Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Analysis / IVDescriptors.cpp
blobac6df2267843456a2326b4d7d00e20276a51d0b6
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/DemandedBits.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/KnownBits.h"
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
30 #define DEBUG_TYPE "iv-descriptors"
32 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
33 SmallPtrSetImpl<Instruction *> &Set) {
34 for (const Use &Use : I->operands())
35 if (!Set.count(dyn_cast<Instruction>(Use)))
36 return false;
37 return true;
40 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
41 switch (Kind) {
42 default:
43 break;
44 case RecurKind::Add:
45 case RecurKind::Mul:
46 case RecurKind::Or:
47 case RecurKind::And:
48 case RecurKind::Xor:
49 case RecurKind::SMax:
50 case RecurKind::SMin:
51 case RecurKind::UMax:
52 case RecurKind::UMin:
53 case RecurKind::IAnyOf:
54 case RecurKind::FAnyOf:
55 return true;
57 return false;
60 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
61 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
64 /// Determines if Phi may have been type-promoted. If Phi has a single user
65 /// that ANDs the Phi with a type mask, return the user. RT is updated to
66 /// account for the narrower bit width represented by the mask, and the AND
67 /// instruction is added to CI.
68 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
69 SmallPtrSetImpl<Instruction *> &Visited,
70 SmallPtrSetImpl<Instruction *> &CI) {
71 if (!Phi->hasOneUse())
72 return Phi;
74 const APInt *M = nullptr;
75 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
77 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
78 // with a new integer type of the corresponding bit width.
79 if (match(J, m_And(m_Instruction(I), m_APInt(M)))) {
80 int32_t Bits = (*M + 1).exactLogBase2();
81 if (Bits > 0) {
82 RT = IntegerType::get(Phi->getContext(), Bits);
83 Visited.insert(Phi);
84 CI.insert(J);
85 return J;
88 return Phi;
91 /// Compute the minimal bit width needed to represent a reduction whose exit
92 /// instruction is given by Exit.
93 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
94 DemandedBits *DB,
95 AssumptionCache *AC,
96 DominatorTree *DT) {
97 bool IsSigned = false;
98 const DataLayout &DL = Exit->getDataLayout();
99 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
101 if (DB) {
102 // Use the demanded bits analysis to determine the bits that are live out
103 // of the exit instruction, rounding up to the nearest power of two. If the
104 // use of demanded bits results in a smaller bit width, we know the value
105 // must be positive (i.e., IsSigned = false), because if this were not the
106 // case, the sign bit would have been demanded.
107 auto Mask = DB->getDemandedBits(Exit);
108 MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
111 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
112 // If demanded bits wasn't able to limit the bit width, we can try to use
113 // value tracking instead. This can be the case, for example, if the value
114 // may be negative.
115 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
116 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
117 MaxBitWidth = NumTypeBits - NumSignBits;
118 KnownBits Bits = computeKnownBits(Exit, DL);
119 if (!Bits.isNonNegative()) {
120 // If the value is not known to be non-negative, we set IsSigned to true,
121 // meaning that we will use sext instructions instead of zext
122 // instructions to restore the original type.
123 IsSigned = true;
124 // Make sure at least one sign bit is included in the result, so it
125 // will get properly sign-extended.
126 ++MaxBitWidth;
129 MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
131 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
132 IsSigned);
135 /// Collect cast instructions that can be ignored in the vectorizer's cost
136 /// model, given a reduction exit value and the minimal type in which the
137 // reduction can be represented. Also search casts to the recurrence type
138 // to find the minimum width used by the recurrence.
139 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
140 Type *RecurrenceType,
141 SmallPtrSetImpl<Instruction *> &Casts,
142 unsigned &MinWidthCastToRecurTy) {
144 SmallVector<Instruction *, 8> Worklist;
145 SmallPtrSet<Instruction *, 8> Visited;
146 Worklist.push_back(Exit);
147 MinWidthCastToRecurTy = -1U;
149 while (!Worklist.empty()) {
150 Instruction *Val = Worklist.pop_back_val();
151 Visited.insert(Val);
152 if (auto *Cast = dyn_cast<CastInst>(Val)) {
153 if (Cast->getSrcTy() == RecurrenceType) {
154 // If the source type of a cast instruction is equal to the recurrence
155 // type, it will be eliminated, and should be ignored in the vectorizer
156 // cost model.
157 Casts.insert(Cast);
158 continue;
160 if (Cast->getDestTy() == RecurrenceType) {
161 // The minimum width used by the recurrence is found by checking for
162 // casts on its operands. The minimum width is used by the vectorizer
163 // when finding the widest type for in-loop reductions without any
164 // loads/stores.
165 MinWidthCastToRecurTy = std::min<unsigned>(
166 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
167 continue;
170 // Add all operands to the work list if they are loop-varying values that
171 // we haven't yet visited.
172 for (Value *O : cast<User>(Val)->operands())
173 if (auto *I = dyn_cast<Instruction>(O))
174 if (TheLoop->contains(I) && !Visited.count(I))
175 Worklist.push_back(I);
179 // Check if a given Phi node can be recognized as an ordered reduction for
180 // vectorizing floating point operations without unsafe math.
181 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
182 Instruction *Exit, PHINode *Phi) {
183 // Currently only FAdd and FMulAdd are supported.
184 if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
185 return false;
187 if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
188 return false;
190 if (Kind == RecurKind::FMulAdd &&
191 !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
192 return false;
194 // Ensure the exit instruction has only one user other than the reduction PHI
195 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
196 return false;
198 // The only pattern accepted is the one in which the reduction PHI
199 // is used as one of the operands of the exit instruction
200 auto *Op0 = Exit->getOperand(0);
201 auto *Op1 = Exit->getOperand(1);
202 if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
203 return false;
204 if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
205 return false;
207 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
208 << ", ExitInst: " << *Exit << "\n");
210 return true;
213 bool RecurrenceDescriptor::AddReductionVar(
214 PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
215 RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
216 DominatorTree *DT, ScalarEvolution *SE) {
217 if (Phi->getNumIncomingValues() != 2)
218 return false;
220 // Reduction variables are only found in the loop header block.
221 if (Phi->getParent() != TheLoop->getHeader())
222 return false;
224 // Obtain the reduction start value from the value that comes from the loop
225 // preheader.
226 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
228 // ExitInstruction is the single value which is used outside the loop.
229 // We only allow for a single reduction value to be used outside the loop.
230 // This includes users of the reduction, variables (which form a cycle
231 // which ends in the phi node).
232 Instruction *ExitInstruction = nullptr;
234 // Variable to keep last visited store instruction. By the end of the
235 // algorithm this variable will be either empty or having intermediate
236 // reduction value stored in invariant address.
237 StoreInst *IntermediateStore = nullptr;
239 // Indicates that we found a reduction operation in our scan.
240 bool FoundReduxOp = false;
242 // We start with the PHI node and scan for all of the users of this
243 // instruction. All users must be instructions that can be used as reduction
244 // variables (such as ADD). We must have a single out-of-block user. The cycle
245 // must include the original PHI.
246 bool FoundStartPHI = false;
248 // To recognize min/max patterns formed by a icmp select sequence, we store
249 // the number of instruction we saw from the recognized min/max pattern,
250 // to make sure we only see exactly the two instructions.
251 unsigned NumCmpSelectPatternInst = 0;
252 InstDesc ReduxDesc(false, nullptr);
254 // Data used for determining if the recurrence has been type-promoted.
255 Type *RecurrenceType = Phi->getType();
256 SmallPtrSet<Instruction *, 4> CastInsts;
257 unsigned MinWidthCastToRecurrenceType;
258 Instruction *Start = Phi;
259 bool IsSigned = false;
261 SmallPtrSet<Instruction *, 8> VisitedInsts;
262 SmallVector<Instruction *, 8> Worklist;
264 // Return early if the recurrence kind does not match the type of Phi. If the
265 // recurrence kind is arithmetic, we attempt to look through AND operations
266 // resulting from the type promotion performed by InstCombine. Vector
267 // operations are not limited to the legal integer widths, so we may be able
268 // to evaluate the reduction in the narrower width.
269 if (RecurrenceType->isFloatingPointTy()) {
270 if (!isFloatingPointRecurrenceKind(Kind))
271 return false;
272 } else if (RecurrenceType->isIntegerTy()) {
273 if (!isIntegerRecurrenceKind(Kind))
274 return false;
275 if (!isMinMaxRecurrenceKind(Kind))
276 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277 } else {
278 // Pointer min/max may exist, but it is not supported as a reduction op.
279 return false;
282 Worklist.push_back(Start);
283 VisitedInsts.insert(Start);
285 // Start with all flags set because we will intersect this with the reduction
286 // flags from all the reduction operations.
287 FastMathFlags FMF = FastMathFlags::getFast();
289 // The first instruction in the use-def chain of the Phi node that requires
290 // exact floating point operations.
291 Instruction *ExactFPMathInst = nullptr;
293 // A value in the reduction can be used:
294 // - By the reduction:
295 // - Reduction operation:
296 // - One use of reduction value (safe).
297 // - Multiple use of reduction value (not safe).
298 // - PHI:
299 // - All uses of the PHI must be the reduction (safe).
300 // - Otherwise, not safe.
301 // - By instructions outside of the loop (safe).
302 // * One value may have several outside users, but all outside
303 // uses must be of the same value.
304 // - By store instructions with a loop invariant address (safe with
305 // the following restrictions):
306 // * If there are several stores, all must have the same address.
307 // * Final value should be stored in that loop invariant address.
308 // - By an instruction that is not part of the reduction (not safe).
309 // This is either:
310 // * An instruction type other than PHI or the reduction operation.
311 // * A PHI in the header other than the initial PHI.
312 while (!Worklist.empty()) {
313 Instruction *Cur = Worklist.pop_back_val();
315 // Store instructions are allowed iff it is the store of the reduction
316 // value to the same loop invariant memory location.
317 if (auto *SI = dyn_cast<StoreInst>(Cur)) {
318 if (!SE) {
319 LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
320 << "Scalar Evolution Analysis\n");
321 return false;
324 const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
325 // Check it is the same address as previous stores
326 if (IntermediateStore) {
327 const SCEV *OtherScev =
328 SE->getSCEV(IntermediateStore->getPointerOperand());
330 if (OtherScev != PtrScev) {
331 LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
332 << "inside the loop: " << *SI->getPointerOperand()
333 << " and "
334 << *IntermediateStore->getPointerOperand() << '\n');
335 return false;
339 // Check the pointer is loop invariant
340 if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
341 LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
342 << "inside the loop: " << *SI->getPointerOperand()
343 << '\n');
344 return false;
347 // IntermediateStore is always the last store in the loop.
348 IntermediateStore = SI;
349 continue;
352 // No Users.
353 // If the instruction has no users then this is a broken chain and can't be
354 // a reduction variable.
355 if (Cur->use_empty())
356 return false;
358 bool IsAPhi = isa<PHINode>(Cur);
360 // A header PHI use other than the original PHI.
361 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
362 return false;
364 // Reductions of instructions such as Div, and Sub is only possible if the
365 // LHS is the reduction variable.
366 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
368 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
369 return false;
371 // Any reduction instruction must be of one of the allowed kinds. We ignore
372 // the starting value (the Phi or an AND instruction if the Phi has been
373 // type-promoted).
374 if (Cur != Start) {
375 ReduxDesc =
376 isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
377 ExactFPMathInst = ExactFPMathInst == nullptr
378 ? ReduxDesc.getExactFPMathInst()
379 : ExactFPMathInst;
380 if (!ReduxDesc.isRecurrence())
381 return false;
382 // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
383 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
384 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
385 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
386 // Accept FMF on either fcmp or select of a min/max idiom.
387 // TODO: This is a hack to work-around the fact that FMF may not be
388 // assigned/propagated correctly. If that problem is fixed or we
389 // standardize on fmin/fmax via intrinsics, this can be removed.
390 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391 CurFMF |= FCmp->getFastMathFlags();
393 FMF &= CurFMF;
395 // Update this reduction kind if we matched a new instruction.
396 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
397 // state accurate while processing the worklist?
398 if (ReduxDesc.getRecKind() != RecurKind::None)
399 Kind = ReduxDesc.getRecKind();
402 bool IsASelect = isa<SelectInst>(Cur);
404 // A conditional reduction operation must only have 2 or less uses in
405 // VisitedInsts.
406 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
407 hasMultipleUsesOf(Cur, VisitedInsts, 2))
408 return false;
410 // A reduction operation must only have one use of the reduction value.
411 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
412 !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
413 return false;
415 // All inputs to a PHI node must be a reduction value.
416 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
417 return false;
419 if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
420 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421 ++NumCmpSelectPatternInst;
422 if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
423 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424 ++NumCmpSelectPatternInst;
426 // Check whether we found a reduction operator.
427 FoundReduxOp |= !IsAPhi && Cur != Start;
429 // Process users of current instruction. Push non-PHI nodes after PHI nodes
430 // onto the stack. This way we are going to have seen all inputs to PHI
431 // nodes once we get to them.
432 SmallVector<Instruction *, 8> NonPHIs;
433 SmallVector<Instruction *, 8> PHIs;
434 for (User *U : Cur->users()) {
435 Instruction *UI = cast<Instruction>(U);
437 // If the user is a call to llvm.fmuladd then the instruction can only be
438 // the final operand.
439 if (isFMulAddIntrinsic(UI))
440 if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
441 return false;
443 // Check if we found the exit user.
444 BasicBlock *Parent = UI->getParent();
445 if (!TheLoop->contains(Parent)) {
446 // If we already know this instruction is used externally, move on to
447 // the next user.
448 if (ExitInstruction == Cur)
449 continue;
451 // Exit if you find multiple values used outside or if the header phi
452 // node is being used. In this case the user uses the value of the
453 // previous iteration, in which case we would loose "VF-1" iterations of
454 // the reduction operation if we vectorize.
455 if (ExitInstruction != nullptr || Cur == Phi)
456 return false;
458 // The instruction used by an outside user must be the last instruction
459 // before we feed back to the reduction phi. Otherwise, we loose VF-1
460 // operations on the value.
461 if (!is_contained(Phi->operands(), Cur))
462 return false;
464 ExitInstruction = Cur;
465 continue;
468 // Process instructions only once (termination). Each reduction cycle
469 // value must only be used once, except by phi nodes and min/max
470 // reductions which are represented as a cmp followed by a select.
471 InstDesc IgnoredVal(false, nullptr);
472 if (VisitedInsts.insert(UI).second) {
473 if (isa<PHINode>(UI)) {
474 PHIs.push_back(UI);
475 } else {
476 StoreInst *SI = dyn_cast<StoreInst>(UI);
477 if (SI && SI->getPointerOperand() == Cur) {
478 // Reduction variable chain can only be stored somewhere but it
479 // can't be used as an address.
480 return false;
482 NonPHIs.push_back(UI);
484 } else if (!isa<PHINode>(UI) &&
485 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486 !isa<SelectInst>(UI)) ||
487 (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
488 !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
489 .isRecurrence() &&
490 !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
491 return false;
493 // Remember that we completed the cycle.
494 if (UI == Phi)
495 FoundStartPHI = true;
497 Worklist.append(PHIs.begin(), PHIs.end());
498 Worklist.append(NonPHIs.begin(), NonPHIs.end());
501 // This means we have seen one but not the other instruction of the
502 // pattern or more than just a select and cmp. Zero implies that we saw a
503 // llvm.min/max intrinsic, which is always OK.
504 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
505 NumCmpSelectPatternInst != 0)
506 return false;
508 if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
509 return false;
511 if (IntermediateStore) {
512 // Check that stored value goes to the phi node again. This way we make sure
513 // that the value stored in IntermediateStore is indeed the final reduction
514 // value.
515 if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
516 LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
517 << *IntermediateStore << '\n');
518 return false;
521 // If there is an exit instruction it's value should be stored in
522 // IntermediateStore
523 if (ExitInstruction &&
524 IntermediateStore->getValueOperand() != ExitInstruction) {
525 LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
526 "store last calculated value of the reduction: "
527 << *IntermediateStore << '\n');
528 return false;
531 // If all uses are inside the loop (intermediate stores), then the
532 // reduction value after the loop will be the one used in the last store.
533 if (!ExitInstruction)
534 ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
537 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
538 return false;
540 const bool IsOrdered =
541 checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
543 if (Start != Phi) {
544 // If the starting value is not the same as the phi node, we speculatively
545 // looked through an 'and' instruction when evaluating a potential
546 // arithmetic reduction to determine if it may have been type-promoted.
548 // We now compute the minimal bit width that is required to represent the
549 // reduction. If this is the same width that was indicated by the 'and', we
550 // can represent the reduction in the smaller type. The 'and' instruction
551 // will be eliminated since it will essentially be a cast instruction that
552 // can be ignore in the cost model. If we compute a different type than we
553 // did when evaluating the 'and', the 'and' will not be eliminated, and we
554 // will end up with different kinds of operations in the recurrence
555 // expression (e.g., IntegerAND, IntegerADD). We give up if this is
556 // the case.
558 // The vectorizer relies on InstCombine to perform the actual
559 // type-shrinking. It does this by inserting instructions to truncate the
560 // exit value of the reduction to the width indicated by RecurrenceType and
561 // then extend this value back to the original width. If IsSigned is false,
562 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
563 // used.
565 // TODO: We should not rely on InstCombine to rewrite the reduction in the
566 // smaller type. We should just generate a correctly typed expression
567 // to begin with.
568 Type *ComputedType;
569 std::tie(ComputedType, IsSigned) =
570 computeRecurrenceType(ExitInstruction, DB, AC, DT);
571 if (ComputedType != RecurrenceType)
572 return false;
575 // Collect cast instructions and the minimum width used by the recurrence.
576 // If the starting value is not the same as the phi node and the computed
577 // recurrence type is equal to the recurrence type, the recurrence expression
578 // will be represented in a narrower or wider type. If there are any cast
579 // instructions that will be unnecessary, collect them in CastsFromRecurTy.
580 // Note that the 'and' instruction was already included in this list.
582 // TODO: A better way to represent this may be to tag in some way all the
583 // instructions that are a part of the reduction. The vectorizer cost
584 // model could then apply the recurrence type to these instructions,
585 // without needing a white list of instructions to ignore.
586 // This may also be useful for the inloop reductions, if it can be
587 // kept simple enough.
588 collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
589 MinWidthCastToRecurrenceType);
591 // We found a reduction var if we have reached the original phi node and we
592 // only have a single instruction with out-of-loop users.
594 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
595 // is saved as part of the RecurrenceDescriptor.
597 // Save the description of this reduction variable.
598 RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
599 FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600 IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
601 RedDes = RD;
603 return true;
606 // We are looking for loops that do something like this:
607 // int r = 0;
608 // for (int i = 0; i < n; i++) {
609 // if (src[i] > 3)
610 // r = 3;
611 // }
612 // where the reduction value (r) only has two states, in this example 0 or 3.
613 // The generated LLVM IR for this type of loop will be like this:
614 // for.body:
615 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
616 // ...
617 // %cmp = icmp sgt i32 %5, 3
618 // %spec.select = select i1 %cmp, i32 3, i32 %r
619 // ...
620 // In general we can support vectorization of loops where 'r' flips between
621 // any two non-constants, provided they are loop invariant. The only thing
622 // we actually care about at the end of the loop is whether or not any lane
623 // in the selected vector is different from the start value. The final
624 // across-vector reduction after the loop simply involves choosing the start
625 // value if nothing changed (0 in the example above) or the other selected
626 // value (3 in the example above).
627 RecurrenceDescriptor::InstDesc
628 RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
629 Instruction *I, InstDesc &Prev) {
630 // We must handle the select(cmp(),x,y) as a single instruction. Advance to
631 // the select.
632 CmpInst::Predicate Pred;
633 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
634 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
635 return InstDesc(Select, Prev.getRecKind());
638 if (!match(I,
639 m_Select(m_Cmp(Pred, m_Value(), m_Value()), m_Value(), m_Value())))
640 return InstDesc(false, I);
642 SelectInst *SI = cast<SelectInst>(I);
643 Value *NonPhi = nullptr;
645 if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
646 NonPhi = SI->getFalseValue();
647 else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
648 NonPhi = SI->getTrueValue();
649 else
650 return InstDesc(false, I);
652 // We are looking for selects of the form:
653 // select(cmp(), phi, loop_invariant) or
654 // select(cmp(), loop_invariant, phi)
655 if (!Loop->isLoopInvariant(NonPhi))
656 return InstDesc(false, I);
658 return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
659 : RecurKind::FAnyOf);
662 RecurrenceDescriptor::InstDesc
663 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
664 const InstDesc &Prev) {
665 assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
666 "Expected a cmp or select or call instruction");
667 if (!isMinMaxRecurrenceKind(Kind))
668 return InstDesc(false, I);
670 // We must handle the select(cmp()) as a single instruction. Advance to the
671 // select.
672 CmpInst::Predicate Pred;
673 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
674 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
675 return InstDesc(Select, Prev.getRecKind());
678 // Only match select with single use cmp condition, or a min/max intrinsic.
679 if (!isa<IntrinsicInst>(I) &&
680 !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
681 m_Value())))
682 return InstDesc(false, I);
684 // Look for a min/max pattern.
685 if (match(I, m_UMin(m_Value(), m_Value())))
686 return InstDesc(Kind == RecurKind::UMin, I);
687 if (match(I, m_UMax(m_Value(), m_Value())))
688 return InstDesc(Kind == RecurKind::UMax, I);
689 if (match(I, m_SMax(m_Value(), m_Value())))
690 return InstDesc(Kind == RecurKind::SMax, I);
691 if (match(I, m_SMin(m_Value(), m_Value())))
692 return InstDesc(Kind == RecurKind::SMin, I);
693 if (match(I, m_OrdFMin(m_Value(), m_Value())))
694 return InstDesc(Kind == RecurKind::FMin, I);
695 if (match(I, m_OrdFMax(m_Value(), m_Value())))
696 return InstDesc(Kind == RecurKind::FMax, I);
697 if (match(I, m_UnordFMin(m_Value(), m_Value())))
698 return InstDesc(Kind == RecurKind::FMin, I);
699 if (match(I, m_UnordFMax(m_Value(), m_Value())))
700 return InstDesc(Kind == RecurKind::FMax, I);
701 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
702 return InstDesc(Kind == RecurKind::FMin, I);
703 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
704 return InstDesc(Kind == RecurKind::FMax, I);
705 if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
706 return InstDesc(Kind == RecurKind::FMinimum, I);
707 if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
708 return InstDesc(Kind == RecurKind::FMaximum, I);
710 return InstDesc(false, I);
713 /// Returns true if the select instruction has users in the compare-and-add
714 /// reduction pattern below. The select instruction argument is the last one
715 /// in the sequence.
717 /// %sum.1 = phi ...
718 /// ...
719 /// %cmp = fcmp pred %0, %CFP
720 /// %add = fadd %0, %sum.1
721 /// %sum.2 = select %cmp, %add, %sum.1
722 RecurrenceDescriptor::InstDesc
723 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
724 SelectInst *SI = dyn_cast<SelectInst>(I);
725 if (!SI)
726 return InstDesc(false, I);
728 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
729 // Only handle single use cases for now.
730 if (!CI || !CI->hasOneUse())
731 return InstDesc(false, I);
733 Value *TrueVal = SI->getTrueValue();
734 Value *FalseVal = SI->getFalseValue();
735 // Handle only when either of operands of select instruction is a PHI
736 // node for now.
737 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
738 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
739 return InstDesc(false, I);
741 Instruction *I1 =
742 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
743 : dyn_cast<Instruction>(TrueVal);
744 if (!I1 || !I1->isBinaryOp())
745 return InstDesc(false, I);
747 Value *Op1, *Op2;
748 if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
749 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
750 I1->isFast()) ||
751 (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
752 ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
753 m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
754 (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
755 return InstDesc(false, I);
757 Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
758 : dyn_cast<Instruction>(Op2);
759 if (!IPhi || IPhi != FalseVal)
760 return InstDesc(false, I);
762 return InstDesc(true, SI);
765 RecurrenceDescriptor::InstDesc
766 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
767 Instruction *I, RecurKind Kind,
768 InstDesc &Prev, FastMathFlags FuncFMF) {
769 assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
770 switch (I->getOpcode()) {
771 default:
772 return InstDesc(false, I);
773 case Instruction::PHI:
774 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
775 case Instruction::Sub:
776 case Instruction::Add:
777 return InstDesc(Kind == RecurKind::Add, I);
778 case Instruction::Mul:
779 return InstDesc(Kind == RecurKind::Mul, I);
780 case Instruction::And:
781 return InstDesc(Kind == RecurKind::And, I);
782 case Instruction::Or:
783 return InstDesc(Kind == RecurKind::Or, I);
784 case Instruction::Xor:
785 return InstDesc(Kind == RecurKind::Xor, I);
786 case Instruction::FDiv:
787 case Instruction::FMul:
788 return InstDesc(Kind == RecurKind::FMul, I,
789 I->hasAllowReassoc() ? nullptr : I);
790 case Instruction::FSub:
791 case Instruction::FAdd:
792 return InstDesc(Kind == RecurKind::FAdd, I,
793 I->hasAllowReassoc() ? nullptr : I);
794 case Instruction::Select:
795 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
796 Kind == RecurKind::Add || Kind == RecurKind::Mul)
797 return isConditionalRdxPattern(Kind, I);
798 [[fallthrough]];
799 case Instruction::FCmp:
800 case Instruction::ICmp:
801 case Instruction::Call:
802 if (isAnyOfRecurrenceKind(Kind))
803 return isAnyOfPattern(L, OrigPhi, I, Prev);
804 auto HasRequiredFMF = [&]() {
805 if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
806 return true;
807 if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
808 return true;
809 // minimum and maximum intrinsics do not require nsz and nnan flags since
810 // NaN and signed zeroes are propagated in the intrinsic implementation.
811 return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
812 match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
814 if (isIntMinMaxRecurrenceKind(Kind) ||
815 (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
816 return isMinMaxPattern(I, Kind, Prev);
817 else if (isFMulAddIntrinsic(I))
818 return InstDesc(Kind == RecurKind::FMulAdd, I,
819 I->hasAllowReassoc() ? nullptr : I);
820 return InstDesc(false, I);
824 bool RecurrenceDescriptor::hasMultipleUsesOf(
825 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
826 unsigned MaxNumUses) {
827 unsigned NumUses = 0;
828 for (const Use &U : I->operands()) {
829 if (Insts.count(dyn_cast<Instruction>(U)))
830 ++NumUses;
831 if (NumUses > MaxNumUses)
832 return true;
835 return false;
838 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
839 RecurrenceDescriptor &RedDes,
840 DemandedBits *DB, AssumptionCache *AC,
841 DominatorTree *DT,
842 ScalarEvolution *SE) {
843 BasicBlock *Header = TheLoop->getHeader();
844 Function &F = *Header->getParent();
845 FastMathFlags FMF;
846 FMF.setNoNaNs(
847 F.getFnAttribute("no-nans-fp-math").getValueAsBool());
848 FMF.setNoSignedZeros(
849 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
851 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
852 SE)) {
853 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
854 return true;
856 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
857 SE)) {
858 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
859 return true;
861 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
862 SE)) {
863 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
864 return true;
866 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
867 SE)) {
868 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
869 return true;
871 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
872 SE)) {
873 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
874 return true;
876 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
877 SE)) {
878 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
879 return true;
881 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
882 SE)) {
883 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
884 return true;
886 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
887 SE)) {
888 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
889 return true;
891 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
892 SE)) {
893 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
894 return true;
896 if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
897 SE)) {
898 LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
899 << *Phi << "\n");
900 return true;
902 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
903 SE)) {
904 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
905 return true;
907 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
908 SE)) {
909 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
910 return true;
912 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
913 SE)) {
914 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
915 return true;
917 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
918 SE)) {
919 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
920 return true;
922 if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
923 SE)) {
924 LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
925 << " PHI." << *Phi << "\n");
926 return true;
928 if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
929 SE)) {
930 LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
931 return true;
933 if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
934 SE)) {
935 LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
936 return true;
938 if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
939 SE)) {
940 LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
941 return true;
943 // Not a reduction of known type.
944 return false;
947 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
948 DominatorTree *DT) {
950 // Ensure the phi node is in the loop header and has two incoming values.
951 if (Phi->getParent() != TheLoop->getHeader() ||
952 Phi->getNumIncomingValues() != 2)
953 return false;
955 // Ensure the loop has a preheader and a single latch block. The loop
956 // vectorizer will need the latch to set up the next iteration of the loop.
957 auto *Preheader = TheLoop->getLoopPreheader();
958 auto *Latch = TheLoop->getLoopLatch();
959 if (!Preheader || !Latch)
960 return false;
962 // Ensure the phi node's incoming blocks are the loop preheader and latch.
963 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
964 Phi->getBasicBlockIndex(Latch) < 0)
965 return false;
967 // Get the previous value. The previous value comes from the latch edge while
968 // the initial value comes from the preheader edge.
969 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
971 // If Previous is a phi in the header, go through incoming values from the
972 // latch until we find a non-phi value. Use this as the new Previous, all uses
973 // in the header will be dominated by the original phi, but need to be moved
974 // after the non-phi previous value.
975 SmallPtrSet<PHINode *, 4> SeenPhis;
976 while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
977 if (PrevPhi->getParent() != Phi->getParent())
978 return false;
979 if (!SeenPhis.insert(PrevPhi).second)
980 return false;
981 Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
984 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
985 return false;
987 // Ensure every user of the phi node (recursively) is dominated by the
988 // previous value. The dominance requirement ensures the loop vectorizer will
989 // not need to vectorize the initial value prior to the first iteration of the
990 // loop.
991 // TODO: Consider extending this sinking to handle memory instructions.
993 SmallPtrSet<Value *, 8> Seen;
994 BasicBlock *PhiBB = Phi->getParent();
995 SmallVector<Instruction *, 8> WorkList;
996 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
997 // Cyclic dependence.
998 if (Previous == SinkCandidate)
999 return false;
1001 if (!Seen.insert(SinkCandidate).second)
1002 return true;
1003 if (DT->dominates(Previous,
1004 SinkCandidate)) // We already are good w/o sinking.
1005 return true;
1007 if (SinkCandidate->getParent() != PhiBB ||
1008 SinkCandidate->mayHaveSideEffects() ||
1009 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1010 return false;
1012 // If we reach a PHI node that is not dominated by Previous, we reached a
1013 // header PHI. No need for sinking.
1014 if (isa<PHINode>(SinkCandidate))
1015 return true;
1017 // Sink User tentatively and check its users
1018 WorkList.push_back(SinkCandidate);
1019 return true;
1022 WorkList.push_back(Phi);
1023 // Try to recursively sink instructions and their users after Previous.
1024 while (!WorkList.empty()) {
1025 Instruction *Current = WorkList.pop_back_val();
1026 for (User *User : Current->users()) {
1027 if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1028 return false;
1032 return true;
1035 /// This function returns the identity element (or neutral element) for
1036 /// the operation K.
1037 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1038 FastMathFlags FMF) const {
1039 switch (K) {
1040 case RecurKind::Xor:
1041 case RecurKind::Add:
1042 case RecurKind::Or:
1043 // Adding, Xoring, Oring zero to a number does not change it.
1044 return ConstantInt::get(Tp, 0);
1045 case RecurKind::Mul:
1046 // Multiplying a number by 1 does not change it.
1047 return ConstantInt::get(Tp, 1);
1048 case RecurKind::And:
1049 // AND-ing a number with an all-1 value does not change it.
1050 return ConstantInt::get(Tp, -1, true);
1051 case RecurKind::FMul:
1052 // Multiplying a number by 1 does not change it.
1053 return ConstantFP::get(Tp, 1.0L);
1054 case RecurKind::FMulAdd:
1055 case RecurKind::FAdd:
1056 // Adding zero to a number does not change it.
1057 // FIXME: Ideally we should not need to check FMF for FAdd and should always
1058 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1059 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1060 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1061 // mean we can then remove the check for noSignedZeros() below (see D98963).
1062 if (FMF.noSignedZeros())
1063 return ConstantFP::get(Tp, 0.0L);
1064 return ConstantFP::get(Tp, -0.0L);
1065 case RecurKind::UMin:
1066 return ConstantInt::get(Tp, -1, true);
1067 case RecurKind::UMax:
1068 return ConstantInt::get(Tp, 0);
1069 case RecurKind::SMin:
1070 return ConstantInt::get(Tp,
1071 APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1072 case RecurKind::SMax:
1073 return ConstantInt::get(Tp,
1074 APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1075 case RecurKind::FMin:
1076 assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1077 "nnan, nsz is expected to be set for FP min reduction.");
1078 return ConstantFP::getInfinity(Tp, false /*Negative*/);
1079 case RecurKind::FMax:
1080 assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1081 "nnan, nsz is expected to be set for FP max reduction.");
1082 return ConstantFP::getInfinity(Tp, true /*Negative*/);
1083 case RecurKind::FMinimum:
1084 return ConstantFP::getInfinity(Tp, false /*Negative*/);
1085 case RecurKind::FMaximum:
1086 return ConstantFP::getInfinity(Tp, true /*Negative*/);
1087 case RecurKind::IAnyOf:
1088 case RecurKind::FAnyOf:
1089 return getRecurrenceStartValue();
1090 break;
1091 default:
1092 llvm_unreachable("Unknown recurrence kind");
1096 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1097 switch (Kind) {
1098 case RecurKind::Add:
1099 return Instruction::Add;
1100 case RecurKind::Mul:
1101 return Instruction::Mul;
1102 case RecurKind::Or:
1103 return Instruction::Or;
1104 case RecurKind::And:
1105 return Instruction::And;
1106 case RecurKind::Xor:
1107 return Instruction::Xor;
1108 case RecurKind::FMul:
1109 return Instruction::FMul;
1110 case RecurKind::FMulAdd:
1111 case RecurKind::FAdd:
1112 return Instruction::FAdd;
1113 case RecurKind::SMax:
1114 case RecurKind::SMin:
1115 case RecurKind::UMax:
1116 case RecurKind::UMin:
1117 case RecurKind::IAnyOf:
1118 return Instruction::ICmp;
1119 case RecurKind::FMax:
1120 case RecurKind::FMin:
1121 case RecurKind::FMaximum:
1122 case RecurKind::FMinimum:
1123 case RecurKind::FAnyOf:
1124 return Instruction::FCmp;
1125 default:
1126 llvm_unreachable("Unknown recurrence operation");
1130 SmallVector<Instruction *, 4>
1131 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1132 SmallVector<Instruction *, 4> ReductionOperations;
1133 unsigned RedOp = getOpcode(Kind);
1135 // Search down from the Phi to the LoopExitInstr, looking for instructions
1136 // with a single user of the correct type for the reduction.
1138 // Note that we check that the type of the operand is correct for each item in
1139 // the chain, including the last (the loop exit value). This can come up from
1140 // sub, which would otherwise be treated as an add reduction. MinMax also need
1141 // to check for a pair of icmp/select, for which we use getNextInstruction and
1142 // isCorrectOpcode functions to step the right number of instruction, and
1143 // check the icmp/select pair.
1144 // FIXME: We also do not attempt to look through Select's yet, which might
1145 // be part of the reduction chain, or attempt to looks through And's to find a
1146 // smaller bitwidth. Subs are also currently not allowed (which are usually
1147 // treated as part of a add reduction) as they are expected to generally be
1148 // more expensive than out-of-loop reductions, and need to be costed more
1149 // carefully.
1150 unsigned ExpectedUses = 1;
1151 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1152 ExpectedUses = 2;
1154 auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1155 for (auto *User : Cur->users()) {
1156 Instruction *UI = cast<Instruction>(User);
1157 if (isa<PHINode>(UI))
1158 continue;
1159 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1160 // We are expecting a icmp/select pair, which we go to the next select
1161 // instruction if we can. We already know that Cur has 2 uses.
1162 if (isa<SelectInst>(UI))
1163 return UI;
1164 continue;
1166 return UI;
1168 return nullptr;
1170 auto isCorrectOpcode = [&](Instruction *Cur) {
1171 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1172 Value *LHS, *RHS;
1173 return SelectPatternResult::isMinOrMax(
1174 matchSelectPattern(Cur, LHS, RHS).Flavor);
1176 // Recognize a call to the llvm.fmuladd intrinsic.
1177 if (isFMulAddIntrinsic(Cur))
1178 return true;
1180 return Cur->getOpcode() == RedOp;
1183 // Attempt to look through Phis which are part of the reduction chain
1184 unsigned ExtraPhiUses = 0;
1185 Instruction *RdxInstr = LoopExitInstr;
1186 if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1187 if (ExitPhi->getNumIncomingValues() != 2)
1188 return {};
1190 Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1191 Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1193 Instruction *Chain = nullptr;
1194 if (Inc0 == Phi)
1195 Chain = Inc1;
1196 else if (Inc1 == Phi)
1197 Chain = Inc0;
1198 else
1199 return {};
1201 RdxInstr = Chain;
1202 ExtraPhiUses = 1;
1205 // The loop exit instruction we check first (as a quick test) but add last. We
1206 // check the opcode is correct (and dont allow them to be Subs) and that they
1207 // have expected to have the expected number of uses. They will have one use
1208 // from the phi and one from a LCSSA value, no matter the type.
1209 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1210 return {};
1212 // Check that the Phi has one (or two for min/max) uses, plus an extra use
1213 // for conditional reductions.
1214 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1215 return {};
1217 Instruction *Cur = getNextInstruction(Phi);
1219 // Each other instruction in the chain should have the expected number of uses
1220 // and be the correct opcode.
1221 while (Cur != RdxInstr) {
1222 if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1223 return {};
1225 ReductionOperations.push_back(Cur);
1226 Cur = getNextInstruction(Cur);
1229 ReductionOperations.push_back(Cur);
1230 return ReductionOperations;
1233 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1234 const SCEV *Step, BinaryOperator *BOp,
1235 SmallVectorImpl<Instruction *> *Casts)
1236 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1237 assert(IK != IK_NoInduction && "Not an induction");
1239 // Start value type should match the induction kind and the value
1240 // itself should not be null.
1241 assert(StartValue && "StartValue is null");
1242 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1243 "StartValue is not a pointer for pointer induction");
1244 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1245 "StartValue is not an integer for integer induction");
1247 // Check the Step Value. It should be non-zero integer value.
1248 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1249 "Step value is zero");
1251 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1252 "StepValue is not an integer");
1254 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1255 "StepValue is not FP for FpInduction");
1256 assert((IK != IK_FpInduction ||
1257 (InductionBinOp &&
1258 (InductionBinOp->getOpcode() == Instruction::FAdd ||
1259 InductionBinOp->getOpcode() == Instruction::FSub))) &&
1260 "Binary opcode should be specified for FP induction");
1262 if (Casts) {
1263 for (auto &Inst : *Casts) {
1264 RedundantCasts.push_back(Inst);
1269 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1270 if (isa<SCEVConstant>(Step))
1271 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1272 return nullptr;
1275 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1276 ScalarEvolution *SE,
1277 InductionDescriptor &D) {
1279 // Here we only handle FP induction variables.
1280 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1282 if (TheLoop->getHeader() != Phi->getParent())
1283 return false;
1285 // The loop may have multiple entrances or multiple exits; we can analyze
1286 // this phi if it has a unique entry value and a unique backedge value.
1287 if (Phi->getNumIncomingValues() != 2)
1288 return false;
1289 Value *BEValue = nullptr, *StartValue = nullptr;
1290 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1291 BEValue = Phi->getIncomingValue(0);
1292 StartValue = Phi->getIncomingValue(1);
1293 } else {
1294 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1295 "Unexpected Phi node in the loop");
1296 BEValue = Phi->getIncomingValue(1);
1297 StartValue = Phi->getIncomingValue(0);
1300 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1301 if (!BOp)
1302 return false;
1304 Value *Addend = nullptr;
1305 if (BOp->getOpcode() == Instruction::FAdd) {
1306 if (BOp->getOperand(0) == Phi)
1307 Addend = BOp->getOperand(1);
1308 else if (BOp->getOperand(1) == Phi)
1309 Addend = BOp->getOperand(0);
1310 } else if (BOp->getOpcode() == Instruction::FSub)
1311 if (BOp->getOperand(0) == Phi)
1312 Addend = BOp->getOperand(1);
1314 if (!Addend)
1315 return false;
1317 // The addend should be loop invariant
1318 if (auto *I = dyn_cast<Instruction>(Addend))
1319 if (TheLoop->contains(I))
1320 return false;
1322 // FP Step has unknown SCEV
1323 const SCEV *Step = SE->getUnknown(Addend);
1324 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1325 return true;
1328 /// This function is called when we suspect that the update-chain of a phi node
1329 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1330 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1331 /// predicate P under which the SCEV expression for the phi can be the
1332 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1333 /// cast instructions that are involved in the update-chain of this induction.
1334 /// A caller that adds the required runtime predicate can be free to drop these
1335 /// cast instructions, and compute the phi using \p AR (instead of some scev
1336 /// expression with casts).
1338 /// For example, without a predicate the scev expression can take the following
1339 /// form:
1340 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1342 /// It corresponds to the following IR sequence:
1343 /// %for.body:
1344 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1345 /// %casted_phi = "ExtTrunc i64 %x"
1346 /// %add = add i64 %casted_phi, %step
1348 /// where %x is given in \p PN,
1349 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1350 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1351 /// several forms, for example, such as:
1352 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
1353 /// or:
1354 /// ExtTrunc2: %t = shl %x, m
1355 /// %casted_phi = ashr %t, m
1357 /// If we are able to find such sequence, we return the instructions
1358 /// we found, namely %casted_phi and the instructions on its use-def chain up
1359 /// to the phi (not including the phi).
1360 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1361 const SCEVUnknown *PhiScev,
1362 const SCEVAddRecExpr *AR,
1363 SmallVectorImpl<Instruction *> &CastInsts) {
1365 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1366 auto *PN = cast<PHINode>(PhiScev->getValue());
1367 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1368 const Loop *L = AR->getLoop();
1370 // Find any cast instructions that participate in the def-use chain of
1371 // PhiScev in the loop.
1372 // FORNOW/TODO: We currently expect the def-use chain to include only
1373 // two-operand instructions, where one of the operands is an invariant.
1374 // createAddRecFromPHIWithCasts() currently does not support anything more
1375 // involved than that, so we keep the search simple. This can be
1376 // extended/generalized as needed.
1378 auto getDef = [&](const Value *Val) -> Value * {
1379 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1380 if (!BinOp)
1381 return nullptr;
1382 Value *Op0 = BinOp->getOperand(0);
1383 Value *Op1 = BinOp->getOperand(1);
1384 Value *Def = nullptr;
1385 if (L->isLoopInvariant(Op0))
1386 Def = Op1;
1387 else if (L->isLoopInvariant(Op1))
1388 Def = Op0;
1389 return Def;
1392 // Look for the instruction that defines the induction via the
1393 // loop backedge.
1394 BasicBlock *Latch = L->getLoopLatch();
1395 if (!Latch)
1396 return false;
1397 Value *Val = PN->getIncomingValueForBlock(Latch);
1398 if (!Val)
1399 return false;
1401 // Follow the def-use chain until the induction phi is reached.
1402 // If on the way we encounter a Value that has the same SCEV Expr as the
1403 // phi node, we can consider the instructions we visit from that point
1404 // as part of the cast-sequence that can be ignored.
1405 bool InCastSequence = false;
1406 auto *Inst = dyn_cast<Instruction>(Val);
1407 while (Val != PN) {
1408 // If we encountered a phi node other than PN, or if we left the loop,
1409 // we bail out.
1410 if (!Inst || !L->contains(Inst)) {
1411 return false;
1413 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1414 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1415 InCastSequence = true;
1416 if (InCastSequence) {
1417 // Only the last instruction in the cast sequence is expected to have
1418 // uses outside the induction def-use chain.
1419 if (!CastInsts.empty())
1420 if (!Inst->hasOneUse())
1421 return false;
1422 CastInsts.push_back(Inst);
1424 Val = getDef(Val);
1425 if (!Val)
1426 return false;
1427 Inst = dyn_cast<Instruction>(Val);
1430 return InCastSequence;
1433 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1434 PredicatedScalarEvolution &PSE,
1435 InductionDescriptor &D, bool Assume) {
1436 Type *PhiTy = Phi->getType();
1438 // Handle integer and pointer inductions variables.
1439 // Now we handle also FP induction but not trying to make a
1440 // recurrent expression from the PHI node in-place.
1442 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1443 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1444 return false;
1446 if (PhiTy->isFloatingPointTy())
1447 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1449 const SCEV *PhiScev = PSE.getSCEV(Phi);
1450 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1452 // We need this expression to be an AddRecExpr.
1453 if (Assume && !AR)
1454 AR = PSE.getAsAddRec(Phi);
1456 if (!AR) {
1457 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1458 return false;
1461 // Record any Cast instructions that participate in the induction update
1462 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1463 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1464 // only after enabling Assume with PSCEV, this means we may have encountered
1465 // cast instructions that required adding a runtime check in order to
1466 // guarantee the correctness of the AddRecurrence respresentation of the
1467 // induction.
1468 if (PhiScev != AR && SymbolicPhi) {
1469 SmallVector<Instruction *, 2> Casts;
1470 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1471 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1474 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1477 bool InductionDescriptor::isInductionPHI(
1478 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1479 InductionDescriptor &D, const SCEV *Expr,
1480 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1481 Type *PhiTy = Phi->getType();
1482 // We only handle integer and pointer inductions variables.
1483 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1484 return false;
1486 // Check that the PHI is consecutive.
1487 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1488 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1490 if (!AR) {
1491 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1492 return false;
1495 if (AR->getLoop() != TheLoop) {
1496 // FIXME: We should treat this as a uniform. Unfortunately, we
1497 // don't currently know how to handled uniform PHIs.
1498 LLVM_DEBUG(
1499 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1500 return false;
1503 // This function assumes that InductionPhi is called only on Phi nodes
1504 // present inside loop headers. Check for the same, and throw an assert if
1505 // the current Phi is not present inside the loop header.
1506 assert(Phi->getParent() == AR->getLoop()->getHeader()
1507 && "Invalid Phi node, not present in loop header");
1509 Value *StartValue =
1510 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1512 BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1513 if (!Latch)
1514 return false;
1516 const SCEV *Step = AR->getStepRecurrence(*SE);
1517 // Calculate the pointer stride and check if it is consecutive.
1518 // The stride may be a constant or a loop invariant integer value.
1519 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1520 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1521 return false;
1523 if (PhiTy->isIntegerTy()) {
1524 BinaryOperator *BOp =
1525 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1526 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1527 CastsToIgnore);
1528 return true;
1531 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1533 // This allows induction variables w/non-constant steps.
1534 D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
1535 return true;