Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / CodeGen / LiveRangeEdit.cpp
blob7b7b5459ad7b2c16c4d2aba6ff63879d34468c38
1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "regalloc"
27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
30 STATISTIC(NumReMaterialization, "Number of instructions rematerialized");
32 void LiveRangeEdit::Delegate::anchor() { }
34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
35 bool createSubRanges) {
36 Register VReg = MRI.cloneVirtualRegister(OldReg);
37 if (VRM)
38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
40 LiveInterval &LI = LIS.createEmptyInterval(VReg);
41 if (Parent && !Parent->isSpillable())
42 LI.markNotSpillable();
43 if (createSubRanges) {
44 // Create empty subranges if the OldReg's interval has them. Do not create
45 // the main range here---it will be constructed later after the subranges
46 // have been finalized.
47 LiveInterval &OldLI = LIS.getInterval(OldReg);
48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
49 for (LiveInterval::SubRange &S : OldLI.subranges())
50 LI.createSubRange(Alloc, S.LaneMask);
52 return LI;
55 Register LiveRangeEdit::createFrom(Register OldReg) {
56 Register VReg = MRI.cloneVirtualRegister(OldReg);
57 if (VRM) {
58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
60 // FIXME: Getting the interval here actually computes it.
61 // In theory, this may not be what we want, but in practice
62 // the createEmptyIntervalFrom API is used when this is not
63 // the case. Generally speaking we just want to annotate the
64 // LiveInterval when it gets created but we cannot do that at
65 // the moment.
66 if (Parent && !Parent->isSpillable())
67 LIS.getInterval(VReg).markNotSpillable();
68 return VReg;
71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
72 const MachineInstr *DefMI) {
73 assert(DefMI && "Missing instruction");
74 ScannedRemattable = true;
75 if (!TII.isTriviallyReMaterializable(*DefMI))
76 return false;
77 Remattable.insert(VNI);
78 return true;
81 void LiveRangeEdit::scanRemattable() {
82 for (VNInfo *VNI : getParent().valnos) {
83 if (VNI->isUnused())
84 continue;
85 Register Original = VRM->getOriginal(getReg());
86 LiveInterval &OrigLI = LIS.getInterval(Original);
87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88 if (!OrigVNI)
89 continue;
90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
91 if (!DefMI)
92 continue;
93 checkRematerializable(OrigVNI, DefMI);
95 ScannedRemattable = true;
98 bool LiveRangeEdit::anyRematerializable() {
99 if (!ScannedRemattable)
100 scanRemattable();
101 return !Remattable.empty();
104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
105 /// OrigIdx are also available with the same value at UseIdx.
106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
107 SlotIndex OrigIdx,
108 SlotIndex UseIdx) const {
109 OrigIdx = OrigIdx.getRegSlot(true);
110 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true));
111 for (const MachineOperand &MO : OrigMI->operands()) {
112 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
113 continue;
115 // We can't remat physreg uses, unless it is a constant or target wants
116 // to ignore this use.
117 if (MO.getReg().isPhysical()) {
118 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO))
119 continue;
120 return false;
123 LiveInterval &li = LIS.getInterval(MO.getReg());
124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
125 if (!OVNI)
126 continue;
128 // Don't allow rematerialization immediately after the original def.
129 // It would be incorrect if OrigMI redefines the register.
130 // See PR14098.
131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
132 return false;
134 if (OVNI != li.getVNInfoAt(UseIdx))
135 return false;
137 // Check that subrange is live at UseIdx.
138 if (li.hasSubRanges()) {
139 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
140 unsigned SubReg = MO.getSubReg();
141 LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
142 : MRI.getMaxLaneMaskForVReg(MO.getReg());
143 for (LiveInterval::SubRange &SR : li.subranges()) {
144 if ((SR.LaneMask & LM).none())
145 continue;
146 if (!SR.liveAt(UseIdx))
147 return false;
148 // Early exit if all used lanes are checked. No need to continue.
149 LM &= ~SR.LaneMask;
150 if (LM.none())
151 break;
155 return true;
158 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
159 SlotIndex UseIdx, bool cheapAsAMove) {
160 assert(ScannedRemattable && "Call anyRematerializable first");
162 // Use scanRemattable info.
163 if (!Remattable.count(OrigVNI))
164 return false;
166 // No defining instruction provided.
167 SlotIndex DefIdx;
168 assert(RM.OrigMI && "No defining instruction for remattable value");
169 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
171 // If only cheap remats were requested, bail out early.
172 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
173 return false;
175 // Verify that all used registers are available with the same values.
176 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
177 return false;
179 return true;
182 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
183 MachineBasicBlock::iterator MI,
184 Register DestReg, const Remat &RM,
185 const TargetRegisterInfo &tri,
186 bool Late, unsigned SubIdx,
187 MachineInstr *ReplaceIndexMI) {
188 assert(RM.OrigMI && "Invalid remat");
189 TII.reMaterialize(MBB, MI, DestReg, SubIdx, *RM.OrigMI, tri);
190 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
191 // to false anyway in case the isDead flag of RM.OrigMI's dest register
192 // is true.
193 (*--MI).clearRegisterDeads(DestReg);
194 Rematted.insert(RM.ParentVNI);
195 ++NumReMaterialization;
197 if (ReplaceIndexMI)
198 return LIS.ReplaceMachineInstrInMaps(*ReplaceIndexMI, *MI).getRegSlot();
199 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
202 void LiveRangeEdit::eraseVirtReg(Register Reg) {
203 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
204 LIS.removeInterval(Reg);
207 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
208 SmallVectorImpl<MachineInstr*> &Dead) {
209 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
211 // Check that there is a single def and a single use.
212 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
213 MachineInstr *MI = MO.getParent();
214 if (MO.isDef()) {
215 if (DefMI && DefMI != MI)
216 return false;
217 if (!MI->canFoldAsLoad())
218 return false;
219 DefMI = MI;
220 } else if (!MO.isUndef()) {
221 if (UseMI && UseMI != MI)
222 return false;
223 // FIXME: Targets don't know how to fold subreg uses.
224 if (MO.getSubReg())
225 return false;
226 UseMI = MI;
229 if (!DefMI || !UseMI)
230 return false;
232 // Since we're moving the DefMI load, make sure we're not extending any live
233 // ranges.
234 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
235 LIS.getInstructionIndex(*UseMI)))
236 return false;
238 // We also need to make sure it is safe to move the load.
239 // Assume there are stores between DefMI and UseMI.
240 bool SawStore = true;
241 if (!DefMI->isSafeToMove(nullptr, SawStore))
242 return false;
244 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
245 << " into single use: " << *UseMI);
247 SmallVector<unsigned, 8> Ops;
248 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
249 return false;
251 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
252 if (!FoldMI)
253 return false;
254 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
255 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
256 // Update the call site info.
257 if (UseMI->shouldUpdateCallSiteInfo())
258 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
259 UseMI->eraseFromParent();
260 DefMI->addRegisterDead(LI->reg(), nullptr);
261 Dead.push_back(DefMI);
262 ++NumDCEFoldedLoads;
263 return true;
266 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
267 const MachineOperand &MO) const {
268 const MachineInstr &MI = *MO.getParent();
269 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
270 if (LI.Query(Idx).isKill())
271 return true;
272 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
273 unsigned SubReg = MO.getSubReg();
274 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
275 for (const LiveInterval::SubRange &S : LI.subranges()) {
276 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
277 return true;
279 return false;
282 /// Find all live intervals that need to shrink, then remove the instruction.
283 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
284 assert(MI->allDefsAreDead() && "Def isn't really dead");
285 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
287 // Never delete a bundled instruction.
288 if (MI->isBundled()) {
289 // TODO: Handle deleting copy bundles
290 LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t'
291 << *MI);
292 return;
295 // Never delete inline asm.
296 if (MI->isInlineAsm()) {
297 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
298 return;
301 // Use the same criteria as DeadMachineInstructionElim.
302 bool SawStore = false;
303 if (!MI->isSafeToMove(nullptr, SawStore)) {
304 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
305 return;
308 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
310 // Collect virtual registers to be erased after MI is gone.
311 SmallVector<Register, 8> RegsToErase;
312 bool ReadsPhysRegs = false;
313 bool isOrigDef = false;
314 Register Dest;
315 unsigned DestSubReg;
316 // Only optimize rematerialize case when the instruction has one def, since
317 // otherwise we could leave some dead defs in the code. This case is
318 // extremely rare.
319 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
320 MI->getDesc().getNumDefs() == 1) {
321 Dest = MI->getOperand(0).getReg();
322 DestSubReg = MI->getOperand(0).getSubReg();
323 Register Original = VRM->getOriginal(Dest);
324 LiveInterval &OrigLI = LIS.getInterval(Original);
325 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
326 // The original live-range may have been shrunk to
327 // an empty live-range. It happens when it is dead, but
328 // we still keep it around to be able to rematerialize
329 // other values that depend on it.
330 if (OrigVNI)
331 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
334 bool HasLiveVRegUses = false;
336 // Check for live intervals that may shrink
337 for (const MachineOperand &MO : MI->operands()) {
338 if (!MO.isReg())
339 continue;
340 Register Reg = MO.getReg();
341 if (!Reg.isVirtual()) {
342 // Check if MI reads any unreserved physregs.
343 if (Reg && MO.readsReg() && !MRI.isReserved(Reg))
344 ReadsPhysRegs = true;
345 else if (MO.isDef())
346 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
347 continue;
349 LiveInterval &LI = LIS.getInterval(Reg);
351 // Shrink read registers, unless it is likely to be expensive and
352 // unlikely to change anything. We typically don't want to shrink the
353 // PIC base register that has lots of uses everywhere.
354 // Always shrink COPY uses that probably come from live range splitting.
355 if ((MI->readsVirtualRegister(Reg) &&
356 (MO.isDef() || TII.isCopyInstr(*MI))) ||
357 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO))))
358 ToShrink.insert(&LI);
359 else if (MO.readsReg())
360 HasLiveVRegUses = true;
362 // Remove defined value.
363 if (MO.isDef()) {
364 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
365 TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
366 LIS.removeVRegDefAt(LI, Idx);
367 if (LI.empty())
368 RegsToErase.push_back(Reg);
372 // Currently, we don't support DCE of physreg live ranges. If MI reads
373 // any unreserved physregs, don't erase the instruction, but turn it into
374 // a KILL instead. This way, the physreg live ranges don't end up
375 // dangling.
376 // FIXME: It would be better to have something like shrinkToUses() for
377 // physregs. That could potentially enable more DCE and it would free up
378 // the physreg. It would not happen often, though.
379 if (ReadsPhysRegs) {
380 MI->setDesc(TII.get(TargetOpcode::KILL));
381 // Remove all operands that aren't physregs.
382 for (unsigned i = MI->getNumOperands(); i; --i) {
383 const MachineOperand &MO = MI->getOperand(i-1);
384 if (MO.isReg() && MO.getReg().isPhysical())
385 continue;
386 MI->removeOperand(i-1);
388 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
389 } else {
390 // If the dest of MI is an original reg and MI is reMaterializable,
391 // don't delete the inst. Replace the dest with a new reg, and keep
392 // the inst for remat of other siblings. The inst is saved in
393 // LiveRangeEdit::DeadRemats and will be deleted after all the
394 // allocations of the func are done.
395 // However, immediately delete instructions which have unshrunk virtual
396 // register uses. That may provoke RA to split an interval at the KILL
397 // and later result in an invalid live segment end.
398 if (isOrigDef && DeadRemats && !HasLiveVRegUses &&
399 TII.isTriviallyReMaterializable(*MI)) {
400 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
401 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
402 VNInfo *VNI = NewLI.getNextValue(Idx, Alloc);
403 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
405 if (DestSubReg) {
406 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
407 auto *SR = NewLI.createSubRange(
408 Alloc, TRI->getSubRegIndexLaneMask(DestSubReg));
409 SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(),
410 SR->getNextValue(Idx, Alloc)));
413 pop_back();
414 DeadRemats->insert(MI);
415 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
416 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
417 assert(MI->registerDefIsDead(NewLI.reg(), &TRI));
418 } else {
419 if (TheDelegate)
420 TheDelegate->LRE_WillEraseInstruction(MI);
421 LIS.RemoveMachineInstrFromMaps(*MI);
422 MI->eraseFromParent();
423 ++NumDCEDeleted;
427 // Erase any virtregs that are now empty and unused. There may be <undef>
428 // uses around. Keep the empty live range in that case.
429 for (Register Reg : RegsToErase) {
430 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
431 ToShrink.remove(&LIS.getInterval(Reg));
432 eraseVirtReg(Reg);
437 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
438 ArrayRef<Register> RegsBeingSpilled) {
439 ToShrinkSet ToShrink;
441 for (;;) {
442 // Erase all dead defs.
443 while (!Dead.empty())
444 eliminateDeadDef(Dead.pop_back_val(), ToShrink);
446 if (ToShrink.empty())
447 break;
449 // Shrink just one live interval. Then delete new dead defs.
450 LiveInterval *LI = ToShrink.pop_back_val();
451 if (foldAsLoad(LI, Dead))
452 continue;
453 Register VReg = LI->reg();
454 if (TheDelegate)
455 TheDelegate->LRE_WillShrinkVirtReg(VReg);
456 if (!LIS.shrinkToUses(LI, &Dead))
457 continue;
459 // Don't create new intervals for a register being spilled.
460 // The new intervals would have to be spilled anyway so its not worth it.
461 // Also they currently aren't spilled so creating them and not spilling
462 // them results in incorrect code.
463 if (llvm::is_contained(RegsBeingSpilled, VReg))
464 continue;
466 // LI may have been separated, create new intervals.
467 LI->RenumberValues();
468 SmallVector<LiveInterval*, 8> SplitLIs;
469 LIS.splitSeparateComponents(*LI, SplitLIs);
470 if (!SplitLIs.empty())
471 ++NumFracRanges;
473 Register Original = VRM ? VRM->getOriginal(VReg) : Register();
474 for (const LiveInterval *SplitLI : SplitLIs) {
475 // If LI is an original interval that hasn't been split yet, make the new
476 // intervals their own originals instead of referring to LI. The original
477 // interval must contain all the split products, and LI doesn't.
478 if (Original != VReg && Original != 0)
479 VRM->setIsSplitFromReg(SplitLI->reg(), Original);
480 if (TheDelegate)
481 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
486 // Keep track of new virtual registers created via
487 // MachineRegisterInfo::createVirtualRegister.
488 void
489 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
490 if (VRM)
491 VRM->grow();
493 NewRegs.push_back(VReg);
496 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
497 VirtRegAuxInfo &VRAI) {
498 for (unsigned I = 0, Size = size(); I < Size; ++I) {
499 LiveInterval &LI = LIS.getInterval(get(I));
500 if (MRI.recomputeRegClass(LI.reg()))
501 LLVM_DEBUG({
502 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
503 dbgs() << "Inflated " << printReg(LI.reg()) << " to "
504 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
506 VRAI.calculateSpillWeightAndHint(LI);