.subsections
, *offset
,
433 [](uint64_t value
, Subsection subsec
) { return value
< subsec
.offset
; }));
434 *offset
-= it
->offset
;
438 // Find a symbol at offset `off` within `isec`.
439 static Defined
*findSymbolAtOffset(const ConcatInputSection
*isec
,
441 auto it
= llvm::lower_bound(isec
->symbols
, off
, [](Defined
*d
, uint64_t off
) {
442 return d
->value
< off
;
444 // The offset should point at the exact address of a symbol (with no addend.)
445 if (it
== isec
->symbols
.end() || (*it
)->value
!= off
) {
446 assert(isec
->wasCoalesced
);
452 template <class SectionHeader
>
453 static bool validateRelocationInfo(InputFile
*file
, const SectionHeader
&sec
,
454 relocation_info rel
) {
455 const RelocAttrs
&relocAttrs
= target
->getRelocAttrs(rel
.r_type
);
457 auto message
= [relocAttrs
, file
, sec
, rel
, &valid
](const Twine
&diagnostic
) {
459 return (relocAttrs
.name
+ " relocation " + diagnostic
+ " at offset " +
460 std::to_string(rel
.r_address
) + " of " + sec
.segname
+ "," +
461 sec
.sectname
+ " in " + toString(file
))
465 if (!relocAttrs
.hasAttr(RelocAttrBits::LOCAL
) && !rel
.r_extern
)
466 error(message("must be extern"));
467 if (relocAttrs
.hasAttr(RelocAttrBits::PCREL
) != rel
.r_pcrel
)
468 error(message(Twine("must ") + (rel
.r_pcrel
? "not " : "") +
470 if (isThreadLocalVariables(sec
.flags
) &&
471 !relocAttrs
.hasAttr(RelocAttrBits::UNSIGNED
))
472 error(message("not allowed in thread-local section, must be UNSIGNED"));
473 if (rel
.r_length
< 2 || rel
.r_length
> 3 ||
474 !relocAttrs
.hasAttr(static_cast<RelocAttrBits
>(1 << rel
.r_length
))) {
475 static SmallVector
<StringRef
, 4> widths
{"0", "4", "8", "4 or 8"};
476 error(message("has width " + std::to_string(1 << rel
.r_length
) +
477 " bytes, but must be " +
478 widths
[(static_cast<int>(relocAttrs
.bits
) >> 2) & 3] +
484 template <class SectionHeader
>
485 void ObjFile::parseRelocations(ArrayRef
<SectionHeader
> sectionHeaders
,
486 const SectionHeader
&sec
, Section
§ion
) {
487 auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
488 ArrayRef
<relocation_info
> relInfos(
489 reinterpret_cast<const relocation_info
*>(buf
+ sec
.reloff
), sec
.nreloc
);
491 Subsections
&subsections
= section
.subsections
;
492 auto subsecIt
= subsections
.rbegin();
493 for (size_t i
= 0; i
< relInfos
.size(); i
++) {
494 // Paired relocations serve as Mach-O's method for attaching a
495 // supplemental datum to a primary relocation record. ELF does not
496 // need them because the *_RELOC_RELA records contain the extra
497 // addend field, vs. *_RELOC_REL which omit the addend.
499 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
500 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
501 // datum for each is a symbolic address. The result is the offset
502 // between two addresses.
504 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
505 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
506 // base symbolic address.
508 // Note: X86 does not use *_RELOC_ADDEND because it can embed an
509 // addend into the instruction stream. On X86, a relocatable address
510 // field always occupies an entire contiguous sequence of byte(s),
511 // so there is no need to merge opcode bits with address
512 // bits. Therefore, it's easy and convenient to store addends in the
513 // instruction-stream bytes that would otherwise contain zeroes. By
514 // contrast, RISC ISAs such as ARM64 mix opcode bits with with
515 // address bits so that bitwise arithmetic is necessary to extract
516 // and insert them. Storing addends in the instruction stream is
517 // possible, but inconvenient and more costly at link time.
519 relocation_info relInfo
= relInfos
[i
];
521 target
->hasAttr(relInfo
.r_type
, RelocAttrBits::SUBTRAHEND
);
522 int64_t pairedAddend
= 0;
523 if (target
->hasAttr(relInfo
.r_type
, RelocAttrBits::ADDEND
)) {
524 pairedAddend
= SignExtend64
<24>(relInfo
.r_symbolnum
);
525 relInfo
= relInfos
[++i
];
527 assert(i
< relInfos
.size());
528 if (!validateRelocationInfo(this, sec
, relInfo
))
530 if (relInfo
.r_address
& R_SCATTERED
)
531 fatal("TODO: Scattered relocations not supported");
533 int64_t embeddedAddend
= target
->getEmbeddedAddend(mb
, sec
.offset
, relInfo
);
534 assert(!(embeddedAddend
&& pairedAddend
));
535 int64_t totalAddend
= pairedAddend
+ embeddedAddend
;
537 r
.type
= relInfo
.r_type
;
538 r
.pcrel
= relInfo
.r_pcrel
;
539 r
.length
= relInfo
.r_length
;
540 r
.offset
= relInfo
.r_address
;
541 if (relInfo
.r_extern
) {
542 r
.referent
= symbols
[relInfo
.r_symbolnum
];
543 r
.addend
= isSubtrahend
? 0 : totalAddend
;
545 assert(!isSubtrahend
);
546 const SectionHeader
&referentSecHead
=
547 sectionHeaders
[relInfo
.r_symbolnum
- 1];
548 uint64_t referentOffset
;
549 if (relInfo
.r_pcrel
) {
550 // The implicit addend for pcrel section relocations is the pcrel offset
551 // in terms of the addresses in the input file. Here we adjust it so
552 // that it describes the offset from the start of the referent section.
553 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
554 // have pcrel section relocations. We may want to factor this out into
555 // the arch-specific .cpp file.
556 assert(target
->hasAttr(r
.type
, RelocAttrBits::BYTE4
));
557 referentOffset
= sec
.addr
+ relInfo
.r_address
+ 4 + totalAddend
-
558 referentSecHead
.addr
;
560 // The addend for a non-pcrel relocation is its absolute address.
561 referentOffset
= totalAddend
- referentSecHead
.addr
;
563 r
.referent
= findContainingSubsection(*sections
[relInfo
.r_symbolnum
- 1],
565 r
.addend
= referentOffset
;
568 // Find the subsection that this relocation belongs to.
569 // Though not required by the Mach-O format, clang and gcc seem to emit
570 // relocations in order, so let's take advantage of it. However, ld64 emits
571 // unsorted relocations (in `-r` mode), so we have a fallback for that
573 InputSection
*subsec
;
574 while (subsecIt
!= subsections
.rend() && subsecIt
->offset
> r
.offset
)
576 if (subsecIt
== subsections
.rend() ||
577 subsecIt
->offset
+ subsecIt
->isec
->getSize() <= r
.offset
) {
578 subsec
= findContainingSubsection(section
, &r
.offset
);
579 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
580 // for the other relocations.
581 subsecIt
= subsections
.rend();
583 subsec
= subsecIt
->isec
;
584 r
.offset
-= subsecIt
->offset
;
586 subsec
->relocs
.push_back(r
);
589 relocation_info minuendInfo
= relInfos
[++i
];
590 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
591 // attached to the same address.
592 assert(target
->hasAttr(minuendInfo
.r_type
, RelocAttrBits::UNSIGNED
) &&
593 relInfo
.r_address
== minuendInfo
.r_address
);
595 p
.type
= minuendInfo
.r_type
;
596 if (minuendInfo
.r_extern
) {
597 p
.referent
= symbols
[minuendInfo
.r_symbolnum
];
598 p
.addend
= totalAddend
;
600 uint64_t referentOffset
=
601 totalAddend
- sectionHeaders
[minuendInfo
.r_symbolnum
- 1].addr
;
602 p
.referent
= findContainingSubsection(
603 *sections
[minuendInfo
.r_symbolnum
- 1], &referentOffset
);
604 p
.addend
= referentOffset
;
606 subsec
->relocs
.push_back(p
);
611 template <class NList
>
612 static macho::Symbol
*createDefined(const NList
&sym
, StringRef name
,
613 InputSection
*isec
, uint64_t value
,
615 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
616 // N_EXT: Global symbols. These go in the symbol table during the link,
617 // and also in the export table of the output so that the dynamic
619 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
620 // symbol table during the link so that duplicates are
621 // either reported (for non-weak symbols) or merged
622 // (for weak symbols), but they do not go in the export
623 // table of the output.
624 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
625 // object files) may produce them. LLD does not yet support -r.
626 // These are translation-unit scoped, identical to the `0` case.
627 // 0: Translation-unit scoped. These are not in the symbol table during
628 // link, and not in the export table of the output either.
629 bool isWeakDefCanBeHidden
=
630 (sym
.n_desc
& (N_WEAK_DEF
| N_WEAK_REF
)) == (N_WEAK_DEF
| N_WEAK_REF
);
632 if (sym
.n_type
& N_EXT
) {
633 bool isPrivateExtern
= sym
.n_type
& N_PEXT
;
634 // lld's behavior for merging symbols is slightly different from ld64:
635 // ld64 picks the winning symbol based on several criteria (see
636 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
637 // just merges metadata and keeps the contents of the first symbol
638 // with that name (see SymbolTable::addDefined). For:
639 // * inline function F in a TU built with -fvisibility-inlines-hidden
640 // * and inline function F in another TU built without that flag
641 // ld64 will pick the one from the file built without
642 // -fvisibility-inlines-hidden.
643 // lld will instead pick the one listed first on the link command line and
644 // give it visibility as if the function was built without
645 // -fvisibility-inlines-hidden.
646 // If both functions have the same contents, this will have the same
647 // behavior. If not, it won't, but the input had an ODR violation in
650 // Similarly, merging a symbol
651 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
652 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
653 // should produce one
654 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
655 // with ld64's semantics, because it means the non-private-extern
656 // definition will continue to take priority if more private extern
657 // definitions are encountered. With lld's semantics there's no observable
658 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
659 // that's privateExtern -- neither makes it into the dynamic symbol table,
660 // unless the autohide symbol is explicitly exported.
661 // But if a symbol is both privateExtern and autohide then it can't
663 // So we nullify the autohide flag when privateExtern is present
664 // and promote the symbol to privateExtern when it is not already.
665 if (isWeakDefCanBeHidden
&& isPrivateExtern
)
666 isWeakDefCanBeHidden
= false;
667 else if (isWeakDefCanBeHidden
)
668 isPrivateExtern
= true;
669 return symtab
->addDefined(
670 name
, isec
->getFile(), isec
, value
, size
, sym
.n_desc
& N_WEAK_DEF
,
671 isPrivateExtern
, sym
.n_desc
& N_ARM_THUMB_DEF
,
672 sym
.n_desc
& REFERENCED_DYNAMICALLY
, sym
.n_desc
& N_NO_DEAD_STRIP
,
673 isWeakDefCanBeHidden
);
675 assert(!isWeakDefCanBeHidden
&&
676 "weak_def_can_be_hidden on already-hidden symbol?");
677 bool includeInSymtab
=
678 !name
.startswith("l") && !name
.startswith("L") && !isEhFrameSection(isec
);
679 return make
<Defined
>(
680 name
, isec
->getFile(), isec
, value
, size
, sym
.n_desc
& N_WEAK_DEF
,
681 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab
,
682 sym
.n_desc
& N_ARM_THUMB_DEF
, sym
.n_desc
& REFERENCED_DYNAMICALLY
,
683 sym
.n_desc
& N_NO_DEAD_STRIP
);
686 // Absolute symbols are defined symbols that do not have an associated
687 // InputSection. They cannot be weak.
688 template <class NList
>
689 static macho::Symbol
*createAbsolute(const NList
&sym
, InputFile
*file
,
691 if (sym
.n_type
& N_EXT
) {
692 return symtab
->addDefined(
693 name
, file
, nullptr, sym
.n_value
, /*size=*/0,
694 /*isWeakDef=*/false, sym
.n_type
& N_PEXT
, sym
.n_desc
& N_ARM_THUMB_DEF
,
695 /*isReferencedDynamically=*/false, sym
.n_desc
& N_NO_DEAD_STRIP
,
696 /*isWeakDefCanBeHidden=*/false);
698 return make
<Defined
>(name
, file
, nullptr, sym
.n_value
, /*size=*/0,
700 /*isExternal=*/false, /*isPrivateExtern=*/false,
701 /*includeInSymtab=*/true, sym
.n_desc
& N_ARM_THUMB_DEF
,
702 /*isReferencedDynamically=*/false,
703 sym
.n_desc
& N_NO_DEAD_STRIP
);
706 template <class NList
>
707 macho::Symbol
*ObjFile::parseNonSectionSymbol(const NList
&sym
,
709 uint8_t type
= sym
.n_type
& N_TYPE
;
712 return sym
.n_value
== 0
713 ? symtab
->addUndefined(name
, this, sym
.n_desc
& N_WEAK_REF
)
714 : symtab
->addCommon(name
, this, sym
.n_value
,
715 1 << GET_COMM_ALIGN(sym
.n_desc
),
716 sym
.n_type
& N_PEXT
);
718 return createAbsolute(sym
, this, name
);
721 error("TODO: support symbols of type " + std::to_string(type
));
725 "N_SECT symbols should not be passed to parseNonSectionSymbol");
727 llvm_unreachable("invalid symbol type");
731 template <class NList
> static bool isUndef(const NList
&sym
) {
732 return (sym
.n_type
& N_TYPE
) == N_UNDF
&& sym
.n_value
== 0;
736 void ObjFile::parseSymbols(ArrayRef
<typename
LP::section
> sectionHeaders
,
737 ArrayRef
<typename
LP::nlist
> nList
,
738 const char *strtab
, bool subsectionsViaSymbols
) {
739 using NList
= typename
LP::nlist
;
741 // Groups indices of the symbols by the sections that contain them.
742 std::vector
<std::vector
<uint32_t>> symbolsBySection(sections
.size());
743 symbols
.resize(nList
.size());
744 SmallVector
<unsigned, 32> undefineds
;
745 for (uint32_t i
= 0; i
< nList
.size(); ++i
) {
746 const NList
&sym
= nList
[i
];
748 // Ignore debug symbols for now.
749 // FIXME: may need special handling.
750 if (sym
.n_type
& N_STAB
)
753 StringRef name
= strtab
+ sym
.n_strx
;
754 if ((sym
.n_type
& N_TYPE
) == N_SECT
) {
755 Subsections
&subsections
= sections
[sym
.n_sect
- 1]->subsections
;
756 // parseSections() may have chosen not to parse this section.
757 if (subsections
.empty())
759 symbolsBySection
[sym
.n_sect
- 1].push_back(i
);
760 } else if (isUndef(sym
)) {
761 undefineds
.push_back(i
);
763 symbols
[i
] = parseNonSectionSymbol(sym
, name
);
767 for (size_t i
= 0; i
< sections
.size(); ++i
) {
768 Subsections
&subsections
= sections
[i
]->subsections
;
769 if (subsections
.empty())
771 std::vector
<uint32_t> &symbolIndices
= symbolsBySection
[i
];
772 uint64_t sectionAddr
= sectionHeaders
[i
].addr
;
773 uint32_t sectionAlign
= 1u << sectionHeaders
[i
].align
;
775 // Some sections have already been split into subsections during
776 // parseSections(), so we simply need to match Symbols to the corresponding
778 if (sections
[i
]->doneSplitting
) {
779 for (size_t j
= 0; j
< symbolIndices
.size(); ++j
) {
780 uint32_t symIndex
= symbolIndices
[j
];
781 const NList
&sym
= nList
[symIndex
];
782 StringRef name
= strtab
+ sym
.n_strx
;
783 uint64_t symbolOffset
= sym
.n_value
- sectionAddr
;
785 findContainingSubsection(*sections
[i
], &symbolOffset
);
786 if (symbolOffset
!= 0) {
787 error(toString(*sections
[i
]) + ": symbol " + name
+
788 " at misaligned offset");
791 symbols
[symIndex
] = createDefined(sym
, name
, isec
, 0, isec
->getSize());
795 sections
[i
]->doneSplitting
= true;
797 // Calculate symbol sizes and create subsections by splitting the sections
798 // along symbol boundaries.
799 // We populate subsections by repeatedly splitting the last (highest
800 // address) subsection.
801 llvm::stable_sort(symbolIndices
, [&](uint32_t lhs
, uint32_t rhs
) {
802 return nList
[lhs
].n_value
< nList
[rhs
].n_value
;
804 for (size_t j
= 0; j
< symbolIndices
.size(); ++j
) {
805 uint32_t symIndex
= symbolIndices
[j
];
806 const NList
&sym
= nList
[symIndex
];
807 StringRef name
= strtab
+ sym
.n_strx
;
808 Subsection
&subsec
= subsections
.back();
809 InputSection
*isec
= subsec
.isec
;
811 uint64_t subsecAddr
= sectionAddr
+ subsec
.offset
;
812 size_t symbolOffset
= sym
.n_value
- subsecAddr
;
813 uint64_t symbolSize
=
814 j
+ 1 < symbolIndices
.size()
815 ? nList
[symbolIndices
[j
+ 1]].n_value
- sym
.n_value
816 : isec
->data
.size() - symbolOffset
;
817 // There are 4 cases where we do not need to create a new subsection:
818 // 1. If the input file does not use subsections-via-symbols.
819 // 2. Multiple symbols at the same address only induce one subsection.
820 // (The symbolOffset == 0 check covers both this case as well as
821 // the first loop iteration.)
822 // 3. Alternative entry points do not induce new subsections.
823 // 4. If we have a literal section (e.g. __cstring and __literal4).
824 if (!subsectionsViaSymbols
|| symbolOffset
== 0 ||
825 sym
.n_desc
& N_ALT_ENTRY
|| !isa
<ConcatInputSection
>(isec
)) {
827 createDefined(sym
, name
, isec
, symbolOffset
, symbolSize
);
830 auto *concatIsec
= cast
<ConcatInputSection
>(isec
);
832 auto *nextIsec
= make
<ConcatInputSection
>(*concatIsec
);
833 nextIsec
->wasCoalesced
= false;
834 if (isZeroFill(isec
->getFlags())) {
835 // Zero-fill sections have NULL data.data() non-zero data.size()
836 nextIsec
->data
= {nullptr, isec
->data
.size() - symbolOffset
};
837 isec
->data
= {nullptr, symbolOffset
};
839 nextIsec
->data
= isec
->data
.slice(symbolOffset
);
840 isec
->data
= isec
->data
.slice(0, symbolOffset
);
843 // By construction, the symbol will be at offset zero in the new
846 createDefined(sym
, name
, nextIsec
, /*value=*/0, symbolSize
);
847 // TODO: ld64 appears to preserve the original alignment as well as each
848 // subsection's offset from the last aligned address. We should consider
849 // emulating that behavior.
850 nextIsec
->align
= MinAlign(sectionAlign
, sym
.n_value
);
851 subsections
.push_back({sym
.n_value
- sectionAddr
, nextIsec
});
855 // Undefined symbols can trigger recursive fetch from Archives due to
856 // LazySymbols. Process defined symbols first so that the relative order
857 // between a defined symbol and an undefined symbol does not change the
858 // symbol resolution behavior. In addition, a set of interconnected symbols
859 // will all be resolved to the same file, instead of being resolved to
861 for (unsigned i
: undefineds
) {
862 const NList
&sym
= nList
[i
];
863 StringRef name
= strtab
+ sym
.n_strx
;
864 symbols
[i
] = parseNonSectionSymbol(sym
, name
);
868 OpaqueFile::OpaqueFile(MemoryBufferRef mb
, StringRef segName
,
870 : InputFile(OpaqueKind
, mb
) {
871 const auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
872 ArrayRef
<uint8_t> data
= {buf
, mb
.getBufferSize()};
873 sections
.push_back(make
<Section
>(/*file=*/this, segName
.take_front(16),
874 sectName
.take_front(16),
875 /*flags=*/0, /*addr=*/0));
876 Section
§ion
= *sections
.back();
877 ConcatInputSection
*isec
= make
<ConcatInputSection
>(section
, data
);
879 section
.subsections
.push_back({0, isec
});
882 ObjFile::ObjFile(MemoryBufferRef mb
, uint32_t modTime
, StringRef archiveName
,
884 : InputFile(ObjKind
, mb
, lazy
), modTime(modTime
) {
885 this->archiveName
= std::string(archiveName
);
887 if (target
->wordSize
== 8)
892 if (target
->wordSize
== 8)
899 template <class LP
> void ObjFile::parse() {
900 using Header
= typename
LP::mach_header
;
901 using SegmentCommand
= typename
LP::segment_command
;
902 using SectionHeader
= typename
LP::section
;
903 using NList
= typename
LP::nlist
;
905 auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
906 auto *hdr
= reinterpret_cast<const Header
*>(mb
.getBufferStart());
908 Architecture arch
= getArchitectureFromCpuType(hdr
->cputype
, hdr
->cpusubtype
);
909 if (arch
!= config
->arch()) {
910 auto msg
= config
->errorForArchMismatch
911 ? static_cast<void (*)(const Twine
&)>(error
)
913 msg(toString(this) + " has architecture " + getArchitectureName(arch
) +
914 " which is incompatible with target architecture " +
915 getArchitectureName(config
->arch()));
919 if (!checkCompatibility(this))
922 for (auto *cmd
: findCommands
<linker_option_command
>(hdr
, LC_LINKER_OPTION
)) {
923 StringRef data
{reinterpret_cast<const char *>(cmd
+ 1),
924 cmd
->cmdsize
- sizeof(linker_option_command
)};
925 parseLCLinkerOption(this, cmd
->count
, data
);
928 ArrayRef
<SectionHeader
> sectionHeaders
;
929 if (const load_command
*cmd
= findCommand(hdr
, LP::segmentLCType
)) {
930 auto *c
= reinterpret_cast<const SegmentCommand
*>(cmd
);
931 sectionHeaders
= ArrayRef
<SectionHeader
>{
932 reinterpret_cast<const SectionHeader
*>(c
+ 1), c
->nsects
};
933 parseSections(sectionHeaders
);
936 // TODO: Error on missing LC_SYMTAB?
937 if (const load_command
*cmd
= findCommand(hdr
, LC_SYMTAB
)) {
938 auto *c
= reinterpret_cast<const symtab_command
*>(cmd
);
939 ArrayRef
<NList
> nList(reinterpret_cast<const NList
*>(buf
+ c
->symoff
),
941 const char *strtab
= reinterpret_cast<const char *>(buf
) + c
->stroff
;
942 bool subsectionsViaSymbols
= hdr
->flags
& MH_SUBSECTIONS_VIA_SYMBOLS
;
943 parseSymbols
<LP
>(sectionHeaders
, nList
, strtab
, subsectionsViaSymbols
);
946 // The relocations may refer to the symbols, so we parse them after we have
947 // parsed all the symbols.
948 for (size_t i
= 0, n
= sections
.size(); i
< n
; ++i
)
949 if (!sections
[i
]->subsections
.empty())
950 parseRelocations(sectionHeaders
, sectionHeaders
[i
], *sections
[i
]);
954 Section
*ehFrameSection
= nullptr;
955 Section
*compactUnwindSection
= nullptr;
956 for (Section
*sec
: sections
) {
957 Section
**s
= StringSwitch
<Section
**>(sec
->name
)
958 .Case(section_names::compactUnwind
, &compactUnwindSection
)
959 .Case(section_names::ehFrame
, &ehFrameSection
)
964 if (compactUnwindSection
)
965 registerCompactUnwind(*compactUnwindSection
);
966 if (config
->parseEhFrames
&& ehFrameSection
)
967 registerEhFrames(*ehFrameSection
);
970 template <class LP
> void ObjFile::parseLazy() {
971 using Header
= typename
LP::mach_header
;
972 using NList
= typename
LP::nlist
;
974 auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
975 auto *hdr
= reinterpret_cast<const Header
*>(mb
.getBufferStart());
976 const load_command
*cmd
= findCommand(hdr
, LC_SYMTAB
);
979 auto *c
= reinterpret_cast<const symtab_command
*>(cmd
);
980 ArrayRef
<NList
> nList(reinterpret_cast<const NList
*>(buf
+ c
->symoff
),
982 const char *strtab
= reinterpret_cast<const char *>(buf
) + c
->stroff
;
983 symbols
.resize(nList
.size());
984 for (auto it
: llvm::enumerate(nList
)) {
985 const NList
&sym
= it
.value();
986 if ((sym
.n_type
& N_EXT
) && !isUndef(sym
)) {
987 // TODO: Bound checking
988 StringRef name
= strtab
+ sym
.n_strx
;
989 symbols
[it
.index()] = symtab
->addLazyObject(name
, *this);
996 void ObjFile::parseDebugInfo() {
997 std::unique_ptr
<DwarfObject
> dObj
= DwarfObject::create(this);
1001 auto *ctx
= make
<DWARFContext
>(
1002 std::move(dObj
), "",
1004 warn(toString(this) + ": " + toString(std::move(err
)));
1006 [&](Error warning
) {
1007 warn(toString(this) + ": " + toString(std::move(warning
)));
1010 // TODO: Since object files can contain a lot of DWARF info, we should verify
1011 // that we are parsing just the info we need
1012 const DWARFContext::compile_unit_range
&units
= ctx
->compile_units();
1013 // FIXME: There can be more than one compile unit per object file. See
1015 auto it
= units
.begin();
1016 compileUnit
= it
->get();
1019 ArrayRef
<data_in_code_entry
> ObjFile::getDataInCode() const {
1020 const auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
1021 const load_command
*cmd
= findCommand(buf
, LC_DATA_IN_CODE
);
1024 const auto *c
= reinterpret_cast<const linkedit_data_command
*>(cmd
);
1025 return {reinterpret_cast<const data_in_code_entry
*>(buf
+ c
->dataoff
),
1026 c
->datasize
/ sizeof(data_in_code_entry
)};
1029 // Create pointers from symbols to their associated compact unwind entries.
1030 void ObjFile::registerCompactUnwind(Section
&compactUnwindSection
) {
1031 for (const Subsection
&subsection
: compactUnwindSection
.subsections
) {
1032 ConcatInputSection
*isec
= cast
<ConcatInputSection
>(subsection
.isec
);
1033 // Hack!! Since each CUE contains a different function address, if ICF
1034 // operated naively and compared the entire contents of each CUE, entries
1035 // with identical unwind info but belonging to different functions would
1036 // never be considered equivalent. To work around this problem, we slice
1037 // away the function address here. (Note that we do not adjust the offsets
1038 // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
1039 // to correctly handle these truncated input sections.
1040 isec
->data
= isec
->data
.slice(target
->wordSize
);
1041 uint32_t encoding
= read32le(isec
->data
.data() + sizeof(uint32_t));
1042 // llvm-mc omits CU entries for functions that need DWARF encoding, but
1043 // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1044 // CU entries from the DWARF info during the output phase.
1045 if ((encoding
& target
->modeDwarfEncoding
) == target
->modeDwarfEncoding
)
1048 ConcatInputSection
*referentIsec
;
1049 for (auto it
= isec
->relocs
.begin(); it
!= isec
->relocs
.end();) {
1051 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1052 if (r
.offset
!= 0) {
1056 uint64_t add
= r
.addend
;
1057 if (auto *sym
= cast_or_null
<Defined
>(r
.referent
.dyn_cast
<Symbol
*>())) {
1058 // Check whether the symbol defined in this file is the prevailing one.
1059 // Skip if it is e.g. a weak def that didn't prevail.
1060 if (sym
->getFile() != this) {
1065 referentIsec
= cast
<ConcatInputSection
>(sym
->isec
);
1068 cast
<ConcatInputSection
>(r
.referent
.dyn_cast
<InputSection
*>());
1070 // Unwind info lives in __DATA, and finalization of __TEXT will occur
1071 // before finalization of __DATA. Moreover, the finalization of unwind
1072 // info depends on the exact addresses that it references. So it is safe
1073 // for compact unwind to reference addresses in __TEXT, but not addresses
1074 // in any other segment.
1075 if (referentIsec
->getSegName() != segment_names::text
)
1076 error(isec
->getLocation(r
.offset
) + " references section " +
1077 referentIsec
->getName() + " which is not in segment __TEXT");
1078 // The functionAddress relocations are typically section relocations.
1079 // However, unwind info operates on a per-symbol basis, so we search for
1080 // the function symbol here.
1081 Defined
*d
= findSymbolAtOffset(referentIsec
, add
);
1086 d
->unwindEntry
= isec
;
1087 // Since we've sliced away the functionAddress, we should remove the
1088 // corresponding relocation too. Given that clang emits relocations in
1089 // reverse order of address, this relocation should be at the end of the
1090 // vector for most of our input object files, so this is typically an O(1)
1092 it
= isec
->relocs
.erase(it
);
1098 macho::Symbol
*personalitySymbol
= nullptr;
1099 bool fdesHaveLsda
= false;
1100 bool fdesHaveAug
= false;
1103 static CIE
parseCIE(const InputSection
*isec
, const EhReader
&reader
,
1105 // Handling the full generality of possible DWARF encodings would be a major
1106 // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1107 // DWARF and handle just that.
1108 constexpr uint8_t expectedPersonalityEnc
=
1109 dwarf::DW_EH_PE_pcrel
| dwarf::DW_EH_PE_indirect
| dwarf::DW_EH_PE_sdata4
;
1110 constexpr uint8_t expectedPointerEnc
=
1111 dwarf::DW_EH_PE_pcrel
| dwarf::DW_EH_PE_absptr
;
1114 uint8_t version
= reader
.readByte(&off
);
1115 if (version
!= 1 && version
!= 3)
1116 fatal("Expected CIE version of 1 or 3, got " + Twine(version
));
1117 StringRef aug
= reader
.readString(&off
);
1118 reader
.skipLeb128(&off
); // skip code alignment
1119 reader
.skipLeb128(&off
); // skip data alignment
1120 reader
.skipLeb128(&off
); // skip return address register
1121 reader
.skipLeb128(&off
); // skip aug data length
1122 uint64_t personalityAddrOff
= 0;
1123 for (char c
: aug
) {
1126 cie
.fdesHaveAug
= true;
1129 uint8_t personalityEnc
= reader
.readByte(&off
);
1130 if (personalityEnc
!= expectedPersonalityEnc
)
1131 reader
.failOn(off
, "unexpected personality encoding 0x" +
1132 Twine::utohexstr(personalityEnc
));
1133 personalityAddrOff
= off
;
1138 cie
.fdesHaveLsda
= true;
1139 uint8_t lsdaEnc
= reader
.readByte(&off
);
1140 if (lsdaEnc
!= expectedPointerEnc
)
1141 reader
.failOn(off
, "unexpected LSDA encoding 0x" +
1142 Twine::utohexstr(lsdaEnc
));
1146 uint8_t pointerEnc
= reader
.readByte(&off
);
1147 if (pointerEnc
!= expectedPointerEnc
)
1148 reader
.failOn(off
, "unexpected pointer encoding 0x" +
1149 Twine::utohexstr(pointerEnc
));
1156 if (personalityAddrOff
!= 0) {
1157 auto personalityRelocIt
=
1158 llvm::find_if(isec
->relocs
, [=](const macho::Reloc
&r
) {
1159 return r
.offset
== personalityAddrOff
;
1161 if (personalityRelocIt
== isec
->relocs
.end())
1162 reader
.failOn(off
, "Failed to locate relocation for personality symbol");
1163 cie
.personalitySymbol
= personalityRelocIt
->referent
.get
<macho::Symbol
*>();
1168 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1169 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1170 // This function recovers the target address from the subtractors, essentially
1171 // performing the inverse operation of EhRelocator.
1173 // Concretely, we expect our relocations to write the value of `PC -
1174 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1175 // points to a symbol plus an addend.
1177 // It is important that the minuend relocation point to a symbol within the
1178 // same section as the fixup value, since sections may get moved around.
1180 // For example, for arm64, llvm-mc emits relocations for the target function
1187 // ... multiple FDEs ...
1189 // <target function address - (ltmp + pcrel offset)>
1192 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1193 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1194 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1195 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1196 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1198 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1200 template <bool Invert
= false>
1202 targetSymFromCanonicalSubtractor(const InputSection
*isec
,
1203 std::vector
<macho::Reloc
>::iterator relocIt
) {
1204 macho::Reloc
&subtrahend
= *relocIt
;
1205 macho::Reloc
&minuend
= *std::next(relocIt
);
1206 assert(target
->hasAttr(subtrahend
.type
, RelocAttrBits::SUBTRAHEND
));
1207 assert(target
->hasAttr(minuend
.type
, RelocAttrBits::UNSIGNED
));
1208 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1210 auto *pcSym
= cast
<Defined
>(subtrahend
.referent
.get
<macho::Symbol
*>());
1212 cast_or_null
<Defined
>(minuend
.referent
.dyn_cast
<macho::Symbol
*>());
1215 cast
<ConcatInputSection
>(minuend
.referent
.get
<InputSection
*>());
1216 target
= findSymbolAtOffset(targetIsec
, minuend
.addend
);
1219 std::swap(pcSym
, target
);
1220 if (pcSym
->isec
== isec
) {
1221 if (pcSym
->value
- (Invert
? -1 : 1) * minuend
.addend
!= subtrahend
.offset
)
1222 fatal("invalid FDE relocation in __eh_frame");
1224 // Ensure the pcReloc points to a symbol within the current EH frame.
1225 // HACK: we should really verify that the original relocation's semantics
1226 // are preserved. In particular, we should have
1227 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1228 // have an easy way to access the offsets from this point in the code; some
1229 // refactoring is needed for that.
1230 macho::Reloc
&pcReloc
= Invert
? minuend
: subtrahend
;
1231 pcReloc
.referent
= isec
->symbols
[0];
1232 assert(isec
->symbols
[0]->value
== 0);
1233 minuend
.addend
= pcReloc
.offset
* (Invert
? 1LL : -1LL);
1238 Defined
*findSymbolAtAddress(const std::vector
<Section
*> §ions
,
1240 Section
*sec
= findContainingSection(sections
, &addr
);
1241 auto *isec
= cast
<ConcatInputSection
>(findContainingSubsection(*sec
, &addr
));
1242 return findSymbolAtOffset(isec
, addr
);
1245 // For symbols that don't have compact unwind info, associate them with the more
1246 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1248 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1249 // description of its format.
1251 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1252 // are relocations which are implicitly encoded as offsets in the section data.
1253 // We convert them into explicit Reloc structs so that the EH frames can be
1254 // handled just like a regular ConcatInputSection later in our output phase.
1256 // We also need to handle the case where our input object file has explicit
1257 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1258 // look for the "abs-ified" relocation if an explicit relocation is absent.
1259 void ObjFile::registerEhFrames(Section
&ehFrameSection
) {
1260 DenseMap
<const InputSection
*, CIE
> cieMap
;
1261 for (const Subsection
&subsec
: ehFrameSection
.subsections
) {
1262 auto *isec
= cast
<ConcatInputSection
>(subsec
.isec
);
1263 uint64_t isecOff
= subsec
.offset
;
1265 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1266 // that all EH frames have an associated symbol so that we can generate
1267 // subtractor relocs that reference them.
1268 if (isec
->symbols
.size() == 0)
1269 isec
->symbols
.push_back(make
<Defined
>(
1270 "EH_Frame", isec
->getFile(), isec
, /*value=*/0, /*size=*/0,
1271 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1272 /*includeInSymtab=*/false, /*isThumb=*/false,
1273 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1274 else if (isec
->symbols
[0]->value
!= 0)
1275 fatal("found symbol at unexpected offset in __eh_frame");
1277 EhReader
reader(this, isec
->data
, subsec
.offset
, target
->wordSize
);
1278 size_t dataOff
= 0; // Offset from the start of the EH frame.
1279 reader
.skipValidLength(&dataOff
); // readLength() already validated this.
1280 // cieOffOff is the offset from the start of the EH frame to the cieOff
1281 // value, which is itself an offset from the current PC to a CIE.
1282 const size_t cieOffOff
= dataOff
;
1284 EhRelocator
ehRelocator(isec
);
1285 auto cieOffRelocIt
= llvm::find_if(
1286 isec
->relocs
, [=](const Reloc
&r
) { return r
.offset
== cieOffOff
; });
1287 InputSection
*cieIsec
= nullptr;
1288 if (cieOffRelocIt
!= isec
->relocs
.end()) {
1289 // We already have an explicit relocation for the CIE offset.
1291 targetSymFromCanonicalSubtractor
</*Invert=*/true>(isec
, cieOffRelocIt
)
1293 dataOff
+= sizeof(uint32_t);
1295 // If we haven't found a relocation, then the CIE offset is most likely
1296 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1297 // and generate a Reloc struct.
1298 uint32_t cieMinuend
= reader
.readU32(&dataOff
);
1299 if (cieMinuend
== 0)
1302 uint32_t cieOff
= isecOff
+ dataOff
- cieMinuend
;
1303 cieIsec
= findContainingSubsection(ehFrameSection
, &cieOff
);
1304 if (cieIsec
== nullptr)
1305 fatal("failed to find CIE");
1307 if (cieIsec
!= isec
)
1308 ehRelocator
.makeNegativePcRel(cieOffOff
, cieIsec
->symbols
[0],
1311 if (cieIsec
== isec
) {
1312 cieMap
[cieIsec
] = parseCIE(isec
, reader
, dataOff
);
1316 // Offset of the function address within the EH frame.
1317 const size_t funcAddrOff
= dataOff
;
1318 uint64_t funcAddr
= reader
.readPointer(&dataOff
) + ehFrameSection
.addr
+
1319 isecOff
+ funcAddrOff
;
1320 uint32_t funcLength
= reader
.readPointer(&dataOff
);
1321 size_t lsdaAddrOff
= 0; // Offset of the LSDA address within the EH frame.
1322 assert(cieMap
.count(cieIsec
));
1323 const CIE
&cie
= cieMap
[cieIsec
];
1324 Optional
<uint64_t> lsdaAddrOpt
;
1325 if (cie
.fdesHaveAug
) {
1326 reader
.skipLeb128(&dataOff
);
1327 lsdaAddrOff
= dataOff
;
1328 if (cie
.fdesHaveLsda
) {
1329 uint64_t lsdaOff
= reader
.readPointer(&dataOff
);
1330 if (lsdaOff
!= 0) // FIXME possible to test this?
1331 lsdaAddrOpt
= ehFrameSection
.addr
+ isecOff
+ lsdaAddrOff
+ lsdaOff
;
1335 auto funcAddrRelocIt
= isec
->relocs
.end();
1336 auto lsdaAddrRelocIt
= isec
->relocs
.end();
1337 for (auto it
= isec
->relocs
.begin(); it
!= isec
->relocs
.end(); ++it
) {
1338 if (it
->offset
== funcAddrOff
)
1339 funcAddrRelocIt
= it
++; // Found subtrahend; skip over minuend reloc
1340 else if (lsdaAddrOpt
&& it
->offset
== lsdaAddrOff
)
1341 lsdaAddrRelocIt
= it
++; // Found subtrahend; skip over minuend reloc
1345 if (funcAddrRelocIt
!= isec
->relocs
.end()) {
1346 funcSym
= targetSymFromCanonicalSubtractor(isec
, funcAddrRelocIt
);
1348 funcSym
= findSymbolAtAddress(sections
, funcAddr
);
1349 ehRelocator
.makePcRel(funcAddrOff
, funcSym
, target
->p2WordSize
);
1351 // The symbol has been coalesced, or already has a compact unwind entry.
1352 if (!funcSym
|| funcSym
->getFile() != this || funcSym
->unwindEntry
) {
1353 // We must prune unused FDEs for correctness, so we cannot rely on
1354 // -dead_strip being enabled.
1359 InputSection
*lsdaIsec
= nullptr;
1360 if (lsdaAddrRelocIt
!= isec
->relocs
.end()) {
1361 lsdaIsec
= targetSymFromCanonicalSubtractor(isec
, lsdaAddrRelocIt
)->isec
;
1362 } else if (lsdaAddrOpt
) {
1363 uint64_t lsdaAddr
= *lsdaAddrOpt
;
1364 Section
*sec
= findContainingSection(sections
, &lsdaAddr
);
1366 cast
<ConcatInputSection
>(findContainingSubsection(*sec
, &lsdaAddr
));
1367 ehRelocator
.makePcRel(lsdaAddrOff
, lsdaIsec
, target
->p2WordSize
);
1370 fdes
[isec
] = {funcLength
, cie
.personalitySymbol
, lsdaIsec
};
1371 funcSym
->unwindEntry
= isec
;
1372 ehRelocator
.commit();
1376 // The path can point to either a dylib or a .tbd file.
1377 static DylibFile
*loadDylib(StringRef path
, DylibFile
*umbrella
) {
1378 Optional
<MemoryBufferRef
> mbref
= readFile(path
);
1380 error("could not read dylib file at " + path
);
1383 return loadDylib(*mbref
, umbrella
);
1386 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1387 // the first document storing child pointers to the rest of them. When we are
1388 // processing a given TBD file, we store that top-level document in
1389 // currentTopLevelTapi. When processing re-exports, we search its children for
1390 // potentially matching documents in the same TBD file. Note that the children
1391 // themselves don't point to further documents, i.e. this is a two-level tree.
1393 // Re-exports can either refer to on-disk files, or to documents within .tbd
1395 static DylibFile
*findDylib(StringRef path
, DylibFile
*umbrella
,
1396 const InterfaceFile
*currentTopLevelTapi
) {
1398 // 1. Install name basename in -F / -L directories.
1400 StringRef stem
= path::stem(path
);
1401 SmallString
<128> frameworkName
;
1402 path::append(frameworkName
, path::Style::posix
, stem
+ ".framework", stem
);
1403 bool isFramework
= path
.endswith(frameworkName
);
1405 for (StringRef dir
: config
->frameworkSearchPaths
) {
1406 SmallString
<128> candidate
= dir
;
1407 path::append(candidate
, frameworkName
);
1408 if (Optional
<StringRef
> dylibPath
= resolveDylibPath(candidate
.str()))
1409 return loadDylib(*dylibPath
, umbrella
);
1411 } else if (Optional
<StringRef
> dylibPath
= findPathCombination(
1412 stem
, config
->librarySearchPaths
, {".tbd", ".dylib"}))
1413 return loadDylib(*dylibPath
, umbrella
);
1416 // 2. As absolute path.
1417 if (path::is_absolute(path
, path::Style::posix
))
1418 for (StringRef root
: config
->systemLibraryRoots
)
1419 if (Optional
<StringRef
> dylibPath
= resolveDylibPath((root
+ path
).str()))
1420 return loadDylib(*dylibPath
, umbrella
);
1422 // 3. As relative path.
1424 // TODO: Handle -dylib_file
1426 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1427 SmallString
<128> newPath
;
1428 if (config
->outputType
== MH_EXECUTE
&&
1429 path
.consume_front("@executable_path/")) {
1430 // ld64 allows overriding this with the undocumented flag -executable_path.
1431 // lld doesn't currently implement that flag.
1432 // FIXME: Consider using finalOutput instead of outputFile.
1433 path::append(newPath
, path::parent_path(config
->outputFile
), path
);
1435 } else if (path
.consume_front("@loader_path/")) {
1436 fs::real_path(umbrella
->getName(), newPath
);
1437 path::remove_filename(newPath
);
1438 path::append(newPath
, path
);
1440 } else if (path
.startswith("@rpath/")) {
1441 for (StringRef rpath
: umbrella
->rpaths
) {
1443 if (rpath
.consume_front("@loader_path/")) {
1444 fs::real_path(umbrella
->getName(), newPath
);
1445 path::remove_filename(newPath
);
1447 path::append(newPath
, rpath
, path
.drop_front(strlen("@rpath/")));
1448 if (Optional
<StringRef
> dylibPath
= resolveDylibPath(newPath
.str()))
1449 return loadDylib(*dylibPath
, umbrella
);
1453 // FIXME: Should this be further up?
1454 if (currentTopLevelTapi
) {
1455 for (InterfaceFile
&child
:
1456 make_pointee_range(currentTopLevelTapi
->documents())) {
1457 assert(child
.documents().empty());
1458 if (path
== child
.getInstallName()) {
1459 auto file
= make
<DylibFile
>(child
, umbrella
, /*isBundleLoader=*/false,
1460 /*explicitlyLinked=*/false);
1461 file
->parseReexports(child
);
1467 if (Optional
<StringRef
> dylibPath
= resolveDylibPath(path
))
1468 return loadDylib(*dylibPath
, umbrella
);
1473 // If a re-exported dylib is public (lives in /usr/lib or
1474 // /System/Library/Frameworks), then it is considered implicitly linked: we
1475 // should bind to its symbols directly instead of via the re-exporting umbrella
1477 static bool isImplicitlyLinked(StringRef path
) {
1478 if (!config
->implicitDylibs
)
1481 if (path::parent_path(path
) == "/usr/lib")
1484 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1485 if (path
.consume_front("/System/Library/Frameworks/")) {
1486 StringRef frameworkName
= path
.take_until([](char c
) { return c
== '.'; });
1487 return path::filename(path
) == frameworkName
;
1493 static void loadReexport(StringRef path
, DylibFile
*umbrella
,
1494 const InterfaceFile
*currentTopLevelTapi
) {
1495 DylibFile
*reexport
= findDylib(path
, umbrella
, currentTopLevelTapi
);
1497 error("unable to locate re-export with install name " + path
);
1500 DylibFile::DylibFile(MemoryBufferRef mb
, DylibFile
*umbrella
,
1501 bool isBundleLoader
, bool explicitlyLinked
)
1502 : InputFile(DylibKind
, mb
), refState(RefState::Unreferenced
),
1503 explicitlyLinked(explicitlyLinked
), isBundleLoader(isBundleLoader
) {
1504 assert(!isBundleLoader
|| !umbrella
);
1505 if (umbrella
== nullptr)
1507 this->umbrella
= umbrella
;
1509 auto *buf
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart());
1510 auto *hdr
= reinterpret_cast<const mach_header
*>(mb
.getBufferStart());
1512 // Initialize installName.
1513 if (const load_command
*cmd
= findCommand(hdr
, LC_ID_DYLIB
)) {
1514 auto *c
= reinterpret_cast<const dylib_command
*>(cmd
);
1515 currentVersion
= read32le(&c
->dylib
.current_version
);
1516 compatibilityVersion
= read32le(&c
->dylib
.compatibility_version
);
1518 reinterpret_cast<const char *>(cmd
) + read32le(&c
->dylib
.name
);
1519 } else if (!isBundleLoader
) {
1520 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1522 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1526 if (config
->printEachFile
)
1527 message(toString(this));
1528 inputFiles
.insert(this);
1530 deadStrippable
= hdr
->flags
& MH_DEAD_STRIPPABLE_DYLIB
;
1532 if (!checkCompatibility(this))
1535 checkAppExtensionSafety(hdr
->flags
& MH_APP_EXTENSION_SAFE
);
1537 for (auto *cmd
: findCommands
<rpath_command
>(hdr
, LC_RPATH
)) {
1538 StringRef rpath
{reinterpret_cast<const char *>(cmd
) + cmd
->path
};
1539 rpaths
.push_back(rpath
);
1542 // Initialize symbols.
1543 exportingFile
= isImplicitlyLinked(installName
) ? this : this->umbrella
;
1544 if (const load_command
*cmd
= findCommand(hdr
, LC_DYLD_INFO_ONLY
)) {
1545 auto *c
= reinterpret_cast<const dyld_info_command
*>(cmd
);
1551 std::vector
<TrieEntry
> entries
;
1552 // Find all the $ld$* symbols to process first.
1553 parseTrie(buf
+ c
->export_off
, c
->export_size
,
1554 [&](const Twine
&name
, uint64_t flags
) {
1555 StringRef savedName
= saver().save(name
);
1556 if (handleLDSymbol(savedName
))
1558 entries
.push_back({savedName
, flags
});
1561 // Process the "normal" symbols.
1562 for (TrieEntry
&entry
: entries
) {
1563 if (exportingFile
->hiddenSymbols
.contains(
1564 CachedHashStringRef(entry
.name
)))
1567 bool isWeakDef
= entry
.flags
& EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION
;
1568 bool isTlv
= entry
.flags
& EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL
;
1571 symtab
->addDylib(entry
.name
, exportingFile
, isWeakDef
, isTlv
));
1575 error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1580 void DylibFile::parseLoadCommands(MemoryBufferRef mb
) {
1581 auto *hdr
= reinterpret_cast<const mach_header
*>(mb
.getBufferStart());
1582 const uint8_t *p
= reinterpret_cast<const uint8_t *>(mb
.getBufferStart()) +
1584 for (uint32_t i
= 0, n
= hdr
->ncmds
; i
< n
; ++i
) {
1585 auto *cmd
= reinterpret_cast<const load_command
*>(p
);
1588 if (!(hdr
->flags
& MH_NO_REEXPORTED_DYLIBS
) &&
1589 cmd
->cmd
== LC_REEXPORT_DYLIB
) {
1590 const auto *c
= reinterpret_cast<const dylib_command
*>(cmd
);
1591 StringRef reexportPath
=
1592 reinterpret_cast<const char *>(c
) + read32le(&c
->dylib
.name
);
1593 loadReexport(reexportPath
, exportingFile
, nullptr);
1596 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1597 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1598 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1599 if (config
->namespaceKind
== NamespaceKind::flat
&&
1600 cmd
->cmd
== LC_LOAD_DYLIB
) {
1601 const auto *c
= reinterpret_cast<const dylib_command
*>(cmd
);
1602 StringRef dylibPath
=
1603 reinterpret_cast<const char *>(c
) + read32le(&c
->dylib
.name
);
1604 DylibFile
*dylib
= findDylib(dylibPath
, umbrella
, nullptr);
1606 error(Twine("unable to locate library '") + dylibPath
+
1607 "' loaded from '" + toString(this) + "' for -flat_namespace");
1612 // Some versions of Xcode ship with .tbd files that don't have the right
1613 // platform settings.
1614 constexpr std::array
<StringRef
, 3> skipPlatformChecks
{
1615 "/usr/lib/system/libsystem_kernel.dylib",
1616 "/usr/lib/system/libsystem_platform.dylib",
1617 "/usr/lib/system/libsystem_pthread.dylib"};
1619 static bool skipPlatformCheckForCatalyst(const InterfaceFile
&interface
,
1620 bool explicitlyLinked
) {
1621 // Catalyst outputs can link against implicitly linked macOS-only libraries.
1622 if (config
->platform() != PLATFORM_MACCATALYST
|| explicitlyLinked
)
1624 return is_contained(interface
.targets(),
1625 MachO::Target(config
->arch(), PLATFORM_MACOS
));
1628 DylibFile::DylibFile(const InterfaceFile
&interface
, DylibFile
*umbrella
,
1629 bool isBundleLoader
, bool explicitlyLinked
)
1630 : InputFile(DylibKind
, interface
), refState(RefState::Unreferenced
),
1631 explicitlyLinked(explicitlyLinked
), isBundleLoader(isBundleLoader
) {
1632 // FIXME: Add test for the missing TBD code path.
1634 if (umbrella
== nullptr)
1636 this->umbrella
= umbrella
;
1638 installName
= saver().save(interface
.getInstallName());
1639 compatibilityVersion
= interface
.getCompatibilityVersion().rawValue();
1640 currentVersion
= interface
.getCurrentVersion().rawValue();
1642 if (config
->printEachFile
)
1643 message(toString(this));
1644 inputFiles
.insert(this);
1646 if (!is_contained(skipPlatformChecks
, installName
) &&
1647 !is_contained(interface
.targets(), config
->platformInfo
.target
) &&
1648 !skipPlatformCheckForCatalyst(interface
, explicitlyLinked
)) {
1649 error(toString(this) + " is incompatible with " +
1650 std::string(config
->platformInfo
.target
));
1654 checkAppExtensionSafety(interface
.isApplicationExtensionSafe());
1656 exportingFile
= isImplicitlyLinked(installName
) ? this : umbrella
;
1657 auto addSymbol
= [&](const Twine
&name
) -> void {
1658 StringRef savedName
= saver().save(name
);
1659 if (exportingFile
->hiddenSymbols
.contains(CachedHashStringRef(savedName
)))
1662 symbols
.push_back(symtab
->addDylib(savedName
, exportingFile
,
1663 /*isWeakDef=*/false,
1667 std::vector
<const llvm::MachO::Symbol
*> normalSymbols
;
1668 normalSymbols
.reserve(interface
.symbolsCount());
1669 for (const auto *symbol
: interface
.symbols()) {
1670 if (!symbol
->getArchitectures().has(config
->arch()))
1672 if (handleLDSymbol(symbol
->getName()))
1675 switch (symbol
->getKind()) {
1676 case SymbolKind::GlobalSymbol
: // Fallthrough
1677 case SymbolKind::ObjectiveCClass
: // Fallthrough
1678 case SymbolKind::ObjectiveCClassEHType
: // Fallthrough
1679 case SymbolKind::ObjectiveCInstanceVariable
: // Fallthrough
1680 normalSymbols
.push_back(symbol
);
1684 // TODO(compnerd) filter out symbols based on the target platform
1685 // TODO: handle weak defs, thread locals
1686 for (const auto *symbol
: normalSymbols
) {
1687 switch (symbol
->getKind()) {
1688 case SymbolKind::GlobalSymbol
:
1689 addSymbol(symbol
->getName());
1691 case SymbolKind::ObjectiveCClass
:
1692 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1693 // want to emulate that.
1694 addSymbol(objc::klass
+ symbol
->getName());
1695 addSymbol(objc::metaclass
+ symbol
->getName());
1697 case SymbolKind::ObjectiveCClassEHType
:
1698 addSymbol(objc::ehtype
+ symbol
->getName());
1700 case SymbolKind::ObjectiveCInstanceVariable
:
1701 addSymbol(objc::ivar
+ symbol
->getName());
1707 void DylibFile::parseReexports(const InterfaceFile
&interface
) {
1708 const InterfaceFile
*topLevel
=
1709 interface
.getParent() == nullptr ? &interface
: interface
.getParent();
1710 for (const InterfaceFileRef
&intfRef
: interface
.reexportedLibraries()) {
1711 InterfaceFile::const_target_range targets
= intfRef
.targets();
1712 if (is_contained(skipPlatformChecks
, intfRef
.getInstallName()) ||
1713 is_contained(targets
, config
->platformInfo
.target
))
1714 loadReexport(intfRef
.getInstallName(), exportingFile
, topLevel
);
1718 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1719 // name, compatibility version or hide/add symbols) for specific target
1721 bool DylibFile::handleLDSymbol(StringRef originalName
) {
1722 if (!originalName
.startswith("$ld$"))
1727 std::tie(action
, name
) = originalName
.drop_front(strlen("$ld$")).split('$');
1728 if (action
== "previous")
1729 handleLDPreviousSymbol(name
, originalName
);
1730 else if (action
== "install_name")
1731 handleLDInstallNameSymbol(name
, originalName
);
1732 else if (action
== "hide")
1733 handleLDHideSymbol(name
, originalName
);
1737 void DylibFile::handleLDPreviousSymbol(StringRef name
, StringRef originalName
) {
1738 // originalName: $ld$ previous $ <installname> $ <compatversion> $
1739 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1740 StringRef installName
;
1741 StringRef compatVersion
;
1742 StringRef platformStr
;
1743 StringRef startVersion
;
1744 StringRef endVersion
;
1745 StringRef symbolName
;
1748 std::tie(installName
, name
) = name
.split('$');
1749 std::tie(compatVersion
, name
) = name
.split('$');
1750 std::tie(platformStr
, name
) = name
.split('$');
1751 std::tie(startVersion
, name
) = name
.split('$');
1752 std::tie(endVersion
, name
) = name
.split('$');
1753 std::tie(symbolName
, rest
) = name
.split('$');
1754 // TODO: ld64 contains some logic for non-empty symbolName as well.
1755 if (!symbolName
.empty())
1758 if (platformStr
.getAsInteger(10, platform
) ||
1759 platform
!= static_cast<unsigned>(config
->platform()))
1763 if (start
.tryParse(startVersion
)) {
1764 warn("failed to parse start version, symbol '" + originalName
+
1769 if (end
.tryParse(endVersion
)) {
1770 warn("failed to parse end version, symbol '" + originalName
+ "' ignored");
1773 if (config
->platformInfo
.minimum
< start
||
1774 config
->platformInfo
.minimum
>= end
)
1777 this->installName
= saver().save(installName
);
1779 if (!compatVersion
.empty()) {
1780 VersionTuple cVersion
;
1781 if (cVersion
.tryParse(compatVersion
)) {
1782 warn("failed to parse compatibility version, symbol '" + originalName
+
1786 compatibilityVersion
= encodeVersion(cVersion
);
1790 void DylibFile::handleLDInstallNameSymbol(StringRef name
,
1791 StringRef originalName
) {
1792 // originalName: $ld$ install_name $ os<version> $ install_name
1793 StringRef condition
, installName
;
1794 std::tie(condition
, installName
) = name
.split('$');
1795 VersionTuple version
;
1796 if (!condition
.consume_front("os") || version
.tryParse(condition
))
1797 warn("failed to parse os version, symbol '" + originalName
+ "' ignored");
1798 else if (version
== config
->platformInfo
.minimum
)
1799 this->installName
= saver().save(installName
);
1802 void DylibFile::handleLDHideSymbol(StringRef name
, StringRef originalName
) {
1803 StringRef symbolName
;
1804 bool shouldHide
= true;
1805 if (name
.startswith("os")) {
1806 // If it's hidden based on versions.
1807 name
= name
.drop_front(2);
1808 StringRef minVersion
;
1809 std::tie(minVersion
, symbolName
) = name
.split('$');
1810 VersionTuple versionTup
;
1811 if (versionTup
.tryParse(minVersion
)) {
1812 warn("Failed to parse hidden version, symbol `" + originalName
+
1816 shouldHide
= versionTup
== config
->platformInfo
.minimum
;
1822 exportingFile
->hiddenSymbols
.insert(CachedHashStringRef(symbolName
));
1825 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe
) const {
1826 if (config
->applicationExtension
&& !dylibIsAppExtensionSafe
)
1827 warn("using '-application_extension' with unsafe dylib: " + toString(this));
1830 ArchiveFile::ArchiveFile(std::unique_ptr
<object::Archive
> &&f
)
1831 : InputFile(ArchiveKind
, f
->getMemoryBufferRef()), file(std::move(f
)) {}
1833 void ArchiveFile::addLazySymbols() {
1834 for (const object::Archive::Symbol
&sym
: file
->symbols())
1835 symtab
->addLazyArchive(sym
.getName(), this, sym
);
1838 static Expected
<InputFile
*> loadArchiveMember(MemoryBufferRef mb
,
1840 StringRef archiveName
,
1841 uint64_t offsetInArchive
) {
1842 if (config
->zeroModTime
)
1845 switch (identify_magic(mb
.getBuffer())) {
1846 case file_magic::macho_object
:
1847 return make
<ObjFile
>(mb
, modTime
, archiveName
);
1848 case file_magic::bitcode
:
1849 return make
<BitcodeFile
>(mb
, archiveName
, offsetInArchive
);
1851 return createStringError(inconvertibleErrorCode(),
1852 mb
.getBufferIdentifier() +
1853 " has unhandled file type");
1857 Error
ArchiveFile::fetch(const object::Archive::Child
&c
, StringRef reason
) {
1858 if (!seen
.insert(c
.getChildOffset()).second
)
1859 return Error::success();
1861 Expected
<MemoryBufferRef
> mb
= c
.getMemoryBufferRef();
1863 return mb
.takeError();
1865 // Thin archives refer to .o files, so --reproduce needs the .o files too.
1866 if (tar
&& c
.getParent()->isThin())
1867 tar
->append(relativeToRoot(CHECK(c
.getFullName(), this)), mb
->getBuffer());
1869 Expected
<TimePoint
<std::chrono::seconds
>> modTime
= c
.getLastModified();
1871 return modTime
.takeError();
1873 Expected
<InputFile
*> file
=
1874 loadArchiveMember(*mb
, toTimeT(*modTime
), getName(), c
.getChildOffset());
1877 return file
.takeError();
1879 inputFiles
.insert(*file
);
1880 printArchiveMemberLoad(reason
, *file
);
1881 return Error::success();
1884 void ArchiveFile::fetch(const object::Archive::Symbol
&sym
) {
1885 object::Archive::Child c
=
1886 CHECK(sym
.getMember(), toString(this) +
1887 ": could not get the member defining symbol " +
1888 toMachOString(sym
));
1890 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1891 // and become invalid after that call. Copy it to the stack so we can refer
1893 const object::Archive::Symbol symCopy
= sym
;
1895 // ld64 doesn't demangle sym here even with -demangle.
1896 // Match that: intentionally don't call toMachOString().
1897 if (Error e
= fetch(c
, symCopy
.getName()))
1898 error(toString(this) + ": could not get the member defining symbol " +
1899 toMachOString(symCopy
) + ": " + toString(std::move(e
)));
1902 static macho::Symbol
*createBitcodeSymbol(const lto::InputFile::Symbol
&objSym
,
1903 BitcodeFile
&file
) {
1904 StringRef name
= saver().save(objSym
.getName());
1906 if (objSym
.isUndefined())
1907 return symtab
->addUndefined(name
, &file
, /*isWeakRef=*/objSym
.isWeak());
1909 // TODO: Write a test demonstrating why computing isPrivateExtern before
1910 // LTO compilation is important.
1911 bool isPrivateExtern
= false;
1912 switch (objSym
.getVisibility()) {
1913 case GlobalValue::HiddenVisibility
:
1914 isPrivateExtern
= true;
1916 case GlobalValue::ProtectedVisibility
:
1917 error(name
+ " has protected visibility, which is not supported by Mach-O");
1919 case GlobalValue::DefaultVisibility
:
1922 isPrivateExtern
= isPrivateExtern
|| objSym
.canBeOmittedFromSymbolTable();
1924 if (objSym
.isCommon())
1925 return symtab
->addCommon(name
, &file
, objSym
.getCommonSize(),
1926 objSym
.getCommonAlignment(), isPrivateExtern
);
1928 return symtab
->addDefined(name
, &file
, /*isec=*/nullptr, /*value=*/0,
1929 /*size=*/0, objSym
.isWeak(), isPrivateExtern
,
1931 /*isReferencedDynamically=*/false,
1932 /*noDeadStrip=*/false,
1933 /*isWeakDefCanBeHidden=*/false);
1936 BitcodeFile::BitcodeFile(MemoryBufferRef mb
, StringRef archiveName
,
1937 uint64_t offsetInArchive
, bool lazy
)
1938 : InputFile(BitcodeKind
, mb
, lazy
) {
1939 this->archiveName
= std::string(archiveName
);
1940 std::string path
= mb
.getBufferIdentifier().str();
1941 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1942 // name. If two members with the same name are provided, this causes a
1943 // collision and ThinLTO can't proceed.
1944 // So, we append the archive name to disambiguate two members with the same
1945 // name from multiple different archives, and offset within the archive to
1946 // disambiguate two members of the same name from a single archive.
1947 MemoryBufferRef
mbref(mb
.getBuffer(),
1948 saver().save(archiveName
.empty()
1951 sys::path::filename(path
) +
1952 utostr(offsetInArchive
)));
1954 obj
= check(lto::InputFile::create(mbref
));
1961 void BitcodeFile::parse() {
1962 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1963 // "winning" symbol will then be marked as Prevailing at LTO compilation
1966 for (const lto::InputFile::Symbol
&objSym
: obj
->symbols())
1967 symbols
.push_back(createBitcodeSymbol(objSym
, *this));
1970 void BitcodeFile::parseLazy() {
1971 symbols
.resize(obj
->symbols().size());
1972 for (auto it
: llvm::enumerate(obj
->symbols())) {
1973 const lto::InputFile::Symbol
&objSym
= it
.value();
1974 if (!objSym
.isUndefined()) {
1975 symbols
[it
.index()] =
1976 symtab
->addLazyObject(saver().save(objSym
.getName()), *this);
1983 void macho::extract(InputFile
&file
, StringRef reason
) {
1986 printArchiveMemberLoad(reason
, &file
);
1987 if (auto *bitcode
= dyn_cast
<BitcodeFile
>(&file
)) {
1990 auto &f
= cast
<ObjFile
>(file
);
1991 if (target
->wordSize
== 8)
1998 template void ObjFile::parse
<LP64
>();