Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Analysis / ValueTracking.cpp
blob4b77c0046cc70f55df23d8ea34dec75a0b2f1a1b
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomConditionCache.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/Analysis/WithCache.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/ConstantRange.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalAlias.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/IntrinsicsAArch64.h"
59 #include "llvm/IR/IntrinsicsAMDGPU.h"
60 #include "llvm/IR/IntrinsicsRISCV.h"
61 #include "llvm/IR/IntrinsicsX86.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/TargetParser/RISCVTargetParser.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstdint>
80 #include <optional>
81 #include <utility>
83 using namespace llvm;
84 using namespace llvm::PatternMatch;
86 // Controls the number of uses of the value searched for possible
87 // dominating comparisons.
88 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
89 cl::Hidden, cl::init(20));
92 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
93 /// returns the element type's bitwidth.
94 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
95 if (unsigned BitWidth = Ty->getScalarSizeInBits())
96 return BitWidth;
98 return DL.getPointerTypeSizeInBits(Ty);
101 // Given the provided Value and, potentially, a context instruction, return
102 // the preferred context instruction (if any).
103 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
104 // If we've been provided with a context instruction, then use that (provided
105 // it has been inserted).
106 if (CxtI && CxtI->getParent())
107 return CxtI;
109 // If the value is really an already-inserted instruction, then use that.
110 CxtI = dyn_cast<Instruction>(V);
111 if (CxtI && CxtI->getParent())
112 return CxtI;
114 return nullptr;
117 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
118 // If we've been provided with a context instruction, then use that (provided
119 // it has been inserted).
120 if (CxtI && CxtI->getParent())
121 return CxtI;
123 // If the value is really an already-inserted instruction, then use that.
124 CxtI = dyn_cast<Instruction>(V1);
125 if (CxtI && CxtI->getParent())
126 return CxtI;
128 CxtI = dyn_cast<Instruction>(V2);
129 if (CxtI && CxtI->getParent())
130 return CxtI;
132 return nullptr;
135 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
136 const APInt &DemandedElts,
137 APInt &DemandedLHS, APInt &DemandedRHS) {
138 if (isa<ScalableVectorType>(Shuf->getType())) {
139 assert(DemandedElts == APInt(1,1));
140 DemandedLHS = DemandedRHS = DemandedElts;
141 return true;
144 int NumElts =
145 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
146 return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
147 DemandedElts, DemandedLHS, DemandedRHS);
150 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
151 KnownBits &Known, unsigned Depth,
152 const SimplifyQuery &Q);
154 void llvm::computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
155 const SimplifyQuery &Q) {
156 // Since the number of lanes in a scalable vector is unknown at compile time,
157 // we track one bit which is implicitly broadcast to all lanes. This means
158 // that all lanes in a scalable vector are considered demanded.
159 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
160 APInt DemandedElts =
161 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
162 ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
165 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
166 const DataLayout &DL, unsigned Depth,
167 AssumptionCache *AC, const Instruction *CxtI,
168 const DominatorTree *DT, bool UseInstrInfo) {
169 computeKnownBits(
170 V, Known, Depth,
171 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
174 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
175 unsigned Depth, AssumptionCache *AC,
176 const Instruction *CxtI,
177 const DominatorTree *DT, bool UseInstrInfo) {
178 return computeKnownBits(
179 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
182 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
183 const DataLayout &DL, unsigned Depth,
184 AssumptionCache *AC, const Instruction *CxtI,
185 const DominatorTree *DT, bool UseInstrInfo) {
186 return computeKnownBits(
187 V, DemandedElts, Depth,
188 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
191 static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS,
192 const SimplifyQuery &SQ) {
193 // Look for an inverted mask: (X & ~M) op (Y & M).
195 Value *M;
196 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
197 match(RHS, m_c_And(m_Specific(M), m_Value())) &&
198 isGuaranteedNotToBeUndef(M, SQ.AC, SQ.CxtI, SQ.DT))
199 return true;
202 // X op (Y & ~X)
203 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) &&
204 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
205 return true;
207 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
208 // for constant Y.
209 Value *Y;
210 if (match(RHS,
211 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) &&
212 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT) &&
213 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
214 return true;
216 // Peek through extends to find a 'not' of the other side:
217 // (ext Y) op ext(~Y)
218 if (match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
219 match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))) &&
220 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
221 return true;
223 // Look for: (A & B) op ~(A | B)
225 Value *A, *B;
226 if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
227 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))) &&
228 isGuaranteedNotToBeUndef(A, SQ.AC, SQ.CxtI, SQ.DT) &&
229 isGuaranteedNotToBeUndef(B, SQ.AC, SQ.CxtI, SQ.DT))
230 return true;
233 return false;
236 bool llvm::haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
237 const WithCache<const Value *> &RHSCache,
238 const SimplifyQuery &SQ) {
239 const Value *LHS = LHSCache.getValue();
240 const Value *RHS = RHSCache.getValue();
242 assert(LHS->getType() == RHS->getType() &&
243 "LHS and RHS should have the same type");
244 assert(LHS->getType()->isIntOrIntVectorTy() &&
245 "LHS and RHS should be integers");
247 if (haveNoCommonBitsSetSpecialCases(LHS, RHS, SQ) ||
248 haveNoCommonBitsSetSpecialCases(RHS, LHS, SQ))
249 return true;
251 return KnownBits::haveNoCommonBitsSet(LHSCache.getKnownBits(SQ),
252 RHSCache.getKnownBits(SQ));
255 bool llvm::isOnlyUsedInZeroComparison(const Instruction *I) {
256 return !I->user_empty() && all_of(I->users(), [](const User *U) {
257 ICmpInst::Predicate P;
258 return match(U, m_ICmp(P, m_Value(), m_Zero()));
262 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
263 return !I->user_empty() && all_of(I->users(), [](const User *U) {
264 ICmpInst::Predicate P;
265 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
269 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
270 const SimplifyQuery &Q);
272 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
273 bool OrZero, unsigned Depth,
274 AssumptionCache *AC, const Instruction *CxtI,
275 const DominatorTree *DT, bool UseInstrInfo) {
276 return ::isKnownToBeAPowerOfTwo(
277 V, OrZero, Depth,
278 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
281 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
282 const SimplifyQuery &Q, unsigned Depth);
284 bool llvm::isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
285 unsigned Depth) {
286 return computeKnownBits(V, Depth, SQ).isNonNegative();
289 bool llvm::isKnownPositive(const Value *V, const SimplifyQuery &SQ,
290 unsigned Depth) {
291 if (auto *CI = dyn_cast<ConstantInt>(V))
292 return CI->getValue().isStrictlyPositive();
294 // If `isKnownNonNegative` ever becomes more sophisticated, make sure to keep
295 // this updated.
296 KnownBits Known = computeKnownBits(V, Depth, SQ);
297 return Known.isNonNegative() &&
298 (Known.isNonZero() || isKnownNonZero(V, SQ, Depth));
301 bool llvm::isKnownNegative(const Value *V, const SimplifyQuery &SQ,
302 unsigned Depth) {
303 return computeKnownBits(V, Depth, SQ).isNegative();
306 static bool isKnownNonEqual(const Value *V1, const Value *V2,
307 const APInt &DemandedElts, unsigned Depth,
308 const SimplifyQuery &Q);
310 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
311 const DataLayout &DL, AssumptionCache *AC,
312 const Instruction *CxtI, const DominatorTree *DT,
313 bool UseInstrInfo) {
314 assert(V1->getType() == V2->getType() &&
315 "Testing equality of non-equal types!");
316 auto *FVTy = dyn_cast<FixedVectorType>(V1->getType());
317 APInt DemandedElts =
318 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
319 return ::isKnownNonEqual(
320 V1, V2, DemandedElts, 0,
321 SimplifyQuery(DL, DT, AC, safeCxtI(V2, V1, CxtI), UseInstrInfo));
324 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
325 const SimplifyQuery &SQ, unsigned Depth) {
326 KnownBits Known(Mask.getBitWidth());
327 computeKnownBits(V, Known, Depth, SQ);
328 return Mask.isSubsetOf(Known.Zero);
331 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
332 unsigned Depth, const SimplifyQuery &Q);
334 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
335 const SimplifyQuery &Q) {
336 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
337 APInt DemandedElts =
338 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
339 return ComputeNumSignBits(V, DemandedElts, Depth, Q);
342 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
343 unsigned Depth, AssumptionCache *AC,
344 const Instruction *CxtI,
345 const DominatorTree *DT, bool UseInstrInfo) {
346 return ::ComputeNumSignBits(
347 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
350 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
351 unsigned Depth, AssumptionCache *AC,
352 const Instruction *CxtI,
353 const DominatorTree *DT) {
354 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
355 return V->getType()->getScalarSizeInBits() - SignBits + 1;
358 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
359 bool NSW, bool NUW,
360 const APInt &DemandedElts,
361 KnownBits &KnownOut, KnownBits &Known2,
362 unsigned Depth, const SimplifyQuery &Q) {
363 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
365 // If one operand is unknown and we have no nowrap information,
366 // the result will be unknown independently of the second operand.
367 if (KnownOut.isUnknown() && !NSW && !NUW)
368 return;
370 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
371 KnownOut = KnownBits::computeForAddSub(Add, NSW, NUW, Known2, KnownOut);
374 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
375 const APInt &DemandedElts, KnownBits &Known,
376 KnownBits &Known2, unsigned Depth,
377 const SimplifyQuery &Q) {
378 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
379 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
381 bool isKnownNegative = false;
382 bool isKnownNonNegative = false;
383 // If the multiplication is known not to overflow, compute the sign bit.
384 if (NSW) {
385 if (Op0 == Op1) {
386 // The product of a number with itself is non-negative.
387 isKnownNonNegative = true;
388 } else {
389 bool isKnownNonNegativeOp1 = Known.isNonNegative();
390 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
391 bool isKnownNegativeOp1 = Known.isNegative();
392 bool isKnownNegativeOp0 = Known2.isNegative();
393 // The product of two numbers with the same sign is non-negative.
394 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
395 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
396 // The product of a negative number and a non-negative number is either
397 // negative or zero.
398 if (!isKnownNonNegative)
399 isKnownNegative =
400 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
401 Known2.isNonZero()) ||
402 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
406 bool SelfMultiply = Op0 == Op1;
407 if (SelfMultiply)
408 SelfMultiply &=
409 isGuaranteedNotToBeUndef(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
410 Known = KnownBits::mul(Known, Known2, SelfMultiply);
412 // Only make use of no-wrap flags if we failed to compute the sign bit
413 // directly. This matters if the multiplication always overflows, in
414 // which case we prefer to follow the result of the direct computation,
415 // though as the program is invoking undefined behaviour we can choose
416 // whatever we like here.
417 if (isKnownNonNegative && !Known.isNegative())
418 Known.makeNonNegative();
419 else if (isKnownNegative && !Known.isNonNegative())
420 Known.makeNegative();
423 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
424 KnownBits &Known) {
425 unsigned BitWidth = Known.getBitWidth();
426 unsigned NumRanges = Ranges.getNumOperands() / 2;
427 assert(NumRanges >= 1);
429 Known.Zero.setAllBits();
430 Known.One.setAllBits();
432 for (unsigned i = 0; i < NumRanges; ++i) {
433 ConstantInt *Lower =
434 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
435 ConstantInt *Upper =
436 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
437 ConstantRange Range(Lower->getValue(), Upper->getValue());
439 // The first CommonPrefixBits of all values in Range are equal.
440 unsigned CommonPrefixBits =
441 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero();
442 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
443 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
444 Known.One &= UnsignedMax & Mask;
445 Known.Zero &= ~UnsignedMax & Mask;
449 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
450 SmallVector<const Value *, 16> WorkSet(1, I);
451 SmallPtrSet<const Value *, 32> Visited;
452 SmallPtrSet<const Value *, 16> EphValues;
454 // The instruction defining an assumption's condition itself is always
455 // considered ephemeral to that assumption (even if it has other
456 // non-ephemeral users). See r246696's test case for an example.
457 if (is_contained(I->operands(), E))
458 return true;
460 while (!WorkSet.empty()) {
461 const Value *V = WorkSet.pop_back_val();
462 if (!Visited.insert(V).second)
463 continue;
465 // If all uses of this value are ephemeral, then so is this value.
466 if (llvm::all_of(V->users(), [&](const User *U) {
467 return EphValues.count(U);
468 })) {
469 if (V == E)
470 return true;
472 if (V == I || (isa<Instruction>(V) &&
473 !cast<Instruction>(V)->mayHaveSideEffects() &&
474 !cast<Instruction>(V)->isTerminator())) {
475 EphValues.insert(V);
476 if (const User *U = dyn_cast<User>(V))
477 append_range(WorkSet, U->operands());
482 return false;
485 // Is this an intrinsic that cannot be speculated but also cannot trap?
486 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
487 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
488 return CI->isAssumeLikeIntrinsic();
490 return false;
493 bool llvm::isValidAssumeForContext(const Instruction *Inv,
494 const Instruction *CxtI,
495 const DominatorTree *DT,
496 bool AllowEphemerals) {
497 // There are two restrictions on the use of an assume:
498 // 1. The assume must dominate the context (or the control flow must
499 // reach the assume whenever it reaches the context).
500 // 2. The context must not be in the assume's set of ephemeral values
501 // (otherwise we will use the assume to prove that the condition
502 // feeding the assume is trivially true, thus causing the removal of
503 // the assume).
505 if (Inv->getParent() == CxtI->getParent()) {
506 // If Inv and CtxI are in the same block, check if the assume (Inv) is first
507 // in the BB.
508 if (Inv->comesBefore(CxtI))
509 return true;
511 // Don't let an assume affect itself - this would cause the problems
512 // `isEphemeralValueOf` is trying to prevent, and it would also make
513 // the loop below go out of bounds.
514 if (!AllowEphemerals && Inv == CxtI)
515 return false;
517 // The context comes first, but they're both in the same block.
518 // Make sure there is nothing in between that might interrupt
519 // the control flow, not even CxtI itself.
520 // We limit the scan distance between the assume and its context instruction
521 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
522 // it can be adjusted if needed (could be turned into a cl::opt).
523 auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
524 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
525 return false;
527 return AllowEphemerals || !isEphemeralValueOf(Inv, CxtI);
530 // Inv and CxtI are in different blocks.
531 if (DT) {
532 if (DT->dominates(Inv, CxtI))
533 return true;
534 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
535 // We don't have a DT, but this trivially dominates.
536 return true;
539 return false;
542 // TODO: cmpExcludesZero misses many cases where `RHS` is non-constant but
543 // we still have enough information about `RHS` to conclude non-zero. For
544 // example Pred=EQ, RHS=isKnownNonZero. cmpExcludesZero is called in loops
545 // so the extra compile time may not be worth it, but possibly a second API
546 // should be created for use outside of loops.
547 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
548 // v u> y implies v != 0.
549 if (Pred == ICmpInst::ICMP_UGT)
550 return true;
552 // Special-case v != 0 to also handle v != null.
553 if (Pred == ICmpInst::ICMP_NE)
554 return match(RHS, m_Zero());
556 // All other predicates - rely on generic ConstantRange handling.
557 const APInt *C;
558 auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits());
559 if (match(RHS, m_APInt(C))) {
560 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
561 return !TrueValues.contains(Zero);
564 auto *VC = dyn_cast<ConstantDataVector>(RHS);
565 if (VC == nullptr)
566 return false;
568 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
569 ++ElemIdx) {
570 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
571 Pred, VC->getElementAsAPInt(ElemIdx));
572 if (TrueValues.contains(Zero))
573 return false;
575 return true;
578 static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q) {
579 // Use of assumptions is context-sensitive. If we don't have a context, we
580 // cannot use them!
581 if (!Q.AC || !Q.CxtI)
582 return false;
584 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
585 if (!Elem.Assume)
586 continue;
588 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
589 assert(I->getFunction() == Q.CxtI->getFunction() &&
590 "Got assumption for the wrong function!");
592 if (Elem.Index != AssumptionCache::ExprResultIdx) {
593 if (!V->getType()->isPointerTy())
594 continue;
595 if (RetainedKnowledge RK = getKnowledgeFromBundle(
596 *I, I->bundle_op_info_begin()[Elem.Index])) {
597 if (RK.WasOn == V &&
598 (RK.AttrKind == Attribute::NonNull ||
599 (RK.AttrKind == Attribute::Dereferenceable &&
600 !NullPointerIsDefined(Q.CxtI->getFunction(),
601 V->getType()->getPointerAddressSpace()))) &&
602 isValidAssumeForContext(I, Q.CxtI, Q.DT))
603 return true;
605 continue;
608 // Warning: This loop can end up being somewhat performance sensitive.
609 // We're running this loop for once for each value queried resulting in a
610 // runtime of ~O(#assumes * #values).
612 Value *RHS;
613 CmpInst::Predicate Pred;
614 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
615 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
616 return false;
618 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
619 return true;
622 return false;
625 static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred,
626 Value *LHS, Value *RHS, KnownBits &Known,
627 const SimplifyQuery &Q) {
628 if (RHS->getType()->isPointerTy()) {
629 // Handle comparison of pointer to null explicitly, as it will not be
630 // covered by the m_APInt() logic below.
631 if (LHS == V && match(RHS, m_Zero())) {
632 switch (Pred) {
633 case ICmpInst::ICMP_EQ:
634 Known.setAllZero();
635 break;
636 case ICmpInst::ICMP_SGE:
637 case ICmpInst::ICMP_SGT:
638 Known.makeNonNegative();
639 break;
640 case ICmpInst::ICMP_SLT:
641 Known.makeNegative();
642 break;
643 default:
644 break;
647 return;
650 unsigned BitWidth = Known.getBitWidth();
651 auto m_V =
652 m_CombineOr(m_Specific(V), m_PtrToIntSameSize(Q.DL, m_Specific(V)));
654 Value *Y;
655 const APInt *Mask, *C;
656 uint64_t ShAmt;
657 switch (Pred) {
658 case ICmpInst::ICMP_EQ:
659 // assume(V = C)
660 if (match(LHS, m_V) && match(RHS, m_APInt(C))) {
661 Known = Known.unionWith(KnownBits::makeConstant(*C));
662 // assume(V & Mask = C)
663 } else if (match(LHS, m_c_And(m_V, m_Value(Y))) &&
664 match(RHS, m_APInt(C))) {
665 // For one bits in Mask, we can propagate bits from C to V.
666 Known.One |= *C;
667 if (match(Y, m_APInt(Mask)))
668 Known.Zero |= ~*C & *Mask;
669 // assume(V | Mask = C)
670 } else if (match(LHS, m_c_Or(m_V, m_Value(Y))) && match(RHS, m_APInt(C))) {
671 // For zero bits in Mask, we can propagate bits from C to V.
672 Known.Zero |= ~*C;
673 if (match(Y, m_APInt(Mask)))
674 Known.One |= *C & ~*Mask;
675 // assume(V ^ Mask = C)
676 } else if (match(LHS, m_Xor(m_V, m_APInt(Mask))) &&
677 match(RHS, m_APInt(C))) {
678 // Equivalent to assume(V == Mask ^ C)
679 Known = Known.unionWith(KnownBits::makeConstant(*C ^ *Mask));
680 // assume(V << ShAmt = C)
681 } else if (match(LHS, m_Shl(m_V, m_ConstantInt(ShAmt))) &&
682 match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
683 // For those bits in C that are known, we can propagate them to known
684 // bits in V shifted to the right by ShAmt.
685 KnownBits RHSKnown = KnownBits::makeConstant(*C);
686 RHSKnown.Zero.lshrInPlace(ShAmt);
687 RHSKnown.One.lshrInPlace(ShAmt);
688 Known = Known.unionWith(RHSKnown);
689 // assume(V >> ShAmt = C)
690 } else if (match(LHS, m_Shr(m_V, m_ConstantInt(ShAmt))) &&
691 match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
692 KnownBits RHSKnown = KnownBits::makeConstant(*C);
693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 Known.Zero |= RHSKnown.Zero << ShAmt;
696 Known.One |= RHSKnown.One << ShAmt;
698 break;
699 case ICmpInst::ICMP_NE: {
700 // assume (V & B != 0) where B is a power of 2
701 const APInt *BPow2;
702 if (match(LHS, m_And(m_V, m_Power2(BPow2))) && match(RHS, m_Zero()))
703 Known.One |= *BPow2;
704 break;
706 default:
707 if (match(RHS, m_APInt(C))) {
708 const APInt *Offset = nullptr;
709 if (match(LHS, m_CombineOr(m_V, m_AddLike(m_V, m_APInt(Offset))))) {
710 ConstantRange LHSRange = ConstantRange::makeAllowedICmpRegion(Pred, *C);
711 if (Offset)
712 LHSRange = LHSRange.sub(*Offset);
713 Known = Known.unionWith(LHSRange.toKnownBits());
715 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
716 // X & Y u> C -> X u> C && Y u> C
717 // X nuw- Y u> C -> X u> C
718 if (match(LHS, m_c_And(m_V, m_Value())) ||
719 match(LHS, m_NUWSub(m_V, m_Value())))
720 Known.One.setHighBits(
721 (*C + (Pred == ICmpInst::ICMP_UGT)).countLeadingOnes());
723 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
724 // X | Y u< C -> X u< C && Y u< C
725 // X nuw+ Y u< C -> X u< C && Y u< C
726 if (match(LHS, m_c_Or(m_V, m_Value())) ||
727 match(LHS, m_c_NUWAdd(m_V, m_Value()))) {
728 Known.Zero.setHighBits(
729 (*C - (Pred == ICmpInst::ICMP_ULT)).countLeadingZeros());
733 break;
737 static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp,
738 KnownBits &Known,
739 const SimplifyQuery &SQ, bool Invert) {
740 ICmpInst::Predicate Pred =
741 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
742 Value *LHS = Cmp->getOperand(0);
743 Value *RHS = Cmp->getOperand(1);
745 // Handle icmp pred (trunc V), C
746 if (match(LHS, m_Trunc(m_Specific(V)))) {
747 KnownBits DstKnown(LHS->getType()->getScalarSizeInBits());
748 computeKnownBitsFromCmp(LHS, Pred, LHS, RHS, DstKnown, SQ);
749 Known = Known.unionWith(DstKnown.anyext(Known.getBitWidth()));
750 return;
753 computeKnownBitsFromCmp(V, Pred, LHS, RHS, Known, SQ);
756 static void computeKnownBitsFromCond(const Value *V, Value *Cond,
757 KnownBits &Known, unsigned Depth,
758 const SimplifyQuery &SQ, bool Invert) {
759 Value *A, *B;
760 if (Depth < MaxAnalysisRecursionDepth &&
761 match(Cond, m_LogicalOp(m_Value(A), m_Value(B)))) {
762 KnownBits Known2(Known.getBitWidth());
763 KnownBits Known3(Known.getBitWidth());
764 computeKnownBitsFromCond(V, A, Known2, Depth + 1, SQ, Invert);
765 computeKnownBitsFromCond(V, B, Known3, Depth + 1, SQ, Invert);
766 if (Invert ? match(Cond, m_LogicalOr(m_Value(), m_Value()))
767 : match(Cond, m_LogicalAnd(m_Value(), m_Value())))
768 Known2 = Known2.unionWith(Known3);
769 else
770 Known2 = Known2.intersectWith(Known3);
771 Known = Known.unionWith(Known2);
774 if (auto *Cmp = dyn_cast<ICmpInst>(Cond))
775 computeKnownBitsFromICmpCond(V, Cmp, Known, SQ, Invert);
778 void llvm::computeKnownBitsFromContext(const Value *V, KnownBits &Known,
779 unsigned Depth, const SimplifyQuery &Q) {
780 // Handle injected condition.
781 if (Q.CC && Q.CC->AffectedValues.contains(V))
782 computeKnownBitsFromCond(V, Q.CC->Cond, Known, Depth, Q, Q.CC->Invert);
784 if (!Q.CxtI)
785 return;
787 if (Q.DC && Q.DT) {
788 // Handle dominating conditions.
789 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
790 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
791 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
792 computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q,
793 /*Invert*/ false);
795 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
796 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
797 computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q,
798 /*Invert*/ true);
801 if (Known.hasConflict())
802 Known.resetAll();
805 if (!Q.AC)
806 return;
808 unsigned BitWidth = Known.getBitWidth();
810 // Note that the patterns below need to be kept in sync with the code
811 // in AssumptionCache::updateAffectedValues.
813 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
814 if (!Elem.Assume)
815 continue;
817 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
818 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
819 "Got assumption for the wrong function!");
821 if (Elem.Index != AssumptionCache::ExprResultIdx) {
822 if (!V->getType()->isPointerTy())
823 continue;
824 if (RetainedKnowledge RK = getKnowledgeFromBundle(
825 *I, I->bundle_op_info_begin()[Elem.Index])) {
826 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
827 isPowerOf2_64(RK.ArgValue) &&
828 isValidAssumeForContext(I, Q.CxtI, Q.DT))
829 Known.Zero.setLowBits(Log2_64(RK.ArgValue));
831 continue;
834 // Warning: This loop can end up being somewhat performance sensitive.
835 // We're running this loop for once for each value queried resulting in a
836 // runtime of ~O(#assumes * #values).
838 Value *Arg = I->getArgOperand(0);
840 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
841 assert(BitWidth == 1 && "assume operand is not i1?");
842 (void)BitWidth;
843 Known.setAllOnes();
844 return;
846 if (match(Arg, m_Not(m_Specific(V))) &&
847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
848 assert(BitWidth == 1 && "assume operand is not i1?");
849 (void)BitWidth;
850 Known.setAllZero();
851 return;
854 // The remaining tests are all recursive, so bail out if we hit the limit.
855 if (Depth == MaxAnalysisRecursionDepth)
856 continue;
858 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
859 if (!Cmp)
860 continue;
862 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
863 continue;
865 computeKnownBitsFromICmpCond(V, Cmp, Known, Q, /*Invert=*/false);
868 // Conflicting assumption: Undefined behavior will occur on this execution
869 // path.
870 if (Known.hasConflict())
871 Known.resetAll();
874 /// Compute known bits from a shift operator, including those with a
875 /// non-constant shift amount. Known is the output of this function. Known2 is a
876 /// pre-allocated temporary with the same bit width as Known and on return
877 /// contains the known bit of the shift value source. KF is an
878 /// operator-specific function that, given the known-bits and a shift amount,
879 /// compute the implied known-bits of the shift operator's result respectively
880 /// for that shift amount. The results from calling KF are conservatively
881 /// combined for all permitted shift amounts.
882 static void computeKnownBitsFromShiftOperator(
883 const Operator *I, const APInt &DemandedElts, KnownBits &Known,
884 KnownBits &Known2, unsigned Depth, const SimplifyQuery &Q,
885 function_ref<KnownBits(const KnownBits &, const KnownBits &, bool)> KF) {
886 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
887 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
888 // To limit compile-time impact, only query isKnownNonZero() if we know at
889 // least something about the shift amount.
890 bool ShAmtNonZero =
891 Known.isNonZero() ||
892 (Known.getMaxValue().ult(Known.getBitWidth()) &&
893 isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth + 1));
894 Known = KF(Known2, Known, ShAmtNonZero);
897 static KnownBits
898 getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts,
899 const KnownBits &KnownLHS, const KnownBits &KnownRHS,
900 unsigned Depth, const SimplifyQuery &Q) {
901 unsigned BitWidth = KnownLHS.getBitWidth();
902 KnownBits KnownOut(BitWidth);
903 bool IsAnd = false;
904 bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero();
905 Value *X = nullptr, *Y = nullptr;
907 switch (I->getOpcode()) {
908 case Instruction::And:
909 KnownOut = KnownLHS & KnownRHS;
910 IsAnd = true;
911 // and(x, -x) is common idioms that will clear all but lowest set
912 // bit. If we have a single known bit in x, we can clear all bits
913 // above it.
914 // TODO: instcombine often reassociates independent `and` which can hide
915 // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x).
916 if (HasKnownOne && match(I, m_c_And(m_Value(X), m_Neg(m_Deferred(X))))) {
917 // -(-x) == x so using whichever (LHS/RHS) gets us a better result.
918 if (KnownLHS.countMaxTrailingZeros() <= KnownRHS.countMaxTrailingZeros())
919 KnownOut = KnownLHS.blsi();
920 else
921 KnownOut = KnownRHS.blsi();
923 break;
924 case Instruction::Or:
925 KnownOut = KnownLHS | KnownRHS;
926 break;
927 case Instruction::Xor:
928 KnownOut = KnownLHS ^ KnownRHS;
929 // xor(x, x-1) is common idioms that will clear all but lowest set
930 // bit. If we have a single known bit in x, we can clear all bits
931 // above it.
932 // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C !=
933 // -1 but for the purpose of demanded bits (xor(x, x-C) &
934 // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern
935 // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1).
936 if (HasKnownOne &&
937 match(I, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes())))) {
938 const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS;
939 KnownOut = XBits.blsmsk();
941 break;
942 default:
943 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
946 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
947 // xor/or(x, add (x, -1)) is an idiom that will always set the low bit.
948 // here we handle the more general case of adding any odd number by
949 // matching the form and/xor/or(x, add(x, y)) where y is odd.
950 // TODO: This could be generalized to clearing any bit set in y where the
951 // following bit is known to be unset in y.
952 if (!KnownOut.Zero[0] && !KnownOut.One[0] &&
953 (match(I, m_c_BinOp(m_Value(X), m_c_Add(m_Deferred(X), m_Value(Y)))) ||
954 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Deferred(X), m_Value(Y)))) ||
955 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Value(Y), m_Deferred(X)))))) {
956 KnownBits KnownY(BitWidth);
957 computeKnownBits(Y, DemandedElts, KnownY, Depth + 1, Q);
958 if (KnownY.countMinTrailingOnes() > 0) {
959 if (IsAnd)
960 KnownOut.Zero.setBit(0);
961 else
962 KnownOut.One.setBit(0);
965 return KnownOut;
968 static KnownBits computeKnownBitsForHorizontalOperation(
969 const Operator *I, const APInt &DemandedElts, unsigned Depth,
970 const SimplifyQuery &Q,
971 const function_ref<KnownBits(const KnownBits &, const KnownBits &)>
972 KnownBitsFunc) {
973 APInt DemandedEltsLHS, DemandedEltsRHS;
974 getHorizDemandedEltsForFirstOperand(Q.DL.getTypeSizeInBits(I->getType()),
975 DemandedElts, DemandedEltsLHS,
976 DemandedEltsRHS);
978 const auto ComputeForSingleOpFunc =
979 [Depth, &Q, KnownBitsFunc](const Value *Op, APInt &DemandedEltsOp) {
980 return KnownBitsFunc(
981 computeKnownBits(Op, DemandedEltsOp, Depth + 1, Q),
982 computeKnownBits(Op, DemandedEltsOp << 1, Depth + 1, Q));
985 if (DemandedEltsRHS.isZero())
986 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS);
987 if (DemandedEltsLHS.isZero())
988 return ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS);
990 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS)
991 .intersectWith(ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS));
994 // Public so this can be used in `SimplifyDemandedUseBits`.
995 KnownBits llvm::analyzeKnownBitsFromAndXorOr(const Operator *I,
996 const KnownBits &KnownLHS,
997 const KnownBits &KnownRHS,
998 unsigned Depth,
999 const SimplifyQuery &SQ) {
1000 auto *FVTy = dyn_cast<FixedVectorType>(I->getType());
1001 APInt DemandedElts =
1002 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
1004 return getKnownBitsFromAndXorOr(I, DemandedElts, KnownLHS, KnownRHS, Depth,
1005 SQ);
1008 ConstantRange llvm::getVScaleRange(const Function *F, unsigned BitWidth) {
1009 Attribute Attr = F->getFnAttribute(Attribute::VScaleRange);
1010 // Without vscale_range, we only know that vscale is non-zero.
1011 if (!Attr.isValid())
1012 return ConstantRange(APInt(BitWidth, 1), APInt::getZero(BitWidth));
1014 unsigned AttrMin = Attr.getVScaleRangeMin();
1015 // Minimum is larger than vscale width, result is always poison.
1016 if ((unsigned)llvm::bit_width(AttrMin) > BitWidth)
1017 return ConstantRange::getEmpty(BitWidth);
1019 APInt Min(BitWidth, AttrMin);
1020 std::optional<unsigned> AttrMax = Attr.getVScaleRangeMax();
1021 if (!AttrMax || (unsigned)llvm::bit_width(*AttrMax) > BitWidth)
1022 return ConstantRange(Min, APInt::getZero(BitWidth));
1024 return ConstantRange(Min, APInt(BitWidth, *AttrMax) + 1);
1027 void llvm::adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond,
1028 Value *Arm, bool Invert, unsigned Depth,
1029 const SimplifyQuery &Q) {
1030 // If we have a constant arm, we are done.
1031 if (Known.isConstant())
1032 return;
1034 // See what condition implies about the bits of the select arm.
1035 KnownBits CondRes(Known.getBitWidth());
1036 computeKnownBitsFromCond(Arm, Cond, CondRes, Depth + 1, Q, Invert);
1037 // If we don't get any information from the condition, no reason to
1038 // proceed.
1039 if (CondRes.isUnknown())
1040 return;
1042 // We can have conflict if the condition is dead. I.e if we have
1043 // (x | 64) < 32 ? (x | 64) : y
1044 // we will have conflict at bit 6 from the condition/the `or`.
1045 // In that case just return. Its not particularly important
1046 // what we do, as this select is going to be simplified soon.
1047 CondRes = CondRes.unionWith(Known);
1048 if (CondRes.hasConflict())
1049 return;
1051 // Finally make sure the information we found is valid. This is relatively
1052 // expensive so it's left for the very end.
1053 if (!isGuaranteedNotToBeUndef(Arm, Q.AC, Q.CxtI, Q.DT, Depth + 1))
1054 return;
1056 // Finally, we know we get information from the condition and its valid,
1057 // so return it.
1058 Known = CondRes;
1061 static void computeKnownBitsFromOperator(const Operator *I,
1062 const APInt &DemandedElts,
1063 KnownBits &Known, unsigned Depth,
1064 const SimplifyQuery &Q) {
1065 unsigned BitWidth = Known.getBitWidth();
1067 KnownBits Known2(BitWidth);
1068 switch (I->getOpcode()) {
1069 default: break;
1070 case Instruction::Load:
1071 if (MDNode *MD =
1072 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1073 computeKnownBitsFromRangeMetadata(*MD, Known);
1074 break;
1075 case Instruction::And:
1076 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1077 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1079 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1080 break;
1081 case Instruction::Or:
1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1085 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1086 break;
1087 case Instruction::Xor:
1088 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1091 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1092 break;
1093 case Instruction::Mul: {
1094 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1095 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1096 Known, Known2, Depth, Q);
1097 break;
1099 case Instruction::UDiv: {
1100 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1101 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1102 Known =
1103 KnownBits::udiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1104 break;
1106 case Instruction::SDiv: {
1107 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1108 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1109 Known =
1110 KnownBits::sdiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1111 break;
1113 case Instruction::Select: {
1114 auto ComputeForArm = [&](Value *Arm, bool Invert) {
1115 KnownBits Res(Known.getBitWidth());
1116 computeKnownBits(Arm, DemandedElts, Res, Depth + 1, Q);
1117 adjustKnownBitsForSelectArm(Res, I->getOperand(0), Arm, Invert, Depth, Q);
1118 return Res;
1120 // Only known if known in both the LHS and RHS.
1121 Known =
1122 ComputeForArm(I->getOperand(1), /*Invert=*/false)
1123 .intersectWith(ComputeForArm(I->getOperand(2), /*Invert=*/true));
1124 break;
1126 case Instruction::FPTrunc:
1127 case Instruction::FPExt:
1128 case Instruction::FPToUI:
1129 case Instruction::FPToSI:
1130 case Instruction::SIToFP:
1131 case Instruction::UIToFP:
1132 break; // Can't work with floating point.
1133 case Instruction::PtrToInt:
1134 case Instruction::IntToPtr:
1135 // Fall through and handle them the same as zext/trunc.
1136 [[fallthrough]];
1137 case Instruction::ZExt:
1138 case Instruction::Trunc: {
1139 Type *SrcTy = I->getOperand(0)->getType();
1141 unsigned SrcBitWidth;
1142 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1143 // which fall through here.
1144 Type *ScalarTy = SrcTy->getScalarType();
1145 SrcBitWidth = ScalarTy->isPointerTy() ?
1146 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1147 Q.DL.getTypeSizeInBits(ScalarTy);
1149 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1150 Known = Known.anyextOrTrunc(SrcBitWidth);
1151 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1152 if (auto *Inst = dyn_cast<PossiblyNonNegInst>(I);
1153 Inst && Inst->hasNonNeg() && !Known.isNegative())
1154 Known.makeNonNegative();
1155 Known = Known.zextOrTrunc(BitWidth);
1156 break;
1158 case Instruction::BitCast: {
1159 Type *SrcTy = I->getOperand(0)->getType();
1160 if (SrcTy->isIntOrPtrTy() &&
1161 // TODO: For now, not handling conversions like:
1162 // (bitcast i64 %x to <2 x i32>)
1163 !I->getType()->isVectorTy()) {
1164 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1165 break;
1168 const Value *V;
1169 // Handle bitcast from floating point to integer.
1170 if (match(I, m_ElementWiseBitCast(m_Value(V))) &&
1171 V->getType()->isFPOrFPVectorTy()) {
1172 Type *FPType = V->getType()->getScalarType();
1173 KnownFPClass Result =
1174 computeKnownFPClass(V, DemandedElts, fcAllFlags, Depth + 1, Q);
1175 FPClassTest FPClasses = Result.KnownFPClasses;
1177 // TODO: Treat it as zero/poison if the use of I is unreachable.
1178 if (FPClasses == fcNone)
1179 break;
1181 if (Result.isKnownNever(fcNormal | fcSubnormal | fcNan)) {
1182 Known.Zero.setAllBits();
1183 Known.One.setAllBits();
1185 if (FPClasses & fcInf)
1186 Known = Known.intersectWith(KnownBits::makeConstant(
1187 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt()));
1189 if (FPClasses & fcZero)
1190 Known = Known.intersectWith(KnownBits::makeConstant(
1191 APInt::getZero(FPType->getScalarSizeInBits())));
1193 Known.Zero.clearSignBit();
1194 Known.One.clearSignBit();
1197 if (Result.SignBit) {
1198 if (*Result.SignBit)
1199 Known.makeNegative();
1200 else
1201 Known.makeNonNegative();
1204 break;
1207 // Handle cast from vector integer type to scalar or vector integer.
1208 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1209 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1210 !I->getType()->isIntOrIntVectorTy() ||
1211 isa<ScalableVectorType>(I->getType()))
1212 break;
1214 // Look through a cast from narrow vector elements to wider type.
1215 // Examples: v4i32 -> v2i64, v3i8 -> v24
1216 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1217 if (BitWidth % SubBitWidth == 0) {
1218 // Known bits are automatically intersected across demanded elements of a
1219 // vector. So for example, if a bit is computed as known zero, it must be
1220 // zero across all demanded elements of the vector.
1222 // For this bitcast, each demanded element of the output is sub-divided
1223 // across a set of smaller vector elements in the source vector. To get
1224 // the known bits for an entire element of the output, compute the known
1225 // bits for each sub-element sequentially. This is done by shifting the
1226 // one-set-bit demanded elements parameter across the sub-elements for
1227 // consecutive calls to computeKnownBits. We are using the demanded
1228 // elements parameter as a mask operator.
1230 // The known bits of each sub-element are then inserted into place
1231 // (dependent on endian) to form the full result of known bits.
1232 unsigned NumElts = DemandedElts.getBitWidth();
1233 unsigned SubScale = BitWidth / SubBitWidth;
1234 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1235 for (unsigned i = 0; i != NumElts; ++i) {
1236 if (DemandedElts[i])
1237 SubDemandedElts.setBit(i * SubScale);
1240 KnownBits KnownSrc(SubBitWidth);
1241 for (unsigned i = 0; i != SubScale; ++i) {
1242 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1243 Depth + 1, Q);
1244 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1245 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1248 break;
1250 case Instruction::SExt: {
1251 // Compute the bits in the result that are not present in the input.
1252 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1254 Known = Known.trunc(SrcBitWidth);
1255 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1256 // If the sign bit of the input is known set or clear, then we know the
1257 // top bits of the result.
1258 Known = Known.sext(BitWidth);
1259 break;
1261 case Instruction::Shl: {
1262 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1263 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1264 auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1265 bool ShAmtNonZero) {
1266 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1269 KF);
1270 // Trailing zeros of a right-shifted constant never decrease.
1271 const APInt *C;
1272 if (match(I->getOperand(0), m_APInt(C)))
1273 Known.Zero.setLowBits(C->countr_zero());
1274 break;
1276 case Instruction::LShr: {
1277 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1278 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1279 bool ShAmtNonZero) {
1280 return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283 KF);
1284 // Leading zeros of a left-shifted constant never decrease.
1285 const APInt *C;
1286 if (match(I->getOperand(0), m_APInt(C)))
1287 Known.Zero.setHighBits(C->countl_zero());
1288 break;
1290 case Instruction::AShr: {
1291 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1292 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1293 bool ShAmtNonZero) {
1294 return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1296 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1297 KF);
1298 break;
1300 case Instruction::Sub: {
1301 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1302 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1303 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, NUW,
1304 DemandedElts, Known, Known2, Depth, Q);
1305 break;
1307 case Instruction::Add: {
1308 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1309 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1310 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, NUW,
1311 DemandedElts, Known, Known2, Depth, Q);
1312 break;
1314 case Instruction::SRem:
1315 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1316 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1317 Known = KnownBits::srem(Known, Known2);
1318 break;
1320 case Instruction::URem:
1321 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1322 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1323 Known = KnownBits::urem(Known, Known2);
1324 break;
1325 case Instruction::Alloca:
1326 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1327 break;
1328 case Instruction::GetElementPtr: {
1329 // Analyze all of the subscripts of this getelementptr instruction
1330 // to determine if we can prove known low zero bits.
1331 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1332 // Accumulate the constant indices in a separate variable
1333 // to minimize the number of calls to computeForAddSub.
1334 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1336 gep_type_iterator GTI = gep_type_begin(I);
1337 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1338 // TrailZ can only become smaller, short-circuit if we hit zero.
1339 if (Known.isUnknown())
1340 break;
1342 Value *Index = I->getOperand(i);
1344 // Handle case when index is zero.
1345 Constant *CIndex = dyn_cast<Constant>(Index);
1346 if (CIndex && CIndex->isZeroValue())
1347 continue;
1349 if (StructType *STy = GTI.getStructTypeOrNull()) {
1350 // Handle struct member offset arithmetic.
1352 assert(CIndex &&
1353 "Access to structure field must be known at compile time");
1355 if (CIndex->getType()->isVectorTy())
1356 Index = CIndex->getSplatValue();
1358 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1359 const StructLayout *SL = Q.DL.getStructLayout(STy);
1360 uint64_t Offset = SL->getElementOffset(Idx);
1361 AccConstIndices += Offset;
1362 continue;
1365 // Handle array index arithmetic.
1366 Type *IndexedTy = GTI.getIndexedType();
1367 if (!IndexedTy->isSized()) {
1368 Known.resetAll();
1369 break;
1372 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1373 KnownBits IndexBits(IndexBitWidth);
1374 computeKnownBits(Index, IndexBits, Depth + 1, Q);
1375 TypeSize IndexTypeSize = GTI.getSequentialElementStride(Q.DL);
1376 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
1377 KnownBits ScalingFactor(IndexBitWidth);
1378 // Multiply by current sizeof type.
1379 // &A[i] == A + i * sizeof(*A[i]).
1380 if (IndexTypeSize.isScalable()) {
1381 // For scalable types the only thing we know about sizeof is
1382 // that this is a multiple of the minimum size.
1383 ScalingFactor.Zero.setLowBits(llvm::countr_zero(TypeSizeInBytes));
1384 } else if (IndexBits.isConstant()) {
1385 APInt IndexConst = IndexBits.getConstant();
1386 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1387 IndexConst *= ScalingFactor;
1388 AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1389 continue;
1390 } else {
1391 ScalingFactor =
1392 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1394 IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1396 // If the offsets have a different width from the pointer, according
1397 // to the language reference we need to sign-extend or truncate them
1398 // to the width of the pointer.
1399 IndexBits = IndexBits.sextOrTrunc(BitWidth);
1401 // Note that inbounds does *not* guarantee nsw for the addition, as only
1402 // the offset is signed, while the base address is unsigned.
1403 Known = KnownBits::computeForAddSub(
1404 /*Add=*/true, /*NSW=*/false, /* NUW=*/false, Known, IndexBits);
1406 if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1407 KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1408 Known = KnownBits::computeForAddSub(
1409 /*Add=*/true, /*NSW=*/false, /* NUW=*/false, Known, Index);
1411 break;
1413 case Instruction::PHI: {
1414 const PHINode *P = cast<PHINode>(I);
1415 BinaryOperator *BO = nullptr;
1416 Value *R = nullptr, *L = nullptr;
1417 if (matchSimpleRecurrence(P, BO, R, L)) {
1418 // Handle the case of a simple two-predecessor recurrence PHI.
1419 // There's a lot more that could theoretically be done here, but
1420 // this is sufficient to catch some interesting cases.
1421 unsigned Opcode = BO->getOpcode();
1423 // If this is a shift recurrence, we know the bits being shifted in.
1424 // We can combine that with information about the start value of the
1425 // recurrence to conclude facts about the result.
1426 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1427 Opcode == Instruction::Shl) &&
1428 BO->getOperand(0) == I) {
1430 // We have matched a recurrence of the form:
1431 // %iv = [R, %entry], [%iv.next, %backedge]
1432 // %iv.next = shift_op %iv, L
1434 // Recurse with the phi context to avoid concern about whether facts
1435 // inferred hold at original context instruction. TODO: It may be
1436 // correct to use the original context. IF warranted, explore and
1437 // add sufficient tests to cover.
1438 SimplifyQuery RecQ = Q.getWithoutCondContext();
1439 RecQ.CxtI = P;
1440 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1441 switch (Opcode) {
1442 case Instruction::Shl:
1443 // A shl recurrence will only increase the tailing zeros
1444 Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1445 break;
1446 case Instruction::LShr:
1447 // A lshr recurrence will preserve the leading zeros of the
1448 // start value
1449 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1450 break;
1451 case Instruction::AShr:
1452 // An ashr recurrence will extend the initial sign bit
1453 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1454 Known.One.setHighBits(Known2.countMinLeadingOnes());
1455 break;
1459 // Check for operations that have the property that if
1460 // both their operands have low zero bits, the result
1461 // will have low zero bits.
1462 if (Opcode == Instruction::Add ||
1463 Opcode == Instruction::Sub ||
1464 Opcode == Instruction::And ||
1465 Opcode == Instruction::Or ||
1466 Opcode == Instruction::Mul) {
1467 // Change the context instruction to the "edge" that flows into the
1468 // phi. This is important because that is where the value is actually
1469 // "evaluated" even though it is used later somewhere else. (see also
1470 // D69571).
1471 SimplifyQuery RecQ = Q.getWithoutCondContext();
1473 unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1474 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1475 Instruction *LInst = P->getIncomingBlock(1 - OpNum)->getTerminator();
1477 // Ok, we have a PHI of the form L op= R. Check for low
1478 // zero bits.
1479 RecQ.CxtI = RInst;
1480 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1482 // We need to take the minimum number of known bits
1483 KnownBits Known3(BitWidth);
1484 RecQ.CxtI = LInst;
1485 computeKnownBits(L, DemandedElts, Known3, Depth + 1, RecQ);
1487 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1488 Known3.countMinTrailingZeros()));
1490 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1491 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1492 // If initial value of recurrence is nonnegative, and we are adding
1493 // a nonnegative number with nsw, the result can only be nonnegative
1494 // or poison value regardless of the number of times we execute the
1495 // add in phi recurrence. If initial value is negative and we are
1496 // adding a negative number with nsw, the result can only be
1497 // negative or poison value. Similar arguments apply to sub and mul.
1499 // (add non-negative, non-negative) --> non-negative
1500 // (add negative, negative) --> negative
1501 if (Opcode == Instruction::Add) {
1502 if (Known2.isNonNegative() && Known3.isNonNegative())
1503 Known.makeNonNegative();
1504 else if (Known2.isNegative() && Known3.isNegative())
1505 Known.makeNegative();
1508 // (sub nsw non-negative, negative) --> non-negative
1509 // (sub nsw negative, non-negative) --> negative
1510 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1511 if (Known2.isNonNegative() && Known3.isNegative())
1512 Known.makeNonNegative();
1513 else if (Known2.isNegative() && Known3.isNonNegative())
1514 Known.makeNegative();
1517 // (mul nsw non-negative, non-negative) --> non-negative
1518 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1519 Known3.isNonNegative())
1520 Known.makeNonNegative();
1523 break;
1527 // Unreachable blocks may have zero-operand PHI nodes.
1528 if (P->getNumIncomingValues() == 0)
1529 break;
1531 // Otherwise take the unions of the known bit sets of the operands,
1532 // taking conservative care to avoid excessive recursion.
1533 if (Depth < MaxAnalysisRecursionDepth - 1 && Known.isUnknown()) {
1534 // Skip if every incoming value references to ourself.
1535 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1536 break;
1538 Known.Zero.setAllBits();
1539 Known.One.setAllBits();
1540 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1541 Value *IncValue = P->getIncomingValue(u);
1542 // Skip direct self references.
1543 if (IncValue == P) continue;
1545 // Change the context instruction to the "edge" that flows into the
1546 // phi. This is important because that is where the value is actually
1547 // "evaluated" even though it is used later somewhere else. (see also
1548 // D69571).
1549 SimplifyQuery RecQ = Q.getWithoutCondContext();
1550 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1552 Known2 = KnownBits(BitWidth);
1554 // Recurse, but cap the recursion to one level, because we don't
1555 // want to waste time spinning around in loops.
1556 // TODO: See if we can base recursion limiter on number of incoming phi
1557 // edges so we don't overly clamp analysis.
1558 computeKnownBits(IncValue, DemandedElts, Known2,
1559 MaxAnalysisRecursionDepth - 1, RecQ);
1561 // See if we can further use a conditional branch into the phi
1562 // to help us determine the range of the value.
1563 if (!Known2.isConstant()) {
1564 ICmpInst::Predicate Pred;
1565 const APInt *RHSC;
1566 BasicBlock *TrueSucc, *FalseSucc;
1567 // TODO: Use RHS Value and compute range from its known bits.
1568 if (match(RecQ.CxtI,
1569 m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1570 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1571 // Check for cases of duplicate successors.
1572 if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
1573 // If we're using the false successor, invert the predicate.
1574 if (FalseSucc == P->getParent())
1575 Pred = CmpInst::getInversePredicate(Pred);
1576 // Get the knownbits implied by the incoming phi condition.
1577 auto CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
1578 KnownBits KnownUnion = Known2.unionWith(CR.toKnownBits());
1579 // We can have conflicts here if we are analyzing deadcode (its
1580 // impossible for us reach this BB based the icmp).
1581 if (KnownUnion.hasConflict()) {
1582 // No reason to continue analyzing in a known dead region, so
1583 // just resetAll and break. This will cause us to also exit the
1584 // outer loop.
1585 Known.resetAll();
1586 break;
1588 Known2 = KnownUnion;
1593 Known = Known.intersectWith(Known2);
1594 // If all bits have been ruled out, there's no need to check
1595 // more operands.
1596 if (Known.isUnknown())
1597 break;
1600 break;
1602 case Instruction::Call:
1603 case Instruction::Invoke: {
1604 // If range metadata is attached to this call, set known bits from that,
1605 // and then intersect with known bits based on other properties of the
1606 // function.
1607 if (MDNode *MD =
1608 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1609 computeKnownBitsFromRangeMetadata(*MD, Known);
1611 const auto *CB = cast<CallBase>(I);
1613 if (std::optional<ConstantRange> Range = CB->getRange())
1614 Known = Known.unionWith(Range->toKnownBits());
1616 if (const Value *RV = CB->getReturnedArgOperand()) {
1617 if (RV->getType() == I->getType()) {
1618 computeKnownBits(RV, Known2, Depth + 1, Q);
1619 Known = Known.unionWith(Known2);
1620 // If the function doesn't return properly for all input values
1621 // (e.g. unreachable exits) then there might be conflicts between the
1622 // argument value and the range metadata. Simply discard the known bits
1623 // in case of conflicts.
1624 if (Known.hasConflict())
1625 Known.resetAll();
1628 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1629 switch (II->getIntrinsicID()) {
1630 default:
1631 break;
1632 case Intrinsic::abs: {
1633 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1634 bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1635 Known = Known2.abs(IntMinIsPoison);
1636 break;
1638 case Intrinsic::bitreverse:
1639 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1640 Known.Zero |= Known2.Zero.reverseBits();
1641 Known.One |= Known2.One.reverseBits();
1642 break;
1643 case Intrinsic::bswap:
1644 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1645 Known.Zero |= Known2.Zero.byteSwap();
1646 Known.One |= Known2.One.byteSwap();
1647 break;
1648 case Intrinsic::ctlz: {
1649 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1650 // If we have a known 1, its position is our upper bound.
1651 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1652 // If this call is poison for 0 input, the result will be less than 2^n.
1653 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1654 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1655 unsigned LowBits = llvm::bit_width(PossibleLZ);
1656 Known.Zero.setBitsFrom(LowBits);
1657 break;
1659 case Intrinsic::cttz: {
1660 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1661 // If we have a known 1, its position is our upper bound.
1662 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1663 // If this call is poison for 0 input, the result will be less than 2^n.
1664 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1665 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1666 unsigned LowBits = llvm::bit_width(PossibleTZ);
1667 Known.Zero.setBitsFrom(LowBits);
1668 break;
1670 case Intrinsic::ctpop: {
1671 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1672 // We can bound the space the count needs. Also, bits known to be zero
1673 // can't contribute to the population.
1674 unsigned BitsPossiblySet = Known2.countMaxPopulation();
1675 unsigned LowBits = llvm::bit_width(BitsPossiblySet);
1676 Known.Zero.setBitsFrom(LowBits);
1677 // TODO: we could bound KnownOne using the lower bound on the number
1678 // of bits which might be set provided by popcnt KnownOne2.
1679 break;
1681 case Intrinsic::fshr:
1682 case Intrinsic::fshl: {
1683 const APInt *SA;
1684 if (!match(I->getOperand(2), m_APInt(SA)))
1685 break;
1687 // Normalize to funnel shift left.
1688 uint64_t ShiftAmt = SA->urem(BitWidth);
1689 if (II->getIntrinsicID() == Intrinsic::fshr)
1690 ShiftAmt = BitWidth - ShiftAmt;
1692 KnownBits Known3(BitWidth);
1693 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1694 computeKnownBits(I->getOperand(1), DemandedElts, Known3, Depth + 1, Q);
1696 Known.Zero =
1697 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1698 Known.One =
1699 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1700 break;
1702 case Intrinsic::uadd_sat:
1703 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1704 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1705 Known = KnownBits::uadd_sat(Known, Known2);
1706 break;
1707 case Intrinsic::usub_sat:
1708 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1709 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1710 Known = KnownBits::usub_sat(Known, Known2);
1711 break;
1712 case Intrinsic::sadd_sat:
1713 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1714 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1715 Known = KnownBits::sadd_sat(Known, Known2);
1716 break;
1717 case Intrinsic::ssub_sat:
1718 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1719 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1720 Known = KnownBits::ssub_sat(Known, Known2);
1721 break;
1722 // Vec reverse preserves bits from input vec.
1723 case Intrinsic::vector_reverse:
1724 computeKnownBits(I->getOperand(0), DemandedElts.reverseBits(), Known,
1725 Depth + 1, Q);
1726 break;
1727 // for min/max/and/or reduce, any bit common to each element in the
1728 // input vec is set in the output.
1729 case Intrinsic::vector_reduce_and:
1730 case Intrinsic::vector_reduce_or:
1731 case Intrinsic::vector_reduce_umax:
1732 case Intrinsic::vector_reduce_umin:
1733 case Intrinsic::vector_reduce_smax:
1734 case Intrinsic::vector_reduce_smin:
1735 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1736 break;
1737 case Intrinsic::vector_reduce_xor: {
1738 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1739 // The zeros common to all vecs are zero in the output.
1740 // If the number of elements is odd, then the common ones remain. If the
1741 // number of elements is even, then the common ones becomes zeros.
1742 auto *VecTy = cast<VectorType>(I->getOperand(0)->getType());
1743 // Even, so the ones become zeros.
1744 bool EvenCnt = VecTy->getElementCount().isKnownEven();
1745 if (EvenCnt)
1746 Known.Zero |= Known.One;
1747 // Maybe even element count so need to clear ones.
1748 if (VecTy->isScalableTy() || EvenCnt)
1749 Known.One.clearAllBits();
1750 break;
1752 case Intrinsic::umin:
1753 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1754 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1755 Known = KnownBits::umin(Known, Known2);
1756 break;
1757 case Intrinsic::umax:
1758 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1759 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1760 Known = KnownBits::umax(Known, Known2);
1761 break;
1762 case Intrinsic::smin:
1763 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1764 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1765 Known = KnownBits::smin(Known, Known2);
1766 break;
1767 case Intrinsic::smax:
1768 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1769 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1770 Known = KnownBits::smax(Known, Known2);
1771 break;
1772 case Intrinsic::ptrmask: {
1773 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1775 const Value *Mask = I->getOperand(1);
1776 Known2 = KnownBits(Mask->getType()->getScalarSizeInBits());
1777 computeKnownBits(Mask, DemandedElts, Known2, Depth + 1, Q);
1778 // TODO: 1-extend would be more precise.
1779 Known &= Known2.anyextOrTrunc(BitWidth);
1780 break;
1782 case Intrinsic::x86_sse2_pmulh_w:
1783 case Intrinsic::x86_avx2_pmulh_w:
1784 case Intrinsic::x86_avx512_pmulh_w_512:
1785 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1786 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1787 Known = KnownBits::mulhs(Known, Known2);
1788 break;
1789 case Intrinsic::x86_sse2_pmulhu_w:
1790 case Intrinsic::x86_avx2_pmulhu_w:
1791 case Intrinsic::x86_avx512_pmulhu_w_512:
1792 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1793 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1794 Known = KnownBits::mulhu(Known, Known2);
1795 break;
1796 case Intrinsic::x86_sse42_crc32_64_64:
1797 Known.Zero.setBitsFrom(32);
1798 break;
1799 case Intrinsic::x86_ssse3_phadd_d_128:
1800 case Intrinsic::x86_ssse3_phadd_w_128:
1801 case Intrinsic::x86_avx2_phadd_d:
1802 case Intrinsic::x86_avx2_phadd_w: {
1803 Known = computeKnownBitsForHorizontalOperation(
1804 I, DemandedElts, Depth, Q,
1805 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
1806 return KnownBits::computeForAddSub(/*Add=*/true, /*NSW=*/false,
1807 /*NUW=*/false, KnownLHS,
1808 KnownRHS);
1810 break;
1812 case Intrinsic::x86_ssse3_phadd_sw_128:
1813 case Intrinsic::x86_avx2_phadd_sw: {
1814 Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth,
1815 Q, KnownBits::sadd_sat);
1816 break;
1818 case Intrinsic::x86_ssse3_phsub_d_128:
1819 case Intrinsic::x86_ssse3_phsub_w_128:
1820 case Intrinsic::x86_avx2_phsub_d:
1821 case Intrinsic::x86_avx2_phsub_w: {
1822 Known = computeKnownBitsForHorizontalOperation(
1823 I, DemandedElts, Depth, Q,
1824 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
1825 return KnownBits::computeForAddSub(/*Add=*/false, /*NSW=*/false,
1826 /*NUW=*/false, KnownLHS,
1827 KnownRHS);
1829 break;
1831 case Intrinsic::x86_ssse3_phsub_sw_128:
1832 case Intrinsic::x86_avx2_phsub_sw: {
1833 Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth,
1834 Q, KnownBits::ssub_sat);
1835 break;
1837 case Intrinsic::riscv_vsetvli:
1838 case Intrinsic::riscv_vsetvlimax: {
1839 bool HasAVL = II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
1840 const ConstantRange Range = getVScaleRange(II->getFunction(), BitWidth);
1841 uint64_t SEW = RISCVVType::decodeVSEW(
1842 cast<ConstantInt>(II->getArgOperand(HasAVL))->getZExtValue());
1843 RISCVII::VLMUL VLMUL = static_cast<RISCVII::VLMUL>(
1844 cast<ConstantInt>(II->getArgOperand(1 + HasAVL))->getZExtValue());
1845 uint64_t MaxVLEN =
1846 Range.getUnsignedMax().getZExtValue() * RISCV::RVVBitsPerBlock;
1847 uint64_t MaxVL = MaxVLEN / RISCVVType::getSEWLMULRatio(SEW, VLMUL);
1849 // Result of vsetvli must be not larger than AVL.
1850 if (HasAVL)
1851 if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1852 MaxVL = std::min(MaxVL, CI->getZExtValue());
1854 unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
1855 if (BitWidth > KnownZeroFirstBit)
1856 Known.Zero.setBitsFrom(KnownZeroFirstBit);
1857 break;
1859 case Intrinsic::vscale: {
1860 if (!II->getParent() || !II->getFunction())
1861 break;
1863 Known = getVScaleRange(II->getFunction(), BitWidth).toKnownBits();
1864 break;
1868 break;
1870 case Instruction::ShuffleVector: {
1871 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1872 // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1873 if (!Shuf) {
1874 Known.resetAll();
1875 return;
1877 // For undef elements, we don't know anything about the common state of
1878 // the shuffle result.
1879 APInt DemandedLHS, DemandedRHS;
1880 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1881 Known.resetAll();
1882 return;
1884 Known.One.setAllBits();
1885 Known.Zero.setAllBits();
1886 if (!!DemandedLHS) {
1887 const Value *LHS = Shuf->getOperand(0);
1888 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1889 // If we don't know any bits, early out.
1890 if (Known.isUnknown())
1891 break;
1893 if (!!DemandedRHS) {
1894 const Value *RHS = Shuf->getOperand(1);
1895 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1896 Known = Known.intersectWith(Known2);
1898 break;
1900 case Instruction::InsertElement: {
1901 if (isa<ScalableVectorType>(I->getType())) {
1902 Known.resetAll();
1903 return;
1905 const Value *Vec = I->getOperand(0);
1906 const Value *Elt = I->getOperand(1);
1907 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1908 unsigned NumElts = DemandedElts.getBitWidth();
1909 APInt DemandedVecElts = DemandedElts;
1910 bool NeedsElt = true;
1911 // If we know the index we are inserting too, clear it from Vec check.
1912 if (CIdx && CIdx->getValue().ult(NumElts)) {
1913 DemandedVecElts.clearBit(CIdx->getZExtValue());
1914 NeedsElt = DemandedElts[CIdx->getZExtValue()];
1917 Known.One.setAllBits();
1918 Known.Zero.setAllBits();
1919 if (NeedsElt) {
1920 computeKnownBits(Elt, Known, Depth + 1, Q);
1921 // If we don't know any bits, early out.
1922 if (Known.isUnknown())
1923 break;
1926 if (!DemandedVecElts.isZero()) {
1927 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1928 Known = Known.intersectWith(Known2);
1930 break;
1932 case Instruction::ExtractElement: {
1933 // Look through extract element. If the index is non-constant or
1934 // out-of-range demand all elements, otherwise just the extracted element.
1935 const Value *Vec = I->getOperand(0);
1936 const Value *Idx = I->getOperand(1);
1937 auto *CIdx = dyn_cast<ConstantInt>(Idx);
1938 if (isa<ScalableVectorType>(Vec->getType())) {
1939 // FIXME: there's probably *something* we can do with scalable vectors
1940 Known.resetAll();
1941 break;
1943 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1944 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1945 if (CIdx && CIdx->getValue().ult(NumElts))
1946 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1947 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1948 break;
1950 case Instruction::ExtractValue:
1951 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1952 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1953 if (EVI->getNumIndices() != 1) break;
1954 if (EVI->getIndices()[0] == 0) {
1955 switch (II->getIntrinsicID()) {
1956 default: break;
1957 case Intrinsic::uadd_with_overflow:
1958 case Intrinsic::sadd_with_overflow:
1959 computeKnownBitsAddSub(
1960 true, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
1961 /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q);
1962 break;
1963 case Intrinsic::usub_with_overflow:
1964 case Intrinsic::ssub_with_overflow:
1965 computeKnownBitsAddSub(
1966 false, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
1967 /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q);
1968 break;
1969 case Intrinsic::umul_with_overflow:
1970 case Intrinsic::smul_with_overflow:
1971 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1972 DemandedElts, Known, Known2, Depth, Q);
1973 break;
1977 break;
1978 case Instruction::Freeze:
1979 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1980 Depth + 1))
1981 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1982 break;
1986 /// Determine which bits of V are known to be either zero or one and return
1987 /// them.
1988 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
1989 unsigned Depth, const SimplifyQuery &Q) {
1990 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1991 ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
1992 return Known;
1995 /// Determine which bits of V are known to be either zero or one and return
1996 /// them.
1997 KnownBits llvm::computeKnownBits(const Value *V, unsigned Depth,
1998 const SimplifyQuery &Q) {
1999 KnownBits Known(getBitWidth(V->getType(), Q.DL));
2000 computeKnownBits(V, Known, Depth, Q);
2001 return Known;
2004 /// Determine which bits of V are known to be either zero or one and return
2005 /// them in the Known bit set.
2007 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
2008 /// we cannot optimize based on the assumption that it is zero without changing
2009 /// it to be an explicit zero. If we don't change it to zero, other code could
2010 /// optimized based on the contradictory assumption that it is non-zero.
2011 /// Because instcombine aggressively folds operations with undef args anyway,
2012 /// this won't lose us code quality.
2014 /// This function is defined on values with integer type, values with pointer
2015 /// type, and vectors of integers. In the case
2016 /// where V is a vector, known zero, and known one values are the
2017 /// same width as the vector element, and the bit is set only if it is true
2018 /// for all of the demanded elements in the vector specified by DemandedElts.
2019 void computeKnownBits(const Value *V, const APInt &DemandedElts,
2020 KnownBits &Known, unsigned Depth,
2021 const SimplifyQuery &Q) {
2022 if (!DemandedElts) {
2023 // No demanded elts, better to assume we don't know anything.
2024 Known.resetAll();
2025 return;
2028 assert(V && "No Value?");
2029 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2031 #ifndef NDEBUG
2032 Type *Ty = V->getType();
2033 unsigned BitWidth = Known.getBitWidth();
2035 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2036 "Not integer or pointer type!");
2038 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2039 assert(
2040 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2041 "DemandedElt width should equal the fixed vector number of elements");
2042 } else {
2043 assert(DemandedElts == APInt(1, 1) &&
2044 "DemandedElt width should be 1 for scalars or scalable vectors");
2047 Type *ScalarTy = Ty->getScalarType();
2048 if (ScalarTy->isPointerTy()) {
2049 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
2050 "V and Known should have same BitWidth");
2051 } else {
2052 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
2053 "V and Known should have same BitWidth");
2055 #endif
2057 const APInt *C;
2058 if (match(V, m_APInt(C))) {
2059 // We know all of the bits for a scalar constant or a splat vector constant!
2060 Known = KnownBits::makeConstant(*C);
2061 return;
2063 // Null and aggregate-zero are all-zeros.
2064 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
2065 Known.setAllZero();
2066 return;
2068 // Handle a constant vector by taking the intersection of the known bits of
2069 // each element.
2070 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
2071 assert(!isa<ScalableVectorType>(V->getType()));
2072 // We know that CDV must be a vector of integers. Take the intersection of
2073 // each element.
2074 Known.Zero.setAllBits(); Known.One.setAllBits();
2075 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2076 if (!DemandedElts[i])
2077 continue;
2078 APInt Elt = CDV->getElementAsAPInt(i);
2079 Known.Zero &= ~Elt;
2080 Known.One &= Elt;
2082 if (Known.hasConflict())
2083 Known.resetAll();
2084 return;
2087 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
2088 assert(!isa<ScalableVectorType>(V->getType()));
2089 // We know that CV must be a vector of integers. Take the intersection of
2090 // each element.
2091 Known.Zero.setAllBits(); Known.One.setAllBits();
2092 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2093 if (!DemandedElts[i])
2094 continue;
2095 Constant *Element = CV->getAggregateElement(i);
2096 if (isa<PoisonValue>(Element))
2097 continue;
2098 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
2099 if (!ElementCI) {
2100 Known.resetAll();
2101 return;
2103 const APInt &Elt = ElementCI->getValue();
2104 Known.Zero &= ~Elt;
2105 Known.One &= Elt;
2107 if (Known.hasConflict())
2108 Known.resetAll();
2109 return;
2112 // Start out not knowing anything.
2113 Known.resetAll();
2115 // We can't imply anything about undefs.
2116 if (isa<UndefValue>(V))
2117 return;
2119 // There's no point in looking through other users of ConstantData for
2120 // assumptions. Confirm that we've handled them all.
2121 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2123 if (const auto *A = dyn_cast<Argument>(V))
2124 if (std::optional<ConstantRange> Range = A->getRange())
2125 Known = Range->toKnownBits();
2127 // All recursive calls that increase depth must come after this.
2128 if (Depth == MaxAnalysisRecursionDepth)
2129 return;
2131 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2132 // the bits of its aliasee.
2133 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2134 if (!GA->isInterposable())
2135 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2136 return;
2139 if (const Operator *I = dyn_cast<Operator>(V))
2140 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2141 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2142 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2143 Known = CR->toKnownBits();
2146 // Aligned pointers have trailing zeros - refine Known.Zero set
2147 if (isa<PointerType>(V->getType())) {
2148 Align Alignment = V->getPointerAlignment(Q.DL);
2149 Known.Zero.setLowBits(Log2(Alignment));
2152 // computeKnownBitsFromContext strictly refines Known.
2153 // Therefore, we run them after computeKnownBitsFromOperator.
2155 // Check whether we can determine known bits from context such as assumes.
2156 computeKnownBitsFromContext(V, Known, Depth, Q);
2159 /// Try to detect a recurrence that the value of the induction variable is
2160 /// always a power of two (or zero).
2161 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2162 unsigned Depth, SimplifyQuery &Q) {
2163 BinaryOperator *BO = nullptr;
2164 Value *Start = nullptr, *Step = nullptr;
2165 if (!matchSimpleRecurrence(PN, BO, Start, Step))
2166 return false;
2168 // Initial value must be a power of two.
2169 for (const Use &U : PN->operands()) {
2170 if (U.get() == Start) {
2171 // Initial value comes from a different BB, need to adjust context
2172 // instruction for analysis.
2173 Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2174 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2175 return false;
2179 // Except for Mul, the induction variable must be on the left side of the
2180 // increment expression, otherwise its value can be arbitrary.
2181 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2182 return false;
2184 Q.CxtI = BO->getParent()->getTerminator();
2185 switch (BO->getOpcode()) {
2186 case Instruction::Mul:
2187 // Power of two is closed under multiplication.
2188 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2189 Q.IIQ.hasNoSignedWrap(BO)) &&
2190 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2191 case Instruction::SDiv:
2192 // Start value must not be signmask for signed division, so simply being a
2193 // power of two is not sufficient, and it has to be a constant.
2194 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2195 return false;
2196 [[fallthrough]];
2197 case Instruction::UDiv:
2198 // Divisor must be a power of two.
2199 // If OrZero is false, cannot guarantee induction variable is non-zero after
2200 // division, same for Shr, unless it is exact division.
2201 return (OrZero || Q.IIQ.isExact(BO)) &&
2202 isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2203 case Instruction::Shl:
2204 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2205 case Instruction::AShr:
2206 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2207 return false;
2208 [[fallthrough]];
2209 case Instruction::LShr:
2210 return OrZero || Q.IIQ.isExact(BO);
2211 default:
2212 return false;
2216 /// Return true if the given value is known to have exactly one
2217 /// bit set when defined. For vectors return true if every element is known to
2218 /// be a power of two when defined. Supports values with integer or pointer
2219 /// types and vectors of integers.
2220 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2221 const SimplifyQuery &Q) {
2222 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2224 if (isa<Constant>(V))
2225 return OrZero ? match(V, m_Power2OrZero()) : match(V, m_Power2());
2227 // i1 is by definition a power of 2 or zero.
2228 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2229 return true;
2231 auto *I = dyn_cast<Instruction>(V);
2232 if (!I)
2233 return false;
2235 if (Q.CxtI && match(V, m_VScale())) {
2236 const Function *F = Q.CxtI->getFunction();
2237 // The vscale_range indicates vscale is a power-of-two.
2238 return F->hasFnAttribute(Attribute::VScaleRange);
2241 // 1 << X is clearly a power of two if the one is not shifted off the end. If
2242 // it is shifted off the end then the result is undefined.
2243 if (match(I, m_Shl(m_One(), m_Value())))
2244 return true;
2246 // (signmask) >>l X is clearly a power of two if the one is not shifted off
2247 // the bottom. If it is shifted off the bottom then the result is undefined.
2248 if (match(I, m_LShr(m_SignMask(), m_Value())))
2249 return true;
2251 // The remaining tests are all recursive, so bail out if we hit the limit.
2252 if (Depth++ == MaxAnalysisRecursionDepth)
2253 return false;
2255 switch (I->getOpcode()) {
2256 case Instruction::ZExt:
2257 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2258 case Instruction::Trunc:
2259 return OrZero && isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2260 case Instruction::Shl:
2261 if (OrZero || Q.IIQ.hasNoUnsignedWrap(I) || Q.IIQ.hasNoSignedWrap(I))
2262 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2263 return false;
2264 case Instruction::LShr:
2265 if (OrZero || Q.IIQ.isExact(cast<BinaryOperator>(I)))
2266 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2267 return false;
2268 case Instruction::UDiv:
2269 if (Q.IIQ.isExact(cast<BinaryOperator>(I)))
2270 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2271 return false;
2272 case Instruction::Mul:
2273 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
2274 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q) &&
2275 (OrZero || isKnownNonZero(I, Q, Depth));
2276 case Instruction::And:
2277 // A power of two and'd with anything is a power of two or zero.
2278 if (OrZero &&
2279 (isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ true, Depth, Q) ||
2280 isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ true, Depth, Q)))
2281 return true;
2282 // X & (-X) is always a power of two or zero.
2283 if (match(I->getOperand(0), m_Neg(m_Specific(I->getOperand(1)))) ||
2284 match(I->getOperand(1), m_Neg(m_Specific(I->getOperand(0)))))
2285 return OrZero || isKnownNonZero(I->getOperand(0), Q, Depth);
2286 return false;
2287 case Instruction::Add: {
2288 // Adding a power-of-two or zero to the same power-of-two or zero yields
2289 // either the original power-of-two, a larger power-of-two or zero.
2290 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2291 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2292 Q.IIQ.hasNoSignedWrap(VOBO)) {
2293 if (match(I->getOperand(0),
2294 m_c_And(m_Specific(I->getOperand(1)), m_Value())) &&
2295 isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q))
2296 return true;
2297 if (match(I->getOperand(1),
2298 m_c_And(m_Specific(I->getOperand(0)), m_Value())) &&
2299 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q))
2300 return true;
2302 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2303 KnownBits LHSBits(BitWidth);
2304 computeKnownBits(I->getOperand(0), LHSBits, Depth, Q);
2306 KnownBits RHSBits(BitWidth);
2307 computeKnownBits(I->getOperand(1), RHSBits, Depth, Q);
2308 // If i8 V is a power of two or zero:
2309 // ZeroBits: 1 1 1 0 1 1 1 1
2310 // ~ZeroBits: 0 0 0 1 0 0 0 0
2311 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2312 // If OrZero isn't set, we cannot give back a zero result.
2313 // Make sure either the LHS or RHS has a bit set.
2314 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2315 return true;
2318 // LShr(UINT_MAX, Y) + 1 is a power of two (if add is nuw) or zero.
2319 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO))
2320 if (match(I, m_Add(m_LShr(m_AllOnes(), m_Value()), m_One())))
2321 return true;
2322 return false;
2324 case Instruction::Select:
2325 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
2326 isKnownToBeAPowerOfTwo(I->getOperand(2), OrZero, Depth, Q);
2327 case Instruction::PHI: {
2328 // A PHI node is power of two if all incoming values are power of two, or if
2329 // it is an induction variable where in each step its value is a power of
2330 // two.
2331 auto *PN = cast<PHINode>(I);
2332 SimplifyQuery RecQ = Q.getWithoutCondContext();
2334 // Check if it is an induction variable and always power of two.
2335 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2336 return true;
2338 // Recursively check all incoming values. Limit recursion to 2 levels, so
2339 // that search complexity is limited to number of operands^2.
2340 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2341 return llvm::all_of(PN->operands(), [&](const Use &U) {
2342 // Value is power of 2 if it is coming from PHI node itself by induction.
2343 if (U.get() == PN)
2344 return true;
2346 // Change the context instruction to the incoming block where it is
2347 // evaluated.
2348 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2349 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2352 case Instruction::Invoke:
2353 case Instruction::Call: {
2354 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
2355 switch (II->getIntrinsicID()) {
2356 case Intrinsic::umax:
2357 case Intrinsic::smax:
2358 case Intrinsic::umin:
2359 case Intrinsic::smin:
2360 return isKnownToBeAPowerOfTwo(II->getArgOperand(1), OrZero, Depth, Q) &&
2361 isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2362 // bswap/bitreverse just move around bits, but don't change any 1s/0s
2363 // thus dont change pow2/non-pow2 status.
2364 case Intrinsic::bitreverse:
2365 case Intrinsic::bswap:
2366 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2367 case Intrinsic::fshr:
2368 case Intrinsic::fshl:
2369 // If Op0 == Op1, this is a rotate. is_pow2(rotate(x, y)) == is_pow2(x)
2370 if (II->getArgOperand(0) == II->getArgOperand(1))
2371 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2372 break;
2373 default:
2374 break;
2377 return false;
2379 default:
2380 return false;
2384 /// Test whether a GEP's result is known to be non-null.
2386 /// Uses properties inherent in a GEP to try to determine whether it is known
2387 /// to be non-null.
2389 /// Currently this routine does not support vector GEPs.
2390 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2391 const SimplifyQuery &Q) {
2392 const Function *F = nullptr;
2393 if (const Instruction *I = dyn_cast<Instruction>(GEP))
2394 F = I->getFunction();
2396 // If the gep is nuw or inbounds with invalid null pointer, then the GEP
2397 // may be null iff the base pointer is null and the offset is zero.
2398 if (!GEP->hasNoUnsignedWrap() &&
2399 !(GEP->isInBounds() &&
2400 !NullPointerIsDefined(F, GEP->getPointerAddressSpace())))
2401 return false;
2403 // FIXME: Support vector-GEPs.
2404 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2406 // If the base pointer is non-null, we cannot walk to a null address with an
2407 // inbounds GEP in address space zero.
2408 if (isKnownNonZero(GEP->getPointerOperand(), Q, Depth))
2409 return true;
2411 // Walk the GEP operands and see if any operand introduces a non-zero offset.
2412 // If so, then the GEP cannot produce a null pointer, as doing so would
2413 // inherently violate the inbounds contract within address space zero.
2414 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2415 GTI != GTE; ++GTI) {
2416 // Struct types are easy -- they must always be indexed by a constant.
2417 if (StructType *STy = GTI.getStructTypeOrNull()) {
2418 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2419 unsigned ElementIdx = OpC->getZExtValue();
2420 const StructLayout *SL = Q.DL.getStructLayout(STy);
2421 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2422 if (ElementOffset > 0)
2423 return true;
2424 continue;
2427 // If we have a zero-sized type, the index doesn't matter. Keep looping.
2428 if (GTI.getSequentialElementStride(Q.DL).isZero())
2429 continue;
2431 // Fast path the constant operand case both for efficiency and so we don't
2432 // increment Depth when just zipping down an all-constant GEP.
2433 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2434 if (!OpC->isZero())
2435 return true;
2436 continue;
2439 // We post-increment Depth here because while isKnownNonZero increments it
2440 // as well, when we pop back up that increment won't persist. We don't want
2441 // to recurse 10k times just because we have 10k GEP operands. We don't
2442 // bail completely out because we want to handle constant GEPs regardless
2443 // of depth.
2444 if (Depth++ >= MaxAnalysisRecursionDepth)
2445 continue;
2447 if (isKnownNonZero(GTI.getOperand(), Q, Depth))
2448 return true;
2451 return false;
2454 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2455 const Instruction *CtxI,
2456 const DominatorTree *DT) {
2457 assert(!isa<Constant>(V) && "Called for constant?");
2459 if (!CtxI || !DT)
2460 return false;
2462 unsigned NumUsesExplored = 0;
2463 for (const auto *U : V->users()) {
2464 // Avoid massive lists
2465 if (NumUsesExplored >= DomConditionsMaxUses)
2466 break;
2467 NumUsesExplored++;
2469 // If the value is used as an argument to a call or invoke, then argument
2470 // attributes may provide an answer about null-ness.
2471 if (const auto *CB = dyn_cast<CallBase>(U))
2472 if (auto *CalledFunc = CB->getCalledFunction())
2473 for (const Argument &Arg : CalledFunc->args())
2474 if (CB->getArgOperand(Arg.getArgNo()) == V &&
2475 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2476 DT->dominates(CB, CtxI))
2477 return true;
2479 // If the value is used as a load/store, then the pointer must be non null.
2480 if (V == getLoadStorePointerOperand(U)) {
2481 const Instruction *I = cast<Instruction>(U);
2482 if (!NullPointerIsDefined(I->getFunction(),
2483 V->getType()->getPointerAddressSpace()) &&
2484 DT->dominates(I, CtxI))
2485 return true;
2488 if ((match(U, m_IDiv(m_Value(), m_Specific(V))) ||
2489 match(U, m_IRem(m_Value(), m_Specific(V)))) &&
2490 isValidAssumeForContext(cast<Instruction>(U), CtxI, DT))
2491 return true;
2493 // Consider only compare instructions uniquely controlling a branch
2494 Value *RHS;
2495 CmpInst::Predicate Pred;
2496 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2497 continue;
2499 bool NonNullIfTrue;
2500 if (cmpExcludesZero(Pred, RHS))
2501 NonNullIfTrue = true;
2502 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2503 NonNullIfTrue = false;
2504 else
2505 continue;
2507 SmallVector<const User *, 4> WorkList;
2508 SmallPtrSet<const User *, 4> Visited;
2509 for (const auto *CmpU : U->users()) {
2510 assert(WorkList.empty() && "Should be!");
2511 if (Visited.insert(CmpU).second)
2512 WorkList.push_back(CmpU);
2514 while (!WorkList.empty()) {
2515 auto *Curr = WorkList.pop_back_val();
2517 // If a user is an AND, add all its users to the work list. We only
2518 // propagate "pred != null" condition through AND because it is only
2519 // correct to assume that all conditions of AND are met in true branch.
2520 // TODO: Support similar logic of OR and EQ predicate?
2521 if (NonNullIfTrue)
2522 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2523 for (const auto *CurrU : Curr->users())
2524 if (Visited.insert(CurrU).second)
2525 WorkList.push_back(CurrU);
2526 continue;
2529 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2530 assert(BI->isConditional() && "uses a comparison!");
2532 BasicBlock *NonNullSuccessor =
2533 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2534 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2535 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2536 return true;
2537 } else if (NonNullIfTrue && isGuard(Curr) &&
2538 DT->dominates(cast<Instruction>(Curr), CtxI)) {
2539 return true;
2545 return false;
2548 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2549 /// ensure that the value it's attached to is never Value? 'RangeType' is
2550 /// is the type of the value described by the range.
2551 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2552 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2553 assert(NumRanges >= 1);
2554 for (unsigned i = 0; i < NumRanges; ++i) {
2555 ConstantInt *Lower =
2556 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2557 ConstantInt *Upper =
2558 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2559 ConstantRange Range(Lower->getValue(), Upper->getValue());
2560 if (Range.contains(Value))
2561 return false;
2563 return true;
2566 /// Try to detect a recurrence that monotonically increases/decreases from a
2567 /// non-zero starting value. These are common as induction variables.
2568 static bool isNonZeroRecurrence(const PHINode *PN) {
2569 BinaryOperator *BO = nullptr;
2570 Value *Start = nullptr, *Step = nullptr;
2571 const APInt *StartC, *StepC;
2572 if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2573 !match(Start, m_APInt(StartC)) || StartC->isZero())
2574 return false;
2576 switch (BO->getOpcode()) {
2577 case Instruction::Add:
2578 // Starting from non-zero and stepping away from zero can never wrap back
2579 // to zero.
2580 return BO->hasNoUnsignedWrap() ||
2581 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2582 StartC->isNegative() == StepC->isNegative());
2583 case Instruction::Mul:
2584 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2585 match(Step, m_APInt(StepC)) && !StepC->isZero();
2586 case Instruction::Shl:
2587 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2588 case Instruction::AShr:
2589 case Instruction::LShr:
2590 return BO->isExact();
2591 default:
2592 return false;
2596 static bool matchOpWithOpEqZero(Value *Op0, Value *Op1) {
2597 ICmpInst::Predicate Pred;
2598 return (match(Op0, m_ZExtOrSExt(m_ICmp(Pred, m_Specific(Op1), m_Zero()))) ||
2599 match(Op1, m_ZExtOrSExt(m_ICmp(Pred, m_Specific(Op0), m_Zero())))) &&
2600 Pred == ICmpInst::ICMP_EQ;
2603 static bool isNonZeroAdd(const APInt &DemandedElts, unsigned Depth,
2604 const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2605 Value *Y, bool NSW, bool NUW) {
2606 // (X + (X != 0)) is non zero
2607 if (matchOpWithOpEqZero(X, Y))
2608 return true;
2610 if (NUW)
2611 return isKnownNonZero(Y, DemandedElts, Q, Depth) ||
2612 isKnownNonZero(X, DemandedElts, Q, Depth);
2614 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2615 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2617 // If X and Y are both non-negative (as signed values) then their sum is not
2618 // zero unless both X and Y are zero.
2619 if (XKnown.isNonNegative() && YKnown.isNonNegative())
2620 if (isKnownNonZero(Y, DemandedElts, Q, Depth) ||
2621 isKnownNonZero(X, DemandedElts, Q, Depth))
2622 return true;
2624 // If X and Y are both negative (as signed values) then their sum is not
2625 // zero unless both X and Y equal INT_MIN.
2626 if (XKnown.isNegative() && YKnown.isNegative()) {
2627 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2628 // The sign bit of X is set. If some other bit is set then X is not equal
2629 // to INT_MIN.
2630 if (XKnown.One.intersects(Mask))
2631 return true;
2632 // The sign bit of Y is set. If some other bit is set then Y is not equal
2633 // to INT_MIN.
2634 if (YKnown.One.intersects(Mask))
2635 return true;
2638 // The sum of a non-negative number and a power of two is not zero.
2639 if (XKnown.isNonNegative() &&
2640 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2641 return true;
2642 if (YKnown.isNonNegative() &&
2643 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2644 return true;
2646 return KnownBits::computeForAddSub(/*Add=*/true, NSW, NUW, XKnown, YKnown)
2647 .isNonZero();
2650 static bool isNonZeroSub(const APInt &DemandedElts, unsigned Depth,
2651 const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2652 Value *Y) {
2653 // (X - (X != 0)) is non zero
2654 // ((X != 0) - X) is non zero
2655 if (matchOpWithOpEqZero(X, Y))
2656 return true;
2658 // TODO: Move this case into isKnownNonEqual().
2659 if (auto *C = dyn_cast<Constant>(X))
2660 if (C->isNullValue() && isKnownNonZero(Y, DemandedElts, Q, Depth))
2661 return true;
2663 return ::isKnownNonEqual(X, Y, DemandedElts, Depth, Q);
2666 static bool isNonZeroMul(const APInt &DemandedElts, unsigned Depth,
2667 const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2668 Value *Y, bool NSW, bool NUW) {
2669 // If X and Y are non-zero then so is X * Y as long as the multiplication
2670 // does not overflow.
2671 if (NSW || NUW)
2672 return isKnownNonZero(X, DemandedElts, Q, Depth) &&
2673 isKnownNonZero(Y, DemandedElts, Q, Depth);
2675 // If either X or Y is odd, then if the other is non-zero the result can't
2676 // be zero.
2677 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2678 if (XKnown.One[0])
2679 return isKnownNonZero(Y, DemandedElts, Q, Depth);
2681 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2682 if (YKnown.One[0])
2683 return XKnown.isNonZero() || isKnownNonZero(X, DemandedElts, Q, Depth);
2685 // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is
2686 // non-zero, then X * Y is non-zero. We can find sX and sY by just taking
2687 // the lowest known One of X and Y. If they are non-zero, the result
2688 // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing
2689 // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth.
2690 return (XKnown.countMaxTrailingZeros() + YKnown.countMaxTrailingZeros()) <
2691 BitWidth;
2694 static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts,
2695 unsigned Depth, const SimplifyQuery &Q,
2696 const KnownBits &KnownVal) {
2697 auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2698 switch (I->getOpcode()) {
2699 case Instruction::Shl:
2700 return Lhs.shl(Rhs);
2701 case Instruction::LShr:
2702 return Lhs.lshr(Rhs);
2703 case Instruction::AShr:
2704 return Lhs.ashr(Rhs);
2705 default:
2706 llvm_unreachable("Unknown Shift Opcode");
2710 auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2711 switch (I->getOpcode()) {
2712 case Instruction::Shl:
2713 return Lhs.lshr(Rhs);
2714 case Instruction::LShr:
2715 case Instruction::AShr:
2716 return Lhs.shl(Rhs);
2717 default:
2718 llvm_unreachable("Unknown Shift Opcode");
2722 if (KnownVal.isUnknown())
2723 return false;
2725 KnownBits KnownCnt =
2726 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2727 APInt MaxShift = KnownCnt.getMaxValue();
2728 unsigned NumBits = KnownVal.getBitWidth();
2729 if (MaxShift.uge(NumBits))
2730 return false;
2732 if (!ShiftOp(KnownVal.One, MaxShift).isZero())
2733 return true;
2735 // If all of the bits shifted out are known to be zero, and Val is known
2736 // non-zero then at least one non-zero bit must remain.
2737 if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift)
2738 .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) &&
2739 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth))
2740 return true;
2742 return false;
2745 static bool isKnownNonZeroFromOperator(const Operator *I,
2746 const APInt &DemandedElts,
2747 unsigned Depth, const SimplifyQuery &Q) {
2748 unsigned BitWidth = getBitWidth(I->getType()->getScalarType(), Q.DL);
2749 switch (I->getOpcode()) {
2750 case Instruction::Alloca:
2751 // Alloca never returns null, malloc might.
2752 return I->getType()->getPointerAddressSpace() == 0;
2753 case Instruction::GetElementPtr:
2754 if (I->getType()->isPointerTy())
2755 return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
2756 break;
2757 case Instruction::BitCast: {
2758 // We need to be a bit careful here. We can only peek through the bitcast
2759 // if the scalar size of elements in the operand are smaller than and a
2760 // multiple of the size they are casting too. Take three cases:
2762 // 1) Unsafe:
2763 // bitcast <2 x i16> %NonZero to <4 x i8>
2765 // %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a
2766 // <4 x i8> requires that all 4 i8 elements be non-zero which isn't
2767 // guranteed (imagine just sign bit set in the 2 i16 elements).
2769 // 2) Unsafe:
2770 // bitcast <4 x i3> %NonZero to <3 x i4>
2772 // Even though the scalar size of the src (`i3`) is smaller than the
2773 // scalar size of the dst `i4`, because `i3` is not a multiple of `i4`
2774 // its possible for the `3 x i4` elements to be zero because there are
2775 // some elements in the destination that don't contain any full src
2776 // element.
2778 // 3) Safe:
2779 // bitcast <4 x i8> %NonZero to <2 x i16>
2781 // This is always safe as non-zero in the 4 i8 elements implies
2782 // non-zero in the combination of any two adjacent ones. Since i8 is a
2783 // multiple of i16, each i16 is guranteed to have 2 full i8 elements.
2784 // This all implies the 2 i16 elements are non-zero.
2785 Type *FromTy = I->getOperand(0)->getType();
2786 if ((FromTy->isIntOrIntVectorTy() || FromTy->isPtrOrPtrVectorTy()) &&
2787 (BitWidth % getBitWidth(FromTy->getScalarType(), Q.DL)) == 0)
2788 return isKnownNonZero(I->getOperand(0), Q, Depth);
2789 } break;
2790 case Instruction::IntToPtr:
2791 // Note that we have to take special care to avoid looking through
2792 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2793 // as casts that can alter the value, e.g., AddrSpaceCasts.
2794 if (!isa<ScalableVectorType>(I->getType()) &&
2795 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2796 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2797 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2798 break;
2799 case Instruction::PtrToInt:
2800 // Similar to int2ptr above, we can look through ptr2int here if the cast
2801 // is a no-op or an extend and not a truncate.
2802 if (!isa<ScalableVectorType>(I->getType()) &&
2803 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2804 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2805 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2806 break;
2807 case Instruction::Trunc:
2808 // nuw/nsw trunc preserves zero/non-zero status of input.
2809 if (auto *TI = dyn_cast<TruncInst>(I))
2810 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
2811 return isKnownNonZero(TI->getOperand(0), DemandedElts, Q, Depth);
2812 break;
2814 case Instruction::Sub:
2815 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2816 I->getOperand(1));
2817 case Instruction::Xor:
2818 // (X ^ (X != 0)) is non zero
2819 if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1)))
2820 return true;
2821 break;
2822 case Instruction::Or:
2823 // (X | (X != 0)) is non zero
2824 if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1)))
2825 return true;
2826 // X | Y != 0 if X != 0 or Y != 0.
2827 return isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth) ||
2828 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2829 case Instruction::SExt:
2830 case Instruction::ZExt:
2831 // ext X != 0 if X != 0.
2832 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2834 case Instruction::Shl: {
2835 // shl nsw/nuw can't remove any non-zero bits.
2836 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2837 if (Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO))
2838 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2840 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2841 // if the lowest bit is shifted off the end.
2842 KnownBits Known(BitWidth);
2843 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
2844 if (Known.One[0])
2845 return true;
2847 return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2849 case Instruction::LShr:
2850 case Instruction::AShr: {
2851 // shr exact can only shift out zero bits.
2852 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(I);
2853 if (BO->isExact())
2854 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2856 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2857 // defined if the sign bit is shifted off the end.
2858 KnownBits Known =
2859 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2860 if (Known.isNegative())
2861 return true;
2863 return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2865 case Instruction::UDiv:
2866 case Instruction::SDiv: {
2867 // X / Y
2868 // div exact can only produce a zero if the dividend is zero.
2869 if (cast<PossiblyExactOperator>(I)->isExact())
2870 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2872 KnownBits XKnown =
2873 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2874 // If X is fully unknown we won't be able to figure anything out so don't
2875 // both computing knownbits for Y.
2876 if (XKnown.isUnknown())
2877 return false;
2879 KnownBits YKnown =
2880 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2881 if (I->getOpcode() == Instruction::SDiv) {
2882 // For signed division need to compare abs value of the operands.
2883 XKnown = XKnown.abs(/*IntMinIsPoison*/ false);
2884 YKnown = YKnown.abs(/*IntMinIsPoison*/ false);
2886 // If X u>= Y then div is non zero (0/0 is UB).
2887 std::optional<bool> XUgeY = KnownBits::uge(XKnown, YKnown);
2888 // If X is total unknown or X u< Y we won't be able to prove non-zero
2889 // with compute known bits so just return early.
2890 return XUgeY && *XUgeY;
2892 case Instruction::Add: {
2893 // X + Y.
2895 // If Add has nuw wrap flag, then if either X or Y is non-zero the result is
2896 // non-zero.
2897 auto *BO = cast<OverflowingBinaryOperator>(I);
2898 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2899 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
2900 Q.IIQ.hasNoUnsignedWrap(BO));
2902 case Instruction::Mul: {
2903 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2904 return isNonZeroMul(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2905 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
2906 Q.IIQ.hasNoUnsignedWrap(BO));
2908 case Instruction::Select: {
2909 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2911 // First check if the arm is non-zero using `isKnownNonZero`. If that fails,
2912 // then see if the select condition implies the arm is non-zero. For example
2913 // (X != 0 ? X : Y), we know the true arm is non-zero as the `X` "return" is
2914 // dominated by `X != 0`.
2915 auto SelectArmIsNonZero = [&](bool IsTrueArm) {
2916 Value *Op;
2917 Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2);
2918 // Op is trivially non-zero.
2919 if (isKnownNonZero(Op, DemandedElts, Q, Depth))
2920 return true;
2922 // The condition of the select dominates the true/false arm. Check if the
2923 // condition implies that a given arm is non-zero.
2924 Value *X;
2925 CmpInst::Predicate Pred;
2926 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_Specific(Op), m_Value(X))))
2927 return false;
2929 if (!IsTrueArm)
2930 Pred = ICmpInst::getInversePredicate(Pred);
2932 return cmpExcludesZero(Pred, X);
2935 if (SelectArmIsNonZero(/* IsTrueArm */ true) &&
2936 SelectArmIsNonZero(/* IsTrueArm */ false))
2937 return true;
2938 break;
2940 case Instruction::PHI: {
2941 auto *PN = cast<PHINode>(I);
2942 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2943 return true;
2945 // Check if all incoming values are non-zero using recursion.
2946 SimplifyQuery RecQ = Q.getWithoutCondContext();
2947 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2948 return llvm::all_of(PN->operands(), [&](const Use &U) {
2949 if (U.get() == PN)
2950 return true;
2951 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2952 // Check if the branch on the phi excludes zero.
2953 ICmpInst::Predicate Pred;
2954 Value *X;
2955 BasicBlock *TrueSucc, *FalseSucc;
2956 if (match(RecQ.CxtI,
2957 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
2958 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
2959 // Check for cases of duplicate successors.
2960 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
2961 // If we're using the false successor, invert the predicate.
2962 if (FalseSucc == PN->getParent())
2963 Pred = CmpInst::getInversePredicate(Pred);
2964 if (cmpExcludesZero(Pred, X))
2965 return true;
2968 // Finally recurse on the edge and check it directly.
2969 return isKnownNonZero(U.get(), DemandedElts, RecQ, NewDepth);
2972 case Instruction::InsertElement: {
2973 if (isa<ScalableVectorType>(I->getType()))
2974 break;
2976 const Value *Vec = I->getOperand(0);
2977 const Value *Elt = I->getOperand(1);
2978 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
2980 unsigned NumElts = DemandedElts.getBitWidth();
2981 APInt DemandedVecElts = DemandedElts;
2982 bool SkipElt = false;
2983 // If we know the index we are inserting too, clear it from Vec check.
2984 if (CIdx && CIdx->getValue().ult(NumElts)) {
2985 DemandedVecElts.clearBit(CIdx->getZExtValue());
2986 SkipElt = !DemandedElts[CIdx->getZExtValue()];
2989 // Result is zero if Elt is non-zero and rest of the demanded elts in Vec
2990 // are non-zero.
2991 return (SkipElt || isKnownNonZero(Elt, Q, Depth)) &&
2992 (DemandedVecElts.isZero() ||
2993 isKnownNonZero(Vec, DemandedVecElts, Q, Depth));
2995 case Instruction::ExtractElement:
2996 if (const auto *EEI = dyn_cast<ExtractElementInst>(I)) {
2997 const Value *Vec = EEI->getVectorOperand();
2998 const Value *Idx = EEI->getIndexOperand();
2999 auto *CIdx = dyn_cast<ConstantInt>(Idx);
3000 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
3001 unsigned NumElts = VecTy->getNumElements();
3002 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
3003 if (CIdx && CIdx->getValue().ult(NumElts))
3004 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
3005 return isKnownNonZero(Vec, DemandedVecElts, Q, Depth);
3008 break;
3009 case Instruction::ShuffleVector: {
3010 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
3011 if (!Shuf)
3012 break;
3013 APInt DemandedLHS, DemandedRHS;
3014 // For undef elements, we don't know anything about the common state of
3015 // the shuffle result.
3016 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3017 break;
3018 // If demanded elements for both vecs are non-zero, the shuffle is non-zero.
3019 return (DemandedRHS.isZero() ||
3020 isKnownNonZero(Shuf->getOperand(1), DemandedRHS, Q, Depth)) &&
3021 (DemandedLHS.isZero() ||
3022 isKnownNonZero(Shuf->getOperand(0), DemandedLHS, Q, Depth));
3024 case Instruction::Freeze:
3025 return isKnownNonZero(I->getOperand(0), Q, Depth) &&
3026 isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
3027 Depth);
3028 case Instruction::Load: {
3029 auto *LI = cast<LoadInst>(I);
3030 // A Load tagged with nonnull or dereferenceable with null pointer undefined
3031 // is never null.
3032 if (auto *PtrT = dyn_cast<PointerType>(I->getType())) {
3033 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) ||
3034 (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) &&
3035 !NullPointerIsDefined(LI->getFunction(), PtrT->getAddressSpace())))
3036 return true;
3037 } else if (MDNode *Ranges = Q.IIQ.getMetadata(LI, LLVMContext::MD_range)) {
3038 return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth));
3041 // No need to fall through to computeKnownBits as range metadata is already
3042 // handled in isKnownNonZero.
3043 return false;
3045 case Instruction::ExtractValue: {
3046 const WithOverflowInst *WO;
3047 if (match(I, m_ExtractValue<0>(m_WithOverflowInst(WO)))) {
3048 switch (WO->getBinaryOp()) {
3049 default:
3050 break;
3051 case Instruction::Add:
3052 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth,
3053 WO->getArgOperand(0), WO->getArgOperand(1),
3054 /*NSW=*/false,
3055 /*NUW=*/false);
3056 case Instruction::Sub:
3057 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth,
3058 WO->getArgOperand(0), WO->getArgOperand(1));
3059 case Instruction::Mul:
3060 return isNonZeroMul(DemandedElts, Depth, Q, BitWidth,
3061 WO->getArgOperand(0), WO->getArgOperand(1),
3062 /*NSW=*/false, /*NUW=*/false);
3063 break;
3066 break;
3068 case Instruction::Call:
3069 case Instruction::Invoke: {
3070 const auto *Call = cast<CallBase>(I);
3071 if (I->getType()->isPointerTy()) {
3072 if (Call->isReturnNonNull())
3073 return true;
3074 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
3075 return isKnownNonZero(RP, Q, Depth);
3076 } else {
3077 if (MDNode *Ranges = Q.IIQ.getMetadata(Call, LLVMContext::MD_range))
3078 return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth));
3079 if (std::optional<ConstantRange> Range = Call->getRange()) {
3080 const APInt ZeroValue(Range->getBitWidth(), 0);
3081 if (!Range->contains(ZeroValue))
3082 return true;
3084 if (const Value *RV = Call->getReturnedArgOperand())
3085 if (RV->getType() == I->getType() && isKnownNonZero(RV, Q, Depth))
3086 return true;
3089 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
3090 switch (II->getIntrinsicID()) {
3091 case Intrinsic::sshl_sat:
3092 case Intrinsic::ushl_sat:
3093 case Intrinsic::abs:
3094 case Intrinsic::bitreverse:
3095 case Intrinsic::bswap:
3096 case Intrinsic::ctpop:
3097 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3098 // NB: We don't do usub_sat here as in any case we can prove its
3099 // non-zero, we will fold it to `sub nuw` in InstCombine.
3100 case Intrinsic::ssub_sat:
3101 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth,
3102 II->getArgOperand(0), II->getArgOperand(1));
3103 case Intrinsic::sadd_sat:
3104 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth,
3105 II->getArgOperand(0), II->getArgOperand(1),
3106 /*NSW=*/true, /* NUW=*/false);
3107 // Vec reverse preserves zero/non-zero status from input vec.
3108 case Intrinsic::vector_reverse:
3109 return isKnownNonZero(II->getArgOperand(0), DemandedElts.reverseBits(),
3110 Q, Depth);
3111 // umin/smin/smax/smin/or of all non-zero elements is always non-zero.
3112 case Intrinsic::vector_reduce_or:
3113 case Intrinsic::vector_reduce_umax:
3114 case Intrinsic::vector_reduce_umin:
3115 case Intrinsic::vector_reduce_smax:
3116 case Intrinsic::vector_reduce_smin:
3117 return isKnownNonZero(II->getArgOperand(0), Q, Depth);
3118 case Intrinsic::umax:
3119 case Intrinsic::uadd_sat:
3120 // umax(X, (X != 0)) is non zero
3121 // X +usat (X != 0) is non zero
3122 if (matchOpWithOpEqZero(II->getArgOperand(0), II->getArgOperand(1)))
3123 return true;
3125 return isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth) ||
3126 isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3127 case Intrinsic::smax: {
3128 // If either arg is strictly positive the result is non-zero. Otherwise
3129 // the result is non-zero if both ops are non-zero.
3130 auto IsNonZero = [&](Value *Op, std::optional<bool> &OpNonZero,
3131 const KnownBits &OpKnown) {
3132 if (!OpNonZero.has_value())
3133 OpNonZero = OpKnown.isNonZero() ||
3134 isKnownNonZero(Op, DemandedElts, Q, Depth);
3135 return *OpNonZero;
3137 // Avoid re-computing isKnownNonZero.
3138 std::optional<bool> Op0NonZero, Op1NonZero;
3139 KnownBits Op1Known =
3140 computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q);
3141 if (Op1Known.isNonNegative() &&
3142 IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known))
3143 return true;
3144 KnownBits Op0Known =
3145 computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q);
3146 if (Op0Known.isNonNegative() &&
3147 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known))
3148 return true;
3149 return IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known) &&
3150 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known);
3152 case Intrinsic::smin: {
3153 // If either arg is negative the result is non-zero. Otherwise
3154 // the result is non-zero if both ops are non-zero.
3155 KnownBits Op1Known =
3156 computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q);
3157 if (Op1Known.isNegative())
3158 return true;
3159 KnownBits Op0Known =
3160 computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q);
3161 if (Op0Known.isNegative())
3162 return true;
3164 if (Op1Known.isNonZero() && Op0Known.isNonZero())
3165 return true;
3167 [[fallthrough]];
3168 case Intrinsic::umin:
3169 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth) &&
3170 isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth);
3171 case Intrinsic::cttz:
3172 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
3173 .Zero[0];
3174 case Intrinsic::ctlz:
3175 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
3176 .isNonNegative();
3177 case Intrinsic::fshr:
3178 case Intrinsic::fshl:
3179 // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0.
3180 if (II->getArgOperand(0) == II->getArgOperand(1))
3181 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3182 break;
3183 case Intrinsic::vscale:
3184 return true;
3185 case Intrinsic::experimental_get_vector_length:
3186 return isKnownNonZero(I->getOperand(0), Q, Depth);
3187 default:
3188 break;
3190 break;
3193 return false;
3197 KnownBits Known(BitWidth);
3198 computeKnownBits(I, DemandedElts, Known, Depth, Q);
3199 return Known.One != 0;
3202 /// Return true if the given value is known to be non-zero when defined. For
3203 /// vectors, return true if every demanded element is known to be non-zero when
3204 /// defined. For pointers, if the context instruction and dominator tree are
3205 /// specified, perform context-sensitive analysis and return true if the
3206 /// pointer couldn't possibly be null at the specified instruction.
3207 /// Supports values with integer or pointer type and vectors of integers.
3208 bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
3209 const SimplifyQuery &Q, unsigned Depth) {
3210 Type *Ty = V->getType();
3212 #ifndef NDEBUG
3213 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3215 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3216 assert(
3217 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3218 "DemandedElt width should equal the fixed vector number of elements");
3219 } else {
3220 assert(DemandedElts == APInt(1, 1) &&
3221 "DemandedElt width should be 1 for scalars");
3223 #endif
3225 if (auto *C = dyn_cast<Constant>(V)) {
3226 if (C->isNullValue())
3227 return false;
3228 if (isa<ConstantInt>(C))
3229 // Must be non-zero due to null test above.
3230 return true;
3232 // For constant vectors, check that all elements are poison or known
3233 // non-zero to determine that the whole vector is known non-zero.
3234 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
3235 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3236 if (!DemandedElts[i])
3237 continue;
3238 Constant *Elt = C->getAggregateElement(i);
3239 if (!Elt || Elt->isNullValue())
3240 return false;
3241 if (!isa<PoisonValue>(Elt) && !isa<ConstantInt>(Elt))
3242 return false;
3244 return true;
3247 // Constant ptrauth can be null, iff the base pointer can be.
3248 if (auto *CPA = dyn_cast<ConstantPtrAuth>(V))
3249 return isKnownNonZero(CPA->getPointer(), DemandedElts, Q, Depth);
3251 // A global variable in address space 0 is non null unless extern weak
3252 // or an absolute symbol reference. Other address spaces may have null as a
3253 // valid address for a global, so we can't assume anything.
3254 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
3255 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3256 GV->getType()->getAddressSpace() == 0)
3257 return true;
3260 // For constant expressions, fall through to the Operator code below.
3261 if (!isa<ConstantExpr>(V))
3262 return false;
3265 if (const auto *A = dyn_cast<Argument>(V))
3266 if (std::optional<ConstantRange> Range = A->getRange()) {
3267 const APInt ZeroValue(Range->getBitWidth(), 0);
3268 if (!Range->contains(ZeroValue))
3269 return true;
3272 if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
3273 return true;
3275 // Some of the tests below are recursive, so bail out if we hit the limit.
3276 if (Depth++ >= MaxAnalysisRecursionDepth)
3277 return false;
3279 // Check for pointer simplifications.
3281 if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
3282 // A byval, inalloca may not be null in a non-default addres space. A
3283 // nonnull argument is assumed never 0.
3284 if (const Argument *A = dyn_cast<Argument>(V)) {
3285 if (((A->hasPassPointeeByValueCopyAttr() &&
3286 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
3287 A->hasNonNullAttr()))
3288 return true;
3292 if (const auto *I = dyn_cast<Operator>(V))
3293 if (isKnownNonZeroFromOperator(I, DemandedElts, Depth, Q))
3294 return true;
3296 if (!isa<Constant>(V) &&
3297 isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
3298 return true;
3300 return false;
3303 bool llvm::isKnownNonZero(const Value *V, const SimplifyQuery &Q,
3304 unsigned Depth) {
3305 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
3306 APInt DemandedElts =
3307 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
3308 return ::isKnownNonZero(V, DemandedElts, Q, Depth);
3311 /// If the pair of operators are the same invertible function, return the
3312 /// the operands of the function corresponding to each input. Otherwise,
3313 /// return std::nullopt. An invertible function is one that is 1-to-1 and maps
3314 /// every input value to exactly one output value. This is equivalent to
3315 /// saying that Op1 and Op2 are equal exactly when the specified pair of
3316 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
3317 static std::optional<std::pair<Value*, Value*>>
3318 getInvertibleOperands(const Operator *Op1,
3319 const Operator *Op2) {
3320 if (Op1->getOpcode() != Op2->getOpcode())
3321 return std::nullopt;
3323 auto getOperands = [&](unsigned OpNum) -> auto {
3324 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
3327 switch (Op1->getOpcode()) {
3328 default:
3329 break;
3330 case Instruction::Or:
3331 if (!cast<PossiblyDisjointInst>(Op1)->isDisjoint() ||
3332 !cast<PossiblyDisjointInst>(Op2)->isDisjoint())
3333 break;
3334 [[fallthrough]];
3335 case Instruction::Xor:
3336 case Instruction::Add: {
3337 Value *Other;
3338 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(0)), m_Value(Other))))
3339 return std::make_pair(Op1->getOperand(1), Other);
3340 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(1)), m_Value(Other))))
3341 return std::make_pair(Op1->getOperand(0), Other);
3342 break;
3344 case Instruction::Sub:
3345 if (Op1->getOperand(0) == Op2->getOperand(0))
3346 return getOperands(1);
3347 if (Op1->getOperand(1) == Op2->getOperand(1))
3348 return getOperands(0);
3349 break;
3350 case Instruction::Mul: {
3351 // invertible if A * B == (A * B) mod 2^N where A, and B are integers
3352 // and N is the bitwdith. The nsw case is non-obvious, but proven by
3353 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
3354 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3355 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3356 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3357 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3358 break;
3360 // Assume operand order has been canonicalized
3361 if (Op1->getOperand(1) == Op2->getOperand(1) &&
3362 isa<ConstantInt>(Op1->getOperand(1)) &&
3363 !cast<ConstantInt>(Op1->getOperand(1))->isZero())
3364 return getOperands(0);
3365 break;
3367 case Instruction::Shl: {
3368 // Same as multiplies, with the difference that we don't need to check
3369 // for a non-zero multiply. Shifts always multiply by non-zero.
3370 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3371 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3372 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3373 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3374 break;
3376 if (Op1->getOperand(1) == Op2->getOperand(1))
3377 return getOperands(0);
3378 break;
3380 case Instruction::AShr:
3381 case Instruction::LShr: {
3382 auto *PEO1 = cast<PossiblyExactOperator>(Op1);
3383 auto *PEO2 = cast<PossiblyExactOperator>(Op2);
3384 if (!PEO1->isExact() || !PEO2->isExact())
3385 break;
3387 if (Op1->getOperand(1) == Op2->getOperand(1))
3388 return getOperands(0);
3389 break;
3391 case Instruction::SExt:
3392 case Instruction::ZExt:
3393 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
3394 return getOperands(0);
3395 break;
3396 case Instruction::PHI: {
3397 const PHINode *PN1 = cast<PHINode>(Op1);
3398 const PHINode *PN2 = cast<PHINode>(Op2);
3400 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
3401 // are a single invertible function of the start values? Note that repeated
3402 // application of an invertible function is also invertible
3403 BinaryOperator *BO1 = nullptr;
3404 Value *Start1 = nullptr, *Step1 = nullptr;
3405 BinaryOperator *BO2 = nullptr;
3406 Value *Start2 = nullptr, *Step2 = nullptr;
3407 if (PN1->getParent() != PN2->getParent() ||
3408 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
3409 !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
3410 break;
3412 auto Values = getInvertibleOperands(cast<Operator>(BO1),
3413 cast<Operator>(BO2));
3414 if (!Values)
3415 break;
3417 // We have to be careful of mutually defined recurrences here. Ex:
3418 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
3419 // * X_i = Y_i = X_(i-1) OP Y_(i-1)
3420 // The invertibility of these is complicated, and not worth reasoning
3421 // about (yet?).
3422 if (Values->first != PN1 || Values->second != PN2)
3423 break;
3425 return std::make_pair(Start1, Start2);
3428 return std::nullopt;
3431 /// Return true if V1 == (binop V2, X), where X is known non-zero.
3432 /// Only handle a small subset of binops where (binop V2, X) with non-zero X
3433 /// implies V2 != V1.
3434 static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2,
3435 const APInt &DemandedElts, unsigned Depth,
3436 const SimplifyQuery &Q) {
3437 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
3438 if (!BO)
3439 return false;
3440 switch (BO->getOpcode()) {
3441 default:
3442 break;
3443 case Instruction::Or:
3444 if (!cast<PossiblyDisjointInst>(V1)->isDisjoint())
3445 break;
3446 [[fallthrough]];
3447 case Instruction::Xor:
3448 case Instruction::Add:
3449 Value *Op = nullptr;
3450 if (V2 == BO->getOperand(0))
3451 Op = BO->getOperand(1);
3452 else if (V2 == BO->getOperand(1))
3453 Op = BO->getOperand(0);
3454 else
3455 return false;
3456 return isKnownNonZero(Op, DemandedElts, Q, Depth + 1);
3458 return false;
3461 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
3462 /// the multiplication is nuw or nsw.
3463 static bool isNonEqualMul(const Value *V1, const Value *V2,
3464 const APInt &DemandedElts, unsigned Depth,
3465 const SimplifyQuery &Q) {
3466 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3467 const APInt *C;
3468 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
3469 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3470 !C->isZero() && !C->isOne() &&
3471 isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3473 return false;
3476 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
3477 /// the shift is nuw or nsw.
3478 static bool isNonEqualShl(const Value *V1, const Value *V2,
3479 const APInt &DemandedElts, unsigned Depth,
3480 const SimplifyQuery &Q) {
3481 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3482 const APInt *C;
3483 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
3484 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3485 !C->isZero() && isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3487 return false;
3490 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
3491 const APInt &DemandedElts, unsigned Depth,
3492 const SimplifyQuery &Q) {
3493 // Check two PHIs are in same block.
3494 if (PN1->getParent() != PN2->getParent())
3495 return false;
3497 SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
3498 bool UsedFullRecursion = false;
3499 for (const BasicBlock *IncomBB : PN1->blocks()) {
3500 if (!VisitedBBs.insert(IncomBB).second)
3501 continue; // Don't reprocess blocks that we have dealt with already.
3502 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
3503 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
3504 const APInt *C1, *C2;
3505 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
3506 continue;
3508 // Only one pair of phi operands is allowed for full recursion.
3509 if (UsedFullRecursion)
3510 return false;
3512 SimplifyQuery RecQ = Q.getWithoutCondContext();
3513 RecQ.CxtI = IncomBB->getTerminator();
3514 if (!isKnownNonEqual(IV1, IV2, DemandedElts, Depth + 1, RecQ))
3515 return false;
3516 UsedFullRecursion = true;
3518 return true;
3521 static bool isNonEqualSelect(const Value *V1, const Value *V2,
3522 const APInt &DemandedElts, unsigned Depth,
3523 const SimplifyQuery &Q) {
3524 const SelectInst *SI1 = dyn_cast<SelectInst>(V1);
3525 if (!SI1)
3526 return false;
3528 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) {
3529 const Value *Cond1 = SI1->getCondition();
3530 const Value *Cond2 = SI2->getCondition();
3531 if (Cond1 == Cond2)
3532 return isKnownNonEqual(SI1->getTrueValue(), SI2->getTrueValue(),
3533 DemandedElts, Depth + 1, Q) &&
3534 isKnownNonEqual(SI1->getFalseValue(), SI2->getFalseValue(),
3535 DemandedElts, Depth + 1, Q);
3537 return isKnownNonEqual(SI1->getTrueValue(), V2, DemandedElts, Depth + 1, Q) &&
3538 isKnownNonEqual(SI1->getFalseValue(), V2, DemandedElts, Depth + 1, Q);
3541 // Check to see if A is both a GEP and is the incoming value for a PHI in the
3542 // loop, and B is either a ptr or another GEP. If the PHI has 2 incoming values,
3543 // one of them being the recursive GEP A and the other a ptr at same base and at
3544 // the same/higher offset than B we are only incrementing the pointer further in
3545 // loop if offset of recursive GEP is greater than 0.
3546 static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B,
3547 const SimplifyQuery &Q) {
3548 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
3549 return false;
3551 auto *GEPA = dyn_cast<GEPOperator>(A);
3552 if (!GEPA || GEPA->getNumIndices() != 1 || !isa<Constant>(GEPA->idx_begin()))
3553 return false;
3555 // Handle 2 incoming PHI values with one being a recursive GEP.
3556 auto *PN = dyn_cast<PHINode>(GEPA->getPointerOperand());
3557 if (!PN || PN->getNumIncomingValues() != 2)
3558 return false;
3560 // Search for the recursive GEP as an incoming operand, and record that as
3561 // Step.
3562 Value *Start = nullptr;
3563 Value *Step = const_cast<Value *>(A);
3564 if (PN->getIncomingValue(0) == Step)
3565 Start = PN->getIncomingValue(1);
3566 else if (PN->getIncomingValue(1) == Step)
3567 Start = PN->getIncomingValue(0);
3568 else
3569 return false;
3571 // Other incoming node base should match the B base.
3572 // StartOffset >= OffsetB && StepOffset > 0?
3573 // StartOffset <= OffsetB && StepOffset < 0?
3574 // Is non-equal if above are true.
3575 // We use stripAndAccumulateInBoundsConstantOffsets to restrict the
3576 // optimisation to inbounds GEPs only.
3577 unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(Start->getType());
3578 APInt StartOffset(IndexWidth, 0);
3579 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset);
3580 APInt StepOffset(IndexWidth, 0);
3581 Step = Step->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StepOffset);
3583 // Check if Base Pointer of Step matches the PHI.
3584 if (Step != PN)
3585 return false;
3586 APInt OffsetB(IndexWidth, 0);
3587 B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB);
3588 return Start == B &&
3589 ((StartOffset.sge(OffsetB) && StepOffset.isStrictlyPositive()) ||
3590 (StartOffset.sle(OffsetB) && StepOffset.isNegative()));
3593 /// Return true if it is known that V1 != V2.
3594 static bool isKnownNonEqual(const Value *V1, const Value *V2,
3595 const APInt &DemandedElts, unsigned Depth,
3596 const SimplifyQuery &Q) {
3597 if (V1 == V2)
3598 return false;
3599 if (V1->getType() != V2->getType())
3600 // We can't look through casts yet.
3601 return false;
3603 if (Depth >= MaxAnalysisRecursionDepth)
3604 return false;
3606 // See if we can recurse through (exactly one of) our operands. This
3607 // requires our operation be 1-to-1 and map every input value to exactly
3608 // one output value. Such an operation is invertible.
3609 auto *O1 = dyn_cast<Operator>(V1);
3610 auto *O2 = dyn_cast<Operator>(V2);
3611 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3612 if (auto Values = getInvertibleOperands(O1, O2))
3613 return isKnownNonEqual(Values->first, Values->second, DemandedElts,
3614 Depth + 1, Q);
3616 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
3617 const PHINode *PN2 = cast<PHINode>(V2);
3618 // FIXME: This is missing a generalization to handle the case where one is
3619 // a PHI and another one isn't.
3620 if (isNonEqualPHIs(PN1, PN2, DemandedElts, Depth, Q))
3621 return true;
3625 if (isModifyingBinopOfNonZero(V1, V2, DemandedElts, Depth, Q) ||
3626 isModifyingBinopOfNonZero(V2, V1, DemandedElts, Depth, Q))
3627 return true;
3629 if (isNonEqualMul(V1, V2, DemandedElts, Depth, Q) ||
3630 isNonEqualMul(V2, V1, DemandedElts, Depth, Q))
3631 return true;
3633 if (isNonEqualShl(V1, V2, DemandedElts, Depth, Q) ||
3634 isNonEqualShl(V2, V1, DemandedElts, Depth, Q))
3635 return true;
3637 if (V1->getType()->isIntOrIntVectorTy()) {
3638 // Are any known bits in V1 contradictory to known bits in V2? If V1
3639 // has a known zero where V2 has a known one, they must not be equal.
3640 KnownBits Known1 = computeKnownBits(V1, DemandedElts, Depth, Q);
3641 if (!Known1.isUnknown()) {
3642 KnownBits Known2 = computeKnownBits(V2, DemandedElts, Depth, Q);
3643 if (Known1.Zero.intersects(Known2.One) ||
3644 Known2.Zero.intersects(Known1.One))
3645 return true;
3649 if (isNonEqualSelect(V1, V2, DemandedElts, Depth, Q) ||
3650 isNonEqualSelect(V2, V1, DemandedElts, Depth, Q))
3651 return true;
3653 if (isNonEqualPointersWithRecursiveGEP(V1, V2, Q) ||
3654 isNonEqualPointersWithRecursiveGEP(V2, V1, Q))
3655 return true;
3657 Value *A, *B;
3658 // PtrToInts are NonEqual if their Ptrs are NonEqual.
3659 // Check PtrToInt type matches the pointer size.
3660 if (match(V1, m_PtrToIntSameSize(Q.DL, m_Value(A))) &&
3661 match(V2, m_PtrToIntSameSize(Q.DL, m_Value(B))))
3662 return isKnownNonEqual(A, B, DemandedElts, Depth + 1, Q);
3664 return false;
3667 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
3668 // Returns the input and lower/upper bounds.
3669 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
3670 const APInt *&CLow, const APInt *&CHigh) {
3671 assert(isa<Operator>(Select) &&
3672 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
3673 "Input should be a Select!");
3675 const Value *LHS = nullptr, *RHS = nullptr;
3676 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
3677 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
3678 return false;
3680 if (!match(RHS, m_APInt(CLow)))
3681 return false;
3683 const Value *LHS2 = nullptr, *RHS2 = nullptr;
3684 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
3685 if (getInverseMinMaxFlavor(SPF) != SPF2)
3686 return false;
3688 if (!match(RHS2, m_APInt(CHigh)))
3689 return false;
3691 if (SPF == SPF_SMIN)
3692 std::swap(CLow, CHigh);
3694 In = LHS2;
3695 return CLow->sle(*CHigh);
3698 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3699 const APInt *&CLow,
3700 const APInt *&CHigh) {
3701 assert((II->getIntrinsicID() == Intrinsic::smin ||
3702 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3704 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3705 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3706 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3707 !match(II->getArgOperand(1), m_APInt(CLow)) ||
3708 !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3709 return false;
3711 if (II->getIntrinsicID() == Intrinsic::smin)
3712 std::swap(CLow, CHigh);
3713 return CLow->sle(*CHigh);
3716 /// For vector constants, loop over the elements and find the constant with the
3717 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3718 /// or if any element was not analyzed; otherwise, return the count for the
3719 /// element with the minimum number of sign bits.
3720 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3721 const APInt &DemandedElts,
3722 unsigned TyBits) {
3723 const auto *CV = dyn_cast<Constant>(V);
3724 if (!CV || !isa<FixedVectorType>(CV->getType()))
3725 return 0;
3727 unsigned MinSignBits = TyBits;
3728 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3729 for (unsigned i = 0; i != NumElts; ++i) {
3730 if (!DemandedElts[i])
3731 continue;
3732 // If we find a non-ConstantInt, bail out.
3733 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3734 if (!Elt)
3735 return 0;
3737 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3740 return MinSignBits;
3743 static unsigned ComputeNumSignBitsImpl(const Value *V,
3744 const APInt &DemandedElts,
3745 unsigned Depth, const SimplifyQuery &Q);
3747 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3748 unsigned Depth, const SimplifyQuery &Q) {
3749 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3750 assert(Result > 0 && "At least one sign bit needs to be present!");
3751 return Result;
3754 /// Return the number of times the sign bit of the register is replicated into
3755 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3756 /// (itself), but other cases can give us information. For example, immediately
3757 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3758 /// other, so we return 3. For vectors, return the number of sign bits for the
3759 /// vector element with the minimum number of known sign bits of the demanded
3760 /// elements in the vector specified by DemandedElts.
3761 static unsigned ComputeNumSignBitsImpl(const Value *V,
3762 const APInt &DemandedElts,
3763 unsigned Depth, const SimplifyQuery &Q) {
3764 Type *Ty = V->getType();
3765 #ifndef NDEBUG
3766 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3768 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3769 assert(
3770 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3771 "DemandedElt width should equal the fixed vector number of elements");
3772 } else {
3773 assert(DemandedElts == APInt(1, 1) &&
3774 "DemandedElt width should be 1 for scalars");
3776 #endif
3778 // We return the minimum number of sign bits that are guaranteed to be present
3779 // in V, so for undef we have to conservatively return 1. We don't have the
3780 // same behavior for poison though -- that's a FIXME today.
3782 Type *ScalarTy = Ty->getScalarType();
3783 unsigned TyBits = ScalarTy->isPointerTy() ?
3784 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3785 Q.DL.getTypeSizeInBits(ScalarTy);
3787 unsigned Tmp, Tmp2;
3788 unsigned FirstAnswer = 1;
3790 // Note that ConstantInt is handled by the general computeKnownBits case
3791 // below.
3793 if (Depth == MaxAnalysisRecursionDepth)
3794 return 1;
3796 if (auto *U = dyn_cast<Operator>(V)) {
3797 switch (Operator::getOpcode(V)) {
3798 default: break;
3799 case Instruction::SExt:
3800 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3801 return ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q) +
3802 Tmp;
3804 case Instruction::SDiv: {
3805 const APInt *Denominator;
3806 // sdiv X, C -> adds log(C) sign bits.
3807 if (match(U->getOperand(1), m_APInt(Denominator))) {
3809 // Ignore non-positive denominator.
3810 if (!Denominator->isStrictlyPositive())
3811 break;
3813 // Calculate the incoming numerator bits.
3814 unsigned NumBits =
3815 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3817 // Add floor(log(C)) bits to the numerator bits.
3818 return std::min(TyBits, NumBits + Denominator->logBase2());
3820 break;
3823 case Instruction::SRem: {
3824 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3826 const APInt *Denominator;
3827 // srem X, C -> we know that the result is within [-C+1,C) when C is a
3828 // positive constant. This let us put a lower bound on the number of sign
3829 // bits.
3830 if (match(U->getOperand(1), m_APInt(Denominator))) {
3832 // Ignore non-positive denominator.
3833 if (Denominator->isStrictlyPositive()) {
3834 // Calculate the leading sign bit constraints by examining the
3835 // denominator. Given that the denominator is positive, there are two
3836 // cases:
3838 // 1. The numerator is positive. The result range is [0,C) and
3839 // [0,C) u< (1 << ceilLogBase2(C)).
3841 // 2. The numerator is negative. Then the result range is (-C,0] and
3842 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3844 // Thus a lower bound on the number of sign bits is `TyBits -
3845 // ceilLogBase2(C)`.
3847 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3848 Tmp = std::max(Tmp, ResBits);
3851 return Tmp;
3854 case Instruction::AShr: {
3855 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3856 // ashr X, C -> adds C sign bits. Vectors too.
3857 const APInt *ShAmt;
3858 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3859 if (ShAmt->uge(TyBits))
3860 break; // Bad shift.
3861 unsigned ShAmtLimited = ShAmt->getZExtValue();
3862 Tmp += ShAmtLimited;
3863 if (Tmp > TyBits) Tmp = TyBits;
3865 return Tmp;
3867 case Instruction::Shl: {
3868 const APInt *ShAmt;
3869 Value *X = nullptr;
3870 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3871 // shl destroys sign bits.
3872 if (ShAmt->uge(TyBits))
3873 break; // Bad shift.
3874 // We can look through a zext (more or less treating it as a sext) if
3875 // all extended bits are shifted out.
3876 if (match(U->getOperand(0), m_ZExt(m_Value(X))) &&
3877 ShAmt->uge(TyBits - X->getType()->getScalarSizeInBits())) {
3878 Tmp = ComputeNumSignBits(X, DemandedElts, Depth + 1, Q);
3879 Tmp += TyBits - X->getType()->getScalarSizeInBits();
3880 } else
3881 Tmp =
3882 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3883 if (ShAmt->uge(Tmp))
3884 break; // Shifted all sign bits out.
3885 Tmp2 = ShAmt->getZExtValue();
3886 return Tmp - Tmp2;
3888 break;
3890 case Instruction::And:
3891 case Instruction::Or:
3892 case Instruction::Xor: // NOT is handled here.
3893 // Logical binary ops preserve the number of sign bits at the worst.
3894 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3895 if (Tmp != 1) {
3896 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3897 FirstAnswer = std::min(Tmp, Tmp2);
3898 // We computed what we know about the sign bits as our first
3899 // answer. Now proceed to the generic code that uses
3900 // computeKnownBits, and pick whichever answer is better.
3902 break;
3904 case Instruction::Select: {
3905 // If we have a clamp pattern, we know that the number of sign bits will
3906 // be the minimum of the clamp min/max range.
3907 const Value *X;
3908 const APInt *CLow, *CHigh;
3909 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3910 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3912 Tmp = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3913 if (Tmp == 1)
3914 break;
3915 Tmp2 = ComputeNumSignBits(U->getOperand(2), DemandedElts, Depth + 1, Q);
3916 return std::min(Tmp, Tmp2);
3919 case Instruction::Add:
3920 // Add can have at most one carry bit. Thus we know that the output
3921 // is, at worst, one more bit than the inputs.
3922 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3923 if (Tmp == 1) break;
3925 // Special case decrementing a value (ADD X, -1):
3926 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3927 if (CRHS->isAllOnesValue()) {
3928 KnownBits Known(TyBits);
3929 computeKnownBits(U->getOperand(0), DemandedElts, Known, Depth + 1, Q);
3931 // If the input is known to be 0 or 1, the output is 0/-1, which is
3932 // all sign bits set.
3933 if ((Known.Zero | 1).isAllOnes())
3934 return TyBits;
3936 // If we are subtracting one from a positive number, there is no carry
3937 // out of the result.
3938 if (Known.isNonNegative())
3939 return Tmp;
3942 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3943 if (Tmp2 == 1)
3944 break;
3945 return std::min(Tmp, Tmp2) - 1;
3947 case Instruction::Sub:
3948 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3949 if (Tmp2 == 1)
3950 break;
3952 // Handle NEG.
3953 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3954 if (CLHS->isNullValue()) {
3955 KnownBits Known(TyBits);
3956 computeKnownBits(U->getOperand(1), DemandedElts, Known, Depth + 1, Q);
3957 // If the input is known to be 0 or 1, the output is 0/-1, which is
3958 // all sign bits set.
3959 if ((Known.Zero | 1).isAllOnes())
3960 return TyBits;
3962 // If the input is known to be positive (the sign bit is known clear),
3963 // the output of the NEG has the same number of sign bits as the
3964 // input.
3965 if (Known.isNonNegative())
3966 return Tmp2;
3968 // Otherwise, we treat this like a SUB.
3971 // Sub can have at most one carry bit. Thus we know that the output
3972 // is, at worst, one more bit than the inputs.
3973 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3974 if (Tmp == 1)
3975 break;
3976 return std::min(Tmp, Tmp2) - 1;
3978 case Instruction::Mul: {
3979 // The output of the Mul can be at most twice the valid bits in the
3980 // inputs.
3981 unsigned SignBitsOp0 =
3982 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3983 if (SignBitsOp0 == 1)
3984 break;
3985 unsigned SignBitsOp1 =
3986 ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3987 if (SignBitsOp1 == 1)
3988 break;
3989 unsigned OutValidBits =
3990 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3991 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3994 case Instruction::PHI: {
3995 const PHINode *PN = cast<PHINode>(U);
3996 unsigned NumIncomingValues = PN->getNumIncomingValues();
3997 // Don't analyze large in-degree PHIs.
3998 if (NumIncomingValues > 4) break;
3999 // Unreachable blocks may have zero-operand PHI nodes.
4000 if (NumIncomingValues == 0) break;
4002 // Take the minimum of all incoming values. This can't infinitely loop
4003 // because of our depth threshold.
4004 SimplifyQuery RecQ = Q.getWithoutCondContext();
4005 Tmp = TyBits;
4006 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4007 if (Tmp == 1) return Tmp;
4008 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
4009 Tmp = std::min(Tmp, ComputeNumSignBits(PN->getIncomingValue(i),
4010 DemandedElts, Depth + 1, RecQ));
4012 return Tmp;
4015 case Instruction::Trunc: {
4016 // If the input contained enough sign bits that some remain after the
4017 // truncation, then we can make use of that. Otherwise we don't know
4018 // anything.
4019 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
4020 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4021 if (Tmp > (OperandTyBits - TyBits))
4022 return Tmp - (OperandTyBits - TyBits);
4024 return 1;
4027 case Instruction::ExtractElement:
4028 // Look through extract element. At the moment we keep this simple and
4029 // skip tracking the specific element. But at least we might find
4030 // information valid for all elements of the vector (for example if vector
4031 // is sign extended, shifted, etc).
4032 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
4034 case Instruction::ShuffleVector: {
4035 // Collect the minimum number of sign bits that are shared by every vector
4036 // element referenced by the shuffle.
4037 auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
4038 if (!Shuf) {
4039 // FIXME: Add support for shufflevector constant expressions.
4040 return 1;
4042 APInt DemandedLHS, DemandedRHS;
4043 // For undef elements, we don't know anything about the common state of
4044 // the shuffle result.
4045 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
4046 return 1;
4047 Tmp = std::numeric_limits<unsigned>::max();
4048 if (!!DemandedLHS) {
4049 const Value *LHS = Shuf->getOperand(0);
4050 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
4052 // If we don't know anything, early out and try computeKnownBits
4053 // fall-back.
4054 if (Tmp == 1)
4055 break;
4056 if (!!DemandedRHS) {
4057 const Value *RHS = Shuf->getOperand(1);
4058 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
4059 Tmp = std::min(Tmp, Tmp2);
4061 // If we don't know anything, early out and try computeKnownBits
4062 // fall-back.
4063 if (Tmp == 1)
4064 break;
4065 assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
4066 return Tmp;
4068 case Instruction::Call: {
4069 if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
4070 switch (II->getIntrinsicID()) {
4071 default:
4072 break;
4073 case Intrinsic::abs:
4074 Tmp =
4075 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
4076 if (Tmp == 1)
4077 break;
4079 // Absolute value reduces number of sign bits by at most 1.
4080 return Tmp - 1;
4081 case Intrinsic::smin:
4082 case Intrinsic::smax: {
4083 const APInt *CLow, *CHigh;
4084 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
4085 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
4093 // Finally, if we can prove that the top bits of the result are 0's or 1's,
4094 // use this information.
4096 // If we can examine all elements of a vector constant successfully, we're
4097 // done (we can't do any better than that). If not, keep trying.
4098 if (unsigned VecSignBits =
4099 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
4100 return VecSignBits;
4102 KnownBits Known(TyBits);
4103 computeKnownBits(V, DemandedElts, Known, Depth, Q);
4105 // If we know that the sign bit is either zero or one, determine the number of
4106 // identical bits in the top of the input value.
4107 return std::max(FirstAnswer, Known.countMinSignBits());
4110 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
4111 const TargetLibraryInfo *TLI) {
4112 const Function *F = CB.getCalledFunction();
4113 if (!F)
4114 return Intrinsic::not_intrinsic;
4116 if (F->isIntrinsic())
4117 return F->getIntrinsicID();
4119 // We are going to infer semantics of a library function based on mapping it
4120 // to an LLVM intrinsic. Check that the library function is available from
4121 // this callbase and in this environment.
4122 LibFunc Func;
4123 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
4124 !CB.onlyReadsMemory())
4125 return Intrinsic::not_intrinsic;
4127 switch (Func) {
4128 default:
4129 break;
4130 case LibFunc_sin:
4131 case LibFunc_sinf:
4132 case LibFunc_sinl:
4133 return Intrinsic::sin;
4134 case LibFunc_cos:
4135 case LibFunc_cosf:
4136 case LibFunc_cosl:
4137 return Intrinsic::cos;
4138 case LibFunc_tan:
4139 case LibFunc_tanf:
4140 case LibFunc_tanl:
4141 return Intrinsic::tan;
4142 case LibFunc_exp:
4143 case LibFunc_expf:
4144 case LibFunc_expl:
4145 return Intrinsic::exp;
4146 case LibFunc_exp2:
4147 case LibFunc_exp2f:
4148 case LibFunc_exp2l:
4149 return Intrinsic::exp2;
4150 case LibFunc_log:
4151 case LibFunc_logf:
4152 case LibFunc_logl:
4153 return Intrinsic::log;
4154 case LibFunc_log10:
4155 case LibFunc_log10f:
4156 case LibFunc_log10l:
4157 return Intrinsic::log10;
4158 case LibFunc_log2:
4159 case LibFunc_log2f:
4160 case LibFunc_log2l:
4161 return Intrinsic::log2;
4162 case LibFunc_fabs:
4163 case LibFunc_fabsf:
4164 case LibFunc_fabsl:
4165 return Intrinsic::fabs;
4166 case LibFunc_fmin:
4167 case LibFunc_fminf:
4168 case LibFunc_fminl:
4169 return Intrinsic::minnum;
4170 case LibFunc_fmax:
4171 case LibFunc_fmaxf:
4172 case LibFunc_fmaxl:
4173 return Intrinsic::maxnum;
4174 case LibFunc_copysign:
4175 case LibFunc_copysignf:
4176 case LibFunc_copysignl:
4177 return Intrinsic::copysign;
4178 case LibFunc_floor:
4179 case LibFunc_floorf:
4180 case LibFunc_floorl:
4181 return Intrinsic::floor;
4182 case LibFunc_ceil:
4183 case LibFunc_ceilf:
4184 case LibFunc_ceill:
4185 return Intrinsic::ceil;
4186 case LibFunc_trunc:
4187 case LibFunc_truncf:
4188 case LibFunc_truncl:
4189 return Intrinsic::trunc;
4190 case LibFunc_rint:
4191 case LibFunc_rintf:
4192 case LibFunc_rintl:
4193 return Intrinsic::rint;
4194 case LibFunc_nearbyint:
4195 case LibFunc_nearbyintf:
4196 case LibFunc_nearbyintl:
4197 return Intrinsic::nearbyint;
4198 case LibFunc_round:
4199 case LibFunc_roundf:
4200 case LibFunc_roundl:
4201 return Intrinsic::round;
4202 case LibFunc_roundeven:
4203 case LibFunc_roundevenf:
4204 case LibFunc_roundevenl:
4205 return Intrinsic::roundeven;
4206 case LibFunc_pow:
4207 case LibFunc_powf:
4208 case LibFunc_powl:
4209 return Intrinsic::pow;
4210 case LibFunc_sqrt:
4211 case LibFunc_sqrtf:
4212 case LibFunc_sqrtl:
4213 return Intrinsic::sqrt;
4216 return Intrinsic::not_intrinsic;
4219 /// Return true if it's possible to assume IEEE treatment of input denormals in
4220 /// \p F for \p Val.
4221 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
4222 Ty = Ty->getScalarType();
4223 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
4226 static bool inputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
4227 Ty = Ty->getScalarType();
4228 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
4229 return Mode.Input == DenormalMode::IEEE ||
4230 Mode.Input == DenormalMode::PositiveZero;
4233 static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
4234 Ty = Ty->getScalarType();
4235 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
4236 return Mode.Output == DenormalMode::IEEE ||
4237 Mode.Output == DenormalMode::PositiveZero;
4240 bool KnownFPClass::isKnownNeverLogicalZero(const Function &F, Type *Ty) const {
4241 return isKnownNeverZero() &&
4242 (isKnownNeverSubnormal() || inputDenormalIsIEEE(F, Ty));
4245 bool KnownFPClass::isKnownNeverLogicalNegZero(const Function &F,
4246 Type *Ty) const {
4247 return isKnownNeverNegZero() &&
4248 (isKnownNeverNegSubnormal() || inputDenormalIsIEEEOrPosZero(F, Ty));
4251 bool KnownFPClass::isKnownNeverLogicalPosZero(const Function &F,
4252 Type *Ty) const {
4253 if (!isKnownNeverPosZero())
4254 return false;
4256 // If we know there are no denormals, nothing can be flushed to zero.
4257 if (isKnownNeverSubnormal())
4258 return true;
4260 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
4261 switch (Mode.Input) {
4262 case DenormalMode::IEEE:
4263 return true;
4264 case DenormalMode::PreserveSign:
4265 // Negative subnormal won't flush to +0
4266 return isKnownNeverPosSubnormal();
4267 case DenormalMode::PositiveZero:
4268 default:
4269 // Both positive and negative subnormal could flush to +0
4270 return false;
4273 llvm_unreachable("covered switch over denormal mode");
4276 void KnownFPClass::propagateDenormal(const KnownFPClass &Src, const Function &F,
4277 Type *Ty) {
4278 KnownFPClasses = Src.KnownFPClasses;
4279 // If we aren't assuming the source can't be a zero, we don't have to check if
4280 // a denormal input could be flushed.
4281 if (!Src.isKnownNeverPosZero() && !Src.isKnownNeverNegZero())
4282 return;
4284 // If we know the input can't be a denormal, it can't be flushed to 0.
4285 if (Src.isKnownNeverSubnormal())
4286 return;
4288 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
4290 if (!Src.isKnownNeverPosSubnormal() && Mode != DenormalMode::getIEEE())
4291 KnownFPClasses |= fcPosZero;
4293 if (!Src.isKnownNeverNegSubnormal() && Mode != DenormalMode::getIEEE()) {
4294 if (Mode != DenormalMode::getPositiveZero())
4295 KnownFPClasses |= fcNegZero;
4297 if (Mode.Input == DenormalMode::PositiveZero ||
4298 Mode.Output == DenormalMode::PositiveZero ||
4299 Mode.Input == DenormalMode::Dynamic ||
4300 Mode.Output == DenormalMode::Dynamic)
4301 KnownFPClasses |= fcPosZero;
4305 void KnownFPClass::propagateCanonicalizingSrc(const KnownFPClass &Src,
4306 const Function &F, Type *Ty) {
4307 propagateDenormal(Src, F, Ty);
4308 propagateNaN(Src, /*PreserveSign=*/true);
4311 /// Given an exploded icmp instruction, return true if the comparison only
4312 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
4313 /// the result of the comparison is true when the input value is signed.
4314 bool llvm::isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
4315 bool &TrueIfSigned) {
4316 switch (Pred) {
4317 case ICmpInst::ICMP_SLT: // True if LHS s< 0
4318 TrueIfSigned = true;
4319 return RHS.isZero();
4320 case ICmpInst::ICMP_SLE: // True if LHS s<= -1
4321 TrueIfSigned = true;
4322 return RHS.isAllOnes();
4323 case ICmpInst::ICMP_SGT: // True if LHS s> -1
4324 TrueIfSigned = false;
4325 return RHS.isAllOnes();
4326 case ICmpInst::ICMP_SGE: // True if LHS s>= 0
4327 TrueIfSigned = false;
4328 return RHS.isZero();
4329 case ICmpInst::ICMP_UGT:
4330 // True if LHS u> RHS and RHS == sign-bit-mask - 1
4331 TrueIfSigned = true;
4332 return RHS.isMaxSignedValue();
4333 case ICmpInst::ICMP_UGE:
4334 // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4335 TrueIfSigned = true;
4336 return RHS.isMinSignedValue();
4337 case ICmpInst::ICMP_ULT:
4338 // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4339 TrueIfSigned = false;
4340 return RHS.isMinSignedValue();
4341 case ICmpInst::ICMP_ULE:
4342 // True if LHS u<= RHS and RHS == sign-bit-mask - 1
4343 TrueIfSigned = false;
4344 return RHS.isMaxSignedValue();
4345 default:
4346 return false;
4350 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
4351 /// same result as an fcmp with the given operands.
4352 std::pair<Value *, FPClassTest> llvm::fcmpToClassTest(FCmpInst::Predicate Pred,
4353 const Function &F,
4354 Value *LHS, Value *RHS,
4355 bool LookThroughSrc) {
4356 const APFloat *ConstRHS;
4357 if (!match(RHS, m_APFloatAllowPoison(ConstRHS)))
4358 return {nullptr, fcAllFlags};
4360 return fcmpToClassTest(Pred, F, LHS, ConstRHS, LookThroughSrc);
4363 std::pair<Value *, FPClassTest>
4364 llvm::fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS,
4365 const APFloat *ConstRHS, bool LookThroughSrc) {
4367 auto [Src, ClassIfTrue, ClassIfFalse] =
4368 fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc);
4369 if (Src && ClassIfTrue == ~ClassIfFalse)
4370 return {Src, ClassIfTrue};
4371 return {nullptr, fcAllFlags};
4374 /// Return the return value for fcmpImpliesClass for a compare that produces an
4375 /// exact class test.
4376 static std::tuple<Value *, FPClassTest, FPClassTest> exactClass(Value *V,
4377 FPClassTest M) {
4378 return {V, M, ~M};
4381 std::tuple<Value *, FPClassTest, FPClassTest>
4382 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4383 FPClassTest RHSClass, bool LookThroughSrc) {
4384 assert(RHSClass != fcNone);
4385 Value *Src = LHS;
4387 if (Pred == FCmpInst::FCMP_TRUE)
4388 return exactClass(Src, fcAllFlags);
4390 if (Pred == FCmpInst::FCMP_FALSE)
4391 return exactClass(Src, fcNone);
4393 const FPClassTest OrigClass = RHSClass;
4395 const bool IsNegativeRHS = (RHSClass & fcNegative) == RHSClass;
4396 const bool IsPositiveRHS = (RHSClass & fcPositive) == RHSClass;
4397 const bool IsNaN = (RHSClass & ~fcNan) == fcNone;
4399 if (IsNaN) {
4400 // fcmp o__ x, nan -> false
4401 // fcmp u__ x, nan -> true
4402 return exactClass(Src, CmpInst::isOrdered(Pred) ? fcNone : fcAllFlags);
4405 // fcmp ord x, zero|normal|subnormal|inf -> ~fcNan
4406 if (Pred == FCmpInst::FCMP_ORD)
4407 return exactClass(Src, ~fcNan);
4409 // fcmp uno x, zero|normal|subnormal|inf -> fcNan
4410 if (Pred == FCmpInst::FCMP_UNO)
4411 return exactClass(Src, fcNan);
4413 const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src)));
4414 if (IsFabs)
4415 RHSClass = llvm::inverse_fabs(RHSClass);
4417 const bool IsZero = (OrigClass & fcZero) == OrigClass;
4418 if (IsZero) {
4419 assert(Pred != FCmpInst::FCMP_ORD && Pred != FCmpInst::FCMP_UNO);
4420 // Compares with fcNone are only exactly equal to fcZero if input denormals
4421 // are not flushed.
4422 // TODO: Handle DAZ by expanding masks to cover subnormal cases.
4423 if (!inputDenormalIsIEEE(F, LHS->getType()))
4424 return {nullptr, fcAllFlags, fcAllFlags};
4426 switch (Pred) {
4427 case FCmpInst::FCMP_OEQ: // Match x == 0.0
4428 return exactClass(Src, fcZero);
4429 case FCmpInst::FCMP_UEQ: // Match isnan(x) || (x == 0.0)
4430 return exactClass(Src, fcZero | fcNan);
4431 case FCmpInst::FCMP_UNE: // Match (x != 0.0)
4432 return exactClass(Src, ~fcZero);
4433 case FCmpInst::FCMP_ONE: // Match !isnan(x) && x != 0.0
4434 return exactClass(Src, ~fcNan & ~fcZero);
4435 case FCmpInst::FCMP_ORD:
4436 // Canonical form of ord/uno is with a zero. We could also handle
4437 // non-canonical other non-NaN constants or LHS == RHS.
4438 return exactClass(Src, ~fcNan);
4439 case FCmpInst::FCMP_UNO:
4440 return exactClass(Src, fcNan);
4441 case FCmpInst::FCMP_OGT: // x > 0
4442 return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf);
4443 case FCmpInst::FCMP_UGT: // isnan(x) || x > 0
4444 return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf | fcNan);
4445 case FCmpInst::FCMP_OGE: // x >= 0
4446 return exactClass(Src, fcPositive | fcNegZero);
4447 case FCmpInst::FCMP_UGE: // isnan(x) || x >= 0
4448 return exactClass(Src, fcPositive | fcNegZero | fcNan);
4449 case FCmpInst::FCMP_OLT: // x < 0
4450 return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf);
4451 case FCmpInst::FCMP_ULT: // isnan(x) || x < 0
4452 return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf | fcNan);
4453 case FCmpInst::FCMP_OLE: // x <= 0
4454 return exactClass(Src, fcNegative | fcPosZero);
4455 case FCmpInst::FCMP_ULE: // isnan(x) || x <= 0
4456 return exactClass(Src, fcNegative | fcPosZero | fcNan);
4457 default:
4458 llvm_unreachable("all compare types are handled");
4461 return {nullptr, fcAllFlags, fcAllFlags};
4464 const bool IsDenormalRHS = (OrigClass & fcSubnormal) == OrigClass;
4466 const bool IsInf = (OrigClass & fcInf) == OrigClass;
4467 if (IsInf) {
4468 FPClassTest Mask = fcAllFlags;
4470 switch (Pred) {
4471 case FCmpInst::FCMP_OEQ:
4472 case FCmpInst::FCMP_UNE: {
4473 // Match __builtin_isinf patterns
4475 // fcmp oeq x, +inf -> is_fpclass x, fcPosInf
4476 // fcmp oeq fabs(x), +inf -> is_fpclass x, fcInf
4477 // fcmp oeq x, -inf -> is_fpclass x, fcNegInf
4478 // fcmp oeq fabs(x), -inf -> is_fpclass x, 0 -> false
4480 // fcmp une x, +inf -> is_fpclass x, ~fcPosInf
4481 // fcmp une fabs(x), +inf -> is_fpclass x, ~fcInf
4482 // fcmp une x, -inf -> is_fpclass x, ~fcNegInf
4483 // fcmp une fabs(x), -inf -> is_fpclass x, fcAllFlags -> true
4484 if (IsNegativeRHS) {
4485 Mask = fcNegInf;
4486 if (IsFabs)
4487 Mask = fcNone;
4488 } else {
4489 Mask = fcPosInf;
4490 if (IsFabs)
4491 Mask |= fcNegInf;
4493 break;
4495 case FCmpInst::FCMP_ONE:
4496 case FCmpInst::FCMP_UEQ: {
4497 // Match __builtin_isinf patterns
4498 // fcmp one x, -inf -> is_fpclass x, fcNegInf
4499 // fcmp one fabs(x), -inf -> is_fpclass x, ~fcNegInf & ~fcNan
4500 // fcmp one x, +inf -> is_fpclass x, ~fcNegInf & ~fcNan
4501 // fcmp one fabs(x), +inf -> is_fpclass x, ~fcInf & fcNan
4503 // fcmp ueq x, +inf -> is_fpclass x, fcPosInf|fcNan
4504 // fcmp ueq (fabs x), +inf -> is_fpclass x, fcInf|fcNan
4505 // fcmp ueq x, -inf -> is_fpclass x, fcNegInf|fcNan
4506 // fcmp ueq fabs(x), -inf -> is_fpclass x, fcNan
4507 if (IsNegativeRHS) {
4508 Mask = ~fcNegInf & ~fcNan;
4509 if (IsFabs)
4510 Mask = ~fcNan;
4511 } else {
4512 Mask = ~fcPosInf & ~fcNan;
4513 if (IsFabs)
4514 Mask &= ~fcNegInf;
4517 break;
4519 case FCmpInst::FCMP_OLT:
4520 case FCmpInst::FCMP_UGE: {
4521 if (IsNegativeRHS) {
4522 // No value is ordered and less than negative infinity.
4523 // All values are unordered with or at least negative infinity.
4524 // fcmp olt x, -inf -> false
4525 // fcmp uge x, -inf -> true
4526 Mask = fcNone;
4527 break;
4530 // fcmp olt fabs(x), +inf -> fcFinite
4531 // fcmp uge fabs(x), +inf -> ~fcFinite
4532 // fcmp olt x, +inf -> fcFinite|fcNegInf
4533 // fcmp uge x, +inf -> ~(fcFinite|fcNegInf)
4534 Mask = fcFinite;
4535 if (!IsFabs)
4536 Mask |= fcNegInf;
4537 break;
4539 case FCmpInst::FCMP_OGE:
4540 case FCmpInst::FCMP_ULT: {
4541 if (IsNegativeRHS) {
4542 // fcmp oge x, -inf -> ~fcNan
4543 // fcmp oge fabs(x), -inf -> ~fcNan
4544 // fcmp ult x, -inf -> fcNan
4545 // fcmp ult fabs(x), -inf -> fcNan
4546 Mask = ~fcNan;
4547 break;
4550 // fcmp oge fabs(x), +inf -> fcInf
4551 // fcmp oge x, +inf -> fcPosInf
4552 // fcmp ult fabs(x), +inf -> ~fcInf
4553 // fcmp ult x, +inf -> ~fcPosInf
4554 Mask = fcPosInf;
4555 if (IsFabs)
4556 Mask |= fcNegInf;
4557 break;
4559 case FCmpInst::FCMP_OGT:
4560 case FCmpInst::FCMP_ULE: {
4561 if (IsNegativeRHS) {
4562 // fcmp ogt x, -inf -> fcmp one x, -inf
4563 // fcmp ogt fabs(x), -inf -> fcmp ord x, x
4564 // fcmp ule x, -inf -> fcmp ueq x, -inf
4565 // fcmp ule fabs(x), -inf -> fcmp uno x, x
4566 Mask = IsFabs ? ~fcNan : ~(fcNegInf | fcNan);
4567 break;
4570 // No value is ordered and greater than infinity.
4571 Mask = fcNone;
4572 break;
4574 case FCmpInst::FCMP_OLE:
4575 case FCmpInst::FCMP_UGT: {
4576 if (IsNegativeRHS) {
4577 Mask = IsFabs ? fcNone : fcNegInf;
4578 break;
4581 // fcmp ole x, +inf -> fcmp ord x, x
4582 // fcmp ole fabs(x), +inf -> fcmp ord x, x
4583 // fcmp ole x, -inf -> fcmp oeq x, -inf
4584 // fcmp ole fabs(x), -inf -> false
4585 Mask = ~fcNan;
4586 break;
4588 default:
4589 llvm_unreachable("all compare types are handled");
4592 // Invert the comparison for the unordered cases.
4593 if (FCmpInst::isUnordered(Pred))
4594 Mask = ~Mask;
4596 return exactClass(Src, Mask);
4599 if (Pred == FCmpInst::FCMP_OEQ)
4600 return {Src, RHSClass, fcAllFlags};
4602 if (Pred == FCmpInst::FCMP_UEQ) {
4603 FPClassTest Class = RHSClass | fcNan;
4604 return {Src, Class, ~fcNan};
4607 if (Pred == FCmpInst::FCMP_ONE)
4608 return {Src, ~fcNan, RHSClass | fcNan};
4610 if (Pred == FCmpInst::FCMP_UNE)
4611 return {Src, fcAllFlags, RHSClass};
4613 assert((RHSClass == fcNone || RHSClass == fcPosNormal ||
4614 RHSClass == fcNegNormal || RHSClass == fcNormal ||
4615 RHSClass == fcPosSubnormal || RHSClass == fcNegSubnormal ||
4616 RHSClass == fcSubnormal) &&
4617 "should have been recognized as an exact class test");
4619 if (IsNegativeRHS) {
4620 // TODO: Handle fneg(fabs)
4621 if (IsFabs) {
4622 // fabs(x) o> -k -> fcmp ord x, x
4623 // fabs(x) u> -k -> true
4624 // fabs(x) o< -k -> false
4625 // fabs(x) u< -k -> fcmp uno x, x
4626 switch (Pred) {
4627 case FCmpInst::FCMP_OGT:
4628 case FCmpInst::FCMP_OGE:
4629 return {Src, ~fcNan, fcNan};
4630 case FCmpInst::FCMP_UGT:
4631 case FCmpInst::FCMP_UGE:
4632 return {Src, fcAllFlags, fcNone};
4633 case FCmpInst::FCMP_OLT:
4634 case FCmpInst::FCMP_OLE:
4635 return {Src, fcNone, fcAllFlags};
4636 case FCmpInst::FCMP_ULT:
4637 case FCmpInst::FCMP_ULE:
4638 return {Src, fcNan, ~fcNan};
4639 default:
4640 break;
4643 return {nullptr, fcAllFlags, fcAllFlags};
4646 FPClassTest ClassesLE = fcNegInf | fcNegNormal;
4647 FPClassTest ClassesGE = fcPositive | fcNegZero | fcNegSubnormal;
4649 if (IsDenormalRHS)
4650 ClassesLE |= fcNegSubnormal;
4651 else
4652 ClassesGE |= fcNegNormal;
4654 switch (Pred) {
4655 case FCmpInst::FCMP_OGT:
4656 case FCmpInst::FCMP_OGE:
4657 return {Src, ClassesGE, ~ClassesGE | RHSClass};
4658 case FCmpInst::FCMP_UGT:
4659 case FCmpInst::FCMP_UGE:
4660 return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass};
4661 case FCmpInst::FCMP_OLT:
4662 case FCmpInst::FCMP_OLE:
4663 return {Src, ClassesLE, ~ClassesLE | RHSClass};
4664 case FCmpInst::FCMP_ULT:
4665 case FCmpInst::FCMP_ULE:
4666 return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass};
4667 default:
4668 break;
4670 } else if (IsPositiveRHS) {
4671 FPClassTest ClassesGE = fcPosNormal | fcPosInf;
4672 FPClassTest ClassesLE = fcNegative | fcPosZero | fcPosSubnormal;
4673 if (IsDenormalRHS)
4674 ClassesGE |= fcPosSubnormal;
4675 else
4676 ClassesLE |= fcPosNormal;
4678 if (IsFabs) {
4679 ClassesGE = llvm::inverse_fabs(ClassesGE);
4680 ClassesLE = llvm::inverse_fabs(ClassesLE);
4683 switch (Pred) {
4684 case FCmpInst::FCMP_OGT:
4685 case FCmpInst::FCMP_OGE:
4686 return {Src, ClassesGE, ~ClassesGE | RHSClass};
4687 case FCmpInst::FCMP_UGT:
4688 case FCmpInst::FCMP_UGE:
4689 return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass};
4690 case FCmpInst::FCMP_OLT:
4691 case FCmpInst::FCMP_OLE:
4692 return {Src, ClassesLE, ~ClassesLE | RHSClass};
4693 case FCmpInst::FCMP_ULT:
4694 case FCmpInst::FCMP_ULE:
4695 return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass};
4696 default:
4697 break;
4701 return {nullptr, fcAllFlags, fcAllFlags};
4704 std::tuple<Value *, FPClassTest, FPClassTest>
4705 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4706 const APFloat &ConstRHS, bool LookThroughSrc) {
4707 // We can refine checks against smallest normal / largest denormal to an
4708 // exact class test.
4709 if (!ConstRHS.isNegative() && ConstRHS.isSmallestNormalized()) {
4710 Value *Src = LHS;
4711 const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src)));
4713 FPClassTest Mask;
4714 // Match pattern that's used in __builtin_isnormal.
4715 switch (Pred) {
4716 case FCmpInst::FCMP_OLT:
4717 case FCmpInst::FCMP_UGE: {
4718 // fcmp olt x, smallest_normal -> fcNegInf|fcNegNormal|fcSubnormal|fcZero
4719 // fcmp olt fabs(x), smallest_normal -> fcSubnormal|fcZero
4720 // fcmp uge x, smallest_normal -> fcNan|fcPosNormal|fcPosInf
4721 // fcmp uge fabs(x), smallest_normal -> ~(fcSubnormal|fcZero)
4722 Mask = fcZero | fcSubnormal;
4723 if (!IsFabs)
4724 Mask |= fcNegNormal | fcNegInf;
4726 break;
4728 case FCmpInst::FCMP_OGE:
4729 case FCmpInst::FCMP_ULT: {
4730 // fcmp oge x, smallest_normal -> fcPosNormal | fcPosInf
4731 // fcmp oge fabs(x), smallest_normal -> fcInf | fcNormal
4732 // fcmp ult x, smallest_normal -> ~(fcPosNormal | fcPosInf)
4733 // fcmp ult fabs(x), smallest_normal -> ~(fcInf | fcNormal)
4734 Mask = fcPosInf | fcPosNormal;
4735 if (IsFabs)
4736 Mask |= fcNegInf | fcNegNormal;
4737 break;
4739 default:
4740 return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(),
4741 LookThroughSrc);
4744 // Invert the comparison for the unordered cases.
4745 if (FCmpInst::isUnordered(Pred))
4746 Mask = ~Mask;
4748 return exactClass(Src, Mask);
4751 return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(), LookThroughSrc);
4754 std::tuple<Value *, FPClassTest, FPClassTest>
4755 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4756 Value *RHS, bool LookThroughSrc) {
4757 const APFloat *ConstRHS;
4758 if (!match(RHS, m_APFloatAllowPoison(ConstRHS)))
4759 return {nullptr, fcAllFlags, fcAllFlags};
4761 // TODO: Just call computeKnownFPClass for RHS to handle non-constants.
4762 return fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc);
4765 static void computeKnownFPClassFromCond(const Value *V, Value *Cond,
4766 bool CondIsTrue,
4767 const Instruction *CxtI,
4768 KnownFPClass &KnownFromContext) {
4769 CmpInst::Predicate Pred;
4770 Value *LHS;
4771 uint64_t ClassVal = 0;
4772 const APFloat *CRHS;
4773 const APInt *RHS;
4774 if (match(Cond, m_FCmp(Pred, m_Value(LHS), m_APFloat(CRHS)))) {
4775 auto [CmpVal, MaskIfTrue, MaskIfFalse] = fcmpImpliesClass(
4776 Pred, *CxtI->getParent()->getParent(), LHS, *CRHS, LHS != V);
4777 if (CmpVal == V)
4778 KnownFromContext.knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4779 } else if (match(Cond, m_Intrinsic<Intrinsic::is_fpclass>(
4780 m_Value(LHS), m_ConstantInt(ClassVal)))) {
4781 FPClassTest Mask = static_cast<FPClassTest>(ClassVal);
4782 KnownFromContext.knownNot(CondIsTrue ? ~Mask : Mask);
4783 } else if (match(Cond, m_ICmp(Pred, m_ElementWiseBitCast(m_Value(LHS)),
4784 m_APInt(RHS)))) {
4785 bool TrueIfSigned;
4786 if (!isSignBitCheck(Pred, *RHS, TrueIfSigned))
4787 return;
4788 if (TrueIfSigned == CondIsTrue)
4789 KnownFromContext.signBitMustBeOne();
4790 else
4791 KnownFromContext.signBitMustBeZero();
4795 static KnownFPClass computeKnownFPClassFromContext(const Value *V,
4796 const SimplifyQuery &Q) {
4797 KnownFPClass KnownFromContext;
4799 if (!Q.CxtI)
4800 return KnownFromContext;
4802 if (Q.DC && Q.DT) {
4803 // Handle dominating conditions.
4804 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
4805 Value *Cond = BI->getCondition();
4807 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4808 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
4809 computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/true, Q.CxtI,
4810 KnownFromContext);
4812 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4813 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
4814 computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/false, Q.CxtI,
4815 KnownFromContext);
4819 if (!Q.AC)
4820 return KnownFromContext;
4822 // Try to restrict the floating-point classes based on information from
4823 // assumptions.
4824 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
4825 if (!AssumeVH)
4826 continue;
4827 CallInst *I = cast<CallInst>(AssumeVH);
4829 assert(I->getFunction() == Q.CxtI->getParent()->getParent() &&
4830 "Got assumption for the wrong function!");
4831 assert(I->getIntrinsicID() == Intrinsic::assume &&
4832 "must be an assume intrinsic");
4834 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
4835 continue;
4837 computeKnownFPClassFromCond(V, I->getArgOperand(0), /*CondIsTrue=*/true,
4838 Q.CxtI, KnownFromContext);
4841 return KnownFromContext;
4844 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4845 FPClassTest InterestedClasses, KnownFPClass &Known,
4846 unsigned Depth, const SimplifyQuery &Q);
4848 static void computeKnownFPClass(const Value *V, KnownFPClass &Known,
4849 FPClassTest InterestedClasses, unsigned Depth,
4850 const SimplifyQuery &Q) {
4851 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
4852 APInt DemandedElts =
4853 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
4854 computeKnownFPClass(V, DemandedElts, InterestedClasses, Known, Depth, Q);
4857 static void computeKnownFPClassForFPTrunc(const Operator *Op,
4858 const APInt &DemandedElts,
4859 FPClassTest InterestedClasses,
4860 KnownFPClass &Known, unsigned Depth,
4861 const SimplifyQuery &Q) {
4862 if ((InterestedClasses &
4863 (KnownFPClass::OrderedLessThanZeroMask | fcNan)) == fcNone)
4864 return;
4866 KnownFPClass KnownSrc;
4867 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4868 KnownSrc, Depth + 1, Q);
4870 // Sign should be preserved
4871 // TODO: Handle cannot be ordered greater than zero
4872 if (KnownSrc.cannotBeOrderedLessThanZero())
4873 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4875 Known.propagateNaN(KnownSrc, true);
4877 // Infinity needs a range check.
4880 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4881 FPClassTest InterestedClasses, KnownFPClass &Known,
4882 unsigned Depth, const SimplifyQuery &Q) {
4883 assert(Known.isUnknown() && "should not be called with known information");
4885 if (!DemandedElts) {
4886 // No demanded elts, better to assume we don't know anything.
4887 Known.resetAll();
4888 return;
4891 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
4893 if (auto *CFP = dyn_cast<ConstantFP>(V)) {
4894 Known.KnownFPClasses = CFP->getValueAPF().classify();
4895 Known.SignBit = CFP->isNegative();
4896 return;
4899 if (isa<ConstantAggregateZero>(V)) {
4900 Known.KnownFPClasses = fcPosZero;
4901 Known.SignBit = false;
4902 return;
4905 if (isa<PoisonValue>(V)) {
4906 Known.KnownFPClasses = fcNone;
4907 Known.SignBit = false;
4908 return;
4911 // Try to handle fixed width vector constants
4912 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
4913 const Constant *CV = dyn_cast<Constant>(V);
4914 if (VFVTy && CV) {
4915 Known.KnownFPClasses = fcNone;
4916 bool SignBitAllZero = true;
4917 bool SignBitAllOne = true;
4919 // For vectors, verify that each element is not NaN.
4920 unsigned NumElts = VFVTy->getNumElements();
4921 for (unsigned i = 0; i != NumElts; ++i) {
4922 if (!DemandedElts[i])
4923 continue;
4925 Constant *Elt = CV->getAggregateElement(i);
4926 if (!Elt) {
4927 Known = KnownFPClass();
4928 return;
4930 if (isa<PoisonValue>(Elt))
4931 continue;
4932 auto *CElt = dyn_cast<ConstantFP>(Elt);
4933 if (!CElt) {
4934 Known = KnownFPClass();
4935 return;
4938 const APFloat &C = CElt->getValueAPF();
4939 Known.KnownFPClasses |= C.classify();
4940 if (C.isNegative())
4941 SignBitAllZero = false;
4942 else
4943 SignBitAllOne = false;
4945 if (SignBitAllOne != SignBitAllZero)
4946 Known.SignBit = SignBitAllOne;
4947 return;
4950 FPClassTest KnownNotFromFlags = fcNone;
4951 if (const auto *CB = dyn_cast<CallBase>(V))
4952 KnownNotFromFlags |= CB->getRetNoFPClass();
4953 else if (const auto *Arg = dyn_cast<Argument>(V))
4954 KnownNotFromFlags |= Arg->getNoFPClass();
4956 const Operator *Op = dyn_cast<Operator>(V);
4957 if (const FPMathOperator *FPOp = dyn_cast_or_null<FPMathOperator>(Op)) {
4958 if (FPOp->hasNoNaNs())
4959 KnownNotFromFlags |= fcNan;
4960 if (FPOp->hasNoInfs())
4961 KnownNotFromFlags |= fcInf;
4964 KnownFPClass AssumedClasses = computeKnownFPClassFromContext(V, Q);
4965 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4967 // We no longer need to find out about these bits from inputs if we can
4968 // assume this from flags/attributes.
4969 InterestedClasses &= ~KnownNotFromFlags;
4971 auto ClearClassesFromFlags = make_scope_exit([=, &Known] {
4972 Known.knownNot(KnownNotFromFlags);
4973 if (!Known.SignBit && AssumedClasses.SignBit) {
4974 if (*AssumedClasses.SignBit)
4975 Known.signBitMustBeOne();
4976 else
4977 Known.signBitMustBeZero();
4981 if (!Op)
4982 return;
4984 // All recursive calls that increase depth must come after this.
4985 if (Depth == MaxAnalysisRecursionDepth)
4986 return;
4988 const unsigned Opc = Op->getOpcode();
4989 switch (Opc) {
4990 case Instruction::FNeg: {
4991 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4992 Known, Depth + 1, Q);
4993 Known.fneg();
4994 break;
4996 case Instruction::Select: {
4997 Value *Cond = Op->getOperand(0);
4998 Value *LHS = Op->getOperand(1);
4999 Value *RHS = Op->getOperand(2);
5001 FPClassTest FilterLHS = fcAllFlags;
5002 FPClassTest FilterRHS = fcAllFlags;
5004 Value *TestedValue = nullptr;
5005 FPClassTest MaskIfTrue = fcAllFlags;
5006 FPClassTest MaskIfFalse = fcAllFlags;
5007 uint64_t ClassVal = 0;
5008 const Function *F = cast<Instruction>(Op)->getFunction();
5009 CmpInst::Predicate Pred;
5010 Value *CmpLHS, *CmpRHS;
5011 if (F && match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
5012 // If the select filters out a value based on the class, it no longer
5013 // participates in the class of the result
5015 // TODO: In some degenerate cases we can infer something if we try again
5016 // without looking through sign operations.
5017 bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
5018 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5019 fcmpImpliesClass(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
5020 } else if (match(Cond,
5021 m_Intrinsic<Intrinsic::is_fpclass>(
5022 m_Value(TestedValue), m_ConstantInt(ClassVal)))) {
5023 FPClassTest TestedMask = static_cast<FPClassTest>(ClassVal);
5024 MaskIfTrue = TestedMask;
5025 MaskIfFalse = ~TestedMask;
5028 if (TestedValue == LHS) {
5029 // match !isnan(x) ? x : y
5030 FilterLHS = MaskIfTrue;
5031 } else if (TestedValue == RHS) { // && IsExactClass
5032 // match !isnan(x) ? y : x
5033 FilterRHS = MaskIfFalse;
5036 KnownFPClass Known2;
5037 computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
5038 Depth + 1, Q);
5039 Known.KnownFPClasses &= FilterLHS;
5041 computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS,
5042 Known2, Depth + 1, Q);
5043 Known2.KnownFPClasses &= FilterRHS;
5045 Known |= Known2;
5046 break;
5048 case Instruction::Call: {
5049 const CallInst *II = cast<CallInst>(Op);
5050 const Intrinsic::ID IID = II->getIntrinsicID();
5051 switch (IID) {
5052 case Intrinsic::fabs: {
5053 if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) {
5054 // If we only care about the sign bit we don't need to inspect the
5055 // operand.
5056 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5057 InterestedClasses, Known, Depth + 1, Q);
5060 Known.fabs();
5061 break;
5063 case Intrinsic::copysign: {
5064 KnownFPClass KnownSign;
5066 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5067 Known, Depth + 1, Q);
5068 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5069 KnownSign, Depth + 1, Q);
5070 Known.copysign(KnownSign);
5071 break;
5073 case Intrinsic::fma:
5074 case Intrinsic::fmuladd: {
5075 if ((InterestedClasses & fcNegative) == fcNone)
5076 break;
5078 if (II->getArgOperand(0) != II->getArgOperand(1))
5079 break;
5081 // The multiply cannot be -0 and therefore the add can't be -0
5082 Known.knownNot(fcNegZero);
5084 // x * x + y is non-negative if y is non-negative.
5085 KnownFPClass KnownAddend;
5086 computeKnownFPClass(II->getArgOperand(2), DemandedElts, InterestedClasses,
5087 KnownAddend, Depth + 1, Q);
5089 if (KnownAddend.cannotBeOrderedLessThanZero())
5090 Known.knownNot(fcNegative);
5091 break;
5093 case Intrinsic::sqrt:
5094 case Intrinsic::experimental_constrained_sqrt: {
5095 KnownFPClass KnownSrc;
5096 FPClassTest InterestedSrcs = InterestedClasses;
5097 if (InterestedClasses & fcNan)
5098 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5100 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5101 KnownSrc, Depth + 1, Q);
5103 if (KnownSrc.isKnownNeverPosInfinity())
5104 Known.knownNot(fcPosInf);
5105 if (KnownSrc.isKnownNever(fcSNan))
5106 Known.knownNot(fcSNan);
5108 // Any negative value besides -0 returns a nan.
5109 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5110 Known.knownNot(fcNan);
5112 // The only negative value that can be returned is -0 for -0 inputs.
5113 Known.knownNot(fcNegInf | fcNegSubnormal | fcNegNormal);
5115 // If the input denormal mode could be PreserveSign, a negative
5116 // subnormal input could produce a negative zero output.
5117 const Function *F = II->getFunction();
5118 if (Q.IIQ.hasNoSignedZeros(II) ||
5119 (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType())))
5120 Known.knownNot(fcNegZero);
5122 break;
5124 case Intrinsic::sin:
5125 case Intrinsic::cos: {
5126 // Return NaN on infinite inputs.
5127 KnownFPClass KnownSrc;
5128 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5129 KnownSrc, Depth + 1, Q);
5130 Known.knownNot(fcInf);
5131 if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity())
5132 Known.knownNot(fcNan);
5133 break;
5135 case Intrinsic::maxnum:
5136 case Intrinsic::minnum:
5137 case Intrinsic::minimum:
5138 case Intrinsic::maximum: {
5139 KnownFPClass KnownLHS, KnownRHS;
5140 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5141 KnownLHS, Depth + 1, Q);
5142 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5143 KnownRHS, Depth + 1, Q);
5145 bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN();
5146 Known = KnownLHS | KnownRHS;
5148 // If either operand is not NaN, the result is not NaN.
5149 if (NeverNaN && (IID == Intrinsic::minnum || IID == Intrinsic::maxnum))
5150 Known.knownNot(fcNan);
5152 if (IID == Intrinsic::maxnum) {
5153 // If at least one operand is known to be positive, the result must be
5154 // positive.
5155 if ((KnownLHS.cannotBeOrderedLessThanZero() &&
5156 KnownLHS.isKnownNeverNaN()) ||
5157 (KnownRHS.cannotBeOrderedLessThanZero() &&
5158 KnownRHS.isKnownNeverNaN()))
5159 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5160 } else if (IID == Intrinsic::maximum) {
5161 // If at least one operand is known to be positive, the result must be
5162 // positive.
5163 if (KnownLHS.cannotBeOrderedLessThanZero() ||
5164 KnownRHS.cannotBeOrderedLessThanZero())
5165 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5166 } else if (IID == Intrinsic::minnum) {
5167 // If at least one operand is known to be negative, the result must be
5168 // negative.
5169 if ((KnownLHS.cannotBeOrderedGreaterThanZero() &&
5170 KnownLHS.isKnownNeverNaN()) ||
5171 (KnownRHS.cannotBeOrderedGreaterThanZero() &&
5172 KnownRHS.isKnownNeverNaN()))
5173 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5174 } else {
5175 // If at least one operand is known to be negative, the result must be
5176 // negative.
5177 if (KnownLHS.cannotBeOrderedGreaterThanZero() ||
5178 KnownRHS.cannotBeOrderedGreaterThanZero())
5179 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5182 // Fixup zero handling if denormals could be returned as a zero.
5184 // As there's no spec for denormal flushing, be conservative with the
5185 // treatment of denormals that could be flushed to zero. For older
5186 // subtargets on AMDGPU the min/max instructions would not flush the
5187 // output and return the original value.
5189 if ((Known.KnownFPClasses & fcZero) != fcNone &&
5190 !Known.isKnownNeverSubnormal()) {
5191 const Function *Parent = II->getFunction();
5192 if (!Parent)
5193 break;
5195 DenormalMode Mode = Parent->getDenormalMode(
5196 II->getType()->getScalarType()->getFltSemantics());
5197 if (Mode != DenormalMode::getIEEE())
5198 Known.KnownFPClasses |= fcZero;
5201 if (Known.isKnownNeverNaN()) {
5202 if (KnownLHS.SignBit && KnownRHS.SignBit &&
5203 *KnownLHS.SignBit == *KnownRHS.SignBit) {
5204 if (*KnownLHS.SignBit)
5205 Known.signBitMustBeOne();
5206 else
5207 Known.signBitMustBeZero();
5208 } else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum) ||
5209 ((KnownLHS.isKnownNeverNegZero() ||
5210 KnownRHS.isKnownNeverPosZero()) &&
5211 (KnownLHS.isKnownNeverPosZero() ||
5212 KnownRHS.isKnownNeverNegZero()))) {
5213 if ((IID == Intrinsic::maximum || IID == Intrinsic::maxnum) &&
5214 (KnownLHS.SignBit == false || KnownRHS.SignBit == false))
5215 Known.signBitMustBeZero();
5216 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minnum) &&
5217 (KnownLHS.SignBit == true || KnownRHS.SignBit == true))
5218 Known.signBitMustBeOne();
5221 break;
5223 case Intrinsic::canonicalize: {
5224 KnownFPClass KnownSrc;
5225 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5226 KnownSrc, Depth + 1, Q);
5228 // This is essentially a stronger form of
5229 // propagateCanonicalizingSrc. Other "canonicalizing" operations don't
5230 // actually have an IR canonicalization guarantee.
5232 // Canonicalize may flush denormals to zero, so we have to consider the
5233 // denormal mode to preserve known-not-0 knowledge.
5234 Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan;
5236 // Stronger version of propagateNaN
5237 // Canonicalize is guaranteed to quiet signaling nans.
5238 if (KnownSrc.isKnownNeverNaN())
5239 Known.knownNot(fcNan);
5240 else
5241 Known.knownNot(fcSNan);
5243 const Function *F = II->getFunction();
5244 if (!F)
5245 break;
5247 // If the parent function flushes denormals, the canonical output cannot
5248 // be a denormal.
5249 const fltSemantics &FPType =
5250 II->getType()->getScalarType()->getFltSemantics();
5251 DenormalMode DenormMode = F->getDenormalMode(FPType);
5252 if (DenormMode == DenormalMode::getIEEE()) {
5253 if (KnownSrc.isKnownNever(fcPosZero))
5254 Known.knownNot(fcPosZero);
5255 if (KnownSrc.isKnownNever(fcNegZero))
5256 Known.knownNot(fcNegZero);
5257 break;
5260 if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero())
5261 Known.knownNot(fcSubnormal);
5263 if (DenormMode.Input == DenormalMode::PositiveZero ||
5264 (DenormMode.Output == DenormalMode::PositiveZero &&
5265 DenormMode.Input == DenormalMode::IEEE))
5266 Known.knownNot(fcNegZero);
5268 break;
5270 case Intrinsic::vector_reduce_fmax:
5271 case Intrinsic::vector_reduce_fmin:
5272 case Intrinsic::vector_reduce_fmaximum:
5273 case Intrinsic::vector_reduce_fminimum: {
5274 // reduce min/max will choose an element from one of the vector elements,
5275 // so we can infer and class information that is common to all elements.
5276 Known = computeKnownFPClass(II->getArgOperand(0), II->getFastMathFlags(),
5277 InterestedClasses, Depth + 1, Q);
5278 // Can only propagate sign if output is never NaN.
5279 if (!Known.isKnownNeverNaN())
5280 Known.SignBit.reset();
5281 break;
5283 // reverse preserves all characteristics of the input vec's element.
5284 case Intrinsic::vector_reverse:
5285 Known = computeKnownFPClass(
5286 II->getArgOperand(0), DemandedElts.reverseBits(),
5287 II->getFastMathFlags(), InterestedClasses, Depth + 1, Q);
5288 break;
5289 case Intrinsic::trunc:
5290 case Intrinsic::floor:
5291 case Intrinsic::ceil:
5292 case Intrinsic::rint:
5293 case Intrinsic::nearbyint:
5294 case Intrinsic::round:
5295 case Intrinsic::roundeven: {
5296 KnownFPClass KnownSrc;
5297 FPClassTest InterestedSrcs = InterestedClasses;
5298 if (InterestedSrcs & fcPosFinite)
5299 InterestedSrcs |= fcPosFinite;
5300 if (InterestedSrcs & fcNegFinite)
5301 InterestedSrcs |= fcNegFinite;
5302 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5303 KnownSrc, Depth + 1, Q);
5305 // Integer results cannot be subnormal.
5306 Known.knownNot(fcSubnormal);
5308 Known.propagateNaN(KnownSrc, true);
5310 // Pass through infinities, except PPC_FP128 is a special case for
5311 // intrinsics other than trunc.
5312 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5313 if (KnownSrc.isKnownNeverPosInfinity())
5314 Known.knownNot(fcPosInf);
5315 if (KnownSrc.isKnownNeverNegInfinity())
5316 Known.knownNot(fcNegInf);
5319 // Negative round ups to 0 produce -0
5320 if (KnownSrc.isKnownNever(fcPosFinite))
5321 Known.knownNot(fcPosFinite);
5322 if (KnownSrc.isKnownNever(fcNegFinite))
5323 Known.knownNot(fcNegFinite);
5325 break;
5327 case Intrinsic::exp:
5328 case Intrinsic::exp2:
5329 case Intrinsic::exp10: {
5330 Known.knownNot(fcNegative);
5331 if ((InterestedClasses & fcNan) == fcNone)
5332 break;
5334 KnownFPClass KnownSrc;
5335 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5336 KnownSrc, Depth + 1, Q);
5337 if (KnownSrc.isKnownNeverNaN()) {
5338 Known.knownNot(fcNan);
5339 Known.signBitMustBeZero();
5342 break;
5344 case Intrinsic::fptrunc_round: {
5345 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5346 Depth, Q);
5347 break;
5349 case Intrinsic::log:
5350 case Intrinsic::log10:
5351 case Intrinsic::log2:
5352 case Intrinsic::experimental_constrained_log:
5353 case Intrinsic::experimental_constrained_log10:
5354 case Intrinsic::experimental_constrained_log2: {
5355 // log(+inf) -> +inf
5356 // log([+-]0.0) -> -inf
5357 // log(-inf) -> nan
5358 // log(-x) -> nan
5359 if ((InterestedClasses & (fcNan | fcInf)) == fcNone)
5360 break;
5362 FPClassTest InterestedSrcs = InterestedClasses;
5363 if ((InterestedClasses & fcNegInf) != fcNone)
5364 InterestedSrcs |= fcZero | fcSubnormal;
5365 if ((InterestedClasses & fcNan) != fcNone)
5366 InterestedSrcs |= fcNan | (fcNegative & ~fcNan);
5368 KnownFPClass KnownSrc;
5369 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5370 KnownSrc, Depth + 1, Q);
5372 if (KnownSrc.isKnownNeverPosInfinity())
5373 Known.knownNot(fcPosInf);
5375 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5376 Known.knownNot(fcNan);
5378 const Function *F = II->getFunction();
5379 if (F && KnownSrc.isKnownNeverLogicalZero(*F, II->getType()))
5380 Known.knownNot(fcNegInf);
5382 break;
5384 case Intrinsic::powi: {
5385 if ((InterestedClasses & fcNegative) == fcNone)
5386 break;
5388 const Value *Exp = II->getArgOperand(1);
5389 Type *ExpTy = Exp->getType();
5390 unsigned BitWidth = ExpTy->getScalarType()->getIntegerBitWidth();
5391 KnownBits ExponentKnownBits(BitWidth);
5392 computeKnownBits(Exp, isa<VectorType>(ExpTy) ? DemandedElts : APInt(1, 1),
5393 ExponentKnownBits, Depth + 1, Q);
5395 if (ExponentKnownBits.Zero[0]) { // Is even
5396 Known.knownNot(fcNegative);
5397 break;
5400 // Given that exp is an integer, here are the
5401 // ways that pow can return a negative value:
5403 // pow(-x, exp) --> negative if exp is odd and x is negative.
5404 // pow(-0, exp) --> -inf if exp is negative odd.
5405 // pow(-0, exp) --> -0 if exp is positive odd.
5406 // pow(-inf, exp) --> -0 if exp is negative odd.
5407 // pow(-inf, exp) --> -inf if exp is positive odd.
5408 KnownFPClass KnownSrc;
5409 computeKnownFPClass(II->getArgOperand(0), DemandedElts, fcNegative,
5410 KnownSrc, Depth + 1, Q);
5411 if (KnownSrc.isKnownNever(fcNegative))
5412 Known.knownNot(fcNegative);
5413 break;
5415 case Intrinsic::ldexp: {
5416 KnownFPClass KnownSrc;
5417 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5418 KnownSrc, Depth + 1, Q);
5419 Known.propagateNaN(KnownSrc, /*PropagateSign=*/true);
5421 // Sign is preserved, but underflows may produce zeroes.
5422 if (KnownSrc.isKnownNever(fcNegative))
5423 Known.knownNot(fcNegative);
5424 else if (KnownSrc.cannotBeOrderedLessThanZero())
5425 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5427 if (KnownSrc.isKnownNever(fcPositive))
5428 Known.knownNot(fcPositive);
5429 else if (KnownSrc.cannotBeOrderedGreaterThanZero())
5430 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5432 // Can refine inf/zero handling based on the exponent operand.
5433 const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf;
5434 if ((InterestedClasses & ExpInfoMask) == fcNone)
5435 break;
5436 if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone)
5437 break;
5439 const fltSemantics &Flt =
5440 II->getType()->getScalarType()->getFltSemantics();
5441 unsigned Precision = APFloat::semanticsPrecision(Flt);
5442 const Value *ExpArg = II->getArgOperand(1);
5443 ConstantRange ExpRange = computeConstantRange(
5444 ExpArg, true, Q.IIQ.UseInstrInfo, Q.AC, Q.CxtI, Q.DT, Depth + 1);
5446 const int MantissaBits = Precision - 1;
5447 if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits)))
5448 Known.knownNot(fcSubnormal);
5450 const Function *F = II->getFunction();
5451 const APInt *ConstVal = ExpRange.getSingleElement();
5452 if (ConstVal && ConstVal->isZero()) {
5453 // ldexp(x, 0) -> x, so propagate everything.
5454 Known.propagateCanonicalizingSrc(KnownSrc, *F, II->getType());
5455 } else if (ExpRange.isAllNegative()) {
5456 // If we know the power is <= 0, can't introduce inf
5457 if (KnownSrc.isKnownNeverPosInfinity())
5458 Known.knownNot(fcPosInf);
5459 if (KnownSrc.isKnownNeverNegInfinity())
5460 Known.knownNot(fcNegInf);
5461 } else if (ExpRange.isAllNonNegative()) {
5462 // If we know the power is >= 0, can't introduce subnormal or zero
5463 if (KnownSrc.isKnownNeverPosSubnormal())
5464 Known.knownNot(fcPosSubnormal);
5465 if (KnownSrc.isKnownNeverNegSubnormal())
5466 Known.knownNot(fcNegSubnormal);
5467 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, II->getType()))
5468 Known.knownNot(fcPosZero);
5469 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType()))
5470 Known.knownNot(fcNegZero);
5473 break;
5475 case Intrinsic::arithmetic_fence: {
5476 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5477 Known, Depth + 1, Q);
5478 break;
5480 case Intrinsic::experimental_constrained_sitofp:
5481 case Intrinsic::experimental_constrained_uitofp:
5482 // Cannot produce nan
5483 Known.knownNot(fcNan);
5485 // sitofp and uitofp turn into +0.0 for zero.
5486 Known.knownNot(fcNegZero);
5488 // Integers cannot be subnormal
5489 Known.knownNot(fcSubnormal);
5491 if (IID == Intrinsic::experimental_constrained_uitofp)
5492 Known.signBitMustBeZero();
5494 // TODO: Copy inf handling from instructions
5495 break;
5496 default:
5497 break;
5500 break;
5502 case Instruction::FAdd:
5503 case Instruction::FSub: {
5504 KnownFPClass KnownLHS, KnownRHS;
5505 bool WantNegative =
5506 Op->getOpcode() == Instruction::FAdd &&
5507 (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone;
5508 bool WantNaN = (InterestedClasses & fcNan) != fcNone;
5509 bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
5511 if (!WantNaN && !WantNegative && !WantNegZero)
5512 break;
5514 FPClassTest InterestedSrcs = InterestedClasses;
5515 if (WantNegative)
5516 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5517 if (InterestedClasses & fcNan)
5518 InterestedSrcs |= fcInf;
5519 computeKnownFPClass(Op->getOperand(1), DemandedElts, InterestedSrcs,
5520 KnownRHS, Depth + 1, Q);
5522 if ((WantNaN && KnownRHS.isKnownNeverNaN()) ||
5523 (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) ||
5524 WantNegZero || Opc == Instruction::FSub) {
5526 // RHS is canonically cheaper to compute. Skip inspecting the LHS if
5527 // there's no point.
5528 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedSrcs,
5529 KnownLHS, Depth + 1, Q);
5530 // Adding positive and negative infinity produces NaN.
5531 // TODO: Check sign of infinities.
5532 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5533 (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity()))
5534 Known.knownNot(fcNan);
5536 // FIXME: Context function should always be passed in separately
5537 const Function *F = cast<Instruction>(Op)->getFunction();
5539 if (Op->getOpcode() == Instruction::FAdd) {
5540 if (KnownLHS.cannotBeOrderedLessThanZero() &&
5541 KnownRHS.cannotBeOrderedLessThanZero())
5542 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5543 if (!F)
5544 break;
5546 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
5547 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
5548 KnownRHS.isKnownNeverLogicalNegZero(*F, Op->getType())) &&
5549 // Make sure output negative denormal can't flush to -0
5550 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5551 Known.knownNot(fcNegZero);
5552 } else {
5553 if (!F)
5554 break;
5556 // Only fsub -0, +0 can return -0
5557 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
5558 KnownRHS.isKnownNeverLogicalPosZero(*F, Op->getType())) &&
5559 // Make sure output negative denormal can't flush to -0
5560 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5561 Known.knownNot(fcNegZero);
5565 break;
5567 case Instruction::FMul: {
5568 // X * X is always non-negative or a NaN.
5569 if (Op->getOperand(0) == Op->getOperand(1))
5570 Known.knownNot(fcNegative);
5572 if ((InterestedClasses & fcNan) != fcNan)
5573 break;
5575 // fcSubnormal is only needed in case of DAZ.
5576 const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal;
5578 KnownFPClass KnownLHS, KnownRHS;
5579 computeKnownFPClass(Op->getOperand(1), DemandedElts, NeedForNan, KnownRHS,
5580 Depth + 1, Q);
5581 if (!KnownRHS.isKnownNeverNaN())
5582 break;
5584 computeKnownFPClass(Op->getOperand(0), DemandedElts, NeedForNan, KnownLHS,
5585 Depth + 1, Q);
5586 if (!KnownLHS.isKnownNeverNaN())
5587 break;
5589 if (KnownLHS.SignBit && KnownRHS.SignBit) {
5590 if (*KnownLHS.SignBit == *KnownRHS.SignBit)
5591 Known.signBitMustBeZero();
5592 else
5593 Known.signBitMustBeOne();
5596 // If 0 * +/-inf produces NaN.
5597 if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) {
5598 Known.knownNot(fcNan);
5599 break;
5602 const Function *F = cast<Instruction>(Op)->getFunction();
5603 if (!F)
5604 break;
5606 if ((KnownRHS.isKnownNeverInfinity() ||
5607 KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) &&
5608 (KnownLHS.isKnownNeverInfinity() ||
5609 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))
5610 Known.knownNot(fcNan);
5612 break;
5614 case Instruction::FDiv:
5615 case Instruction::FRem: {
5616 if (Op->getOperand(0) == Op->getOperand(1)) {
5617 // TODO: Could filter out snan if we inspect the operand
5618 if (Op->getOpcode() == Instruction::FDiv) {
5619 // X / X is always exactly 1.0 or a NaN.
5620 Known.KnownFPClasses = fcNan | fcPosNormal;
5621 } else {
5622 // X % X is always exactly [+-]0.0 or a NaN.
5623 Known.KnownFPClasses = fcNan | fcZero;
5626 break;
5629 const bool WantNan = (InterestedClasses & fcNan) != fcNone;
5630 const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
5631 const bool WantPositive =
5632 Opc == Instruction::FRem && (InterestedClasses & fcPositive) != fcNone;
5633 if (!WantNan && !WantNegative && !WantPositive)
5634 break;
5636 KnownFPClass KnownLHS, KnownRHS;
5638 computeKnownFPClass(Op->getOperand(1), DemandedElts,
5639 fcNan | fcInf | fcZero | fcNegative, KnownRHS,
5640 Depth + 1, Q);
5642 bool KnowSomethingUseful =
5643 KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative);
5645 if (KnowSomethingUseful || WantPositive) {
5646 const FPClassTest InterestedLHS =
5647 WantPositive ? fcAllFlags
5648 : fcNan | fcInf | fcZero | fcSubnormal | fcNegative;
5650 computeKnownFPClass(Op->getOperand(0), DemandedElts,
5651 InterestedClasses & InterestedLHS, KnownLHS,
5652 Depth + 1, Q);
5655 const Function *F = cast<Instruction>(Op)->getFunction();
5657 if (Op->getOpcode() == Instruction::FDiv) {
5658 // Only 0/0, Inf/Inf produce NaN.
5659 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5660 (KnownLHS.isKnownNeverInfinity() ||
5661 KnownRHS.isKnownNeverInfinity()) &&
5662 ((F && KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) ||
5663 (F && KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))) {
5664 Known.knownNot(fcNan);
5667 // X / -0.0 is -Inf (or NaN).
5668 // +X / +X is +X
5669 if (KnownLHS.isKnownNever(fcNegative) && KnownRHS.isKnownNever(fcNegative))
5670 Known.knownNot(fcNegative);
5671 } else {
5672 // Inf REM x and x REM 0 produce NaN.
5673 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5674 KnownLHS.isKnownNeverInfinity() && F &&
5675 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())) {
5676 Known.knownNot(fcNan);
5679 // The sign for frem is the same as the first operand.
5680 if (KnownLHS.cannotBeOrderedLessThanZero())
5681 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5682 if (KnownLHS.cannotBeOrderedGreaterThanZero())
5683 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5685 // See if we can be more aggressive about the sign of 0.
5686 if (KnownLHS.isKnownNever(fcNegative))
5687 Known.knownNot(fcNegative);
5688 if (KnownLHS.isKnownNever(fcPositive))
5689 Known.knownNot(fcPositive);
5692 break;
5694 case Instruction::FPExt: {
5695 // Infinity, nan and zero propagate from source.
5696 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
5697 Known, Depth + 1, Q);
5699 const fltSemantics &DstTy =
5700 Op->getType()->getScalarType()->getFltSemantics();
5701 const fltSemantics &SrcTy =
5702 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5704 // All subnormal inputs should be in the normal range in the result type.
5705 if (APFloat::isRepresentableAsNormalIn(SrcTy, DstTy)) {
5706 if (Known.KnownFPClasses & fcPosSubnormal)
5707 Known.KnownFPClasses |= fcPosNormal;
5708 if (Known.KnownFPClasses & fcNegSubnormal)
5709 Known.KnownFPClasses |= fcNegNormal;
5710 Known.knownNot(fcSubnormal);
5713 // Sign bit of a nan isn't guaranteed.
5714 if (!Known.isKnownNeverNaN())
5715 Known.SignBit = std::nullopt;
5716 break;
5718 case Instruction::FPTrunc: {
5719 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5720 Depth, Q);
5721 break;
5723 case Instruction::SIToFP:
5724 case Instruction::UIToFP: {
5725 // Cannot produce nan
5726 Known.knownNot(fcNan);
5728 // Integers cannot be subnormal
5729 Known.knownNot(fcSubnormal);
5731 // sitofp and uitofp turn into +0.0 for zero.
5732 Known.knownNot(fcNegZero);
5733 if (Op->getOpcode() == Instruction::UIToFP)
5734 Known.signBitMustBeZero();
5736 if (InterestedClasses & fcInf) {
5737 // Get width of largest magnitude integer (remove a bit if signed).
5738 // This still works for a signed minimum value because the largest FP
5739 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
5740 int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits();
5741 if (Op->getOpcode() == Instruction::SIToFP)
5742 --IntSize;
5744 // If the exponent of the largest finite FP value can hold the largest
5745 // integer, the result of the cast must be finite.
5746 Type *FPTy = Op->getType()->getScalarType();
5747 if (ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize)
5748 Known.knownNot(fcInf);
5751 break;
5753 case Instruction::ExtractElement: {
5754 // Look through extract element. If the index is non-constant or
5755 // out-of-range demand all elements, otherwise just the extracted element.
5756 const Value *Vec = Op->getOperand(0);
5757 const Value *Idx = Op->getOperand(1);
5758 auto *CIdx = dyn_cast<ConstantInt>(Idx);
5760 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
5761 unsigned NumElts = VecTy->getNumElements();
5762 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
5763 if (CIdx && CIdx->getValue().ult(NumElts))
5764 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
5765 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
5766 Depth + 1, Q);
5769 break;
5771 case Instruction::InsertElement: {
5772 if (isa<ScalableVectorType>(Op->getType()))
5773 return;
5775 const Value *Vec = Op->getOperand(0);
5776 const Value *Elt = Op->getOperand(1);
5777 auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(2));
5778 unsigned NumElts = DemandedElts.getBitWidth();
5779 APInt DemandedVecElts = DemandedElts;
5780 bool NeedsElt = true;
5781 // If we know the index we are inserting to, clear it from Vec check.
5782 if (CIdx && CIdx->getValue().ult(NumElts)) {
5783 DemandedVecElts.clearBit(CIdx->getZExtValue());
5784 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5787 // Do we demand the inserted element?
5788 if (NeedsElt) {
5789 computeKnownFPClass(Elt, Known, InterestedClasses, Depth + 1, Q);
5790 // If we don't know any bits, early out.
5791 if (Known.isUnknown())
5792 break;
5793 } else {
5794 Known.KnownFPClasses = fcNone;
5797 // Do we need anymore elements from Vec?
5798 if (!DemandedVecElts.isZero()) {
5799 KnownFPClass Known2;
5800 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
5801 Depth + 1, Q);
5802 Known |= Known2;
5805 break;
5807 case Instruction::ShuffleVector: {
5808 // For undef elements, we don't know anything about the common state of
5809 // the shuffle result.
5810 APInt DemandedLHS, DemandedRHS;
5811 auto *Shuf = dyn_cast<ShuffleVectorInst>(Op);
5812 if (!Shuf || !getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
5813 return;
5815 if (!!DemandedLHS) {
5816 const Value *LHS = Shuf->getOperand(0);
5817 computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known,
5818 Depth + 1, Q);
5820 // If we don't know any bits, early out.
5821 if (Known.isUnknown())
5822 break;
5823 } else {
5824 Known.KnownFPClasses = fcNone;
5827 if (!!DemandedRHS) {
5828 KnownFPClass Known2;
5829 const Value *RHS = Shuf->getOperand(1);
5830 computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2,
5831 Depth + 1, Q);
5832 Known |= Known2;
5835 break;
5837 case Instruction::ExtractValue: {
5838 const ExtractValueInst *Extract = cast<ExtractValueInst>(Op);
5839 ArrayRef<unsigned> Indices = Extract->getIndices();
5840 const Value *Src = Extract->getAggregateOperand();
5841 if (isa<StructType>(Src->getType()) && Indices.size() == 1 &&
5842 Indices[0] == 0) {
5843 if (const auto *II = dyn_cast<IntrinsicInst>(Src)) {
5844 switch (II->getIntrinsicID()) {
5845 case Intrinsic::frexp: {
5846 Known.knownNot(fcSubnormal);
5848 KnownFPClass KnownSrc;
5849 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5850 InterestedClasses, KnownSrc, Depth + 1, Q);
5852 const Function *F = cast<Instruction>(Op)->getFunction();
5854 if (KnownSrc.isKnownNever(fcNegative))
5855 Known.knownNot(fcNegative);
5856 else {
5857 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, Op->getType()))
5858 Known.knownNot(fcNegZero);
5859 if (KnownSrc.isKnownNever(fcNegInf))
5860 Known.knownNot(fcNegInf);
5863 if (KnownSrc.isKnownNever(fcPositive))
5864 Known.knownNot(fcPositive);
5865 else {
5866 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, Op->getType()))
5867 Known.knownNot(fcPosZero);
5868 if (KnownSrc.isKnownNever(fcPosInf))
5869 Known.knownNot(fcPosInf);
5872 Known.propagateNaN(KnownSrc);
5873 return;
5875 default:
5876 break;
5881 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Depth + 1,
5883 break;
5885 case Instruction::PHI: {
5886 const PHINode *P = cast<PHINode>(Op);
5887 // Unreachable blocks may have zero-operand PHI nodes.
5888 if (P->getNumIncomingValues() == 0)
5889 break;
5891 // Otherwise take the unions of the known bit sets of the operands,
5892 // taking conservative care to avoid excessive recursion.
5893 const unsigned PhiRecursionLimit = MaxAnalysisRecursionDepth - 2;
5895 if (Depth < PhiRecursionLimit) {
5896 // Skip if every incoming value references to ourself.
5897 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
5898 break;
5900 bool First = true;
5902 for (const Use &U : P->operands()) {
5903 Value *IncValue = U.get();
5904 // Skip direct self references.
5905 if (IncValue == P)
5906 continue;
5908 KnownFPClass KnownSrc;
5909 // Recurse, but cap the recursion to two levels, because we don't want
5910 // to waste time spinning around in loops. We need at least depth 2 to
5911 // detect known sign bits.
5912 computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc,
5913 PhiRecursionLimit,
5914 Q.getWithoutCondContext().getWithInstruction(
5915 P->getIncomingBlock(U)->getTerminator()));
5917 if (First) {
5918 Known = KnownSrc;
5919 First = false;
5920 } else {
5921 Known |= KnownSrc;
5924 if (Known.KnownFPClasses == fcAllFlags)
5925 break;
5929 break;
5931 default:
5932 break;
5936 KnownFPClass llvm::computeKnownFPClass(const Value *V,
5937 const APInt &DemandedElts,
5938 FPClassTest InterestedClasses,
5939 unsigned Depth,
5940 const SimplifyQuery &SQ) {
5941 KnownFPClass KnownClasses;
5942 ::computeKnownFPClass(V, DemandedElts, InterestedClasses, KnownClasses, Depth,
5943 SQ);
5944 return KnownClasses;
5947 KnownFPClass llvm::computeKnownFPClass(const Value *V,
5948 FPClassTest InterestedClasses,
5949 unsigned Depth,
5950 const SimplifyQuery &SQ) {
5951 KnownFPClass Known;
5952 ::computeKnownFPClass(V, Known, InterestedClasses, Depth, SQ);
5953 return Known;
5956 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
5958 // All byte-wide stores are splatable, even of arbitrary variables.
5959 if (V->getType()->isIntegerTy(8))
5960 return V;
5962 LLVMContext &Ctx = V->getContext();
5964 // Undef don't care.
5965 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
5966 if (isa<UndefValue>(V))
5967 return UndefInt8;
5969 // Return Undef for zero-sized type.
5970 if (DL.getTypeStoreSize(V->getType()).isZero())
5971 return UndefInt8;
5973 Constant *C = dyn_cast<Constant>(V);
5974 if (!C) {
5975 // Conceptually, we could handle things like:
5976 // %a = zext i8 %X to i16
5977 // %b = shl i16 %a, 8
5978 // %c = or i16 %a, %b
5979 // but until there is an example that actually needs this, it doesn't seem
5980 // worth worrying about.
5981 return nullptr;
5984 // Handle 'null' ConstantArrayZero etc.
5985 if (C->isNullValue())
5986 return Constant::getNullValue(Type::getInt8Ty(Ctx));
5988 // Constant floating-point values can be handled as integer values if the
5989 // corresponding integer value is "byteable". An important case is 0.0.
5990 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
5991 Type *Ty = nullptr;
5992 if (CFP->getType()->isHalfTy())
5993 Ty = Type::getInt16Ty(Ctx);
5994 else if (CFP->getType()->isFloatTy())
5995 Ty = Type::getInt32Ty(Ctx);
5996 else if (CFP->getType()->isDoubleTy())
5997 Ty = Type::getInt64Ty(Ctx);
5998 // Don't handle long double formats, which have strange constraints.
5999 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
6000 : nullptr;
6003 // We can handle constant integers that are multiple of 8 bits.
6004 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
6005 if (CI->getBitWidth() % 8 == 0) {
6006 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
6007 if (!CI->getValue().isSplat(8))
6008 return nullptr;
6009 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6013 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
6014 if (CE->getOpcode() == Instruction::IntToPtr) {
6015 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
6016 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6017 if (Constant *Op = ConstantFoldIntegerCast(
6018 CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false, DL))
6019 return isBytewiseValue(Op, DL);
6024 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
6025 if (LHS == RHS)
6026 return LHS;
6027 if (!LHS || !RHS)
6028 return nullptr;
6029 if (LHS == UndefInt8)
6030 return RHS;
6031 if (RHS == UndefInt8)
6032 return LHS;
6033 return nullptr;
6036 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
6037 Value *Val = UndefInt8;
6038 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
6039 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
6040 return nullptr;
6041 return Val;
6044 if (isa<ConstantAggregate>(C)) {
6045 Value *Val = UndefInt8;
6046 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
6047 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
6048 return nullptr;
6049 return Val;
6052 // Don't try to handle the handful of other constants.
6053 return nullptr;
6056 // This is the recursive version of BuildSubAggregate. It takes a few different
6057 // arguments. Idxs is the index within the nested struct From that we are
6058 // looking at now (which is of type IndexedType). IdxSkip is the number of
6059 // indices from Idxs that should be left out when inserting into the resulting
6060 // struct. To is the result struct built so far, new insertvalue instructions
6061 // build on that.
6062 static Value *BuildSubAggregate(Value *From, Value *To, Type *IndexedType,
6063 SmallVectorImpl<unsigned> &Idxs,
6064 unsigned IdxSkip,
6065 BasicBlock::iterator InsertBefore) {
6066 StructType *STy = dyn_cast<StructType>(IndexedType);
6067 if (STy) {
6068 // Save the original To argument so we can modify it
6069 Value *OrigTo = To;
6070 // General case, the type indexed by Idxs is a struct
6071 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
6072 // Process each struct element recursively
6073 Idxs.push_back(i);
6074 Value *PrevTo = To;
6075 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
6076 InsertBefore);
6077 Idxs.pop_back();
6078 if (!To) {
6079 // Couldn't find any inserted value for this index? Cleanup
6080 while (PrevTo != OrigTo) {
6081 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
6082 PrevTo = Del->getAggregateOperand();
6083 Del->eraseFromParent();
6085 // Stop processing elements
6086 break;
6089 // If we successfully found a value for each of our subaggregates
6090 if (To)
6091 return To;
6093 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
6094 // the struct's elements had a value that was inserted directly. In the latter
6095 // case, perhaps we can't determine each of the subelements individually, but
6096 // we might be able to find the complete struct somewhere.
6098 // Find the value that is at that particular spot
6099 Value *V = FindInsertedValue(From, Idxs);
6101 if (!V)
6102 return nullptr;
6104 // Insert the value in the new (sub) aggregate
6105 return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
6106 InsertBefore);
6109 // This helper takes a nested struct and extracts a part of it (which is again a
6110 // struct) into a new value. For example, given the struct:
6111 // { a, { b, { c, d }, e } }
6112 // and the indices "1, 1" this returns
6113 // { c, d }.
6115 // It does this by inserting an insertvalue for each element in the resulting
6116 // struct, as opposed to just inserting a single struct. This will only work if
6117 // each of the elements of the substruct are known (ie, inserted into From by an
6118 // insertvalue instruction somewhere).
6120 // All inserted insertvalue instructions are inserted before InsertBefore
6121 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
6122 BasicBlock::iterator InsertBefore) {
6123 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
6124 idx_range);
6125 Value *To = PoisonValue::get(IndexedType);
6126 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
6127 unsigned IdxSkip = Idxs.size();
6129 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
6132 /// Given an aggregate and a sequence of indices, see if the scalar value
6133 /// indexed is already around as a register, for example if it was inserted
6134 /// directly into the aggregate.
6136 /// If InsertBefore is not null, this function will duplicate (modified)
6137 /// insertvalues when a part of a nested struct is extracted.
6138 Value *
6139 llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
6140 std::optional<BasicBlock::iterator> InsertBefore) {
6141 // Nothing to index? Just return V then (this is useful at the end of our
6142 // recursion).
6143 if (idx_range.empty())
6144 return V;
6145 // We have indices, so V should have an indexable type.
6146 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6147 "Not looking at a struct or array?");
6148 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
6149 "Invalid indices for type?");
6151 if (Constant *C = dyn_cast<Constant>(V)) {
6152 C = C->getAggregateElement(idx_range[0]);
6153 if (!C) return nullptr;
6154 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
6157 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
6158 // Loop the indices for the insertvalue instruction in parallel with the
6159 // requested indices
6160 const unsigned *req_idx = idx_range.begin();
6161 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
6162 i != e; ++i, ++req_idx) {
6163 if (req_idx == idx_range.end()) {
6164 // We can't handle this without inserting insertvalues
6165 if (!InsertBefore)
6166 return nullptr;
6168 // The requested index identifies a part of a nested aggregate. Handle
6169 // this specially. For example,
6170 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
6171 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
6172 // %C = extractvalue {i32, { i32, i32 } } %B, 1
6173 // This can be changed into
6174 // %A = insertvalue {i32, i32 } undef, i32 10, 0
6175 // %C = insertvalue {i32, i32 } %A, i32 11, 1
6176 // which allows the unused 0,0 element from the nested struct to be
6177 // removed.
6178 return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
6179 *InsertBefore);
6182 // This insert value inserts something else than what we are looking for.
6183 // See if the (aggregate) value inserted into has the value we are
6184 // looking for, then.
6185 if (*req_idx != *i)
6186 return FindInsertedValue(I->getAggregateOperand(), idx_range,
6187 InsertBefore);
6189 // If we end up here, the indices of the insertvalue match with those
6190 // requested (though possibly only partially). Now we recursively look at
6191 // the inserted value, passing any remaining indices.
6192 return FindInsertedValue(I->getInsertedValueOperand(),
6193 ArrayRef(req_idx, idx_range.end()), InsertBefore);
6196 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
6197 // If we're extracting a value from an aggregate that was extracted from
6198 // something else, we can extract from that something else directly instead.
6199 // However, we will need to chain I's indices with the requested indices.
6201 // Calculate the number of indices required
6202 unsigned size = I->getNumIndices() + idx_range.size();
6203 // Allocate some space to put the new indices in
6204 SmallVector<unsigned, 5> Idxs;
6205 Idxs.reserve(size);
6206 // Add indices from the extract value instruction
6207 Idxs.append(I->idx_begin(), I->idx_end());
6209 // Add requested indices
6210 Idxs.append(idx_range.begin(), idx_range.end());
6212 assert(Idxs.size() == size
6213 && "Number of indices added not correct?");
6215 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
6217 // Otherwise, we don't know (such as, extracting from a function return value
6218 // or load instruction)
6219 return nullptr;
6222 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
6223 unsigned CharSize) {
6224 // Make sure the GEP has exactly three arguments.
6225 if (GEP->getNumOperands() != 3)
6226 return false;
6228 // Make sure the index-ee is a pointer to array of \p CharSize integers.
6229 // CharSize.
6230 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
6231 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
6232 return false;
6234 // Check to make sure that the first operand of the GEP is an integer and
6235 // has value 0 so that we are sure we're indexing into the initializer.
6236 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
6237 if (!FirstIdx || !FirstIdx->isZero())
6238 return false;
6240 return true;
6243 // If V refers to an initialized global constant, set Slice either to
6244 // its initializer if the size of its elements equals ElementSize, or,
6245 // for ElementSize == 8, to its representation as an array of unsiged
6246 // char. Return true on success.
6247 // Offset is in the unit "nr of ElementSize sized elements".
6248 bool llvm::getConstantDataArrayInfo(const Value *V,
6249 ConstantDataArraySlice &Slice,
6250 unsigned ElementSize, uint64_t Offset) {
6251 assert(V && "V should not be null.");
6252 assert((ElementSize % 8) == 0 &&
6253 "ElementSize expected to be a multiple of the size of a byte.");
6254 unsigned ElementSizeInBytes = ElementSize / 8;
6256 // Drill down into the pointer expression V, ignoring any intervening
6257 // casts, and determine the identity of the object it references along
6258 // with the cumulative byte offset into it.
6259 const GlobalVariable *GV =
6260 dyn_cast<GlobalVariable>(getUnderlyingObject(V));
6261 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
6262 // Fail if V is not based on constant global object.
6263 return false;
6265 const DataLayout &DL = GV->getDataLayout();
6266 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
6268 if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
6269 /*AllowNonInbounds*/ true))
6270 // Fail if a constant offset could not be determined.
6271 return false;
6273 uint64_t StartIdx = Off.getLimitedValue();
6274 if (StartIdx == UINT64_MAX)
6275 // Fail if the constant offset is excessive.
6276 return false;
6278 // Off/StartIdx is in the unit of bytes. So we need to convert to number of
6279 // elements. Simply bail out if that isn't possible.
6280 if ((StartIdx % ElementSizeInBytes) != 0)
6281 return false;
6283 Offset += StartIdx / ElementSizeInBytes;
6284 ConstantDataArray *Array = nullptr;
6285 ArrayType *ArrayTy = nullptr;
6287 if (GV->getInitializer()->isNullValue()) {
6288 Type *GVTy = GV->getValueType();
6289 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
6290 uint64_t Length = SizeInBytes / ElementSizeInBytes;
6292 Slice.Array = nullptr;
6293 Slice.Offset = 0;
6294 // Return an empty Slice for undersized constants to let callers
6295 // transform even undefined library calls into simpler, well-defined
6296 // expressions. This is preferable to making the calls although it
6297 // prevents sanitizers from detecting such calls.
6298 Slice.Length = Length < Offset ? 0 : Length - Offset;
6299 return true;
6302 auto *Init = const_cast<Constant *>(GV->getInitializer());
6303 if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
6304 Type *InitElTy = ArrayInit->getElementType();
6305 if (InitElTy->isIntegerTy(ElementSize)) {
6306 // If Init is an initializer for an array of the expected type
6307 // and size, use it as is.
6308 Array = ArrayInit;
6309 ArrayTy = ArrayInit->getType();
6313 if (!Array) {
6314 if (ElementSize != 8)
6315 // TODO: Handle conversions to larger integral types.
6316 return false;
6318 // Otherwise extract the portion of the initializer starting
6319 // at Offset as an array of bytes, and reset Offset.
6320 Init = ReadByteArrayFromGlobal(GV, Offset);
6321 if (!Init)
6322 return false;
6324 Offset = 0;
6325 Array = dyn_cast<ConstantDataArray>(Init);
6326 ArrayTy = dyn_cast<ArrayType>(Init->getType());
6329 uint64_t NumElts = ArrayTy->getArrayNumElements();
6330 if (Offset > NumElts)
6331 return false;
6333 Slice.Array = Array;
6334 Slice.Offset = Offset;
6335 Slice.Length = NumElts - Offset;
6336 return true;
6339 /// Extract bytes from the initializer of the constant array V, which need
6340 /// not be a nul-terminated string. On success, store the bytes in Str and
6341 /// return true. When TrimAtNul is set, Str will contain only the bytes up
6342 /// to but not including the first nul. Return false on failure.
6343 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
6344 bool TrimAtNul) {
6345 ConstantDataArraySlice Slice;
6346 if (!getConstantDataArrayInfo(V, Slice, 8))
6347 return false;
6349 if (Slice.Array == nullptr) {
6350 if (TrimAtNul) {
6351 // Return a nul-terminated string even for an empty Slice. This is
6352 // safe because all existing SimplifyLibcalls callers require string
6353 // arguments and the behavior of the functions they fold is undefined
6354 // otherwise. Folding the calls this way is preferable to making
6355 // the undefined library calls, even though it prevents sanitizers
6356 // from reporting such calls.
6357 Str = StringRef();
6358 return true;
6360 if (Slice.Length == 1) {
6361 Str = StringRef("", 1);
6362 return true;
6364 // We cannot instantiate a StringRef as we do not have an appropriate string
6365 // of 0s at hand.
6366 return false;
6369 // Start out with the entire array in the StringRef.
6370 Str = Slice.Array->getAsString();
6371 // Skip over 'offset' bytes.
6372 Str = Str.substr(Slice.Offset);
6374 if (TrimAtNul) {
6375 // Trim off the \0 and anything after it. If the array is not nul
6376 // terminated, we just return the whole end of string. The client may know
6377 // some other way that the string is length-bound.
6378 Str = Str.substr(0, Str.find('\0'));
6380 return true;
6383 // These next two are very similar to the above, but also look through PHI
6384 // nodes.
6385 // TODO: See if we can integrate these two together.
6387 /// If we can compute the length of the string pointed to by
6388 /// the specified pointer, return 'len+1'. If we can't, return 0.
6389 static uint64_t GetStringLengthH(const Value *V,
6390 SmallPtrSetImpl<const PHINode*> &PHIs,
6391 unsigned CharSize) {
6392 // Look through noop bitcast instructions.
6393 V = V->stripPointerCasts();
6395 // If this is a PHI node, there are two cases: either we have already seen it
6396 // or we haven't.
6397 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
6398 if (!PHIs.insert(PN).second)
6399 return ~0ULL; // already in the set.
6401 // If it was new, see if all the input strings are the same length.
6402 uint64_t LenSoFar = ~0ULL;
6403 for (Value *IncValue : PN->incoming_values()) {
6404 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
6405 if (Len == 0) return 0; // Unknown length -> unknown.
6407 if (Len == ~0ULL) continue;
6409 if (Len != LenSoFar && LenSoFar != ~0ULL)
6410 return 0; // Disagree -> unknown.
6411 LenSoFar = Len;
6414 // Success, all agree.
6415 return LenSoFar;
6418 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
6419 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
6420 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
6421 if (Len1 == 0) return 0;
6422 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
6423 if (Len2 == 0) return 0;
6424 if (Len1 == ~0ULL) return Len2;
6425 if (Len2 == ~0ULL) return Len1;
6426 if (Len1 != Len2) return 0;
6427 return Len1;
6430 // Otherwise, see if we can read the string.
6431 ConstantDataArraySlice Slice;
6432 if (!getConstantDataArrayInfo(V, Slice, CharSize))
6433 return 0;
6435 if (Slice.Array == nullptr)
6436 // Zeroinitializer (including an empty one).
6437 return 1;
6439 // Search for the first nul character. Return a conservative result even
6440 // when there is no nul. This is safe since otherwise the string function
6441 // being folded such as strlen is undefined, and can be preferable to
6442 // making the undefined library call.
6443 unsigned NullIndex = 0;
6444 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
6445 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6446 break;
6449 return NullIndex + 1;
6452 /// If we can compute the length of the string pointed to by
6453 /// the specified pointer, return 'len+1'. If we can't, return 0.
6454 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
6455 if (!V->getType()->isPointerTy())
6456 return 0;
6458 SmallPtrSet<const PHINode*, 32> PHIs;
6459 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
6460 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
6461 // an empty string as a length.
6462 return Len == ~0ULL ? 1 : Len;
6465 const Value *
6466 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
6467 bool MustPreserveNullness) {
6468 assert(Call &&
6469 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6470 if (const Value *RV = Call->getReturnedArgOperand())
6471 return RV;
6472 // This can be used only as a aliasing property.
6473 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
6474 Call, MustPreserveNullness))
6475 return Call->getArgOperand(0);
6476 return nullptr;
6479 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
6480 const CallBase *Call, bool MustPreserveNullness) {
6481 switch (Call->getIntrinsicID()) {
6482 case Intrinsic::launder_invariant_group:
6483 case Intrinsic::strip_invariant_group:
6484 case Intrinsic::aarch64_irg:
6485 case Intrinsic::aarch64_tagp:
6486 // The amdgcn_make_buffer_rsrc function does not alter the address of the
6487 // input pointer (and thus preserve null-ness for the purposes of escape
6488 // analysis, which is where the MustPreserveNullness flag comes in to play).
6489 // However, it will not necessarily map ptr addrspace(N) null to ptr
6490 // addrspace(8) null, aka the "null descriptor", which has "all loads return
6491 // 0, all stores are dropped" semantics. Given the context of this intrinsic
6492 // list, no one should be relying on such a strict interpretation of
6493 // MustPreserveNullness (and, at time of writing, they are not), but we
6494 // document this fact out of an abundance of caution.
6495 case Intrinsic::amdgcn_make_buffer_rsrc:
6496 return true;
6497 case Intrinsic::ptrmask:
6498 return !MustPreserveNullness;
6499 case Intrinsic::threadlocal_address:
6500 // The underlying variable changes with thread ID. The Thread ID may change
6501 // at coroutine suspend points.
6502 return !Call->getParent()->getParent()->isPresplitCoroutine();
6503 default:
6504 return false;
6508 /// \p PN defines a loop-variant pointer to an object. Check if the
6509 /// previous iteration of the loop was referring to the same object as \p PN.
6510 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
6511 const LoopInfo *LI) {
6512 // Find the loop-defined value.
6513 Loop *L = LI->getLoopFor(PN->getParent());
6514 if (PN->getNumIncomingValues() != 2)
6515 return true;
6517 // Find the value from previous iteration.
6518 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
6519 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6520 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
6521 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6522 return true;
6524 // If a new pointer is loaded in the loop, the pointer references a different
6525 // object in every iteration. E.g.:
6526 // for (i)
6527 // int *p = a[i];
6528 // ...
6529 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
6530 if (!L->isLoopInvariant(Load->getPointerOperand()))
6531 return false;
6532 return true;
6535 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
6536 if (!V->getType()->isPointerTy())
6537 return V;
6538 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
6539 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
6540 V = GEP->getPointerOperand();
6541 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
6542 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
6543 Value *NewV = cast<Operator>(V)->getOperand(0);
6544 if (!NewV->getType()->isPointerTy())
6545 return V;
6546 V = NewV;
6547 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
6548 if (GA->isInterposable())
6549 return V;
6550 V = GA->getAliasee();
6551 } else {
6552 if (auto *PHI = dyn_cast<PHINode>(V)) {
6553 // Look through single-arg phi nodes created by LCSSA.
6554 if (PHI->getNumIncomingValues() == 1) {
6555 V = PHI->getIncomingValue(0);
6556 continue;
6558 } else if (auto *Call = dyn_cast<CallBase>(V)) {
6559 // CaptureTracking can know about special capturing properties of some
6560 // intrinsics like launder.invariant.group, that can't be expressed with
6561 // the attributes, but have properties like returning aliasing pointer.
6562 // Because some analysis may assume that nocaptured pointer is not
6563 // returned from some special intrinsic (because function would have to
6564 // be marked with returns attribute), it is crucial to use this function
6565 // because it should be in sync with CaptureTracking. Not using it may
6566 // cause weird miscompilations where 2 aliasing pointers are assumed to
6567 // noalias.
6568 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
6569 V = RP;
6570 continue;
6574 return V;
6576 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
6578 return V;
6581 void llvm::getUnderlyingObjects(const Value *V,
6582 SmallVectorImpl<const Value *> &Objects,
6583 LoopInfo *LI, unsigned MaxLookup) {
6584 SmallPtrSet<const Value *, 4> Visited;
6585 SmallVector<const Value *, 4> Worklist;
6586 Worklist.push_back(V);
6587 do {
6588 const Value *P = Worklist.pop_back_val();
6589 P = getUnderlyingObject(P, MaxLookup);
6591 if (!Visited.insert(P).second)
6592 continue;
6594 if (auto *SI = dyn_cast<SelectInst>(P)) {
6595 Worklist.push_back(SI->getTrueValue());
6596 Worklist.push_back(SI->getFalseValue());
6597 continue;
6600 if (auto *PN = dyn_cast<PHINode>(P)) {
6601 // If this PHI changes the underlying object in every iteration of the
6602 // loop, don't look through it. Consider:
6603 // int **A;
6604 // for (i) {
6605 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
6606 // Curr = A[i];
6607 // *Prev, *Curr;
6609 // Prev is tracking Curr one iteration behind so they refer to different
6610 // underlying objects.
6611 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
6612 isSameUnderlyingObjectInLoop(PN, LI))
6613 append_range(Worklist, PN->incoming_values());
6614 else
6615 Objects.push_back(P);
6616 continue;
6619 Objects.push_back(P);
6620 } while (!Worklist.empty());
6623 const Value *llvm::getUnderlyingObjectAggressive(const Value *V) {
6624 const unsigned MaxVisited = 8;
6626 SmallPtrSet<const Value *, 8> Visited;
6627 SmallVector<const Value *, 8> Worklist;
6628 Worklist.push_back(V);
6629 const Value *Object = nullptr;
6630 // Used as fallback if we can't find a common underlying object through
6631 // recursion.
6632 bool First = true;
6633 const Value *FirstObject = getUnderlyingObject(V);
6634 do {
6635 const Value *P = Worklist.pop_back_val();
6636 P = First ? FirstObject : getUnderlyingObject(P);
6637 First = false;
6639 if (!Visited.insert(P).second)
6640 continue;
6642 if (Visited.size() == MaxVisited)
6643 return FirstObject;
6645 if (auto *SI = dyn_cast<SelectInst>(P)) {
6646 Worklist.push_back(SI->getTrueValue());
6647 Worklist.push_back(SI->getFalseValue());
6648 continue;
6651 if (auto *PN = dyn_cast<PHINode>(P)) {
6652 append_range(Worklist, PN->incoming_values());
6653 continue;
6656 if (!Object)
6657 Object = P;
6658 else if (Object != P)
6659 return FirstObject;
6660 } while (!Worklist.empty());
6662 return Object;
6665 /// This is the function that does the work of looking through basic
6666 /// ptrtoint+arithmetic+inttoptr sequences.
6667 static const Value *getUnderlyingObjectFromInt(const Value *V) {
6668 do {
6669 if (const Operator *U = dyn_cast<Operator>(V)) {
6670 // If we find a ptrtoint, we can transfer control back to the
6671 // regular getUnderlyingObjectFromInt.
6672 if (U->getOpcode() == Instruction::PtrToInt)
6673 return U->getOperand(0);
6674 // If we find an add of a constant, a multiplied value, or a phi, it's
6675 // likely that the other operand will lead us to the base
6676 // object. We don't have to worry about the case where the
6677 // object address is somehow being computed by the multiply,
6678 // because our callers only care when the result is an
6679 // identifiable object.
6680 if (U->getOpcode() != Instruction::Add ||
6681 (!isa<ConstantInt>(U->getOperand(1)) &&
6682 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
6683 !isa<PHINode>(U->getOperand(1))))
6684 return V;
6685 V = U->getOperand(0);
6686 } else {
6687 return V;
6689 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
6690 } while (true);
6693 /// This is a wrapper around getUnderlyingObjects and adds support for basic
6694 /// ptrtoint+arithmetic+inttoptr sequences.
6695 /// It returns false if unidentified object is found in getUnderlyingObjects.
6696 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
6697 SmallVectorImpl<Value *> &Objects) {
6698 SmallPtrSet<const Value *, 16> Visited;
6699 SmallVector<const Value *, 4> Working(1, V);
6700 do {
6701 V = Working.pop_back_val();
6703 SmallVector<const Value *, 4> Objs;
6704 getUnderlyingObjects(V, Objs);
6706 for (const Value *V : Objs) {
6707 if (!Visited.insert(V).second)
6708 continue;
6709 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
6710 const Value *O =
6711 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
6712 if (O->getType()->isPointerTy()) {
6713 Working.push_back(O);
6714 continue;
6717 // If getUnderlyingObjects fails to find an identifiable object,
6718 // getUnderlyingObjectsForCodeGen also fails for safety.
6719 if (!isIdentifiedObject(V)) {
6720 Objects.clear();
6721 return false;
6723 Objects.push_back(const_cast<Value *>(V));
6725 } while (!Working.empty());
6726 return true;
6729 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
6730 AllocaInst *Result = nullptr;
6731 SmallPtrSet<Value *, 4> Visited;
6732 SmallVector<Value *, 4> Worklist;
6734 auto AddWork = [&](Value *V) {
6735 if (Visited.insert(V).second)
6736 Worklist.push_back(V);
6739 AddWork(V);
6740 do {
6741 V = Worklist.pop_back_val();
6742 assert(Visited.count(V));
6744 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
6745 if (Result && Result != AI)
6746 return nullptr;
6747 Result = AI;
6748 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
6749 AddWork(CI->getOperand(0));
6750 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
6751 for (Value *IncValue : PN->incoming_values())
6752 AddWork(IncValue);
6753 } else if (auto *SI = dyn_cast<SelectInst>(V)) {
6754 AddWork(SI->getTrueValue());
6755 AddWork(SI->getFalseValue());
6756 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
6757 if (OffsetZero && !GEP->hasAllZeroIndices())
6758 return nullptr;
6759 AddWork(GEP->getPointerOperand());
6760 } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
6761 Value *Returned = CB->getReturnedArgOperand();
6762 if (Returned)
6763 AddWork(Returned);
6764 else
6765 return nullptr;
6766 } else {
6767 return nullptr;
6769 } while (!Worklist.empty());
6771 return Result;
6774 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6775 const Value *V, bool AllowLifetime, bool AllowDroppable) {
6776 for (const User *U : V->users()) {
6777 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
6778 if (!II)
6779 return false;
6781 if (AllowLifetime && II->isLifetimeStartOrEnd())
6782 continue;
6784 if (AllowDroppable && II->isDroppable())
6785 continue;
6787 return false;
6789 return true;
6792 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
6793 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6794 V, /* AllowLifetime */ true, /* AllowDroppable */ false);
6796 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
6797 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6798 V, /* AllowLifetime */ true, /* AllowDroppable */ true);
6801 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
6802 if (!LI.isUnordered())
6803 return true;
6804 const Function &F = *LI.getFunction();
6805 // Speculative load may create a race that did not exist in the source.
6806 return F.hasFnAttribute(Attribute::SanitizeThread) ||
6807 // Speculative load may load data from dirty regions.
6808 F.hasFnAttribute(Attribute::SanitizeAddress) ||
6809 F.hasFnAttribute(Attribute::SanitizeHWAddress);
6812 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
6813 const Instruction *CtxI,
6814 AssumptionCache *AC,
6815 const DominatorTree *DT,
6816 const TargetLibraryInfo *TLI,
6817 bool UseVariableInfo) {
6818 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
6819 AC, DT, TLI, UseVariableInfo);
6822 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
6823 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
6824 AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI,
6825 bool UseVariableInfo) {
6826 #ifndef NDEBUG
6827 if (Inst->getOpcode() != Opcode) {
6828 // Check that the operands are actually compatible with the Opcode override.
6829 auto hasEqualReturnAndLeadingOperandTypes =
6830 [](const Instruction *Inst, unsigned NumLeadingOperands) {
6831 if (Inst->getNumOperands() < NumLeadingOperands)
6832 return false;
6833 const Type *ExpectedType = Inst->getType();
6834 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6835 if (Inst->getOperand(ItOp)->getType() != ExpectedType)
6836 return false;
6837 return true;
6839 assert(!Instruction::isBinaryOp(Opcode) ||
6840 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6841 assert(!Instruction::isUnaryOp(Opcode) ||
6842 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6844 #endif
6846 switch (Opcode) {
6847 default:
6848 return true;
6849 case Instruction::UDiv:
6850 case Instruction::URem: {
6851 // x / y is undefined if y == 0.
6852 const APInt *V;
6853 if (match(Inst->getOperand(1), m_APInt(V)))
6854 return *V != 0;
6855 return false;
6857 case Instruction::SDiv:
6858 case Instruction::SRem: {
6859 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
6860 const APInt *Numerator, *Denominator;
6861 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
6862 return false;
6863 // We cannot hoist this division if the denominator is 0.
6864 if (*Denominator == 0)
6865 return false;
6866 // It's safe to hoist if the denominator is not 0 or -1.
6867 if (!Denominator->isAllOnes())
6868 return true;
6869 // At this point we know that the denominator is -1. It is safe to hoist as
6870 // long we know that the numerator is not INT_MIN.
6871 if (match(Inst->getOperand(0), m_APInt(Numerator)))
6872 return !Numerator->isMinSignedValue();
6873 // The numerator *might* be MinSignedValue.
6874 return false;
6876 case Instruction::Load: {
6877 if (!UseVariableInfo)
6878 return false;
6880 const LoadInst *LI = dyn_cast<LoadInst>(Inst);
6881 if (!LI)
6882 return false;
6883 if (mustSuppressSpeculation(*LI))
6884 return false;
6885 const DataLayout &DL = LI->getDataLayout();
6886 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
6887 LI->getType(), LI->getAlign(), DL,
6888 CtxI, AC, DT, TLI);
6890 case Instruction::Call: {
6891 auto *CI = dyn_cast<const CallInst>(Inst);
6892 if (!CI)
6893 return false;
6894 const Function *Callee = CI->getCalledFunction();
6896 // The called function could have undefined behavior or side-effects, even
6897 // if marked readnone nounwind.
6898 return Callee && Callee->isSpeculatable();
6900 case Instruction::VAArg:
6901 case Instruction::Alloca:
6902 case Instruction::Invoke:
6903 case Instruction::CallBr:
6904 case Instruction::PHI:
6905 case Instruction::Store:
6906 case Instruction::Ret:
6907 case Instruction::Br:
6908 case Instruction::IndirectBr:
6909 case Instruction::Switch:
6910 case Instruction::Unreachable:
6911 case Instruction::Fence:
6912 case Instruction::AtomicRMW:
6913 case Instruction::AtomicCmpXchg:
6914 case Instruction::LandingPad:
6915 case Instruction::Resume:
6916 case Instruction::CatchSwitch:
6917 case Instruction::CatchPad:
6918 case Instruction::CatchRet:
6919 case Instruction::CleanupPad:
6920 case Instruction::CleanupRet:
6921 return false; // Misc instructions which have effects
6925 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
6926 if (I.mayReadOrWriteMemory())
6927 // Memory dependency possible
6928 return true;
6929 if (!isSafeToSpeculativelyExecute(&I))
6930 // Can't move above a maythrow call or infinite loop. Or if an
6931 // inalloca alloca, above a stacksave call.
6932 return true;
6933 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6934 // 1) Can't reorder two inf-loop calls, even if readonly
6935 // 2) Also can't reorder an inf-loop call below a instruction which isn't
6936 // safe to speculative execute. (Inverse of above)
6937 return true;
6938 return false;
6941 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
6942 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
6943 switch (OR) {
6944 case ConstantRange::OverflowResult::MayOverflow:
6945 return OverflowResult::MayOverflow;
6946 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
6947 return OverflowResult::AlwaysOverflowsLow;
6948 case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
6949 return OverflowResult::AlwaysOverflowsHigh;
6950 case ConstantRange::OverflowResult::NeverOverflows:
6951 return OverflowResult::NeverOverflows;
6953 llvm_unreachable("Unknown OverflowResult");
6956 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
6957 ConstantRange
6958 llvm::computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
6959 bool ForSigned,
6960 const SimplifyQuery &SQ) {
6961 ConstantRange CR1 =
6962 ConstantRange::fromKnownBits(V.getKnownBits(SQ), ForSigned);
6963 ConstantRange CR2 = computeConstantRange(V, ForSigned, SQ.IIQ.UseInstrInfo);
6964 ConstantRange::PreferredRangeType RangeType =
6965 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
6966 return CR1.intersectWith(CR2, RangeType);
6969 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
6970 const Value *RHS,
6971 const SimplifyQuery &SQ,
6972 bool IsNSW) {
6973 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
6974 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
6976 // mul nsw of two non-negative numbers is also nuw.
6977 if (IsNSW && LHSKnown.isNonNegative() && RHSKnown.isNonNegative())
6978 return OverflowResult::NeverOverflows;
6980 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
6981 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
6982 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
6985 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS,
6986 const Value *RHS,
6987 const SimplifyQuery &SQ) {
6988 // Multiplying n * m significant bits yields a result of n + m significant
6989 // bits. If the total number of significant bits does not exceed the
6990 // result bit width (minus 1), there is no overflow.
6991 // This means if we have enough leading sign bits in the operands
6992 // we can guarantee that the result does not overflow.
6993 // Ref: "Hacker's Delight" by Henry Warren
6994 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
6996 // Note that underestimating the number of sign bits gives a more
6997 // conservative answer.
6998 unsigned SignBits =
6999 ::ComputeNumSignBits(LHS, 0, SQ) + ::ComputeNumSignBits(RHS, 0, SQ);
7001 // First handle the easy case: if we have enough sign bits there's
7002 // definitely no overflow.
7003 if (SignBits > BitWidth + 1)
7004 return OverflowResult::NeverOverflows;
7006 // There are two ambiguous cases where there can be no overflow:
7007 // SignBits == BitWidth + 1 and
7008 // SignBits == BitWidth
7009 // The second case is difficult to check, therefore we only handle the
7010 // first case.
7011 if (SignBits == BitWidth + 1) {
7012 // It overflows only when both arguments are negative and the true
7013 // product is exactly the minimum negative number.
7014 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
7015 // For simplicity we just check if at least one side is not negative.
7016 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
7017 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
7018 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
7019 return OverflowResult::NeverOverflows;
7021 return OverflowResult::MayOverflow;
7024 OverflowResult
7025 llvm::computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
7026 const WithCache<const Value *> &RHS,
7027 const SimplifyQuery &SQ) {
7028 ConstantRange LHSRange =
7029 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7030 ConstantRange RHSRange =
7031 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7032 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
7035 static OverflowResult
7036 computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
7037 const WithCache<const Value *> &RHS,
7038 const AddOperator *Add, const SimplifyQuery &SQ) {
7039 if (Add && Add->hasNoSignedWrap()) {
7040 return OverflowResult::NeverOverflows;
7043 // If LHS and RHS each have at least two sign bits, the addition will look
7044 // like
7046 // XX..... +
7047 // YY.....
7049 // If the carry into the most significant position is 0, X and Y can't both
7050 // be 1 and therefore the carry out of the addition is also 0.
7052 // If the carry into the most significant position is 1, X and Y can't both
7053 // be 0 and therefore the carry out of the addition is also 1.
7055 // Since the carry into the most significant position is always equal to
7056 // the carry out of the addition, there is no signed overflow.
7057 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
7058 ::ComputeNumSignBits(RHS, 0, SQ) > 1)
7059 return OverflowResult::NeverOverflows;
7061 ConstantRange LHSRange =
7062 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7063 ConstantRange RHSRange =
7064 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7065 OverflowResult OR =
7066 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
7067 if (OR != OverflowResult::MayOverflow)
7068 return OR;
7070 // The remaining code needs Add to be available. Early returns if not so.
7071 if (!Add)
7072 return OverflowResult::MayOverflow;
7074 // If the sign of Add is the same as at least one of the operands, this add
7075 // CANNOT overflow. If this can be determined from the known bits of the
7076 // operands the above signedAddMayOverflow() check will have already done so.
7077 // The only other way to improve on the known bits is from an assumption, so
7078 // call computeKnownBitsFromContext() directly.
7079 bool LHSOrRHSKnownNonNegative =
7080 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
7081 bool LHSOrRHSKnownNegative =
7082 (LHSRange.isAllNegative() || RHSRange.isAllNegative());
7083 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7084 KnownBits AddKnown(LHSRange.getBitWidth());
7085 computeKnownBitsFromContext(Add, AddKnown, /*Depth=*/0, SQ);
7086 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
7087 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
7088 return OverflowResult::NeverOverflows;
7091 return OverflowResult::MayOverflow;
7094 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
7095 const Value *RHS,
7096 const SimplifyQuery &SQ) {
7097 // X - (X % ?)
7098 // The remainder of a value can't have greater magnitude than itself,
7099 // so the subtraction can't overflow.
7101 // X - (X -nuw ?)
7102 // In the minimal case, this would simplify to "?", so there's no subtract
7103 // at all. But if this analysis is used to peek through casts, for example,
7104 // then determining no-overflow may allow other transforms.
7106 // TODO: There are other patterns like this.
7107 // See simplifyICmpWithBinOpOnLHS() for candidates.
7108 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
7109 match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
7110 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7111 return OverflowResult::NeverOverflows;
7113 // Checking for conditions implied by dominating conditions may be expensive.
7114 // Limit it to usub_with_overflow calls for now.
7115 if (match(SQ.CxtI,
7116 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
7117 if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, SQ.CxtI,
7118 SQ.DL)) {
7119 if (*C)
7120 return OverflowResult::NeverOverflows;
7121 return OverflowResult::AlwaysOverflowsLow;
7123 ConstantRange LHSRange =
7124 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7125 ConstantRange RHSRange =
7126 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7127 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
7130 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
7131 const Value *RHS,
7132 const SimplifyQuery &SQ) {
7133 // X - (X % ?)
7134 // The remainder of a value can't have greater magnitude than itself,
7135 // so the subtraction can't overflow.
7137 // X - (X -nsw ?)
7138 // In the minimal case, this would simplify to "?", so there's no subtract
7139 // at all. But if this analysis is used to peek through casts, for example,
7140 // then determining no-overflow may allow other transforms.
7141 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
7142 match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
7143 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7144 return OverflowResult::NeverOverflows;
7146 // If LHS and RHS each have at least two sign bits, the subtraction
7147 // cannot overflow.
7148 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
7149 ::ComputeNumSignBits(RHS, 0, SQ) > 1)
7150 return OverflowResult::NeverOverflows;
7152 ConstantRange LHSRange =
7153 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7154 ConstantRange RHSRange =
7155 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7156 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
7159 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
7160 const DominatorTree &DT) {
7161 SmallVector<const BranchInst *, 2> GuardingBranches;
7162 SmallVector<const ExtractValueInst *, 2> Results;
7164 for (const User *U : WO->users()) {
7165 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
7166 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
7168 if (EVI->getIndices()[0] == 0)
7169 Results.push_back(EVI);
7170 else {
7171 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
7173 for (const auto *U : EVI->users())
7174 if (const auto *B = dyn_cast<BranchInst>(U)) {
7175 assert(B->isConditional() && "How else is it using an i1?");
7176 GuardingBranches.push_back(B);
7179 } else {
7180 // We are using the aggregate directly in a way we don't want to analyze
7181 // here (storing it to a global, say).
7182 return false;
7186 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
7187 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
7188 if (!NoWrapEdge.isSingleEdge())
7189 return false;
7191 // Check if all users of the add are provably no-wrap.
7192 for (const auto *Result : Results) {
7193 // If the extractvalue itself is not executed on overflow, the we don't
7194 // need to check each use separately, since domination is transitive.
7195 if (DT.dominates(NoWrapEdge, Result->getParent()))
7196 continue;
7198 for (const auto &RU : Result->uses())
7199 if (!DT.dominates(NoWrapEdge, RU))
7200 return false;
7203 return true;
7206 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7209 /// Shifts return poison if shiftwidth is larger than the bitwidth.
7210 static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
7211 auto *C = dyn_cast<Constant>(ShiftAmount);
7212 if (!C)
7213 return false;
7215 // Shifts return poison if shiftwidth is larger than the bitwidth.
7216 SmallVector<const Constant *, 4> ShiftAmounts;
7217 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
7218 unsigned NumElts = FVTy->getNumElements();
7219 for (unsigned i = 0; i < NumElts; ++i)
7220 ShiftAmounts.push_back(C->getAggregateElement(i));
7221 } else if (isa<ScalableVectorType>(C->getType()))
7222 return false; // Can't tell, just return false to be safe
7223 else
7224 ShiftAmounts.push_back(C);
7226 bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
7227 auto *CI = dyn_cast_or_null<ConstantInt>(C);
7228 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
7231 return Safe;
7234 enum class UndefPoisonKind {
7235 PoisonOnly = (1 << 0),
7236 UndefOnly = (1 << 1),
7237 UndefOrPoison = PoisonOnly | UndefOnly,
7240 static bool includesPoison(UndefPoisonKind Kind) {
7241 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
7244 static bool includesUndef(UndefPoisonKind Kind) {
7245 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
7248 static bool canCreateUndefOrPoison(const Operator *Op, UndefPoisonKind Kind,
7249 bool ConsiderFlagsAndMetadata) {
7251 if (ConsiderFlagsAndMetadata && includesPoison(Kind) &&
7252 Op->hasPoisonGeneratingAnnotations())
7253 return true;
7255 unsigned Opcode = Op->getOpcode();
7257 // Check whether opcode is a poison/undef-generating operation
7258 switch (Opcode) {
7259 case Instruction::Shl:
7260 case Instruction::AShr:
7261 case Instruction::LShr:
7262 return includesPoison(Kind) && !shiftAmountKnownInRange(Op->getOperand(1));
7263 case Instruction::FPToSI:
7264 case Instruction::FPToUI:
7265 // fptosi/ui yields poison if the resulting value does not fit in the
7266 // destination type.
7267 return true;
7268 case Instruction::Call:
7269 if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
7270 switch (II->getIntrinsicID()) {
7271 // TODO: Add more intrinsics.
7272 case Intrinsic::ctlz:
7273 case Intrinsic::cttz:
7274 case Intrinsic::abs:
7275 if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
7276 return false;
7277 break;
7278 case Intrinsic::ctpop:
7279 case Intrinsic::bswap:
7280 case Intrinsic::bitreverse:
7281 case Intrinsic::fshl:
7282 case Intrinsic::fshr:
7283 case Intrinsic::smax:
7284 case Intrinsic::smin:
7285 case Intrinsic::umax:
7286 case Intrinsic::umin:
7287 case Intrinsic::ptrmask:
7288 case Intrinsic::fptoui_sat:
7289 case Intrinsic::fptosi_sat:
7290 case Intrinsic::sadd_with_overflow:
7291 case Intrinsic::ssub_with_overflow:
7292 case Intrinsic::smul_with_overflow:
7293 case Intrinsic::uadd_with_overflow:
7294 case Intrinsic::usub_with_overflow:
7295 case Intrinsic::umul_with_overflow:
7296 case Intrinsic::sadd_sat:
7297 case Intrinsic::uadd_sat:
7298 case Intrinsic::ssub_sat:
7299 case Intrinsic::usub_sat:
7300 return false;
7301 case Intrinsic::sshl_sat:
7302 case Intrinsic::ushl_sat:
7303 return includesPoison(Kind) &&
7304 !shiftAmountKnownInRange(II->getArgOperand(1));
7305 case Intrinsic::fma:
7306 case Intrinsic::fmuladd:
7307 case Intrinsic::sqrt:
7308 case Intrinsic::powi:
7309 case Intrinsic::sin:
7310 case Intrinsic::cos:
7311 case Intrinsic::pow:
7312 case Intrinsic::log:
7313 case Intrinsic::log10:
7314 case Intrinsic::log2:
7315 case Intrinsic::exp:
7316 case Intrinsic::exp2:
7317 case Intrinsic::exp10:
7318 case Intrinsic::fabs:
7319 case Intrinsic::copysign:
7320 case Intrinsic::floor:
7321 case Intrinsic::ceil:
7322 case Intrinsic::trunc:
7323 case Intrinsic::rint:
7324 case Intrinsic::nearbyint:
7325 case Intrinsic::round:
7326 case Intrinsic::roundeven:
7327 case Intrinsic::fptrunc_round:
7328 case Intrinsic::canonicalize:
7329 case Intrinsic::arithmetic_fence:
7330 case Intrinsic::minnum:
7331 case Intrinsic::maxnum:
7332 case Intrinsic::minimum:
7333 case Intrinsic::maximum:
7334 case Intrinsic::is_fpclass:
7335 case Intrinsic::ldexp:
7336 case Intrinsic::frexp:
7337 return false;
7338 case Intrinsic::lround:
7339 case Intrinsic::llround:
7340 case Intrinsic::lrint:
7341 case Intrinsic::llrint:
7342 // If the value doesn't fit an unspecified value is returned (but this
7343 // is not poison).
7344 return false;
7347 [[fallthrough]];
7348 case Instruction::CallBr:
7349 case Instruction::Invoke: {
7350 const auto *CB = cast<CallBase>(Op);
7351 return !CB->hasRetAttr(Attribute::NoUndef);
7353 case Instruction::InsertElement:
7354 case Instruction::ExtractElement: {
7355 // If index exceeds the length of the vector, it returns poison
7356 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
7357 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7358 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
7359 if (includesPoison(Kind))
7360 return !Idx ||
7361 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7362 return false;
7364 case Instruction::ShuffleVector: {
7365 ArrayRef<int> Mask = isa<ConstantExpr>(Op)
7366 ? cast<ConstantExpr>(Op)->getShuffleMask()
7367 : cast<ShuffleVectorInst>(Op)->getShuffleMask();
7368 return includesPoison(Kind) && is_contained(Mask, PoisonMaskElem);
7370 case Instruction::FNeg:
7371 case Instruction::PHI:
7372 case Instruction::Select:
7373 case Instruction::URem:
7374 case Instruction::SRem:
7375 case Instruction::ExtractValue:
7376 case Instruction::InsertValue:
7377 case Instruction::Freeze:
7378 case Instruction::ICmp:
7379 case Instruction::FCmp:
7380 case Instruction::FAdd:
7381 case Instruction::FSub:
7382 case Instruction::FMul:
7383 case Instruction::FDiv:
7384 case Instruction::FRem:
7385 return false;
7386 case Instruction::GetElementPtr:
7387 // inbounds is handled above
7388 // TODO: what about inrange on constexpr?
7389 return false;
7390 default: {
7391 const auto *CE = dyn_cast<ConstantExpr>(Op);
7392 if (isa<CastInst>(Op) || (CE && CE->isCast()))
7393 return false;
7394 else if (Instruction::isBinaryOp(Opcode))
7395 return false;
7396 // Be conservative and return true.
7397 return true;
7402 bool llvm::canCreateUndefOrPoison(const Operator *Op,
7403 bool ConsiderFlagsAndMetadata) {
7404 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::UndefOrPoison,
7405 ConsiderFlagsAndMetadata);
7408 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
7409 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::PoisonOnly,
7410 ConsiderFlagsAndMetadata);
7413 static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V,
7414 unsigned Depth) {
7415 if (ValAssumedPoison == V)
7416 return true;
7418 const unsigned MaxDepth = 2;
7419 if (Depth >= MaxDepth)
7420 return false;
7422 if (const auto *I = dyn_cast<Instruction>(V)) {
7423 if (any_of(I->operands(), [=](const Use &Op) {
7424 return propagatesPoison(Op) &&
7425 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7427 return true;
7429 // V = extractvalue V0, idx
7430 // V2 = extractvalue V0, idx2
7431 // V0's elements are all poison or not. (e.g., add_with_overflow)
7432 const WithOverflowInst *II;
7433 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
7434 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
7435 llvm::is_contained(II->args(), ValAssumedPoison)))
7436 return true;
7438 return false;
7441 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
7442 unsigned Depth) {
7443 if (isGuaranteedNotToBePoison(ValAssumedPoison))
7444 return true;
7446 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
7447 return true;
7449 const unsigned MaxDepth = 2;
7450 if (Depth >= MaxDepth)
7451 return false;
7453 const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
7454 if (I && !canCreatePoison(cast<Operator>(I))) {
7455 return all_of(I->operands(), [=](const Value *Op) {
7456 return impliesPoison(Op, V, Depth + 1);
7459 return false;
7462 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
7463 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
7466 static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly);
7468 static bool isGuaranteedNotToBeUndefOrPoison(
7469 const Value *V, AssumptionCache *AC, const Instruction *CtxI,
7470 const DominatorTree *DT, unsigned Depth, UndefPoisonKind Kind) {
7471 if (Depth >= MaxAnalysisRecursionDepth)
7472 return false;
7474 if (isa<MetadataAsValue>(V))
7475 return false;
7477 if (const auto *A = dyn_cast<Argument>(V)) {
7478 if (A->hasAttribute(Attribute::NoUndef) ||
7479 A->hasAttribute(Attribute::Dereferenceable) ||
7480 A->hasAttribute(Attribute::DereferenceableOrNull))
7481 return true;
7484 if (auto *C = dyn_cast<Constant>(V)) {
7485 if (isa<PoisonValue>(C))
7486 return !includesPoison(Kind);
7488 if (isa<UndefValue>(C))
7489 return !includesUndef(Kind);
7491 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
7492 isa<ConstantPointerNull>(C) || isa<Function>(C))
7493 return true;
7495 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) {
7496 if (includesUndef(Kind) && C->containsUndefElement())
7497 return false;
7498 if (includesPoison(Kind) && C->containsPoisonElement())
7499 return false;
7500 return !C->containsConstantExpression();
7504 // Strip cast operations from a pointer value.
7505 // Note that stripPointerCastsSameRepresentation can strip off getelementptr
7506 // inbounds with zero offset. To guarantee that the result isn't poison, the
7507 // stripped pointer is checked as it has to be pointing into an allocated
7508 // object or be null `null` to ensure `inbounds` getelement pointers with a
7509 // zero offset could not produce poison.
7510 // It can strip off addrspacecast that do not change bit representation as
7511 // well. We believe that such addrspacecast is equivalent to no-op.
7512 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7513 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
7514 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
7515 return true;
7517 auto OpCheck = [&](const Value *V) {
7518 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, Kind);
7521 if (auto *Opr = dyn_cast<Operator>(V)) {
7522 // If the value is a freeze instruction, then it can never
7523 // be undef or poison.
7524 if (isa<FreezeInst>(V))
7525 return true;
7527 if (const auto *CB = dyn_cast<CallBase>(V)) {
7528 if (CB->hasRetAttr(Attribute::NoUndef) ||
7529 CB->hasRetAttr(Attribute::Dereferenceable) ||
7530 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7531 return true;
7534 if (const auto *PN = dyn_cast<PHINode>(V)) {
7535 unsigned Num = PN->getNumIncomingValues();
7536 bool IsWellDefined = true;
7537 for (unsigned i = 0; i < Num; ++i) {
7538 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7539 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
7540 DT, Depth + 1, Kind)) {
7541 IsWellDefined = false;
7542 break;
7545 if (IsWellDefined)
7546 return true;
7547 } else if (!::canCreateUndefOrPoison(Opr, Kind,
7548 /*ConsiderFlagsAndMetadata*/ true) &&
7549 all_of(Opr->operands(), OpCheck))
7550 return true;
7553 if (auto *I = dyn_cast<LoadInst>(V))
7554 if (I->hasMetadata(LLVMContext::MD_noundef) ||
7555 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7556 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7557 return true;
7559 if (programUndefinedIfUndefOrPoison(V, !includesUndef(Kind)))
7560 return true;
7562 // CxtI may be null or a cloned instruction.
7563 if (!CtxI || !CtxI->getParent() || !DT)
7564 return false;
7566 auto *DNode = DT->getNode(CtxI->getParent());
7567 if (!DNode)
7568 // Unreachable block
7569 return false;
7571 // If V is used as a branch condition before reaching CtxI, V cannot be
7572 // undef or poison.
7573 // br V, BB1, BB2
7574 // BB1:
7575 // CtxI ; V cannot be undef or poison here
7576 auto *Dominator = DNode->getIDom();
7577 // This check is purely for compile time reasons: we can skip the IDom walk
7578 // if what we are checking for includes undef and the value is not an integer.
7579 if (!includesUndef(Kind) || V->getType()->isIntegerTy())
7580 while (Dominator) {
7581 auto *TI = Dominator->getBlock()->getTerminator();
7583 Value *Cond = nullptr;
7584 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
7585 if (BI->isConditional())
7586 Cond = BI->getCondition();
7587 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
7588 Cond = SI->getCondition();
7591 if (Cond) {
7592 if (Cond == V)
7593 return true;
7594 else if (!includesUndef(Kind) && isa<Operator>(Cond)) {
7595 // For poison, we can analyze further
7596 auto *Opr = cast<Operator>(Cond);
7597 if (any_of(Opr->operands(), [V](const Use &U) {
7598 return V == U && propagatesPoison(U);
7600 return true;
7604 Dominator = Dominator->getIDom();
7607 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
7608 return true;
7610 return false;
7613 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
7614 const Instruction *CtxI,
7615 const DominatorTree *DT,
7616 unsigned Depth) {
7617 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7618 UndefPoisonKind::UndefOrPoison);
7621 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
7622 const Instruction *CtxI,
7623 const DominatorTree *DT, unsigned Depth) {
7624 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7625 UndefPoisonKind::PoisonOnly);
7628 bool llvm::isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC,
7629 const Instruction *CtxI,
7630 const DominatorTree *DT, unsigned Depth) {
7631 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7632 UndefPoisonKind::UndefOnly);
7635 /// Return true if undefined behavior would provably be executed on the path to
7636 /// OnPathTo if Root produced a posion result. Note that this doesn't say
7637 /// anything about whether OnPathTo is actually executed or whether Root is
7638 /// actually poison. This can be used to assess whether a new use of Root can
7639 /// be added at a location which is control equivalent with OnPathTo (such as
7640 /// immediately before it) without introducing UB which didn't previously
7641 /// exist. Note that a false result conveys no information.
7642 bool llvm::mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
7643 Instruction *OnPathTo,
7644 DominatorTree *DT) {
7645 // Basic approach is to assume Root is poison, propagate poison forward
7646 // through all users we can easily track, and then check whether any of those
7647 // users are provable UB and must execute before out exiting block might
7648 // exit.
7650 // The set of all recursive users we've visited (which are assumed to all be
7651 // poison because of said visit)
7652 SmallSet<const Value *, 16> KnownPoison;
7653 SmallVector<const Instruction*, 16> Worklist;
7654 Worklist.push_back(Root);
7655 while (!Worklist.empty()) {
7656 const Instruction *I = Worklist.pop_back_val();
7658 // If we know this must trigger UB on a path leading our target.
7659 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
7660 return true;
7662 // If we can't analyze propagation through this instruction, just skip it
7663 // and transitive users. Safe as false is a conservative result.
7664 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
7665 return KnownPoison.contains(U) && propagatesPoison(U);
7667 continue;
7669 if (KnownPoison.insert(I).second)
7670 for (const User *User : I->users())
7671 Worklist.push_back(cast<Instruction>(User));
7674 // Might be non-UB, or might have a path we couldn't prove must execute on
7675 // way to exiting bb.
7676 return false;
7679 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
7680 const SimplifyQuery &SQ) {
7681 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
7682 Add, SQ);
7685 OverflowResult
7686 llvm::computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
7687 const WithCache<const Value *> &RHS,
7688 const SimplifyQuery &SQ) {
7689 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ);
7692 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
7693 // Note: An atomic operation isn't guaranteed to return in a reasonable amount
7694 // of time because it's possible for another thread to interfere with it for an
7695 // arbitrary length of time, but programs aren't allowed to rely on that.
7697 // If there is no successor, then execution can't transfer to it.
7698 if (isa<ReturnInst>(I))
7699 return false;
7700 if (isa<UnreachableInst>(I))
7701 return false;
7703 // Note: Do not add new checks here; instead, change Instruction::mayThrow or
7704 // Instruction::willReturn.
7706 // FIXME: Move this check into Instruction::willReturn.
7707 if (isa<CatchPadInst>(I)) {
7708 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
7709 default:
7710 // A catchpad may invoke exception object constructors and such, which
7711 // in some languages can be arbitrary code, so be conservative by default.
7712 return false;
7713 case EHPersonality::CoreCLR:
7714 // For CoreCLR, it just involves a type test.
7715 return true;
7719 // An instruction that returns without throwing must transfer control flow
7720 // to a successor.
7721 return !I->mayThrow() && I->willReturn();
7724 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
7725 // TODO: This is slightly conservative for invoke instruction since exiting
7726 // via an exception *is* normal control for them.
7727 for (const Instruction &I : *BB)
7728 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7729 return false;
7730 return true;
7733 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7734 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
7735 unsigned ScanLimit) {
7736 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
7737 ScanLimit);
7740 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7741 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
7742 assert(ScanLimit && "scan limit must be non-zero");
7743 for (const Instruction &I : Range) {
7744 if (isa<DbgInfoIntrinsic>(I))
7745 continue;
7746 if (--ScanLimit == 0)
7747 return false;
7748 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7749 return false;
7751 return true;
7754 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
7755 const Loop *L) {
7756 // The loop header is guaranteed to be executed for every iteration.
7758 // FIXME: Relax this constraint to cover all basic blocks that are
7759 // guaranteed to be executed at every iteration.
7760 if (I->getParent() != L->getHeader()) return false;
7762 for (const Instruction &LI : *L->getHeader()) {
7763 if (&LI == I) return true;
7764 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
7766 llvm_unreachable("Instruction not contained in its own parent basic block.");
7769 bool llvm::propagatesPoison(const Use &PoisonOp) {
7770 const Operator *I = cast<Operator>(PoisonOp.getUser());
7771 switch (I->getOpcode()) {
7772 case Instruction::Freeze:
7773 case Instruction::PHI:
7774 case Instruction::Invoke:
7775 return false;
7776 case Instruction::Select:
7777 return PoisonOp.getOperandNo() == 0;
7778 case Instruction::Call:
7779 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
7780 switch (II->getIntrinsicID()) {
7781 // TODO: Add more intrinsics.
7782 case Intrinsic::sadd_with_overflow:
7783 case Intrinsic::ssub_with_overflow:
7784 case Intrinsic::smul_with_overflow:
7785 case Intrinsic::uadd_with_overflow:
7786 case Intrinsic::usub_with_overflow:
7787 case Intrinsic::umul_with_overflow:
7788 // If an input is a vector containing a poison element, the
7789 // two output vectors (calculated results, overflow bits)'
7790 // corresponding lanes are poison.
7791 return true;
7792 case Intrinsic::ctpop:
7793 case Intrinsic::ctlz:
7794 case Intrinsic::cttz:
7795 case Intrinsic::abs:
7796 case Intrinsic::smax:
7797 case Intrinsic::smin:
7798 case Intrinsic::umax:
7799 case Intrinsic::umin:
7800 case Intrinsic::bitreverse:
7801 case Intrinsic::bswap:
7802 case Intrinsic::sadd_sat:
7803 case Intrinsic::ssub_sat:
7804 case Intrinsic::sshl_sat:
7805 case Intrinsic::uadd_sat:
7806 case Intrinsic::usub_sat:
7807 case Intrinsic::ushl_sat:
7808 return true;
7811 return false;
7812 case Instruction::ICmp:
7813 case Instruction::FCmp:
7814 case Instruction::GetElementPtr:
7815 return true;
7816 default:
7817 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
7818 return true;
7820 // Be conservative and return false.
7821 return false;
7825 /// Enumerates all operands of \p I that are guaranteed to not be undef or
7826 /// poison. If the callback \p Handle returns true, stop processing and return
7827 /// true. Otherwise, return false.
7828 template <typename CallableT>
7829 static bool handleGuaranteedWellDefinedOps(const Instruction *I,
7830 const CallableT &Handle) {
7831 switch (I->getOpcode()) {
7832 case Instruction::Store:
7833 if (Handle(cast<StoreInst>(I)->getPointerOperand()))
7834 return true;
7835 break;
7837 case Instruction::Load:
7838 if (Handle(cast<LoadInst>(I)->getPointerOperand()))
7839 return true;
7840 break;
7842 // Since dereferenceable attribute imply noundef, atomic operations
7843 // also implicitly have noundef pointers too
7844 case Instruction::AtomicCmpXchg:
7845 if (Handle(cast<AtomicCmpXchgInst>(I)->getPointerOperand()))
7846 return true;
7847 break;
7849 case Instruction::AtomicRMW:
7850 if (Handle(cast<AtomicRMWInst>(I)->getPointerOperand()))
7851 return true;
7852 break;
7854 case Instruction::Call:
7855 case Instruction::Invoke: {
7856 const CallBase *CB = cast<CallBase>(I);
7857 if (CB->isIndirectCall() && Handle(CB->getCalledOperand()))
7858 return true;
7859 for (unsigned i = 0; i < CB->arg_size(); ++i)
7860 if ((CB->paramHasAttr(i, Attribute::NoUndef) ||
7861 CB->paramHasAttr(i, Attribute::Dereferenceable) ||
7862 CB->paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
7863 Handle(CB->getArgOperand(i)))
7864 return true;
7865 break;
7867 case Instruction::Ret:
7868 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
7869 Handle(I->getOperand(0)))
7870 return true;
7871 break;
7872 case Instruction::Switch:
7873 if (Handle(cast<SwitchInst>(I)->getCondition()))
7874 return true;
7875 break;
7876 case Instruction::Br: {
7877 auto *BR = cast<BranchInst>(I);
7878 if (BR->isConditional() && Handle(BR->getCondition()))
7879 return true;
7880 break;
7882 default:
7883 break;
7886 return false;
7889 void llvm::getGuaranteedWellDefinedOps(
7890 const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
7891 handleGuaranteedWellDefinedOps(I, [&](const Value *V) {
7892 Operands.push_back(V);
7893 return false;
7897 /// Enumerates all operands of \p I that are guaranteed to not be poison.
7898 template <typename CallableT>
7899 static bool handleGuaranteedNonPoisonOps(const Instruction *I,
7900 const CallableT &Handle) {
7901 if (handleGuaranteedWellDefinedOps(I, Handle))
7902 return true;
7903 switch (I->getOpcode()) {
7904 // Divisors of these operations are allowed to be partially undef.
7905 case Instruction::UDiv:
7906 case Instruction::SDiv:
7907 case Instruction::URem:
7908 case Instruction::SRem:
7909 return Handle(I->getOperand(1));
7910 default:
7911 return false;
7915 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
7916 SmallVectorImpl<const Value *> &Operands) {
7917 handleGuaranteedNonPoisonOps(I, [&](const Value *V) {
7918 Operands.push_back(V);
7919 return false;
7923 bool llvm::mustTriggerUB(const Instruction *I,
7924 const SmallPtrSetImpl<const Value *> &KnownPoison) {
7925 return handleGuaranteedNonPoisonOps(
7926 I, [&](const Value *V) { return KnownPoison.count(V); });
7929 static bool programUndefinedIfUndefOrPoison(const Value *V,
7930 bool PoisonOnly) {
7931 // We currently only look for uses of values within the same basic
7932 // block, as that makes it easier to guarantee that the uses will be
7933 // executed given that Inst is executed.
7935 // FIXME: Expand this to consider uses beyond the same basic block. To do
7936 // this, look out for the distinction between post-dominance and strong
7937 // post-dominance.
7938 const BasicBlock *BB = nullptr;
7939 BasicBlock::const_iterator Begin;
7940 if (const auto *Inst = dyn_cast<Instruction>(V)) {
7941 BB = Inst->getParent();
7942 Begin = Inst->getIterator();
7943 Begin++;
7944 } else if (const auto *Arg = dyn_cast<Argument>(V)) {
7945 if (Arg->getParent()->isDeclaration())
7946 return false;
7947 BB = &Arg->getParent()->getEntryBlock();
7948 Begin = BB->begin();
7949 } else {
7950 return false;
7953 // Limit number of instructions we look at, to avoid scanning through large
7954 // blocks. The current limit is chosen arbitrarily.
7955 unsigned ScanLimit = 32;
7956 BasicBlock::const_iterator End = BB->end();
7958 if (!PoisonOnly) {
7959 // Since undef does not propagate eagerly, be conservative & just check
7960 // whether a value is directly passed to an instruction that must take
7961 // well-defined operands.
7963 for (const auto &I : make_range(Begin, End)) {
7964 if (isa<DbgInfoIntrinsic>(I))
7965 continue;
7966 if (--ScanLimit == 0)
7967 break;
7969 if (handleGuaranteedWellDefinedOps(&I, [V](const Value *WellDefinedOp) {
7970 return WellDefinedOp == V;
7972 return true;
7974 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7975 break;
7977 return false;
7980 // Set of instructions that we have proved will yield poison if Inst
7981 // does.
7982 SmallSet<const Value *, 16> YieldsPoison;
7983 SmallSet<const BasicBlock *, 4> Visited;
7985 YieldsPoison.insert(V);
7986 Visited.insert(BB);
7988 while (true) {
7989 for (const auto &I : make_range(Begin, End)) {
7990 if (isa<DbgInfoIntrinsic>(I))
7991 continue;
7992 if (--ScanLimit == 0)
7993 return false;
7994 if (mustTriggerUB(&I, YieldsPoison))
7995 return true;
7996 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7997 return false;
7999 // If an operand is poison and propagates it, mark I as yielding poison.
8000 for (const Use &Op : I.operands()) {
8001 if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
8002 YieldsPoison.insert(&I);
8003 break;
8007 // Special handling for select, which returns poison if its operand 0 is
8008 // poison (handled in the loop above) *or* if both its true/false operands
8009 // are poison (handled here).
8010 if (I.getOpcode() == Instruction::Select &&
8011 YieldsPoison.count(I.getOperand(1)) &&
8012 YieldsPoison.count(I.getOperand(2))) {
8013 YieldsPoison.insert(&I);
8017 BB = BB->getSingleSuccessor();
8018 if (!BB || !Visited.insert(BB).second)
8019 break;
8021 Begin = BB->getFirstNonPHI()->getIterator();
8022 End = BB->end();
8024 return false;
8027 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
8028 return ::programUndefinedIfUndefOrPoison(Inst, false);
8031 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
8032 return ::programUndefinedIfUndefOrPoison(Inst, true);
8035 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
8036 if (FMF.noNaNs())
8037 return true;
8039 if (auto *C = dyn_cast<ConstantFP>(V))
8040 return !C->isNaN();
8042 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8043 if (!C->getElementType()->isFloatingPointTy())
8044 return false;
8045 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8046 if (C->getElementAsAPFloat(I).isNaN())
8047 return false;
8049 return true;
8052 if (isa<ConstantAggregateZero>(V))
8053 return true;
8055 return false;
8058 static bool isKnownNonZero(const Value *V) {
8059 if (auto *C = dyn_cast<ConstantFP>(V))
8060 return !C->isZero();
8062 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8063 if (!C->getElementType()->isFloatingPointTy())
8064 return false;
8065 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8066 if (C->getElementAsAPFloat(I).isZero())
8067 return false;
8069 return true;
8072 return false;
8075 /// Match clamp pattern for float types without care about NaNs or signed zeros.
8076 /// Given non-min/max outer cmp/select from the clamp pattern this
8077 /// function recognizes if it can be substitued by a "canonical" min/max
8078 /// pattern.
8079 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
8080 Value *CmpLHS, Value *CmpRHS,
8081 Value *TrueVal, Value *FalseVal,
8082 Value *&LHS, Value *&RHS) {
8083 // Try to match
8084 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
8085 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
8086 // and return description of the outer Max/Min.
8088 // First, check if select has inverse order:
8089 if (CmpRHS == FalseVal) {
8090 std::swap(TrueVal, FalseVal);
8091 Pred = CmpInst::getInversePredicate(Pred);
8094 // Assume success now. If there's no match, callers should not use these anyway.
8095 LHS = TrueVal;
8096 RHS = FalseVal;
8098 const APFloat *FC1;
8099 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
8100 return {SPF_UNKNOWN, SPNB_NA, false};
8102 const APFloat *FC2;
8103 switch (Pred) {
8104 case CmpInst::FCMP_OLT:
8105 case CmpInst::FCMP_OLE:
8106 case CmpInst::FCMP_ULT:
8107 case CmpInst::FCMP_ULE:
8108 if (match(FalseVal,
8109 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
8110 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
8111 *FC1 < *FC2)
8112 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
8113 break;
8114 case CmpInst::FCMP_OGT:
8115 case CmpInst::FCMP_OGE:
8116 case CmpInst::FCMP_UGT:
8117 case CmpInst::FCMP_UGE:
8118 if (match(FalseVal,
8119 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
8120 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
8121 *FC1 > *FC2)
8122 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
8123 break;
8124 default:
8125 break;
8128 return {SPF_UNKNOWN, SPNB_NA, false};
8131 /// Recognize variations of:
8132 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
8133 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
8134 Value *CmpLHS, Value *CmpRHS,
8135 Value *TrueVal, Value *FalseVal) {
8136 // Swap the select operands and predicate to match the patterns below.
8137 if (CmpRHS != TrueVal) {
8138 Pred = ICmpInst::getSwappedPredicate(Pred);
8139 std::swap(TrueVal, FalseVal);
8141 const APInt *C1;
8142 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
8143 const APInt *C2;
8144 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
8145 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8146 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
8147 return {SPF_SMAX, SPNB_NA, false};
8149 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
8150 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8151 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
8152 return {SPF_SMIN, SPNB_NA, false};
8154 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
8155 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8156 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
8157 return {SPF_UMAX, SPNB_NA, false};
8159 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
8160 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8161 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
8162 return {SPF_UMIN, SPNB_NA, false};
8164 return {SPF_UNKNOWN, SPNB_NA, false};
8167 /// Recognize variations of:
8168 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
8169 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
8170 Value *CmpLHS, Value *CmpRHS,
8171 Value *TVal, Value *FVal,
8172 unsigned Depth) {
8173 // TODO: Allow FP min/max with nnan/nsz.
8174 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
8176 Value *A = nullptr, *B = nullptr;
8177 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
8178 if (!SelectPatternResult::isMinOrMax(L.Flavor))
8179 return {SPF_UNKNOWN, SPNB_NA, false};
8181 Value *C = nullptr, *D = nullptr;
8182 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
8183 if (L.Flavor != R.Flavor)
8184 return {SPF_UNKNOWN, SPNB_NA, false};
8186 // We have something like: x Pred y ? min(a, b) : min(c, d).
8187 // Try to match the compare to the min/max operations of the select operands.
8188 // First, make sure we have the right compare predicate.
8189 switch (L.Flavor) {
8190 case SPF_SMIN:
8191 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
8192 Pred = ICmpInst::getSwappedPredicate(Pred);
8193 std::swap(CmpLHS, CmpRHS);
8195 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
8196 break;
8197 return {SPF_UNKNOWN, SPNB_NA, false};
8198 case SPF_SMAX:
8199 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
8200 Pred = ICmpInst::getSwappedPredicate(Pred);
8201 std::swap(CmpLHS, CmpRHS);
8203 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
8204 break;
8205 return {SPF_UNKNOWN, SPNB_NA, false};
8206 case SPF_UMIN:
8207 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
8208 Pred = ICmpInst::getSwappedPredicate(Pred);
8209 std::swap(CmpLHS, CmpRHS);
8211 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
8212 break;
8213 return {SPF_UNKNOWN, SPNB_NA, false};
8214 case SPF_UMAX:
8215 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
8216 Pred = ICmpInst::getSwappedPredicate(Pred);
8217 std::swap(CmpLHS, CmpRHS);
8219 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
8220 break;
8221 return {SPF_UNKNOWN, SPNB_NA, false};
8222 default:
8223 return {SPF_UNKNOWN, SPNB_NA, false};
8226 // If there is a common operand in the already matched min/max and the other
8227 // min/max operands match the compare operands (either directly or inverted),
8228 // then this is min/max of the same flavor.
8230 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8231 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8232 if (D == B) {
8233 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8234 match(A, m_Not(m_Specific(CmpRHS)))))
8235 return {L.Flavor, SPNB_NA, false};
8237 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8238 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8239 if (C == B) {
8240 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8241 match(A, m_Not(m_Specific(CmpRHS)))))
8242 return {L.Flavor, SPNB_NA, false};
8244 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8245 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8246 if (D == A) {
8247 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8248 match(B, m_Not(m_Specific(CmpRHS)))))
8249 return {L.Flavor, SPNB_NA, false};
8251 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8252 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8253 if (C == A) {
8254 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8255 match(B, m_Not(m_Specific(CmpRHS)))))
8256 return {L.Flavor, SPNB_NA, false};
8259 return {SPF_UNKNOWN, SPNB_NA, false};
8262 /// If the input value is the result of a 'not' op, constant integer, or vector
8263 /// splat of a constant integer, return the bitwise-not source value.
8264 /// TODO: This could be extended to handle non-splat vector integer constants.
8265 static Value *getNotValue(Value *V) {
8266 Value *NotV;
8267 if (match(V, m_Not(m_Value(NotV))))
8268 return NotV;
8270 const APInt *C;
8271 if (match(V, m_APInt(C)))
8272 return ConstantInt::get(V->getType(), ~(*C));
8274 return nullptr;
8277 /// Match non-obvious integer minimum and maximum sequences.
8278 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
8279 Value *CmpLHS, Value *CmpRHS,
8280 Value *TrueVal, Value *FalseVal,
8281 Value *&LHS, Value *&RHS,
8282 unsigned Depth) {
8283 // Assume success. If there's no match, callers should not use these anyway.
8284 LHS = TrueVal;
8285 RHS = FalseVal;
8287 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
8288 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
8289 return SPR;
8291 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
8292 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
8293 return SPR;
8295 // Look through 'not' ops to find disguised min/max.
8296 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
8297 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
8298 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
8299 switch (Pred) {
8300 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
8301 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
8302 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
8303 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
8304 default: break;
8308 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
8309 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
8310 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
8311 switch (Pred) {
8312 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
8313 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
8314 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
8315 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
8316 default: break;
8320 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
8321 return {SPF_UNKNOWN, SPNB_NA, false};
8323 const APInt *C1;
8324 if (!match(CmpRHS, m_APInt(C1)))
8325 return {SPF_UNKNOWN, SPNB_NA, false};
8327 // An unsigned min/max can be written with a signed compare.
8328 const APInt *C2;
8329 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
8330 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
8331 // Is the sign bit set?
8332 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
8333 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
8334 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
8335 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8337 // Is the sign bit clear?
8338 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
8339 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
8340 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
8341 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8344 return {SPF_UNKNOWN, SPNB_NA, false};
8347 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW,
8348 bool AllowPoison) {
8349 assert(X && Y && "Invalid operand");
8351 auto IsNegationOf = [&](const Value *X, const Value *Y) {
8352 if (!match(X, m_Neg(m_Specific(Y))))
8353 return false;
8355 auto *BO = cast<BinaryOperator>(X);
8356 if (NeedNSW && !BO->hasNoSignedWrap())
8357 return false;
8359 auto *Zero = cast<Constant>(BO->getOperand(0));
8360 if (!AllowPoison && !Zero->isNullValue())
8361 return false;
8363 return true;
8366 // X = -Y or Y = -X
8367 if (IsNegationOf(X, Y) || IsNegationOf(Y, X))
8368 return true;
8370 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
8371 Value *A, *B;
8372 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
8373 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
8374 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
8375 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
8378 bool llvm::isKnownInversion(const Value *X, const Value *Y) {
8379 // Handle X = icmp pred A, B, Y = icmp pred A, C.
8380 Value *A, *B, *C;
8381 ICmpInst::Predicate Pred1, Pred2;
8382 if (!match(X, m_ICmp(Pred1, m_Value(A), m_Value(B))) ||
8383 !match(Y, m_c_ICmp(Pred2, m_Specific(A), m_Value(C))))
8384 return false;
8386 if (B == C)
8387 return Pred1 == ICmpInst::getInversePredicate(Pred2);
8389 // Try to infer the relationship from constant ranges.
8390 const APInt *RHSC1, *RHSC2;
8391 if (!match(B, m_APInt(RHSC1)) || !match(C, m_APInt(RHSC2)))
8392 return false;
8394 const auto CR1 = ConstantRange::makeExactICmpRegion(Pred1, *RHSC1);
8395 const auto CR2 = ConstantRange::makeExactICmpRegion(Pred2, *RHSC2);
8397 return CR1.inverse() == CR2;
8400 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
8401 FastMathFlags FMF,
8402 Value *CmpLHS, Value *CmpRHS,
8403 Value *TrueVal, Value *FalseVal,
8404 Value *&LHS, Value *&RHS,
8405 unsigned Depth) {
8406 bool HasMismatchedZeros = false;
8407 if (CmpInst::isFPPredicate(Pred)) {
8408 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
8409 // 0.0 operand, set the compare's 0.0 operands to that same value for the
8410 // purpose of identifying min/max. Disregard vector constants with undefined
8411 // elements because those can not be back-propagated for analysis.
8412 Value *OutputZeroVal = nullptr;
8413 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
8414 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
8415 OutputZeroVal = TrueVal;
8416 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
8417 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
8418 OutputZeroVal = FalseVal;
8420 if (OutputZeroVal) {
8421 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
8422 HasMismatchedZeros = true;
8423 CmpLHS = OutputZeroVal;
8425 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
8426 HasMismatchedZeros = true;
8427 CmpRHS = OutputZeroVal;
8432 LHS = CmpLHS;
8433 RHS = CmpRHS;
8435 // Signed zero may return inconsistent results between implementations.
8436 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
8437 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
8438 // Therefore, we behave conservatively and only proceed if at least one of the
8439 // operands is known to not be zero or if we don't care about signed zero.
8440 switch (Pred) {
8441 default: break;
8442 case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
8443 case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
8444 if (!HasMismatchedZeros)
8445 break;
8446 [[fallthrough]];
8447 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
8448 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
8449 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
8450 !isKnownNonZero(CmpRHS))
8451 return {SPF_UNKNOWN, SPNB_NA, false};
8454 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
8455 bool Ordered = false;
8457 // When given one NaN and one non-NaN input:
8458 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
8459 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
8460 // ordered comparison fails), which could be NaN or non-NaN.
8461 // so here we discover exactly what NaN behavior is required/accepted.
8462 if (CmpInst::isFPPredicate(Pred)) {
8463 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
8464 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
8466 if (LHSSafe && RHSSafe) {
8467 // Both operands are known non-NaN.
8468 NaNBehavior = SPNB_RETURNS_ANY;
8469 } else if (CmpInst::isOrdered(Pred)) {
8470 // An ordered comparison will return false when given a NaN, so it
8471 // returns the RHS.
8472 Ordered = true;
8473 if (LHSSafe)
8474 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
8475 NaNBehavior = SPNB_RETURNS_NAN;
8476 else if (RHSSafe)
8477 NaNBehavior = SPNB_RETURNS_OTHER;
8478 else
8479 // Completely unsafe.
8480 return {SPF_UNKNOWN, SPNB_NA, false};
8481 } else {
8482 Ordered = false;
8483 // An unordered comparison will return true when given a NaN, so it
8484 // returns the LHS.
8485 if (LHSSafe)
8486 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
8487 NaNBehavior = SPNB_RETURNS_OTHER;
8488 else if (RHSSafe)
8489 NaNBehavior = SPNB_RETURNS_NAN;
8490 else
8491 // Completely unsafe.
8492 return {SPF_UNKNOWN, SPNB_NA, false};
8496 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8497 std::swap(CmpLHS, CmpRHS);
8498 Pred = CmpInst::getSwappedPredicate(Pred);
8499 if (NaNBehavior == SPNB_RETURNS_NAN)
8500 NaNBehavior = SPNB_RETURNS_OTHER;
8501 else if (NaNBehavior == SPNB_RETURNS_OTHER)
8502 NaNBehavior = SPNB_RETURNS_NAN;
8503 Ordered = !Ordered;
8506 // ([if]cmp X, Y) ? X : Y
8507 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
8508 switch (Pred) {
8509 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
8510 case ICmpInst::ICMP_UGT:
8511 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
8512 case ICmpInst::ICMP_SGT:
8513 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
8514 case ICmpInst::ICMP_ULT:
8515 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
8516 case ICmpInst::ICMP_SLT:
8517 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
8518 case FCmpInst::FCMP_UGT:
8519 case FCmpInst::FCMP_UGE:
8520 case FCmpInst::FCMP_OGT:
8521 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
8522 case FCmpInst::FCMP_ULT:
8523 case FCmpInst::FCMP_ULE:
8524 case FCmpInst::FCMP_OLT:
8525 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
8529 if (isKnownNegation(TrueVal, FalseVal)) {
8530 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
8531 // match against either LHS or sext(LHS).
8532 auto MaybeSExtCmpLHS =
8533 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
8534 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
8535 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
8536 if (match(TrueVal, MaybeSExtCmpLHS)) {
8537 // Set the return values. If the compare uses the negated value (-X >s 0),
8538 // swap the return values because the negated value is always 'RHS'.
8539 LHS = TrueVal;
8540 RHS = FalseVal;
8541 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
8542 std::swap(LHS, RHS);
8544 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
8545 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
8546 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
8547 return {SPF_ABS, SPNB_NA, false};
8549 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
8550 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
8551 return {SPF_ABS, SPNB_NA, false};
8553 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
8554 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
8555 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
8556 return {SPF_NABS, SPNB_NA, false};
8558 else if (match(FalseVal, MaybeSExtCmpLHS)) {
8559 // Set the return values. If the compare uses the negated value (-X >s 0),
8560 // swap the return values because the negated value is always 'RHS'.
8561 LHS = FalseVal;
8562 RHS = TrueVal;
8563 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
8564 std::swap(LHS, RHS);
8566 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
8567 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
8568 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
8569 return {SPF_NABS, SPNB_NA, false};
8571 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
8572 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
8573 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
8574 return {SPF_ABS, SPNB_NA, false};
8578 if (CmpInst::isIntPredicate(Pred))
8579 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
8581 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
8582 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
8583 // semantics than minNum. Be conservative in such case.
8584 if (NaNBehavior != SPNB_RETURNS_ANY ||
8585 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
8586 !isKnownNonZero(CmpRHS)))
8587 return {SPF_UNKNOWN, SPNB_NA, false};
8589 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
8592 /// Helps to match a select pattern in case of a type mismatch.
8594 /// The function processes the case when type of true and false values of a
8595 /// select instruction differs from type of the cmp instruction operands because
8596 /// of a cast instruction. The function checks if it is legal to move the cast
8597 /// operation after "select". If yes, it returns the new second value of
8598 /// "select" (with the assumption that cast is moved):
8599 /// 1. As operand of cast instruction when both values of "select" are same cast
8600 /// instructions.
8601 /// 2. As restored constant (by applying reverse cast operation) when the first
8602 /// value of the "select" is a cast operation and the second value is a
8603 /// constant.
8604 /// NOTE: We return only the new second value because the first value could be
8605 /// accessed as operand of cast instruction.
8606 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
8607 Instruction::CastOps *CastOp) {
8608 auto *Cast1 = dyn_cast<CastInst>(V1);
8609 if (!Cast1)
8610 return nullptr;
8612 *CastOp = Cast1->getOpcode();
8613 Type *SrcTy = Cast1->getSrcTy();
8614 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
8615 // If V1 and V2 are both the same cast from the same type, look through V1.
8616 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
8617 return Cast2->getOperand(0);
8618 return nullptr;
8621 auto *C = dyn_cast<Constant>(V2);
8622 if (!C)
8623 return nullptr;
8625 const DataLayout &DL = CmpI->getDataLayout();
8626 Constant *CastedTo = nullptr;
8627 switch (*CastOp) {
8628 case Instruction::ZExt:
8629 if (CmpI->isUnsigned())
8630 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
8631 break;
8632 case Instruction::SExt:
8633 if (CmpI->isSigned())
8634 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
8635 break;
8636 case Instruction::Trunc:
8637 Constant *CmpConst;
8638 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
8639 CmpConst->getType() == SrcTy) {
8640 // Here we have the following case:
8642 // %cond = cmp iN %x, CmpConst
8643 // %tr = trunc iN %x to iK
8644 // %narrowsel = select i1 %cond, iK %t, iK C
8646 // We can always move trunc after select operation:
8648 // %cond = cmp iN %x, CmpConst
8649 // %widesel = select i1 %cond, iN %x, iN CmpConst
8650 // %tr = trunc iN %widesel to iK
8652 // Note that C could be extended in any way because we don't care about
8653 // upper bits after truncation. It can't be abs pattern, because it would
8654 // look like:
8656 // select i1 %cond, x, -x.
8658 // So only min/max pattern could be matched. Such match requires widened C
8659 // == CmpConst. That is why set widened C = CmpConst, condition trunc
8660 // CmpConst == C is checked below.
8661 CastedTo = CmpConst;
8662 } else {
8663 unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt;
8664 CastedTo = ConstantFoldCastOperand(ExtOp, C, SrcTy, DL);
8666 break;
8667 case Instruction::FPTrunc:
8668 CastedTo = ConstantFoldCastOperand(Instruction::FPExt, C, SrcTy, DL);
8669 break;
8670 case Instruction::FPExt:
8671 CastedTo = ConstantFoldCastOperand(Instruction::FPTrunc, C, SrcTy, DL);
8672 break;
8673 case Instruction::FPToUI:
8674 CastedTo = ConstantFoldCastOperand(Instruction::UIToFP, C, SrcTy, DL);
8675 break;
8676 case Instruction::FPToSI:
8677 CastedTo = ConstantFoldCastOperand(Instruction::SIToFP, C, SrcTy, DL);
8678 break;
8679 case Instruction::UIToFP:
8680 CastedTo = ConstantFoldCastOperand(Instruction::FPToUI, C, SrcTy, DL);
8681 break;
8682 case Instruction::SIToFP:
8683 CastedTo = ConstantFoldCastOperand(Instruction::FPToSI, C, SrcTy, DL);
8684 break;
8685 default:
8686 break;
8689 if (!CastedTo)
8690 return nullptr;
8692 // Make sure the cast doesn't lose any information.
8693 Constant *CastedBack =
8694 ConstantFoldCastOperand(*CastOp, CastedTo, C->getType(), DL);
8695 if (CastedBack && CastedBack != C)
8696 return nullptr;
8698 return CastedTo;
8701 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
8702 Instruction::CastOps *CastOp,
8703 unsigned Depth) {
8704 if (Depth >= MaxAnalysisRecursionDepth)
8705 return {SPF_UNKNOWN, SPNB_NA, false};
8707 SelectInst *SI = dyn_cast<SelectInst>(V);
8708 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
8710 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
8711 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
8713 Value *TrueVal = SI->getTrueValue();
8714 Value *FalseVal = SI->getFalseValue();
8716 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
8717 CastOp, Depth);
8720 SelectPatternResult llvm::matchDecomposedSelectPattern(
8721 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
8722 Instruction::CastOps *CastOp, unsigned Depth) {
8723 CmpInst::Predicate Pred = CmpI->getPredicate();
8724 Value *CmpLHS = CmpI->getOperand(0);
8725 Value *CmpRHS = CmpI->getOperand(1);
8726 FastMathFlags FMF;
8727 if (isa<FPMathOperator>(CmpI))
8728 FMF = CmpI->getFastMathFlags();
8730 // Bail out early.
8731 if (CmpI->isEquality())
8732 return {SPF_UNKNOWN, SPNB_NA, false};
8734 // Deal with type mismatches.
8735 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
8736 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
8737 // If this is a potential fmin/fmax with a cast to integer, then ignore
8738 // -0.0 because there is no corresponding integer value.
8739 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
8740 FMF.setNoSignedZeros();
8741 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
8742 cast<CastInst>(TrueVal)->getOperand(0), C,
8743 LHS, RHS, Depth);
8745 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
8746 // If this is a potential fmin/fmax with a cast to integer, then ignore
8747 // -0.0 because there is no corresponding integer value.
8748 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
8749 FMF.setNoSignedZeros();
8750 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
8751 C, cast<CastInst>(FalseVal)->getOperand(0),
8752 LHS, RHS, Depth);
8755 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
8756 LHS, RHS, Depth);
8759 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
8760 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
8761 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
8762 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
8763 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
8764 if (SPF == SPF_FMINNUM)
8765 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
8766 if (SPF == SPF_FMAXNUM)
8767 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
8768 llvm_unreachable("unhandled!");
8771 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
8772 if (SPF == SPF_SMIN) return SPF_SMAX;
8773 if (SPF == SPF_UMIN) return SPF_UMAX;
8774 if (SPF == SPF_SMAX) return SPF_SMIN;
8775 if (SPF == SPF_UMAX) return SPF_UMIN;
8776 llvm_unreachable("unhandled!");
8779 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
8780 switch (MinMaxID) {
8781 case Intrinsic::smax: return Intrinsic::smin;
8782 case Intrinsic::smin: return Intrinsic::smax;
8783 case Intrinsic::umax: return Intrinsic::umin;
8784 case Intrinsic::umin: return Intrinsic::umax;
8785 // Please note that next four intrinsics may produce the same result for
8786 // original and inverted case even if X != Y due to NaN is handled specially.
8787 case Intrinsic::maximum: return Intrinsic::minimum;
8788 case Intrinsic::minimum: return Intrinsic::maximum;
8789 case Intrinsic::maxnum: return Intrinsic::minnum;
8790 case Intrinsic::minnum: return Intrinsic::maxnum;
8791 default: llvm_unreachable("Unexpected intrinsic");
8795 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
8796 switch (SPF) {
8797 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
8798 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
8799 case SPF_UMAX: return APInt::getMaxValue(BitWidth);
8800 case SPF_UMIN: return APInt::getMinValue(BitWidth);
8801 default: llvm_unreachable("Unexpected flavor");
8805 std::pair<Intrinsic::ID, bool>
8806 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
8807 // Check if VL contains select instructions that can be folded into a min/max
8808 // vector intrinsic and return the intrinsic if it is possible.
8809 // TODO: Support floating point min/max.
8810 bool AllCmpSingleUse = true;
8811 SelectPatternResult SelectPattern;
8812 SelectPattern.Flavor = SPF_UNKNOWN;
8813 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
8814 Value *LHS, *RHS;
8815 auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
8816 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor))
8817 return false;
8818 if (SelectPattern.Flavor != SPF_UNKNOWN &&
8819 SelectPattern.Flavor != CurrentPattern.Flavor)
8820 return false;
8821 SelectPattern = CurrentPattern;
8822 AllCmpSingleUse &=
8823 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
8824 return true;
8825 })) {
8826 switch (SelectPattern.Flavor) {
8827 case SPF_SMIN:
8828 return {Intrinsic::smin, AllCmpSingleUse};
8829 case SPF_UMIN:
8830 return {Intrinsic::umin, AllCmpSingleUse};
8831 case SPF_SMAX:
8832 return {Intrinsic::smax, AllCmpSingleUse};
8833 case SPF_UMAX:
8834 return {Intrinsic::umax, AllCmpSingleUse};
8835 case SPF_FMAXNUM:
8836 return {Intrinsic::maxnum, AllCmpSingleUse};
8837 case SPF_FMINNUM:
8838 return {Intrinsic::minnum, AllCmpSingleUse};
8839 default:
8840 llvm_unreachable("unexpected select pattern flavor");
8843 return {Intrinsic::not_intrinsic, false};
8846 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
8847 Value *&Start, Value *&Step) {
8848 // Handle the case of a simple two-predecessor recurrence PHI.
8849 // There's a lot more that could theoretically be done here, but
8850 // this is sufficient to catch some interesting cases.
8851 if (P->getNumIncomingValues() != 2)
8852 return false;
8854 for (unsigned i = 0; i != 2; ++i) {
8855 Value *L = P->getIncomingValue(i);
8856 Value *R = P->getIncomingValue(!i);
8857 auto *LU = dyn_cast<BinaryOperator>(L);
8858 if (!LU)
8859 continue;
8860 unsigned Opcode = LU->getOpcode();
8862 switch (Opcode) {
8863 default:
8864 continue;
8865 // TODO: Expand list -- xor, div, gep, uaddo, etc..
8866 case Instruction::LShr:
8867 case Instruction::AShr:
8868 case Instruction::Shl:
8869 case Instruction::Add:
8870 case Instruction::Sub:
8871 case Instruction::And:
8872 case Instruction::Or:
8873 case Instruction::Mul:
8874 case Instruction::FMul: {
8875 Value *LL = LU->getOperand(0);
8876 Value *LR = LU->getOperand(1);
8877 // Find a recurrence.
8878 if (LL == P)
8879 L = LR;
8880 else if (LR == P)
8881 L = LL;
8882 else
8883 continue; // Check for recurrence with L and R flipped.
8885 break; // Match!
8889 // We have matched a recurrence of the form:
8890 // %iv = [R, %entry], [%iv.next, %backedge]
8891 // %iv.next = binop %iv, L
8892 // OR
8893 // %iv = [R, %entry], [%iv.next, %backedge]
8894 // %iv.next = binop L, %iv
8895 BO = LU;
8896 Start = R;
8897 Step = L;
8898 return true;
8900 return false;
8903 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
8904 Value *&Start, Value *&Step) {
8905 BinaryOperator *BO = nullptr;
8906 P = dyn_cast<PHINode>(I->getOperand(0));
8907 if (!P)
8908 P = dyn_cast<PHINode>(I->getOperand(1));
8909 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
8912 /// Return true if "icmp Pred LHS RHS" is always true.
8913 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
8914 const Value *RHS) {
8915 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
8916 return true;
8918 switch (Pred) {
8919 default:
8920 return false;
8922 case CmpInst::ICMP_SLE: {
8923 const APInt *C;
8925 // LHS s<= LHS +_{nsw} C if C >= 0
8926 // LHS s<= LHS | C if C >= 0
8927 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))) ||
8928 match(RHS, m_Or(m_Specific(LHS), m_APInt(C))))
8929 return !C->isNegative();
8931 // LHS s<= smax(LHS, V) for any V
8932 if (match(RHS, m_c_SMax(m_Specific(LHS), m_Value())))
8933 return true;
8935 // smin(RHS, V) s<= RHS for any V
8936 if (match(LHS, m_c_SMin(m_Specific(RHS), m_Value())))
8937 return true;
8939 // Match A to (X +_{nsw} CA) and B to (X +_{nsw} CB)
8940 const Value *X;
8941 const APInt *CLHS, *CRHS;
8942 if (match(LHS, m_NSWAddLike(m_Value(X), m_APInt(CLHS))) &&
8943 match(RHS, m_NSWAddLike(m_Specific(X), m_APInt(CRHS))))
8944 return CLHS->sle(*CRHS);
8946 return false;
8949 case CmpInst::ICMP_ULE: {
8950 // LHS u<= LHS +_{nuw} V for any V
8951 if (match(RHS, m_c_Add(m_Specific(LHS), m_Value())) &&
8952 cast<OverflowingBinaryOperator>(RHS)->hasNoUnsignedWrap())
8953 return true;
8955 // LHS u<= LHS | V for any V
8956 if (match(RHS, m_c_Or(m_Specific(LHS), m_Value())))
8957 return true;
8959 // LHS u<= umax(LHS, V) for any V
8960 if (match(RHS, m_c_UMax(m_Specific(LHS), m_Value())))
8961 return true;
8963 // RHS >> V u<= RHS for any V
8964 if (match(LHS, m_LShr(m_Specific(RHS), m_Value())))
8965 return true;
8967 // RHS u/ C_ugt_1 u<= RHS
8968 const APInt *C;
8969 if (match(LHS, m_UDiv(m_Specific(RHS), m_APInt(C))) && C->ugt(1))
8970 return true;
8972 // RHS & V u<= RHS for any V
8973 if (match(LHS, m_c_And(m_Specific(RHS), m_Value())))
8974 return true;
8976 // umin(RHS, V) u<= RHS for any V
8977 if (match(LHS, m_c_UMin(m_Specific(RHS), m_Value())))
8978 return true;
8980 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
8981 const Value *X;
8982 const APInt *CLHS, *CRHS;
8983 if (match(LHS, m_NUWAddLike(m_Value(X), m_APInt(CLHS))) &&
8984 match(RHS, m_NUWAddLike(m_Specific(X), m_APInt(CRHS))))
8985 return CLHS->ule(*CRHS);
8987 return false;
8992 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
8993 /// ALHS ARHS" is true. Otherwise, return std::nullopt.
8994 static std::optional<bool>
8995 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
8996 const Value *ARHS, const Value *BLHS, const Value *BRHS) {
8997 switch (Pred) {
8998 default:
8999 return std::nullopt;
9001 case CmpInst::ICMP_SLT:
9002 case CmpInst::ICMP_SLE:
9003 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS) &&
9004 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS))
9005 return true;
9006 return std::nullopt;
9008 case CmpInst::ICMP_SGT:
9009 case CmpInst::ICMP_SGE:
9010 if (isTruePredicate(CmpInst::ICMP_SLE, ALHS, BLHS) &&
9011 isTruePredicate(CmpInst::ICMP_SLE, BRHS, ARHS))
9012 return true;
9013 return std::nullopt;
9015 case CmpInst::ICMP_ULT:
9016 case CmpInst::ICMP_ULE:
9017 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS) &&
9018 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS))
9019 return true;
9020 return std::nullopt;
9022 case CmpInst::ICMP_UGT:
9023 case CmpInst::ICMP_UGE:
9024 if (isTruePredicate(CmpInst::ICMP_ULE, ALHS, BLHS) &&
9025 isTruePredicate(CmpInst::ICMP_ULE, BRHS, ARHS))
9026 return true;
9027 return std::nullopt;
9031 /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
9032 /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
9033 /// Otherwise, return std::nullopt if we can't infer anything.
9034 static std::optional<bool>
9035 isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
9036 CmpInst::Predicate RPred) {
9037 if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
9038 return true;
9039 if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
9040 return false;
9042 return std::nullopt;
9045 /// Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
9046 /// Return false if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is false.
9047 /// Otherwise, return std::nullopt if we can't infer anything.
9048 static std::optional<bool> isImpliedCondCommonOperandWithCR(
9049 CmpInst::Predicate LPred, const ConstantRange &LCR,
9050 CmpInst::Predicate RPred, const ConstantRange &RCR) {
9051 ConstantRange DomCR = ConstantRange::makeAllowedICmpRegion(LPred, LCR);
9052 // If all true values for lhs and true for rhs, lhs implies rhs
9053 if (DomCR.icmp(RPred, RCR))
9054 return true;
9056 // If there is no overlap, lhs implies not rhs
9057 if (DomCR.icmp(CmpInst::getInversePredicate(RPred), RCR))
9058 return false;
9059 return std::nullopt;
9062 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
9063 /// is true. Return false if LHS implies RHS is false. Otherwise, return
9064 /// std::nullopt if we can't infer anything.
9065 static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
9066 CmpInst::Predicate RPred,
9067 const Value *R0, const Value *R1,
9068 const DataLayout &DL,
9069 bool LHSIsTrue) {
9070 Value *L0 = LHS->getOperand(0);
9071 Value *L1 = LHS->getOperand(1);
9073 // The rest of the logic assumes the LHS condition is true. If that's not the
9074 // case, invert the predicate to make it so.
9075 CmpInst::Predicate LPred =
9076 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
9078 // We can have non-canonical operands, so try to normalize any common operand
9079 // to L0/R0.
9080 if (L0 == R1) {
9081 std::swap(R0, R1);
9082 RPred = ICmpInst::getSwappedPredicate(RPred);
9084 if (R0 == L1) {
9085 std::swap(L0, L1);
9086 LPred = ICmpInst::getSwappedPredicate(LPred);
9088 if (L1 == R1) {
9089 // If we have L0 == R0 and L1 == R1, then make L1/R1 the constants.
9090 if (L0 != R0 || match(L0, m_ImmConstant())) {
9091 std::swap(L0, L1);
9092 LPred = ICmpInst::getSwappedPredicate(LPred);
9093 std::swap(R0, R1);
9094 RPred = ICmpInst::getSwappedPredicate(RPred);
9098 // See if we can infer anything if operand-0 matches and we have at least one
9099 // constant.
9100 const APInt *Unused;
9101 if (L0 == R0 && (match(L1, m_APInt(Unused)) || match(R1, m_APInt(Unused)))) {
9102 // Potential TODO: We could also further use the constant range of L0/R0 to
9103 // further constraint the constant ranges. At the moment this leads to
9104 // several regressions related to not transforming `multi_use(A + C0) eq/ne
9105 // C1` (see discussion: D58633).
9106 ConstantRange LCR = computeConstantRange(
9107 L1, ICmpInst::isSigned(LPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9108 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9109 ConstantRange RCR = computeConstantRange(
9110 R1, ICmpInst::isSigned(RPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9111 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9112 // Even if L1/R1 are not both constant, we can still sometimes deduce
9113 // relationship from a single constant. For example X u> Y implies X != 0.
9114 if (auto R = isImpliedCondCommonOperandWithCR(LPred, LCR, RPred, RCR))
9115 return R;
9116 // If both L1/R1 were exact constant ranges and we didn't get anything
9117 // here, we won't be able to deduce this.
9118 if (match(L1, m_APInt(Unused)) && match(R1, m_APInt(Unused)))
9119 return std::nullopt;
9122 // Can we infer anything when the two compares have matching operands?
9123 if (L0 == R0 && L1 == R1)
9124 return isImpliedCondMatchingOperands(LPred, RPred);
9126 // L0 = R0 = L1 + R1, L0 >=u L1 implies R0 >=u R1, L0 <u L1 implies R0 <u R1
9127 if (L0 == R0 &&
9128 (LPred == ICmpInst::ICMP_ULT || LPred == ICmpInst::ICMP_UGE) &&
9129 (RPred == ICmpInst::ICMP_ULT || RPred == ICmpInst::ICMP_UGE) &&
9130 match(L0, m_c_Add(m_Specific(L1), m_Specific(R1))))
9131 return LPred == RPred;
9133 if (LPred == RPred)
9134 return isImpliedCondOperands(LPred, L0, L1, R0, R1);
9136 return std::nullopt;
9139 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
9140 /// false. Otherwise, return std::nullopt if we can't infer anything. We
9141 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
9142 /// instruction.
9143 static std::optional<bool>
9144 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
9145 const Value *RHSOp0, const Value *RHSOp1,
9146 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9147 // The LHS must be an 'or', 'and', or a 'select' instruction.
9148 assert((LHS->getOpcode() == Instruction::And ||
9149 LHS->getOpcode() == Instruction::Or ||
9150 LHS->getOpcode() == Instruction::Select) &&
9151 "Expected LHS to be 'and', 'or', or 'select'.");
9153 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
9155 // If the result of an 'or' is false, then we know both legs of the 'or' are
9156 // false. Similarly, if the result of an 'and' is true, then we know both
9157 // legs of the 'and' are true.
9158 const Value *ALHS, *ARHS;
9159 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
9160 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
9161 // FIXME: Make this non-recursion.
9162 if (std::optional<bool> Implication = isImpliedCondition(
9163 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9164 return Implication;
9165 if (std::optional<bool> Implication = isImpliedCondition(
9166 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9167 return Implication;
9168 return std::nullopt;
9170 return std::nullopt;
9173 std::optional<bool>
9174 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
9175 const Value *RHSOp0, const Value *RHSOp1,
9176 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9177 // Bail out when we hit the limit.
9178 if (Depth == MaxAnalysisRecursionDepth)
9179 return std::nullopt;
9181 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
9182 // example.
9183 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
9184 return std::nullopt;
9186 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9187 "Expected integer type only!");
9189 // Match not
9190 if (match(LHS, m_Not(m_Value(LHS))))
9191 LHSIsTrue = !LHSIsTrue;
9193 // Both LHS and RHS are icmps.
9194 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
9195 if (LHSCmp)
9196 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue);
9198 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
9199 /// the RHS to be an icmp.
9200 /// FIXME: Add support for and/or/select on the RHS.
9201 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
9202 if ((LHSI->getOpcode() == Instruction::And ||
9203 LHSI->getOpcode() == Instruction::Or ||
9204 LHSI->getOpcode() == Instruction::Select))
9205 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
9206 Depth);
9208 return std::nullopt;
9211 std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
9212 const DataLayout &DL,
9213 bool LHSIsTrue, unsigned Depth) {
9214 // LHS ==> RHS by definition
9215 if (LHS == RHS)
9216 return LHSIsTrue;
9218 // Match not
9219 bool InvertRHS = false;
9220 if (match(RHS, m_Not(m_Value(RHS)))) {
9221 if (LHS == RHS)
9222 return !LHSIsTrue;
9223 InvertRHS = true;
9226 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) {
9227 if (auto Implied = isImpliedCondition(
9228 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9229 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9230 return InvertRHS ? !*Implied : *Implied;
9231 return std::nullopt;
9234 if (Depth == MaxAnalysisRecursionDepth)
9235 return std::nullopt;
9237 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
9238 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
9239 const Value *RHS1, *RHS2;
9240 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
9241 if (std::optional<bool> Imp =
9242 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9243 if (*Imp == true)
9244 return !InvertRHS;
9245 if (std::optional<bool> Imp =
9246 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9247 if (*Imp == true)
9248 return !InvertRHS;
9250 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
9251 if (std::optional<bool> Imp =
9252 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9253 if (*Imp == false)
9254 return InvertRHS;
9255 if (std::optional<bool> Imp =
9256 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9257 if (*Imp == false)
9258 return InvertRHS;
9261 return std::nullopt;
9264 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
9265 // condition dominating ContextI or nullptr, if no condition is found.
9266 static std::pair<Value *, bool>
9267 getDomPredecessorCondition(const Instruction *ContextI) {
9268 if (!ContextI || !ContextI->getParent())
9269 return {nullptr, false};
9271 // TODO: This is a poor/cheap way to determine dominance. Should we use a
9272 // dominator tree (eg, from a SimplifyQuery) instead?
9273 const BasicBlock *ContextBB = ContextI->getParent();
9274 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
9275 if (!PredBB)
9276 return {nullptr, false};
9278 // We need a conditional branch in the predecessor.
9279 Value *PredCond;
9280 BasicBlock *TrueBB, *FalseBB;
9281 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
9282 return {nullptr, false};
9284 // The branch should get simplified. Don't bother simplifying this condition.
9285 if (TrueBB == FalseBB)
9286 return {nullptr, false};
9288 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9289 "Predecessor block does not point to successor?");
9291 // Is this condition implied by the predecessor condition?
9292 return {PredCond, TrueBB == ContextBB};
9295 std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
9296 const Instruction *ContextI,
9297 const DataLayout &DL) {
9298 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
9299 auto PredCond = getDomPredecessorCondition(ContextI);
9300 if (PredCond.first)
9301 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
9302 return std::nullopt;
9305 std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
9306 const Value *LHS,
9307 const Value *RHS,
9308 const Instruction *ContextI,
9309 const DataLayout &DL) {
9310 auto PredCond = getDomPredecessorCondition(ContextI);
9311 if (PredCond.first)
9312 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
9313 PredCond.second);
9314 return std::nullopt;
9317 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
9318 APInt &Upper, const InstrInfoQuery &IIQ,
9319 bool PreferSignedRange) {
9320 unsigned Width = Lower.getBitWidth();
9321 const APInt *C;
9322 switch (BO.getOpcode()) {
9323 case Instruction::Add:
9324 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
9325 bool HasNSW = IIQ.hasNoSignedWrap(&BO);
9326 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
9328 // If the caller expects a signed compare, then try to use a signed range.
9329 // Otherwise if both no-wraps are set, use the unsigned range because it
9330 // is never larger than the signed range. Example:
9331 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
9332 if (PreferSignedRange && HasNSW && HasNUW)
9333 HasNUW = false;
9335 if (HasNUW) {
9336 // 'add nuw x, C' produces [C, UINT_MAX].
9337 Lower = *C;
9338 } else if (HasNSW) {
9339 if (C->isNegative()) {
9340 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
9341 Lower = APInt::getSignedMinValue(Width);
9342 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
9343 } else {
9344 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
9345 Lower = APInt::getSignedMinValue(Width) + *C;
9346 Upper = APInt::getSignedMaxValue(Width) + 1;
9350 break;
9352 case Instruction::And:
9353 if (match(BO.getOperand(1), m_APInt(C)))
9354 // 'and x, C' produces [0, C].
9355 Upper = *C + 1;
9356 // X & -X is a power of two or zero. So we can cap the value at max power of
9357 // two.
9358 if (match(BO.getOperand(0), m_Neg(m_Specific(BO.getOperand(1)))) ||
9359 match(BO.getOperand(1), m_Neg(m_Specific(BO.getOperand(0)))))
9360 Upper = APInt::getSignedMinValue(Width) + 1;
9361 break;
9363 case Instruction::Or:
9364 if (match(BO.getOperand(1), m_APInt(C)))
9365 // 'or x, C' produces [C, UINT_MAX].
9366 Lower = *C;
9367 break;
9369 case Instruction::AShr:
9370 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9371 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
9372 Lower = APInt::getSignedMinValue(Width).ashr(*C);
9373 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
9374 } else if (match(BO.getOperand(0), m_APInt(C))) {
9375 unsigned ShiftAmount = Width - 1;
9376 if (!C->isZero() && IIQ.isExact(&BO))
9377 ShiftAmount = C->countr_zero();
9378 if (C->isNegative()) {
9379 // 'ashr C, x' produces [C, C >> (Width-1)]
9380 Lower = *C;
9381 Upper = C->ashr(ShiftAmount) + 1;
9382 } else {
9383 // 'ashr C, x' produces [C >> (Width-1), C]
9384 Lower = C->ashr(ShiftAmount);
9385 Upper = *C + 1;
9388 break;
9390 case Instruction::LShr:
9391 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9392 // 'lshr x, C' produces [0, UINT_MAX >> C].
9393 Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
9394 } else if (match(BO.getOperand(0), m_APInt(C))) {
9395 // 'lshr C, x' produces [C >> (Width-1), C].
9396 unsigned ShiftAmount = Width - 1;
9397 if (!C->isZero() && IIQ.isExact(&BO))
9398 ShiftAmount = C->countr_zero();
9399 Lower = C->lshr(ShiftAmount);
9400 Upper = *C + 1;
9402 break;
9404 case Instruction::Shl:
9405 if (match(BO.getOperand(0), m_APInt(C))) {
9406 if (IIQ.hasNoUnsignedWrap(&BO)) {
9407 // 'shl nuw C, x' produces [C, C << CLZ(C)]
9408 Lower = *C;
9409 Upper = Lower.shl(Lower.countl_zero()) + 1;
9410 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
9411 if (C->isNegative()) {
9412 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
9413 unsigned ShiftAmount = C->countl_one() - 1;
9414 Lower = C->shl(ShiftAmount);
9415 Upper = *C + 1;
9416 } else {
9417 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
9418 unsigned ShiftAmount = C->countl_zero() - 1;
9419 Lower = *C;
9420 Upper = C->shl(ShiftAmount) + 1;
9422 } else {
9423 // If lowbit is set, value can never be zero.
9424 if ((*C)[0])
9425 Lower = APInt::getOneBitSet(Width, 0);
9426 // If we are shifting a constant the largest it can be is if the longest
9427 // sequence of consecutive ones is shifted to the highbits (breaking
9428 // ties for which sequence is higher). At the moment we take a liberal
9429 // upper bound on this by just popcounting the constant.
9430 // TODO: There may be a bitwise trick for it longest/highest
9431 // consecutative sequence of ones (naive method is O(Width) loop).
9432 Upper = APInt::getHighBitsSet(Width, C->popcount()) + 1;
9434 } else if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9435 Upper = APInt::getBitsSetFrom(Width, C->getZExtValue()) + 1;
9437 break;
9439 case Instruction::SDiv:
9440 if (match(BO.getOperand(1), m_APInt(C))) {
9441 APInt IntMin = APInt::getSignedMinValue(Width);
9442 APInt IntMax = APInt::getSignedMaxValue(Width);
9443 if (C->isAllOnes()) {
9444 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
9445 // where C != -1 and C != 0 and C != 1
9446 Lower = IntMin + 1;
9447 Upper = IntMax + 1;
9448 } else if (C->countl_zero() < Width - 1) {
9449 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
9450 // where C != -1 and C != 0 and C != 1
9451 Lower = IntMin.sdiv(*C);
9452 Upper = IntMax.sdiv(*C);
9453 if (Lower.sgt(Upper))
9454 std::swap(Lower, Upper);
9455 Upper = Upper + 1;
9456 assert(Upper != Lower && "Upper part of range has wrapped!");
9458 } else if (match(BO.getOperand(0), m_APInt(C))) {
9459 if (C->isMinSignedValue()) {
9460 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
9461 Lower = *C;
9462 Upper = Lower.lshr(1) + 1;
9463 } else {
9464 // 'sdiv C, x' produces [-|C|, |C|].
9465 Upper = C->abs() + 1;
9466 Lower = (-Upper) + 1;
9469 break;
9471 case Instruction::UDiv:
9472 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
9473 // 'udiv x, C' produces [0, UINT_MAX / C].
9474 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
9475 } else if (match(BO.getOperand(0), m_APInt(C))) {
9476 // 'udiv C, x' produces [0, C].
9477 Upper = *C + 1;
9479 break;
9481 case Instruction::SRem:
9482 if (match(BO.getOperand(1), m_APInt(C))) {
9483 // 'srem x, C' produces (-|C|, |C|).
9484 Upper = C->abs();
9485 Lower = (-Upper) + 1;
9486 } else if (match(BO.getOperand(0), m_APInt(C))) {
9487 if (C->isNegative()) {
9488 // 'srem -|C|, x' produces [-|C|, 0].
9489 Upper = 1;
9490 Lower = *C;
9491 } else {
9492 // 'srem |C|, x' produces [0, |C|].
9493 Upper = *C + 1;
9496 break;
9498 case Instruction::URem:
9499 if (match(BO.getOperand(1), m_APInt(C)))
9500 // 'urem x, C' produces [0, C).
9501 Upper = *C;
9502 else if (match(BO.getOperand(0), m_APInt(C)))
9503 // 'urem C, x' produces [0, C].
9504 Upper = *C + 1;
9505 break;
9507 default:
9508 break;
9512 static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II) {
9513 unsigned Width = II.getType()->getScalarSizeInBits();
9514 const APInt *C;
9515 switch (II.getIntrinsicID()) {
9516 case Intrinsic::ctpop:
9517 case Intrinsic::ctlz:
9518 case Intrinsic::cttz:
9519 // Maximum of set/clear bits is the bit width.
9520 return ConstantRange::getNonEmpty(APInt::getZero(Width),
9521 APInt(Width, Width + 1));
9522 case Intrinsic::uadd_sat:
9523 // uadd.sat(x, C) produces [C, UINT_MAX].
9524 if (match(II.getOperand(0), m_APInt(C)) ||
9525 match(II.getOperand(1), m_APInt(C)))
9526 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
9527 break;
9528 case Intrinsic::sadd_sat:
9529 if (match(II.getOperand(0), m_APInt(C)) ||
9530 match(II.getOperand(1), m_APInt(C))) {
9531 if (C->isNegative())
9532 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
9533 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9534 APInt::getSignedMaxValue(Width) + *C +
9537 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
9538 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) + *C,
9539 APInt::getSignedMaxValue(Width) + 1);
9541 break;
9542 case Intrinsic::usub_sat:
9543 // usub.sat(C, x) produces [0, C].
9544 if (match(II.getOperand(0), m_APInt(C)))
9545 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
9547 // usub.sat(x, C) produces [0, UINT_MAX - C].
9548 if (match(II.getOperand(1), m_APInt(C)))
9549 return ConstantRange::getNonEmpty(APInt::getZero(Width),
9550 APInt::getMaxValue(Width) - *C + 1);
9551 break;
9552 case Intrinsic::ssub_sat:
9553 if (match(II.getOperand(0), m_APInt(C))) {
9554 if (C->isNegative())
9555 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
9556 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9557 *C - APInt::getSignedMinValue(Width) +
9560 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
9561 return ConstantRange::getNonEmpty(*C - APInt::getSignedMaxValue(Width),
9562 APInt::getSignedMaxValue(Width) + 1);
9563 } else if (match(II.getOperand(1), m_APInt(C))) {
9564 if (C->isNegative())
9565 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
9566 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) - *C,
9567 APInt::getSignedMaxValue(Width) + 1);
9569 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
9570 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9571 APInt::getSignedMaxValue(Width) - *C +
9574 break;
9575 case Intrinsic::umin:
9576 case Intrinsic::umax:
9577 case Intrinsic::smin:
9578 case Intrinsic::smax:
9579 if (!match(II.getOperand(0), m_APInt(C)) &&
9580 !match(II.getOperand(1), m_APInt(C)))
9581 break;
9583 switch (II.getIntrinsicID()) {
9584 case Intrinsic::umin:
9585 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
9586 case Intrinsic::umax:
9587 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
9588 case Intrinsic::smin:
9589 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9590 *C + 1);
9591 case Intrinsic::smax:
9592 return ConstantRange::getNonEmpty(*C,
9593 APInt::getSignedMaxValue(Width) + 1);
9594 default:
9595 llvm_unreachable("Must be min/max intrinsic");
9597 break;
9598 case Intrinsic::abs:
9599 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
9600 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
9601 if (match(II.getOperand(1), m_One()))
9602 return ConstantRange::getNonEmpty(APInt::getZero(Width),
9603 APInt::getSignedMaxValue(Width) + 1);
9605 return ConstantRange::getNonEmpty(APInt::getZero(Width),
9606 APInt::getSignedMinValue(Width) + 1);
9607 case Intrinsic::vscale:
9608 if (!II.getParent() || !II.getFunction())
9609 break;
9610 return getVScaleRange(II.getFunction(), Width);
9611 case Intrinsic::scmp:
9612 case Intrinsic::ucmp:
9613 return ConstantRange::getNonEmpty(APInt::getAllOnes(Width),
9614 APInt(Width, 2));
9615 default:
9616 break;
9619 return ConstantRange::getFull(Width);
9622 static ConstantRange getRangeForSelectPattern(const SelectInst &SI,
9623 const InstrInfoQuery &IIQ) {
9624 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
9625 const Value *LHS = nullptr, *RHS = nullptr;
9626 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
9627 if (R.Flavor == SPF_UNKNOWN)
9628 return ConstantRange::getFull(BitWidth);
9630 if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
9631 // If the negation part of the abs (in RHS) has the NSW flag,
9632 // then the result of abs(X) is [0..SIGNED_MAX],
9633 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
9634 if (match(RHS, m_Neg(m_Specific(LHS))) &&
9635 IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
9636 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
9637 APInt::getSignedMaxValue(BitWidth) + 1);
9639 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
9640 APInt::getSignedMinValue(BitWidth) + 1);
9643 if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
9644 // The result of -abs(X) is <= 0.
9645 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
9646 APInt(BitWidth, 1));
9649 const APInt *C;
9650 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
9651 return ConstantRange::getFull(BitWidth);
9653 switch (R.Flavor) {
9654 case SPF_UMIN:
9655 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), *C + 1);
9656 case SPF_UMAX:
9657 return ConstantRange::getNonEmpty(*C, APInt::getZero(BitWidth));
9658 case SPF_SMIN:
9659 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
9660 *C + 1);
9661 case SPF_SMAX:
9662 return ConstantRange::getNonEmpty(*C,
9663 APInt::getSignedMaxValue(BitWidth) + 1);
9664 default:
9665 return ConstantRange::getFull(BitWidth);
9669 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
9670 // The maximum representable value of a half is 65504. For floats the maximum
9671 // value is 3.4e38 which requires roughly 129 bits.
9672 unsigned BitWidth = I->getType()->getScalarSizeInBits();
9673 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
9674 return;
9675 if (isa<FPToSIInst>(I) && BitWidth >= 17) {
9676 Lower = APInt(BitWidth, -65504);
9677 Upper = APInt(BitWidth, 65505);
9680 if (isa<FPToUIInst>(I) && BitWidth >= 16) {
9681 // For a fptoui the lower limit is left as 0.
9682 Upper = APInt(BitWidth, 65505);
9686 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
9687 bool UseInstrInfo, AssumptionCache *AC,
9688 const Instruction *CtxI,
9689 const DominatorTree *DT,
9690 unsigned Depth) {
9691 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
9693 if (Depth == MaxAnalysisRecursionDepth)
9694 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
9696 if (auto *C = dyn_cast<Constant>(V))
9697 return C->toConstantRange();
9699 unsigned BitWidth = V->getType()->getScalarSizeInBits();
9700 InstrInfoQuery IIQ(UseInstrInfo);
9701 ConstantRange CR = ConstantRange::getFull(BitWidth);
9702 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
9703 APInt Lower = APInt(BitWidth, 0);
9704 APInt Upper = APInt(BitWidth, 0);
9705 // TODO: Return ConstantRange.
9706 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
9707 CR = ConstantRange::getNonEmpty(Lower, Upper);
9708 } else if (auto *II = dyn_cast<IntrinsicInst>(V))
9709 CR = getRangeForIntrinsic(*II);
9710 else if (auto *SI = dyn_cast<SelectInst>(V)) {
9711 ConstantRange CRTrue = computeConstantRange(
9712 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
9713 ConstantRange CRFalse = computeConstantRange(
9714 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
9715 CR = CRTrue.unionWith(CRFalse);
9716 CR = CR.intersectWith(getRangeForSelectPattern(*SI, IIQ));
9717 } else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) {
9718 APInt Lower = APInt(BitWidth, 0);
9719 APInt Upper = APInt(BitWidth, 0);
9720 // TODO: Return ConstantRange.
9721 setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
9722 CR = ConstantRange::getNonEmpty(Lower, Upper);
9723 } else if (const auto *A = dyn_cast<Argument>(V))
9724 if (std::optional<ConstantRange> Range = A->getRange())
9725 CR = *Range;
9727 if (auto *I = dyn_cast<Instruction>(V)) {
9728 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
9729 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
9731 if (const auto *CB = dyn_cast<CallBase>(V))
9732 if (std::optional<ConstantRange> Range = CB->getRange())
9733 CR = CR.intersectWith(*Range);
9736 if (CtxI && AC) {
9737 // Try to restrict the range based on information from assumptions.
9738 for (auto &AssumeVH : AC->assumptionsFor(V)) {
9739 if (!AssumeVH)
9740 continue;
9741 CallInst *I = cast<CallInst>(AssumeVH);
9742 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
9743 "Got assumption for the wrong function!");
9744 assert(I->getIntrinsicID() == Intrinsic::assume &&
9745 "must be an assume intrinsic");
9747 if (!isValidAssumeForContext(I, CtxI, DT))
9748 continue;
9749 Value *Arg = I->getArgOperand(0);
9750 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
9751 // Currently we just use information from comparisons.
9752 if (!Cmp || Cmp->getOperand(0) != V)
9753 continue;
9754 // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
9755 ConstantRange RHS =
9756 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
9757 UseInstrInfo, AC, I, DT, Depth + 1);
9758 CR = CR.intersectWith(
9759 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
9763 return CR;
9766 static void
9767 addValueAffectedByCondition(Value *V,
9768 function_ref<void(Value *)> InsertAffected) {
9769 assert(V != nullptr);
9770 if (isa<Argument>(V) || isa<GlobalValue>(V)) {
9771 InsertAffected(V);
9772 } else if (auto *I = dyn_cast<Instruction>(V)) {
9773 InsertAffected(V);
9775 // Peek through unary operators to find the source of the condition.
9776 Value *Op;
9777 if (match(I, m_CombineOr(m_PtrToInt(m_Value(Op)), m_Trunc(m_Value(Op))))) {
9778 if (isa<Instruction>(Op) || isa<Argument>(Op))
9779 InsertAffected(Op);
9784 void llvm::findValuesAffectedByCondition(
9785 Value *Cond, bool IsAssume, function_ref<void(Value *)> InsertAffected) {
9786 auto AddAffected = [&InsertAffected](Value *V) {
9787 addValueAffectedByCondition(V, InsertAffected);
9790 auto AddCmpOperands = [&AddAffected, IsAssume](Value *LHS, Value *RHS) {
9791 if (IsAssume) {
9792 AddAffected(LHS);
9793 AddAffected(RHS);
9794 } else if (match(RHS, m_Constant()))
9795 AddAffected(LHS);
9798 SmallVector<Value *, 8> Worklist;
9799 SmallPtrSet<Value *, 8> Visited;
9800 Worklist.push_back(Cond);
9801 while (!Worklist.empty()) {
9802 Value *V = Worklist.pop_back_val();
9803 if (!Visited.insert(V).second)
9804 continue;
9806 CmpInst::Predicate Pred;
9807 Value *A, *B, *X;
9809 if (IsAssume) {
9810 AddAffected(V);
9811 if (match(V, m_Not(m_Value(X))))
9812 AddAffected(X);
9815 if (match(V, m_LogicalOp(m_Value(A), m_Value(B)))) {
9816 // assume(A && B) is split to -> assume(A); assume(B);
9817 // assume(!(A || B)) is split to -> assume(!A); assume(!B);
9818 // Finally, assume(A || B) / assume(!(A && B)) generally don't provide
9819 // enough information to be worth handling (intersection of information as
9820 // opposed to union).
9821 if (!IsAssume) {
9822 Worklist.push_back(A);
9823 Worklist.push_back(B);
9825 } else if (match(V, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
9826 AddCmpOperands(A, B);
9828 if (ICmpInst::isEquality(Pred)) {
9829 if (match(B, m_ConstantInt())) {
9830 Value *Y;
9831 // (X & C) or (X | C) or (X ^ C).
9832 // (X << C) or (X >>_s C) or (X >>_u C).
9833 if (match(A, m_BitwiseLogic(m_Value(X), m_ConstantInt())) ||
9834 match(A, m_Shift(m_Value(X), m_ConstantInt())))
9835 AddAffected(X);
9836 else if (match(A, m_And(m_Value(X), m_Value(Y))) ||
9837 match(A, m_Or(m_Value(X), m_Value(Y)))) {
9838 AddAffected(X);
9839 AddAffected(Y);
9842 } else {
9843 if (match(B, m_ConstantInt())) {
9844 // Handle (A + C1) u< C2, which is the canonical form of
9845 // A > C3 && A < C4.
9846 if (match(A, m_AddLike(m_Value(X), m_ConstantInt())))
9847 AddAffected(X);
9849 if (ICmpInst::isUnsigned(Pred)) {
9850 Value *Y;
9851 // X & Y u> C -> X >u C && Y >u C
9852 // X | Y u< C -> X u< C && Y u< C
9853 // X nuw+ Y u< C -> X u< C && Y u< C
9854 if (match(A, m_And(m_Value(X), m_Value(Y))) ||
9855 match(A, m_Or(m_Value(X), m_Value(Y))) ||
9856 match(A, m_NUWAdd(m_Value(X), m_Value(Y)))) {
9857 AddAffected(X);
9858 AddAffected(Y);
9860 // X nuw- Y u> C -> X u> C
9861 if (match(A, m_NUWSub(m_Value(X), m_Value())))
9862 AddAffected(X);
9866 // Handle icmp slt/sgt (bitcast X to int), 0/-1, which is supported
9867 // by computeKnownFPClass().
9868 if (match(A, m_ElementWiseBitCast(m_Value(X)))) {
9869 if (Pred == ICmpInst::ICMP_SLT && match(B, m_Zero()))
9870 InsertAffected(X);
9871 else if (Pred == ICmpInst::ICMP_SGT && match(B, m_AllOnes()))
9872 InsertAffected(X);
9875 } else if (match(Cond, m_FCmp(Pred, m_Value(A), m_Value(B)))) {
9876 AddCmpOperands(A, B);
9878 // fcmp fneg(x), y
9879 // fcmp fabs(x), y
9880 // fcmp fneg(fabs(x)), y
9881 if (match(A, m_FNeg(m_Value(A))))
9882 AddAffected(A);
9883 if (match(A, m_FAbs(m_Value(A))))
9884 AddAffected(A);
9886 } else if (match(V, m_Intrinsic<Intrinsic::is_fpclass>(m_Value(A),
9887 m_Value()))) {
9888 // Handle patterns that computeKnownFPClass() support.
9889 AddAffected(A);