1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCRegister.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/RecyclingAllocator.h"
43 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "machine-cse"
52 STATISTIC(NumCoalesces
, "Number of copies coalesced");
53 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
54 STATISTIC(NumPREs
, "Number of partial redundant expression"
55 " transformed to fully redundant");
56 STATISTIC(NumPhysCSEs
,
57 "Number of physreg referencing common subexpr eliminated");
58 STATISTIC(NumCrossBBCSEs
,
59 "Number of cross-MBB physreg referencing CS eliminated");
60 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
62 // Threshold to avoid excessive cost to compute isProfitableToCSE.
64 CSUsesThreshold("csuses-threshold", cl::Hidden
, cl::init(1024),
65 cl::desc("Threshold for the size of CSUses"));
67 static cl::opt
<bool> AggressiveMachineCSE(
68 "aggressive-machine-cse", cl::Hidden
, cl::init(false),
69 cl::desc("Override the profitability heuristics for Machine CSE"));
73 class MachineCSE
: public MachineFunctionPass
{
74 const TargetInstrInfo
*TII
= nullptr;
75 const TargetRegisterInfo
*TRI
= nullptr;
76 AliasAnalysis
*AA
= nullptr;
77 MachineDominatorTree
*DT
= nullptr;
78 MachineRegisterInfo
*MRI
= nullptr;
79 MachineBlockFrequencyInfo
*MBFI
= nullptr;
82 static char ID
; // Pass identification
84 MachineCSE() : MachineFunctionPass(ID
) {
85 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
88 bool runOnMachineFunction(MachineFunction
&MF
) override
;
90 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
92 MachineFunctionPass::getAnalysisUsage(AU
);
93 AU
.addRequired
<AAResultsWrapperPass
>();
94 AU
.addPreservedID(MachineLoopInfoID
);
95 AU
.addRequired
<MachineDominatorTreeWrapperPass
>();
96 AU
.addPreserved
<MachineDominatorTreeWrapperPass
>();
97 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
98 AU
.addPreserved
<MachineBlockFrequencyInfoWrapperPass
>();
101 MachineFunctionProperties
getRequiredProperties() const override
{
102 return MachineFunctionProperties()
103 .set(MachineFunctionProperties::Property::IsSSA
);
106 void releaseMemory() override
{
113 using AllocatorTy
= RecyclingAllocator
<BumpPtrAllocator
,
114 ScopedHashTableVal
<MachineInstr
*, unsigned>>;
116 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
,
118 using ScopeType
= ScopedHTType::ScopeTy
;
119 using PhysDefVector
= SmallVector
<std::pair
<unsigned, unsigned>, 2>;
121 unsigned LookAheadLimit
= 0;
122 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
123 DenseMap
<MachineInstr
*, MachineBasicBlock
*, MachineInstrExpressionTrait
>
126 SmallVector
<MachineInstr
*, 64> Exps
;
129 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
130 MachineBasicBlock
*MBB
);
131 bool isPhysDefTriviallyDead(MCRegister Reg
,
132 MachineBasicBlock::const_iterator I
,
133 MachineBasicBlock::const_iterator E
) const;
134 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
135 const MachineBasicBlock
*MBB
,
136 SmallSet
<MCRegister
, 8> &PhysRefs
,
137 PhysDefVector
&PhysDefs
, bool &PhysUseDef
) const;
138 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
139 SmallSet
<MCRegister
, 8> &PhysRefs
,
140 PhysDefVector
&PhysDefs
, bool &NonLocal
) const;
141 bool isCSECandidate(MachineInstr
*MI
);
142 bool isProfitableToCSE(Register CSReg
, Register Reg
,
143 MachineBasicBlock
*CSBB
, MachineInstr
*MI
);
144 void EnterScope(MachineBasicBlock
*MBB
);
145 void ExitScope(MachineBasicBlock
*MBB
);
146 bool ProcessBlockCSE(MachineBasicBlock
*MBB
);
147 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
148 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
149 bool PerformCSE(MachineDomTreeNode
*Node
);
151 bool isPRECandidate(MachineInstr
*MI
, SmallSet
<MCRegister
, 8> &PhysRefs
);
152 bool ProcessBlockPRE(MachineDominatorTree
*MDT
, MachineBasicBlock
*MBB
);
153 bool PerformSimplePRE(MachineDominatorTree
*DT
);
154 /// Heuristics to see if it's profitable to move common computations of MBB
155 /// and MBB1 to CandidateBB.
156 bool isProfitableToHoistInto(MachineBasicBlock
*CandidateBB
,
157 MachineBasicBlock
*MBB
,
158 MachineBasicBlock
*MBB1
);
161 } // end anonymous namespace
163 char MachineCSE::ID
= 0;
165 char &llvm::MachineCSEID
= MachineCSE::ID
;
167 INITIALIZE_PASS_BEGIN(MachineCSE
, DEBUG_TYPE
,
168 "Machine Common Subexpression Elimination", false, false)
169 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass
)
170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
171 INITIALIZE_PASS_END(MachineCSE
, DEBUG_TYPE
,
172 "Machine Common Subexpression Elimination", false, false)
174 /// The source register of a COPY machine instruction can be propagated to all
175 /// its users, and this propagation could increase the probability of finding
176 /// common subexpressions. If the COPY has only one user, the COPY itself can
178 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
179 MachineBasicBlock
*MBB
) {
180 bool Changed
= false;
181 for (MachineOperand
&MO
: MI
->all_uses()) {
182 Register Reg
= MO
.getReg();
183 if (!Reg
.isVirtual())
185 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
186 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
187 if (!DefMI
|| !DefMI
->isCopy())
189 Register SrcReg
= DefMI
->getOperand(1).getReg();
190 if (!SrcReg
.isVirtual())
192 if (DefMI
->getOperand(0).getSubReg())
194 // FIXME: We should trivially coalesce subregister copies to expose CSE
195 // opportunities on instructions with truncated operands (see
196 // cse-add-with-overflow.ll). This can be done here as follows:
198 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
200 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
202 // The 2-addr pass has been updated to handle coalesced subregs. However,
203 // some machine-specific code still can't handle it.
204 // To handle it properly we also need a way find a constrained subregister
205 // class given a super-reg class and subreg index.
206 if (DefMI
->getOperand(1).getSubReg())
208 if (!MRI
->constrainRegAttrs(SrcReg
, Reg
))
210 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
211 LLVM_DEBUG(dbgs() << "*** to: " << *MI
);
213 // Propagate SrcReg of copies to MI.
215 MRI
->clearKillFlags(SrcReg
);
216 // Coalesce single use copies.
218 // If (and only if) we've eliminated all uses of the copy, also
219 // copy-propagate to any debug-users of MI, or they'll be left using
220 // an undefined value.
221 DefMI
->changeDebugValuesDefReg(SrcReg
);
223 DefMI
->eraseFromParent();
232 bool MachineCSE::isPhysDefTriviallyDead(
233 MCRegister Reg
, MachineBasicBlock::const_iterator I
,
234 MachineBasicBlock::const_iterator E
) const {
235 unsigned LookAheadLeft
= LookAheadLimit
;
236 while (LookAheadLeft
) {
237 // Skip over dbg_value's.
238 I
= skipDebugInstructionsForward(I
, E
);
241 // Reached end of block, we don't know if register is dead or not.
244 bool SeenDef
= false;
245 for (const MachineOperand
&MO
: I
->operands()) {
246 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
248 if (!MO
.isReg() || !MO
.getReg())
250 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
258 // See a def of Reg (or an alias) before encountering any use, it's
268 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg
,
269 const MachineOperand
&MO
,
270 const MachineFunction
&MF
,
271 const TargetRegisterInfo
&TRI
,
272 const TargetInstrInfo
&TII
) {
273 // MachineRegisterInfo::isConstantPhysReg directly called by
274 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
275 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
276 // most (if not all) targets freeze reserved registers right after ISel.
278 // It does cause issues mid-GlobalISel, however, hence the additional
279 // reservedRegsFrozen check.
280 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
281 return TRI
.isCallerPreservedPhysReg(Reg
, MF
) || TII
.isIgnorableUse(MO
) ||
282 (MRI
.reservedRegsFrozen() && MRI
.isConstantPhysReg(Reg
));
285 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
286 /// physical registers (except for dead defs of physical registers). It also
287 /// returns the physical register def by reference if it's the only one and the
288 /// instruction does not uses a physical register.
289 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
290 const MachineBasicBlock
*MBB
,
291 SmallSet
<MCRegister
, 8> &PhysRefs
,
292 PhysDefVector
&PhysDefs
,
293 bool &PhysUseDef
) const {
294 // First, add all uses to PhysRefs.
295 for (const MachineOperand
&MO
: MI
->all_uses()) {
296 Register Reg
= MO
.getReg();
301 // Reading either caller preserved or constant physregs is ok.
302 if (!isCallerPreservedOrConstPhysReg(Reg
.asMCReg(), MO
, *MI
->getMF(), *TRI
,
304 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
305 PhysRefs
.insert(*AI
);
308 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
309 // (which currently contains only uses), set the PhysUseDef flag.
311 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
312 for (const auto &MOP
: llvm::enumerate(MI
->operands())) {
313 const MachineOperand
&MO
= MOP
.value();
314 if (!MO
.isReg() || !MO
.isDef())
316 Register Reg
= MO
.getReg();
321 // Check against PhysRefs even if the def is "dead".
322 if (PhysRefs
.count(Reg
.asMCReg()))
324 // If the def is dead, it's ok. But the def may not marked "dead". That's
325 // common since this pass is run before livevariables. We can scan
326 // forward a few instructions and check if it is obviously dead.
327 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
.asMCReg(), I
, MBB
->end()))
328 PhysDefs
.push_back(std::make_pair(MOP
.index(), Reg
));
331 // Finally, add all defs to PhysRefs as well.
332 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
333 for (MCRegAliasIterator
AI(PhysDefs
[i
].second
, TRI
, true); AI
.isValid();
335 PhysRefs
.insert(*AI
);
337 return !PhysRefs
.empty();
340 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
341 SmallSet
<MCRegister
, 8> &PhysRefs
,
342 PhysDefVector
&PhysDefs
,
343 bool &NonLocal
) const {
344 // For now conservatively returns false if the common subexpression is
345 // not in the same basic block as the given instruction. The only exception
346 // is if the common subexpression is in the sole predecessor block.
347 const MachineBasicBlock
*MBB
= MI
->getParent();
348 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
350 bool CrossMBB
= false;
352 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
355 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
356 if (MRI
->isAllocatable(PhysDefs
[i
].second
) ||
357 MRI
->isReserved(PhysDefs
[i
].second
))
358 // Avoid extending live range of physical registers if they are
359 //allocatable or reserved.
364 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
365 MachineBasicBlock::const_iterator E
= MI
;
366 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
367 unsigned LookAheadLeft
= LookAheadLimit
;
368 while (LookAheadLeft
) {
369 // Skip over dbg_value's.
370 while (I
!= E
&& I
!= EE
&& I
->isDebugInstr())
374 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
386 for (const MachineOperand
&MO
: I
->operands()) {
387 // RegMasks go on instructions like calls that clobber lots of physregs.
388 // Don't attempt to CSE across such an instruction.
391 if (!MO
.isReg() || !MO
.isDef())
393 Register MOReg
= MO
.getReg();
394 if (MOReg
.isVirtual())
396 if (PhysRefs
.count(MOReg
.asMCReg()))
407 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
408 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
409 MI
->isInlineAsm() || MI
->isDebugInstr() || MI
->isJumpTableDebugInfo())
413 if (MI
->isCopyLike())
416 // Ignore stuff that we obviously can't move.
417 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
418 MI
->mayRaiseFPException() || MI
->hasUnmodeledSideEffects())
422 // Okay, this instruction does a load. As a refinement, we allow the target
423 // to decide whether the loaded value is actually a constant. If so, we can
424 // actually use it as a load.
425 if (!MI
->isDereferenceableInvariantLoad())
426 // FIXME: we should be able to hoist loads with no other side effects if
427 // there are no other instructions which can change memory in this loop.
428 // This is a trivial form of alias analysis.
432 // Ignore stack guard loads, otherwise the register that holds CSEed value may
433 // be spilled and get loaded back with corrupted data.
434 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
440 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
441 /// common expression that defines Reg. CSBB is basic block where CSReg is
443 bool MachineCSE::isProfitableToCSE(Register CSReg
, Register Reg
,
444 MachineBasicBlock
*CSBB
, MachineInstr
*MI
) {
445 if (AggressiveMachineCSE
)
448 // FIXME: Heuristics that works around the lack the live range splitting.
450 // If CSReg is used at all uses of Reg, CSE should not increase register
451 // pressure of CSReg.
452 bool MayIncreasePressure
= true;
453 if (CSReg
.isVirtual() && Reg
.isVirtual()) {
454 MayIncreasePressure
= false;
455 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
457 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
459 // Too costly to compute if NumOfUses is very large. Conservatively assume
460 // MayIncreasePressure to avoid spending too much time here.
461 if (++NumOfUses
> CSUsesThreshold
) {
462 MayIncreasePressure
= true;
466 if (!MayIncreasePressure
)
467 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
468 if (!CSUses
.count(&MI
)) {
469 MayIncreasePressure
= true;
474 if (!MayIncreasePressure
) return true;
476 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
477 // an immediate predecessor. We don't want to increase register pressure and
478 // end up causing other computation to be spilled.
479 if (TII
->isAsCheapAsAMove(*MI
)) {
480 MachineBasicBlock
*BB
= MI
->getParent();
481 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
485 // Heuristics #2: If the expression doesn't not use a vr and the only use
486 // of the redundant computation are copies, do not cse.
487 bool HasVRegUse
= false;
488 for (const MachineOperand
&MO
: MI
->all_uses()) {
489 if (MO
.getReg().isVirtual()) {
495 bool HasNonCopyUse
= false;
496 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
498 if (!MI
.isCopyLike()) {
499 HasNonCopyUse
= true;
507 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
508 // it unless the defined value is already used in the BB of the new use.
510 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(CSReg
)) {
511 HasPHI
|= UseMI
.isPHI();
512 if (UseMI
.getParent() == MI
->getParent())
519 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
520 LLVM_DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
521 ScopeType
*Scope
= new ScopeType(VNT
);
522 ScopeMap
[MBB
] = Scope
;
525 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
526 LLVM_DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
527 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
528 assert(SI
!= ScopeMap
.end());
533 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock
*MBB
) {
534 bool Changed
= false;
536 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
537 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
538 SmallVector
<unsigned, 2> ImplicitDefs
;
539 for (MachineInstr
&MI
: llvm::make_early_inc_range(*MBB
)) {
540 if (!isCSECandidate(&MI
))
543 bool FoundCSE
= VNT
.count(&MI
);
545 // Using trivial copy propagation to find more CSE opportunities.
546 if (PerformTrivialCopyPropagation(&MI
, MBB
)) {
549 // After coalescing MI itself may become a copy.
553 // Try again to see if CSE is possible.
554 FoundCSE
= VNT
.count(&MI
);
558 // Commute commutable instructions.
559 bool Commuted
= false;
560 if (!FoundCSE
&& MI
.isCommutable()) {
561 if (MachineInstr
*NewMI
= TII
->commuteInstruction(MI
)) {
563 FoundCSE
= VNT
.count(NewMI
);
565 // New instruction. It doesn't need to be kept.
566 NewMI
->eraseFromParent();
568 } else if (!FoundCSE
)
569 // MI was changed but it didn't help, commute it back!
570 (void)TII
->commuteInstruction(MI
);
574 // If the instruction defines physical registers and the values *may* be
575 // used, then it's not safe to replace it with a common subexpression.
576 // It's also not safe if the instruction uses physical registers.
577 bool CrossMBBPhysDef
= false;
578 SmallSet
<MCRegister
, 8> PhysRefs
;
579 PhysDefVector PhysDefs
;
580 bool PhysUseDef
= false;
582 hasLivePhysRegDefUses(&MI
, MBB
, PhysRefs
, PhysDefs
, PhysUseDef
)) {
585 // ... Unless the CS is local or is in the sole predecessor block
586 // and it also defines the physical register which is not clobbered
587 // in between and the physical register uses were not clobbered.
588 // This can never be the case if the instruction both uses and
589 // defines the same physical register, which was detected above.
591 unsigned CSVN
= VNT
.lookup(&MI
);
592 MachineInstr
*CSMI
= Exps
[CSVN
];
593 if (PhysRegDefsReach(CSMI
, &MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
599 VNT
.insert(&MI
, CurrVN
++);
604 // Found a common subexpression, eliminate it.
605 unsigned CSVN
= VNT
.lookup(&MI
);
606 MachineInstr
*CSMI
= Exps
[CSVN
];
607 LLVM_DEBUG(dbgs() << "Examining: " << MI
);
608 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
610 // Prevent CSE-ing non-local convergent instructions.
611 // LLVM's current definition of `isConvergent` does not necessarily prove
612 // that non-local CSE is illegal. The following check extends the definition
613 // of `isConvergent` to assume a convergent instruction is dependent not
614 // only on additional conditions, but also on fewer conditions. LLVM does
615 // not have a MachineInstr attribute which expresses this extended
616 // definition, so it's necessary to use `isConvergent` to prevent illegally
617 // CSE-ing the subset of `isConvergent` instructions which do fall into this
618 // extended definition.
619 if (MI
.isConvergent() && MI
.getParent() != CSMI
->getParent()) {
620 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
621 "different BBs, avoid CSE!\n");
622 VNT
.insert(&MI
, CurrVN
++);
627 // Check if it's profitable to perform this CSE.
629 unsigned NumDefs
= MI
.getNumDefs();
631 for (unsigned i
= 0, e
= MI
.getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
632 MachineOperand
&MO
= MI
.getOperand(i
);
633 if (!MO
.isReg() || !MO
.isDef())
635 Register OldReg
= MO
.getReg();
636 Register NewReg
= CSMI
->getOperand(i
).getReg();
638 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
639 // we should make sure it is not dead at CSMI.
640 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
641 ImplicitDefsToUpdate
.push_back(i
);
643 // Keep track of implicit defs of CSMI and MI, to clear possibly
644 // made-redundant kill flags.
645 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
646 ImplicitDefs
.push_back(OldReg
);
648 if (OldReg
== NewReg
) {
653 assert(OldReg
.isVirtual() && NewReg
.isVirtual() &&
654 "Do not CSE physical register defs!");
656 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
->getParent(), &MI
)) {
657 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
662 // Don't perform CSE if the result of the new instruction cannot exist
663 // within the constraints (register class, bank, or low-level type) of
664 // the old instruction.
665 if (!MRI
->constrainRegAttrs(NewReg
, OldReg
)) {
667 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
672 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
676 // Actually perform the elimination.
678 for (const std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
679 unsigned OldReg
= CSEPair
.first
;
680 unsigned NewReg
= CSEPair
.second
;
681 // OldReg may have been unused but is used now, clear the Dead flag
682 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
683 assert(Def
!= nullptr && "CSEd register has no unique definition?");
684 Def
->clearRegisterDeads(NewReg
);
685 // Replace with NewReg and clear kill flags which may be wrong now.
686 MRI
->replaceRegWith(OldReg
, NewReg
);
687 MRI
->clearKillFlags(NewReg
);
690 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
691 // we should make sure it is not dead at CSMI.
692 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
693 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
694 for (const auto &PhysDef
: PhysDefs
)
695 if (!MI
.getOperand(PhysDef
.first
).isDead())
696 CSMI
->getOperand(PhysDef
.first
).setIsDead(false);
698 // Go through implicit defs of CSMI and MI, and clear the kill flags on
699 // their uses in all the instructions between CSMI and MI.
700 // We might have made some of the kill flags redundant, consider:
701 // subs ... implicit-def %nzcv <- CSMI
702 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
703 // subs ... implicit-def %nzcv <- MI, to be eliminated
704 // csinc ... implicit killed %nzcv
705 // Since we eliminated MI, and reused a register imp-def'd by CSMI
706 // (here %nzcv), that register, if it was killed before MI, should have
707 // that kill flag removed, because it's lifetime was extended.
708 if (CSMI
->getParent() == MI
.getParent()) {
709 for (MachineBasicBlock::iterator II
= CSMI
, IE
= &MI
; II
!= IE
; ++II
)
710 for (auto ImplicitDef
: ImplicitDefs
)
711 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
712 ImplicitDef
, TRI
, /*isKill=*/true))
713 MO
->setIsKill(false);
715 // If the instructions aren't in the same BB, bail out and clear the
716 // kill flag on all uses of the imp-def'd register.
717 for (auto ImplicitDef
: ImplicitDefs
)
718 MRI
->clearKillFlags(ImplicitDef
);
721 if (CrossMBBPhysDef
) {
722 // Add physical register defs now coming in from a predecessor to MBB
724 while (!PhysDefs
.empty()) {
725 auto LiveIn
= PhysDefs
.pop_back_val();
726 if (!MBB
->isLiveIn(LiveIn
.second
))
727 MBB
->addLiveIn(LiveIn
.second
);
732 MI
.eraseFromParent();
734 if (!PhysRefs
.empty())
740 VNT
.insert(&MI
, CurrVN
++);
744 ImplicitDefsToUpdate
.clear();
745 ImplicitDefs
.clear();
751 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
752 /// dominator tree node if its a leaf or all of its children are done. Walk
753 /// up the dominator tree to destroy ancestors which are now done.
755 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
756 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
757 if (OpenChildren
[Node
])
761 ExitScope(Node
->getBlock());
763 // Now traverse upwards to pop ancestors whose offsprings are all done.
764 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
765 unsigned Left
= --OpenChildren
[Parent
];
768 ExitScope(Parent
->getBlock());
773 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
774 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
775 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
776 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
780 // Perform a DFS walk to determine the order of visit.
781 WorkList
.push_back(Node
);
783 Node
= WorkList
.pop_back_val();
784 Scopes
.push_back(Node
);
785 OpenChildren
[Node
] = Node
->getNumChildren();
786 append_range(WorkList
, Node
->children());
787 } while (!WorkList
.empty());
790 bool Changed
= false;
791 for (MachineDomTreeNode
*Node
: Scopes
) {
792 MachineBasicBlock
*MBB
= Node
->getBlock();
794 Changed
|= ProcessBlockCSE(MBB
);
795 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
796 ExitScopeIfDone(Node
, OpenChildren
);
802 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
803 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
804 // to exclude instrs created by PRE that won't be CSEed later.
805 bool MachineCSE::isPRECandidate(MachineInstr
*MI
,
806 SmallSet
<MCRegister
, 8> &PhysRefs
) {
807 if (!isCSECandidate(MI
) ||
808 MI
->isNotDuplicable() ||
810 TII
->isAsCheapAsAMove(*MI
) ||
811 MI
->getNumDefs() != 1 ||
812 MI
->getNumExplicitDefs() != 1)
815 for (const MachineOperand
&MO
: MI
->operands()) {
816 if (MO
.isReg() && !MO
.getReg().isVirtual()) {
820 PhysRefs
.insert(MO
.getReg());
827 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree
*DT
,
828 MachineBasicBlock
*MBB
) {
829 bool Changed
= false;
830 for (MachineInstr
&MI
: llvm::make_early_inc_range(*MBB
)) {
831 SmallSet
<MCRegister
, 8> PhysRefs
;
832 if (!isPRECandidate(&MI
, PhysRefs
))
835 if (!PREMap
.count(&MI
)) {
840 auto MBB1
= PREMap
[&MI
];
842 !DT
->properlyDominates(MBB
, MBB1
) &&
843 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
844 auto CMBB
= DT
->findNearestCommonDominator(MBB
, MBB1
);
845 if (!CMBB
->isLegalToHoistInto())
848 if (!isProfitableToHoistInto(CMBB
, MBB
, MBB1
))
851 // Two instrs are partial redundant if their basic blocks are reachable
852 // from one to another but one doesn't dominate another.
854 auto BB
= MBB
->getBasicBlock(), BB1
= MBB1
->getBasicBlock();
855 if (BB
!= nullptr && BB1
!= nullptr &&
856 (isPotentiallyReachable(BB1
, BB
) ||
857 isPotentiallyReachable(BB
, BB1
))) {
858 // The following check extends the definition of `isConvergent` to
859 // assume a convergent instruction is dependent not only on additional
860 // conditions, but also on fewer conditions. LLVM does not have a
861 // MachineInstr attribute which expresses this extended definition, so
862 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
863 // subset of `isConvergent` instructions which do fall into this
864 // extended definition.
865 if (MI
.isConvergent() && CMBB
!= MBB
)
868 // If this instruction uses physical registers then we can only do PRE
869 // if it's using the value that is live at the place we're hoisting to.
871 PhysDefVector PhysDefs
;
872 if (!PhysRefs
.empty() &&
873 !PhysRegDefsReach(&*(CMBB
->getFirstTerminator()), &MI
, PhysRefs
,
877 assert(MI
.getOperand(0).isDef() &&
878 "First operand of instr with one explicit def must be this def");
879 Register VReg
= MI
.getOperand(0).getReg();
880 Register NewReg
= MRI
->cloneVirtualRegister(VReg
);
881 if (!isProfitableToCSE(NewReg
, VReg
, CMBB
, &MI
))
883 MachineInstr
&NewMI
=
884 TII
->duplicate(*CMBB
, CMBB
->getFirstTerminator(), MI
);
886 // When hoisting, make sure we don't carry the debug location of
887 // the original instruction, as that's not correct and can cause
888 // unexpected jumps when debugging optimized code.
889 auto EmptyDL
= DebugLoc();
890 NewMI
.setDebugLoc(EmptyDL
);
892 NewMI
.getOperand(0).setReg(NewReg
);
903 // This simple PRE (partial redundancy elimination) pass doesn't actually
904 // eliminate partial redundancy but transforms it to full redundancy,
905 // anticipating that the next CSE step will eliminate this created redundancy.
906 // If CSE doesn't eliminate this, than created instruction will remain dead
907 // and eliminated later by Remove Dead Machine Instructions pass.
908 bool MachineCSE::PerformSimplePRE(MachineDominatorTree
*DT
) {
909 SmallVector
<MachineDomTreeNode
*, 32> BBs
;
912 bool Changed
= false;
913 BBs
.push_back(DT
->getRootNode());
915 auto Node
= BBs
.pop_back_val();
916 append_range(BBs
, Node
->children());
918 MachineBasicBlock
*MBB
= Node
->getBlock();
919 Changed
|= ProcessBlockPRE(DT
, MBB
);
921 } while (!BBs
.empty());
926 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock
*CandidateBB
,
927 MachineBasicBlock
*MBB
,
928 MachineBasicBlock
*MBB1
) {
929 if (CandidateBB
->getParent()->getFunction().hasMinSize())
931 assert(DT
->dominates(CandidateBB
, MBB
) && "CandidateBB should dominate MBB");
932 assert(DT
->dominates(CandidateBB
, MBB1
) &&
933 "CandidateBB should dominate MBB1");
934 return MBFI
->getBlockFreq(CandidateBB
) <=
935 MBFI
->getBlockFreq(MBB
) + MBFI
->getBlockFreq(MBB1
);
938 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
939 if (skipFunction(MF
.getFunction()))
942 TII
= MF
.getSubtarget().getInstrInfo();
943 TRI
= MF
.getSubtarget().getRegisterInfo();
944 MRI
= &MF
.getRegInfo();
945 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
946 DT
= &getAnalysis
<MachineDominatorTreeWrapperPass
>().getDomTree();
947 MBFI
= &getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI();
948 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
949 bool ChangedPRE
, ChangedCSE
;
950 ChangedPRE
= PerformSimplePRE(DT
);
951 ChangedCSE
= PerformCSE(DT
->getRootNode());
952 return ChangedPRE
|| ChangedCSE
;