1 //===- MachineFunction.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
75 #include <type_traits>
79 #include "LiveDebugValues/LiveDebugValues.h"
83 #define DEBUG_TYPE "codegen"
85 static cl::opt
<unsigned> AlignAllFunctions(
86 "align-all-functions",
87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88 "means align on 16B boundaries)."),
89 cl::init(0), cl::Hidden
);
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop
) {
92 using P
= MachineFunctionProperties::Property
;
96 case P::FailedISel
: return "FailedISel";
97 case P::IsSSA
: return "IsSSA";
98 case P::Legalized
: return "Legalized";
99 case P::NoPHIs
: return "NoPHIs";
100 case P::NoVRegs
: return "NoVRegs";
101 case P::RegBankSelected
: return "RegBankSelected";
102 case P::Selected
: return "Selected";
103 case P::TracksLiveness
: return "TracksLiveness";
104 case P::TiedOpsRewritten
: return "TiedOpsRewritten";
105 case P::FailsVerification
: return "FailsVerification";
106 case P::TracksDebugUserValues
: return "TracksDebugUserValues";
109 llvm_unreachable("Invalid machine function property");
112 void setUnsafeStackSize(const Function
&F
, MachineFrameInfo
&FrameInfo
) {
113 if (!F
.hasFnAttribute(Attribute::SafeStack
))
117 dyn_cast_or_null
<MDTuple
>(F
.getMetadata(LLVMContext::MD_annotation
));
119 if (!Existing
|| Existing
->getNumOperands() != 2)
122 auto *MetadataName
= "unsafe-stack-size";
123 if (auto &N
= Existing
->getOperand(0)) {
124 if (N
.equalsStr(MetadataName
)) {
125 if (auto &Op
= Existing
->getOperand(1)) {
126 auto Val
= mdconst::extract
<ConstantInt
>(Op
)->getZExtValue();
127 FrameInfo
.setUnsafeStackSize(Val
);
133 // Pin the vtable to this file.
134 void MachineFunction::Delegate::anchor() {}
136 void MachineFunctionProperties::print(raw_ostream
&OS
) const {
137 const char *Separator
= "";
138 for (BitVector::size_type I
= 0; I
< Properties
.size(); ++I
) {
141 OS
<< Separator
<< getPropertyName(static_cast<Property
>(I
));
146 //===----------------------------------------------------------------------===//
147 // MachineFunction implementation
148 //===----------------------------------------------------------------------===//
150 // Out-of-line virtual method.
151 MachineFunctionInfo::~MachineFunctionInfo() = default;
153 void ilist_alloc_traits
<MachineBasicBlock
>::deleteNode(MachineBasicBlock
*MBB
) {
154 MBB
->getParent()->deleteMachineBasicBlock(MBB
);
157 static inline Align
getFnStackAlignment(const TargetSubtargetInfo
*STI
,
159 if (auto MA
= F
.getFnStackAlign())
161 return STI
->getFrameLowering()->getStackAlign();
164 MachineFunction::MachineFunction(Function
&F
, const LLVMTargetMachine
&Target
,
165 const TargetSubtargetInfo
&STI
,
166 unsigned FunctionNum
, MachineModuleInfo
&mmi
)
167 : F(F
), Target(Target
), STI(&STI
), Ctx(mmi
.getContext()), MMI(mmi
) {
168 FunctionNumber
= FunctionNum
;
172 void MachineFunction::handleInsertion(MachineInstr
&MI
) {
174 TheDelegate
->MF_HandleInsertion(MI
);
177 void MachineFunction::handleRemoval(MachineInstr
&MI
) {
179 TheDelegate
->MF_HandleRemoval(MI
);
182 void MachineFunction::handleChangeDesc(MachineInstr
&MI
,
183 const MCInstrDesc
&TID
) {
185 TheDelegate
->MF_HandleChangeDesc(MI
, TID
);
188 void MachineFunction::init() {
189 // Assume the function starts in SSA form with correct liveness.
190 Properties
.set(MachineFunctionProperties::Property::IsSSA
);
191 Properties
.set(MachineFunctionProperties::Property::TracksLiveness
);
192 if (STI
->getRegisterInfo())
193 RegInfo
= new (Allocator
) MachineRegisterInfo(this);
199 // We can realign the stack if the target supports it and the user hasn't
200 // explicitly asked us not to.
201 bool CanRealignSP
= STI
->getFrameLowering()->isStackRealignable() &&
202 !F
.hasFnAttribute("no-realign-stack");
203 bool ForceRealignSP
= F
.hasFnAttribute(Attribute::StackAlignment
) ||
204 F
.hasFnAttribute("stackrealign");
205 FrameInfo
= new (Allocator
) MachineFrameInfo(
206 getFnStackAlignment(STI
, F
), /*StackRealignable=*/CanRealignSP
,
207 /*ForcedRealign=*/ForceRealignSP
&& CanRealignSP
);
209 setUnsafeStackSize(F
, *FrameInfo
);
211 if (F
.hasFnAttribute(Attribute::StackAlignment
))
212 FrameInfo
->ensureMaxAlignment(*F
.getFnStackAlign());
214 ConstantPool
= new (Allocator
) MachineConstantPool(getDataLayout());
215 Alignment
= STI
->getTargetLowering()->getMinFunctionAlignment();
217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
218 // FIXME: Use Function::hasOptSize().
219 if (!F
.hasFnAttribute(Attribute::OptimizeForSize
))
220 Alignment
= std::max(Alignment
,
221 STI
->getTargetLowering()->getPrefFunctionAlignment());
223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
224 // to load a type hash before the function label. Ensure functions are aligned
225 // by a least 4 to avoid unaligned access, which is especially important for
226 // -mno-unaligned-access.
227 if (F
.hasMetadata(LLVMContext::MD_func_sanitize
) ||
228 F
.getMetadata(LLVMContext::MD_kcfi_type
))
229 Alignment
= std::max(Alignment
, Align(4));
231 if (AlignAllFunctions
)
232 Alignment
= Align(1ULL << AlignAllFunctions
);
234 JumpTableInfo
= nullptr;
236 if (isFuncletEHPersonality(classifyEHPersonality(
237 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
238 WinEHInfo
= new (Allocator
) WinEHFuncInfo();
241 if (isScopedEHPersonality(classifyEHPersonality(
242 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
243 WasmEHInfo
= new (Allocator
) WasmEHFuncInfo();
246 assert(Target
.isCompatibleDataLayout(getDataLayout()) &&
247 "Can't create a MachineFunction using a Module with a "
248 "Target-incompatible DataLayout attached\n");
250 PSVManager
= std::make_unique
<PseudoSourceValueManager
>(getTarget());
253 void MachineFunction::initTargetMachineFunctionInfo(
254 const TargetSubtargetInfo
&STI
) {
255 assert(!MFInfo
&& "MachineFunctionInfo already set");
256 MFInfo
= Target
.createMachineFunctionInfo(Allocator
, F
, &STI
);
259 MachineFunction::~MachineFunction() {
263 void MachineFunction::clear() {
265 // Don't call destructors on MachineInstr and MachineOperand. All of their
266 // memory comes from the BumpPtrAllocator which is about to be purged.
268 // Do call MachineBasicBlock destructors, it contains std::vectors.
269 for (iterator I
= begin(), E
= end(); I
!= E
; I
= BasicBlocks
.erase(I
))
270 I
->Insts
.clearAndLeakNodesUnsafely();
271 MBBNumbering
.clear();
273 InstructionRecycler
.clear(Allocator
);
274 OperandRecycler
.clear(Allocator
);
275 BasicBlockRecycler
.clear(Allocator
);
276 CodeViewAnnotations
.clear();
277 VariableDbgInfos
.clear();
279 RegInfo
->~MachineRegisterInfo();
280 Allocator
.Deallocate(RegInfo
);
283 MFInfo
->~MachineFunctionInfo();
284 Allocator
.Deallocate(MFInfo
);
287 FrameInfo
->~MachineFrameInfo();
288 Allocator
.Deallocate(FrameInfo
);
290 ConstantPool
->~MachineConstantPool();
291 Allocator
.Deallocate(ConstantPool
);
294 JumpTableInfo
->~MachineJumpTableInfo();
295 Allocator
.Deallocate(JumpTableInfo
);
299 WinEHInfo
->~WinEHFuncInfo();
300 Allocator
.Deallocate(WinEHInfo
);
304 WasmEHInfo
->~WasmEHFuncInfo();
305 Allocator
.Deallocate(WasmEHInfo
);
309 const DataLayout
&MachineFunction::getDataLayout() const {
310 return F
.getDataLayout();
313 /// Get the JumpTableInfo for this function.
314 /// If it does not already exist, allocate one.
315 MachineJumpTableInfo
*MachineFunction::
316 getOrCreateJumpTableInfo(unsigned EntryKind
) {
317 if (JumpTableInfo
) return JumpTableInfo
;
319 JumpTableInfo
= new (Allocator
)
320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind
)EntryKind
);
321 return JumpTableInfo
;
324 DenormalMode
MachineFunction::getDenormalMode(const fltSemantics
&FPType
) const {
325 return F
.getDenormalMode(FPType
);
328 /// Should we be emitting segmented stack stuff for the function
329 bool MachineFunction::shouldSplitStack() const {
330 return getFunction().hasFnAttribute("split-stack");
333 [[nodiscard
]] unsigned
334 MachineFunction::addFrameInst(const MCCFIInstruction
&Inst
) {
335 FrameInstructions
.push_back(Inst
);
336 return FrameInstructions
.size() - 1;
339 /// This discards all of the MachineBasicBlock numbers and recomputes them.
340 /// This guarantees that the MBB numbers are sequential, dense, and match the
341 /// ordering of the blocks within the function. If a specific MachineBasicBlock
342 /// is specified, only that block and those after it are renumbered.
343 void MachineFunction::RenumberBlocks(MachineBasicBlock
*MBB
) {
344 if (empty()) { MBBNumbering
.clear(); return; }
345 MachineFunction::iterator MBBI
, E
= end();
349 MBBI
= MBB
->getIterator();
351 // Figure out the block number this should have.
352 unsigned BlockNo
= 0;
354 BlockNo
= std::prev(MBBI
)->getNumber() + 1;
356 for (; MBBI
!= E
; ++MBBI
, ++BlockNo
) {
357 if (MBBI
->getNumber() != (int)BlockNo
) {
358 // Remove use of the old number.
359 if (MBBI
->getNumber() != -1) {
360 assert(MBBNumbering
[MBBI
->getNumber()] == &*MBBI
&&
361 "MBB number mismatch!");
362 MBBNumbering
[MBBI
->getNumber()] = nullptr;
365 // If BlockNo is already taken, set that block's number to -1.
366 if (MBBNumbering
[BlockNo
])
367 MBBNumbering
[BlockNo
]->setNumber(-1);
369 MBBNumbering
[BlockNo
] = &*MBBI
;
370 MBBI
->setNumber(BlockNo
);
374 // Okay, all the blocks are renumbered. If we have compactified the block
375 // numbering, shrink MBBNumbering now.
376 assert(BlockNo
<= MBBNumbering
.size() && "Mismatch!");
377 MBBNumbering
.resize(BlockNo
);
380 /// This method iterates over the basic blocks and assigns their IsBeginSection
381 /// and IsEndSection fields. This must be called after MBB layout is finalized
382 /// and the SectionID's are assigned to MBBs.
383 void MachineFunction::assignBeginEndSections() {
384 front().setIsBeginSection();
385 auto CurrentSectionID
= front().getSectionID();
386 for (auto MBBI
= std::next(begin()), E
= end(); MBBI
!= E
; ++MBBI
) {
387 if (MBBI
->getSectionID() == CurrentSectionID
)
389 MBBI
->setIsBeginSection();
390 std::prev(MBBI
)->setIsEndSection();
391 CurrentSectionID
= MBBI
->getSectionID();
393 back().setIsEndSection();
396 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
397 MachineInstr
*MachineFunction::CreateMachineInstr(const MCInstrDesc
&MCID
,
400 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
401 MachineInstr(*this, MCID
, std::move(DL
), NoImplicit
);
404 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
405 /// identical in all ways except the instruction has no parent, prev, or next.
407 MachineFunction::CloneMachineInstr(const MachineInstr
*Orig
) {
408 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
409 MachineInstr(*this, *Orig
);
412 MachineInstr
&MachineFunction::cloneMachineInstrBundle(
413 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
414 const MachineInstr
&Orig
) {
415 MachineInstr
*FirstClone
= nullptr;
416 MachineBasicBlock::const_instr_iterator I
= Orig
.getIterator();
418 MachineInstr
*Cloned
= CloneMachineInstr(&*I
);
419 MBB
.insert(InsertBefore
, Cloned
);
420 if (FirstClone
== nullptr) {
423 Cloned
->bundleWithPred();
426 if (!I
->isBundledWithSucc())
430 // Copy over call site info to the cloned instruction if needed. If Orig is in
431 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
433 if (Orig
.shouldUpdateCallSiteInfo())
434 copyCallSiteInfo(&Orig
, FirstClone
);
438 /// Delete the given MachineInstr.
440 /// This function also serves as the MachineInstr destructor - the real
441 /// ~MachineInstr() destructor must be empty.
442 void MachineFunction::deleteMachineInstr(MachineInstr
*MI
) {
443 // Verify that a call site info is at valid state. This assertion should
444 // be triggered during the implementation of support for the
445 // call site info of a new architecture. If the assertion is triggered,
446 // back trace will tell where to insert a call to updateCallSiteInfo().
447 assert((!MI
->isCandidateForCallSiteEntry() || !CallSitesInfo
.contains(MI
)) &&
448 "Call site info was not updated!");
449 // Strip it for parts. The operand array and the MI object itself are
450 // independently recyclable.
452 deallocateOperandArray(MI
->CapOperands
, MI
->Operands
);
453 // Don't call ~MachineInstr() which must be trivial anyway because
454 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
456 InstructionRecycler
.Deallocate(Allocator
, MI
);
459 /// Allocate a new MachineBasicBlock. Use this instead of
460 /// `new MachineBasicBlock'.
462 MachineFunction::CreateMachineBasicBlock(const BasicBlock
*BB
,
463 std::optional
<UniqueBBID
> BBID
) {
464 MachineBasicBlock
*MBB
=
465 new (BasicBlockRecycler
.Allocate
<MachineBasicBlock
>(Allocator
))
466 MachineBasicBlock(*this, BB
);
467 // Set BBID for `-basic-block=sections=labels` and
468 // `-basic-block-sections=list` to allow robust mapping of profiles to basic
470 if (Target
.getBBSectionsType() == BasicBlockSection::Labels
||
471 Target
.Options
.BBAddrMap
||
472 Target
.getBBSectionsType() == BasicBlockSection::List
)
473 MBB
->setBBID(BBID
.has_value() ? *BBID
: UniqueBBID
{NextBBID
++, 0});
477 /// Delete the given MachineBasicBlock.
478 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock
*MBB
) {
479 assert(MBB
->getParent() == this && "MBB parent mismatch!");
480 // Clean up any references to MBB in jump tables before deleting it.
482 JumpTableInfo
->RemoveMBBFromJumpTables(MBB
);
483 MBB
->~MachineBasicBlock();
484 BasicBlockRecycler
.Deallocate(Allocator
, MBB
);
487 MachineMemOperand
*MachineFunction::getMachineMemOperand(
488 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags F
, LocationSize Size
,
489 Align BaseAlignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
490 SyncScope::ID SSID
, AtomicOrdering Ordering
,
491 AtomicOrdering FailureOrdering
) {
492 assert((!Size
.hasValue() ||
493 Size
.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
494 "Unexpected an unknown size to be represented using "
495 "LocationSize::beforeOrAfter()");
496 return new (Allocator
)
497 MachineMemOperand(PtrInfo
, F
, Size
, BaseAlignment
, AAInfo
, Ranges
, SSID
,
498 Ordering
, FailureOrdering
);
501 MachineMemOperand
*MachineFunction::getMachineMemOperand(
502 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, LLT MemTy
,
503 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
504 SyncScope::ID SSID
, AtomicOrdering Ordering
,
505 AtomicOrdering FailureOrdering
) {
506 return new (Allocator
)
507 MachineMemOperand(PtrInfo
, f
, MemTy
, base_alignment
, AAInfo
, Ranges
, SSID
,
508 Ordering
, FailureOrdering
);
512 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
513 const MachinePointerInfo
&PtrInfo
,
515 assert((!Size
.hasValue() ||
516 Size
.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
517 "Unexpected an unknown size to be represented using "
518 "LocationSize::beforeOrAfter()");
519 return new (Allocator
)
520 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Size
, MMO
->getBaseAlign(),
521 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
522 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
525 MachineMemOperand
*MachineFunction::getMachineMemOperand(
526 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, LLT Ty
) {
527 return new (Allocator
)
528 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Ty
, MMO
->getBaseAlign(),
529 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
530 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
534 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
535 int64_t Offset
, LLT Ty
) {
536 const MachinePointerInfo
&PtrInfo
= MMO
->getPointerInfo();
538 // If there is no pointer value, the offset isn't tracked so we need to adjust
539 // the base alignment.
540 Align Alignment
= PtrInfo
.V
.isNull()
541 ? commonAlignment(MMO
->getBaseAlign(), Offset
)
542 : MMO
->getBaseAlign();
544 // Do not preserve ranges, since we don't necessarily know what the high bits
546 return new (Allocator
) MachineMemOperand(
547 PtrInfo
.getWithOffset(Offset
), MMO
->getFlags(), Ty
, Alignment
,
548 MMO
->getAAInfo(), nullptr, MMO
->getSyncScopeID(),
549 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
553 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
554 const AAMDNodes
&AAInfo
) {
555 MachinePointerInfo MPI
= MMO
->getValue() ?
556 MachinePointerInfo(MMO
->getValue(), MMO
->getOffset()) :
557 MachinePointerInfo(MMO
->getPseudoValue(), MMO
->getOffset());
559 return new (Allocator
) MachineMemOperand(
560 MPI
, MMO
->getFlags(), MMO
->getSize(), MMO
->getBaseAlign(), AAInfo
,
561 MMO
->getRanges(), MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
562 MMO
->getFailureOrdering());
566 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
567 MachineMemOperand::Flags Flags
) {
568 return new (Allocator
) MachineMemOperand(
569 MMO
->getPointerInfo(), Flags
, MMO
->getSize(), MMO
->getBaseAlign(),
570 MMO
->getAAInfo(), MMO
->getRanges(), MMO
->getSyncScopeID(),
571 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
574 MachineInstr::ExtraInfo
*MachineFunction::createMIExtraInfo(
575 ArrayRef
<MachineMemOperand
*> MMOs
, MCSymbol
*PreInstrSymbol
,
576 MCSymbol
*PostInstrSymbol
, MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
577 uint32_t CFIType
, MDNode
*MMRAs
) {
578 return MachineInstr::ExtraInfo::create(Allocator
, MMOs
, PreInstrSymbol
,
579 PostInstrSymbol
, HeapAllocMarker
,
580 PCSections
, CFIType
, MMRAs
);
583 const char *MachineFunction::createExternalSymbolName(StringRef Name
) {
584 char *Dest
= Allocator
.Allocate
<char>(Name
.size() + 1);
585 llvm::copy(Name
, Dest
);
586 Dest
[Name
.size()] = 0;
590 uint32_t *MachineFunction::allocateRegMask() {
591 unsigned NumRegs
= getSubtarget().getRegisterInfo()->getNumRegs();
592 unsigned Size
= MachineOperand::getRegMaskSize(NumRegs
);
593 uint32_t *Mask
= Allocator
.Allocate
<uint32_t>(Size
);
594 memset(Mask
, 0, Size
* sizeof(Mask
[0]));
598 ArrayRef
<int> MachineFunction::allocateShuffleMask(ArrayRef
<int> Mask
) {
599 int* AllocMask
= Allocator
.Allocate
<int>(Mask
.size());
600 copy(Mask
, AllocMask
);
601 return {AllocMask
, Mask
.size()};
604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
605 LLVM_DUMP_METHOD
void MachineFunction::dump() const {
610 StringRef
MachineFunction::getName() const {
611 return getFunction().getName();
614 void MachineFunction::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
) const {
615 OS
<< "# Machine code for function " << getName() << ": ";
616 getProperties().print(OS
);
619 // Print Frame Information
620 FrameInfo
->print(*this, OS
);
622 // Print JumpTable Information
624 JumpTableInfo
->print(OS
);
626 // Print Constant Pool
627 ConstantPool
->print(OS
);
629 const TargetRegisterInfo
*TRI
= getSubtarget().getRegisterInfo();
631 if (RegInfo
&& !RegInfo
->livein_empty()) {
632 OS
<< "Function Live Ins: ";
633 for (MachineRegisterInfo::livein_iterator
634 I
= RegInfo
->livein_begin(), E
= RegInfo
->livein_end(); I
!= E
; ++I
) {
635 OS
<< printReg(I
->first
, TRI
);
637 OS
<< " in " << printReg(I
->second
, TRI
);
638 if (std::next(I
) != E
)
644 ModuleSlotTracker
MST(getFunction().getParent());
645 MST
.incorporateFunction(getFunction());
646 for (const auto &BB
: *this) {
648 // If we print the whole function, print it at its most verbose level.
649 BB
.print(OS
, MST
, Indexes
, /*IsStandalone=*/true);
652 OS
<< "\n# End machine code for function " << getName() << ".\n\n";
655 /// True if this function needs frame moves for debug or exceptions.
656 bool MachineFunction::needsFrameMoves() const {
657 return getMMI().hasDebugInfo() ||
658 getTarget().Options
.ForceDwarfFrameSection
||
659 F
.needsUnwindTableEntry();
665 struct DOTGraphTraits
<const MachineFunction
*> : public DefaultDOTGraphTraits
{
666 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
668 static std::string
getGraphName(const MachineFunction
*F
) {
669 return ("CFG for '" + F
->getName() + "' function").str();
672 std::string
getNodeLabel(const MachineBasicBlock
*Node
,
673 const MachineFunction
*Graph
) {
676 raw_string_ostream
OSS(OutStr
);
679 OSS
<< printMBBReference(*Node
);
680 if (const BasicBlock
*BB
= Node
->getBasicBlock())
681 OSS
<< ": " << BB
->getName();
686 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
688 // Process string output to make it nicer...
689 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
690 if (OutStr
[i
] == '\n') { // Left justify
692 OutStr
.insert(OutStr
.begin()+i
+1, 'l');
698 } // end namespace llvm
700 void MachineFunction::viewCFG() const
703 ViewGraph(this, "mf" + getName());
705 errs() << "MachineFunction::viewCFG is only available in debug builds on "
706 << "systems with Graphviz or gv!\n";
710 void MachineFunction::viewCFGOnly() const
713 ViewGraph(this, "mf" + getName(), true);
715 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
716 << "systems with Graphviz or gv!\n";
720 /// Add the specified physical register as a live-in value and
721 /// create a corresponding virtual register for it.
722 Register
MachineFunction::addLiveIn(MCRegister PReg
,
723 const TargetRegisterClass
*RC
) {
724 MachineRegisterInfo
&MRI
= getRegInfo();
725 Register VReg
= MRI
.getLiveInVirtReg(PReg
);
727 const TargetRegisterClass
*VRegRC
= MRI
.getRegClass(VReg
);
729 // A physical register can be added several times.
730 // Between two calls, the register class of the related virtual register
731 // may have been constrained to match some operation constraints.
732 // In that case, check that the current register class includes the
733 // physical register and is a sub class of the specified RC.
734 assert((VRegRC
== RC
|| (VRegRC
->contains(PReg
) &&
735 RC
->hasSubClassEq(VRegRC
))) &&
736 "Register class mismatch!");
739 VReg
= MRI
.createVirtualRegister(RC
);
740 MRI
.addLiveIn(PReg
, VReg
);
744 /// Return the MCSymbol for the specified non-empty jump table.
745 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
746 /// normal 'L' label is returned.
747 MCSymbol
*MachineFunction::getJTISymbol(unsigned JTI
, MCContext
&Ctx
,
748 bool isLinkerPrivate
) const {
749 const DataLayout
&DL
= getDataLayout();
750 assert(JumpTableInfo
&& "No jump tables");
751 assert(JTI
< JumpTableInfo
->getJumpTables().size() && "Invalid JTI!");
753 StringRef Prefix
= isLinkerPrivate
? DL
.getLinkerPrivateGlobalPrefix()
754 : DL
.getPrivateGlobalPrefix();
755 SmallString
<60> Name
;
756 raw_svector_ostream(Name
)
757 << Prefix
<< "JTI" << getFunctionNumber() << '_' << JTI
;
758 return Ctx
.getOrCreateSymbol(Name
);
761 /// Return a function-local symbol to represent the PIC base.
762 MCSymbol
*MachineFunction::getPICBaseSymbol() const {
763 const DataLayout
&DL
= getDataLayout();
764 return Ctx
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
765 Twine(getFunctionNumber()) + "$pb");
768 /// \name Exception Handling
772 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock
*LandingPad
) {
773 unsigned N
= LandingPads
.size();
774 for (unsigned i
= 0; i
< N
; ++i
) {
775 LandingPadInfo
&LP
= LandingPads
[i
];
776 if (LP
.LandingPadBlock
== LandingPad
)
780 LandingPads
.push_back(LandingPadInfo(LandingPad
));
781 return LandingPads
[N
];
784 void MachineFunction::addInvoke(MachineBasicBlock
*LandingPad
,
785 MCSymbol
*BeginLabel
, MCSymbol
*EndLabel
) {
786 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
787 LP
.BeginLabels
.push_back(BeginLabel
);
788 LP
.EndLabels
.push_back(EndLabel
);
791 MCSymbol
*MachineFunction::addLandingPad(MachineBasicBlock
*LandingPad
) {
792 MCSymbol
*LandingPadLabel
= Ctx
.createTempSymbol();
793 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
794 LP
.LandingPadLabel
= LandingPadLabel
;
796 const Instruction
*FirstI
= LandingPad
->getBasicBlock()->getFirstNonPHI();
797 if (const auto *LPI
= dyn_cast
<LandingPadInst
>(FirstI
)) {
798 // If there's no typeid list specified, then "cleanup" is implicit.
799 // Otherwise, id 0 is reserved for the cleanup action.
800 if (LPI
->isCleanup() && LPI
->getNumClauses() != 0)
801 LP
.TypeIds
.push_back(0);
803 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
804 // correct, but we need to do it this way because of how the DWARF EH
805 // emitter processes the clauses.
806 for (unsigned I
= LPI
->getNumClauses(); I
!= 0; --I
) {
807 Value
*Val
= LPI
->getClause(I
- 1);
808 if (LPI
->isCatch(I
- 1)) {
809 LP
.TypeIds
.push_back(
810 getTypeIDFor(dyn_cast
<GlobalValue
>(Val
->stripPointerCasts())));
812 // Add filters in a list.
813 auto *CVal
= cast
<Constant
>(Val
);
814 SmallVector
<unsigned, 4> FilterList
;
815 for (const Use
&U
: CVal
->operands())
816 FilterList
.push_back(
817 getTypeIDFor(cast
<GlobalValue
>(U
->stripPointerCasts())));
819 LP
.TypeIds
.push_back(getFilterIDFor(FilterList
));
823 } else if (const auto *CPI
= dyn_cast
<CatchPadInst
>(FirstI
)) {
824 for (unsigned I
= CPI
->arg_size(); I
!= 0; --I
) {
826 dyn_cast
<GlobalValue
>(CPI
->getArgOperand(I
- 1)->stripPointerCasts());
827 LP
.TypeIds
.push_back(getTypeIDFor(TypeInfo
));
831 assert(isa
<CleanupPadInst
>(FirstI
) && "Invalid landingpad!");
834 return LandingPadLabel
;
837 void MachineFunction::setCallSiteLandingPad(MCSymbol
*Sym
,
838 ArrayRef
<unsigned> Sites
) {
839 LPadToCallSiteMap
[Sym
].append(Sites
.begin(), Sites
.end());
842 unsigned MachineFunction::getTypeIDFor(const GlobalValue
*TI
) {
843 for (unsigned i
= 0, N
= TypeInfos
.size(); i
!= N
; ++i
)
844 if (TypeInfos
[i
] == TI
) return i
+ 1;
846 TypeInfos
.push_back(TI
);
847 return TypeInfos
.size();
850 int MachineFunction::getFilterIDFor(ArrayRef
<unsigned> TyIds
) {
851 // If the new filter coincides with the tail of an existing filter, then
852 // re-use the existing filter. Folding filters more than this requires
853 // re-ordering filters and/or their elements - probably not worth it.
854 for (unsigned i
: FilterEnds
) {
855 unsigned j
= TyIds
.size();
858 if (FilterIds
[--i
] != TyIds
[--j
])
862 // The new filter coincides with range [i, end) of the existing filter.
868 // Add the new filter.
869 int FilterID
= -(1 + FilterIds
.size());
870 FilterIds
.reserve(FilterIds
.size() + TyIds
.size() + 1);
871 llvm::append_range(FilterIds
, TyIds
);
872 FilterEnds
.push_back(FilterIds
.size());
873 FilterIds
.push_back(0); // terminator
877 MachineFunction::CallSiteInfoMap::iterator
878 MachineFunction::getCallSiteInfo(const MachineInstr
*MI
) {
879 assert(MI
->isCandidateForCallSiteEntry() &&
880 "Call site info refers only to call (MI) candidates");
882 if (!Target
.Options
.EmitCallSiteInfo
)
883 return CallSitesInfo
.end();
884 return CallSitesInfo
.find(MI
);
887 /// Return the call machine instruction or find a call within bundle.
888 static const MachineInstr
*getCallInstr(const MachineInstr
*MI
) {
892 for (const auto &BMI
: make_range(getBundleStart(MI
->getIterator()),
893 getBundleEnd(MI
->getIterator())))
894 if (BMI
.isCandidateForCallSiteEntry())
897 llvm_unreachable("Unexpected bundle without a call site candidate");
900 void MachineFunction::eraseCallSiteInfo(const MachineInstr
*MI
) {
901 assert(MI
->shouldUpdateCallSiteInfo() &&
902 "Call site info refers only to call (MI) candidates or "
903 "candidates inside bundles");
905 const MachineInstr
*CallMI
= getCallInstr(MI
);
906 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(CallMI
);
907 if (CSIt
== CallSitesInfo
.end())
909 CallSitesInfo
.erase(CSIt
);
912 void MachineFunction::copyCallSiteInfo(const MachineInstr
*Old
,
913 const MachineInstr
*New
) {
914 assert(Old
->shouldUpdateCallSiteInfo() &&
915 "Call site info refers only to call (MI) candidates or "
916 "candidates inside bundles");
918 if (!New
->isCandidateForCallSiteEntry())
919 return eraseCallSiteInfo(Old
);
921 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
922 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
923 if (CSIt
== CallSitesInfo
.end())
926 CallSiteInfo CSInfo
= CSIt
->second
;
927 CallSitesInfo
[New
] = CSInfo
;
930 void MachineFunction::moveCallSiteInfo(const MachineInstr
*Old
,
931 const MachineInstr
*New
) {
932 assert(Old
->shouldUpdateCallSiteInfo() &&
933 "Call site info refers only to call (MI) candidates or "
934 "candidates inside bundles");
936 if (!New
->isCandidateForCallSiteEntry())
937 return eraseCallSiteInfo(Old
);
939 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
940 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
941 if (CSIt
== CallSitesInfo
.end())
944 CallSiteInfo CSInfo
= std::move(CSIt
->second
);
945 CallSitesInfo
.erase(CSIt
);
946 CallSitesInfo
[New
] = CSInfo
;
949 void MachineFunction::setDebugInstrNumberingCount(unsigned Num
) {
950 DebugInstrNumberingCount
= Num
;
953 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A
,
954 DebugInstrOperandPair B
,
956 // Catch any accidental self-loops.
957 assert(A
.first
!= B
.first
);
958 // Don't allow any substitutions _from_ the memory operand number.
959 assert(A
.second
!= DebugOperandMemNumber
);
961 DebugValueSubstitutions
.push_back({A
, B
, Subreg
});
964 void MachineFunction::substituteDebugValuesForInst(const MachineInstr
&Old
,
966 unsigned MaxOperand
) {
967 // If the Old instruction wasn't tracked at all, there is no work to do.
968 unsigned OldInstrNum
= Old
.peekDebugInstrNum();
972 // Iterate over all operands looking for defs to create substitutions for.
973 // Avoid creating new instr numbers unless we create a new substitution.
974 // While this has no functional effect, it risks confusing someone reading
976 // Examine all the operands, or the first N specified by the caller.
977 MaxOperand
= std::min(MaxOperand
, Old
.getNumOperands());
978 for (unsigned int I
= 0; I
< MaxOperand
; ++I
) {
979 const auto &OldMO
= Old
.getOperand(I
);
980 auto &NewMO
= New
.getOperand(I
);
983 if (!OldMO
.isReg() || !OldMO
.isDef())
985 assert(NewMO
.isDef());
987 unsigned NewInstrNum
= New
.getDebugInstrNum();
988 makeDebugValueSubstitution(std::make_pair(OldInstrNum
, I
),
989 std::make_pair(NewInstrNum
, I
));
993 auto MachineFunction::salvageCopySSA(
994 MachineInstr
&MI
, DenseMap
<Register
, DebugInstrOperandPair
> &DbgPHICache
)
995 -> DebugInstrOperandPair
{
996 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
998 // Check whether this copy-like instruction has already been salvaged into
1001 if (auto CopyDstSrc
= TII
.isCopyInstr(MI
)) {
1002 Dest
= CopyDstSrc
->Destination
->getReg();
1004 assert(MI
.isSubregToReg());
1005 Dest
= MI
.getOperand(0).getReg();
1008 auto CacheIt
= DbgPHICache
.find(Dest
);
1009 if (CacheIt
!= DbgPHICache
.end())
1010 return CacheIt
->second
;
1012 // Calculate the instruction number to use, or install a DBG_PHI.
1013 auto OperandPair
= salvageCopySSAImpl(MI
);
1014 DbgPHICache
.insert({Dest
, OperandPair
});
1018 auto MachineFunction::salvageCopySSAImpl(MachineInstr
&MI
)
1019 -> DebugInstrOperandPair
{
1020 MachineRegisterInfo
&MRI
= getRegInfo();
1021 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
1022 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
1024 // Chase the value read by a copy-like instruction back to the instruction
1025 // that ultimately _defines_ that value. This may pass:
1026 // * Through multiple intermediate copies, including subregister moves /
1028 // * Copies from physical registers that must then be traced back to the
1029 // defining instruction,
1030 // * Or, physical registers may be live-in to (only) the entry block, which
1031 // requires a DBG_PHI to be created.
1032 // We can pursue this problem in that order: trace back through copies,
1033 // optionally through a physical register, to a defining instruction. We
1034 // should never move from physreg to vreg. As we're still in SSA form, no need
1035 // to worry about partial definitions of registers.
1037 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1038 // returns the register read and any subregister identifying which part is
1040 auto GetRegAndSubreg
=
1041 [&](const MachineInstr
&Cpy
) -> std::pair
<Register
, unsigned> {
1042 Register NewReg
, OldReg
;
1045 OldReg
= Cpy
.getOperand(0).getReg();
1046 NewReg
= Cpy
.getOperand(1).getReg();
1047 SubReg
= Cpy
.getOperand(1).getSubReg();
1048 } else if (Cpy
.isSubregToReg()) {
1049 OldReg
= Cpy
.getOperand(0).getReg();
1050 NewReg
= Cpy
.getOperand(2).getReg();
1051 SubReg
= Cpy
.getOperand(3).getImm();
1053 auto CopyDetails
= *TII
.isCopyInstr(Cpy
);
1054 const MachineOperand
&Src
= *CopyDetails
.Source
;
1055 const MachineOperand
&Dest
= *CopyDetails
.Destination
;
1056 OldReg
= Dest
.getReg();
1057 NewReg
= Src
.getReg();
1058 SubReg
= Src
.getSubReg();
1061 return {NewReg
, SubReg
};
1064 // First seek either the defining instruction, or a copy from a physreg.
1065 // During search, the current state is the current copy instruction, and which
1066 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1067 // deal with those later.
1068 auto State
= GetRegAndSubreg(MI
);
1069 auto CurInst
= MI
.getIterator();
1070 SmallVector
<unsigned, 4> SubregsSeen
;
1072 // If we've found a copy from a physreg, first portion of search is over.
1073 if (!State
.first
.isVirtual())
1076 // Record any subregister qualifier.
1078 SubregsSeen
.push_back(State
.second
);
1080 assert(MRI
.hasOneDef(State
.first
));
1081 MachineInstr
&Inst
= *MRI
.def_begin(State
.first
)->getParent();
1082 CurInst
= Inst
.getIterator();
1084 // Any non-copy instruction is the defining instruction we're seeking.
1085 if (!Inst
.isCopyLike() && !TII
.isCopyInstr(Inst
))
1087 State
= GetRegAndSubreg(Inst
);
1090 // Helper lambda to apply additional subregister substitutions to a known
1091 // instruction/operand pair. Adds new (fake) substitutions so that we can
1092 // record the subregister. FIXME: this isn't very space efficient if multiple
1093 // values are tracked back through the same copies; cache something later.
1094 auto ApplySubregisters
=
1095 [&](DebugInstrOperandPair P
) -> DebugInstrOperandPair
{
1096 for (unsigned Subreg
: reverse(SubregsSeen
)) {
1097 // Fetch a new instruction number, not attached to an actual instruction.
1098 unsigned NewInstrNumber
= getNewDebugInstrNum();
1099 // Add a substitution from the "new" number to the known one, with a
1100 // qualifying subreg.
1101 makeDebugValueSubstitution({NewInstrNumber
, 0}, P
, Subreg
);
1102 // Return the new number; to find the underlying value, consumers need to
1103 // deal with the qualifying subreg.
1104 P
= {NewInstrNumber
, 0};
1109 // If we managed to find the defining instruction after COPYs, return an
1110 // instruction / operand pair after adding subregister qualifiers.
1111 if (State
.first
.isVirtual()) {
1112 // Virtual register def -- we can just look up where this happens.
1113 MachineInstr
*Inst
= MRI
.def_begin(State
.first
)->getParent();
1114 for (auto &MO
: Inst
->all_defs()) {
1115 if (MO
.getReg() != State
.first
)
1117 return ApplySubregisters({Inst
->getDebugInstrNum(), MO
.getOperandNo()});
1120 llvm_unreachable("Vreg def with no corresponding operand?");
1123 // Our search ended in a copy from a physreg: walk back up the function
1124 // looking for whatever defines the physreg.
1125 assert(CurInst
->isCopyLike() || TII
.isCopyInstr(*CurInst
));
1126 State
= GetRegAndSubreg(*CurInst
);
1127 Register RegToSeek
= State
.first
;
1129 auto RMII
= CurInst
->getReverseIterator();
1130 auto PrevInstrs
= make_range(RMII
, CurInst
->getParent()->instr_rend());
1131 for (auto &ToExamine
: PrevInstrs
) {
1132 for (auto &MO
: ToExamine
.all_defs()) {
1133 // Test for operand that defines something aliasing RegToSeek.
1134 if (!TRI
.regsOverlap(RegToSeek
, MO
.getReg()))
1137 return ApplySubregisters(
1138 {ToExamine
.getDebugInstrNum(), MO
.getOperandNo()});
1142 MachineBasicBlock
&InsertBB
= *CurInst
->getParent();
1144 // We reached the start of the block before finding a defining instruction.
1145 // There are numerous scenarios where this can happen:
1146 // * Constant physical registers,
1147 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1148 // * Arguments in the entry block,
1149 // * Exception handling landing pads.
1150 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1151 // the variable value at this position, rather than checking it makes sense.
1153 // Create DBG_PHI for specified physreg.
1154 auto Builder
= BuildMI(InsertBB
, InsertBB
.getFirstNonPHI(), DebugLoc(),
1155 TII
.get(TargetOpcode::DBG_PHI
));
1156 Builder
.addReg(State
.first
);
1157 unsigned NewNum
= getNewDebugInstrNum();
1158 Builder
.addImm(NewNum
);
1159 return ApplySubregisters({NewNum
, 0u});
1162 void MachineFunction::finalizeDebugInstrRefs() {
1163 auto *TII
= getSubtarget().getInstrInfo();
1165 auto MakeUndefDbgValue
= [&](MachineInstr
&MI
) {
1166 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_VALUE_LIST
);
1168 MI
.setDebugValueUndef();
1171 DenseMap
<Register
, DebugInstrOperandPair
> ArgDbgPHIs
;
1172 for (auto &MBB
: *this) {
1173 for (auto &MI
: MBB
) {
1174 if (!MI
.isDebugRef())
1177 bool IsValidRef
= true;
1179 for (MachineOperand
&MO
: MI
.debug_operands()) {
1183 Register Reg
= MO
.getReg();
1185 // Some vregs can be deleted as redundant in the meantime. Mark those
1186 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1187 // quickly deleted, leaving dangling references to vregs with no def.
1188 if (Reg
== 0 || !RegInfo
->hasOneDef(Reg
)) {
1193 assert(Reg
.isVirtual());
1194 MachineInstr
&DefMI
= *RegInfo
->def_instr_begin(Reg
);
1196 // If we've found a copy-like instruction, follow it back to the
1197 // instruction that defines the source value, see salvageCopySSA docs
1198 // for why this is important.
1199 if (DefMI
.isCopyLike() || TII
->isCopyInstr(DefMI
)) {
1200 auto Result
= salvageCopySSA(DefMI
, ArgDbgPHIs
);
1201 MO
.ChangeToDbgInstrRef(Result
.first
, Result
.second
);
1203 // Otherwise, identify the operand number that the VReg refers to.
1204 unsigned OperandIdx
= 0;
1205 for (const auto &DefMO
: DefMI
.operands()) {
1206 if (DefMO
.isReg() && DefMO
.isDef() && DefMO
.getReg() == Reg
)
1210 assert(OperandIdx
< DefMI
.getNumOperands());
1212 // Morph this instr ref to point at the given instruction and operand.
1213 unsigned ID
= DefMI
.getDebugInstrNum();
1214 MO
.ChangeToDbgInstrRef(ID
, OperandIdx
);
1219 MakeUndefDbgValue(MI
);
1224 bool MachineFunction::shouldUseDebugInstrRef() const {
1225 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1226 // have optimized code inlined into this unoptimized code, however with
1227 // fewer and less aggressive optimizations happening, coverage and accuracy
1228 // should not suffer.
1229 if (getTarget().getOptLevel() == CodeGenOptLevel::None
)
1232 // Don't use instr-ref if this function is marked optnone.
1233 if (F
.hasFnAttribute(Attribute::OptimizeNone
))
1236 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1242 bool MachineFunction::useDebugInstrRef() const {
1243 return UseDebugInstrRef
;
1246 void MachineFunction::setUseDebugInstrRef(bool Use
) {
1247 UseDebugInstrRef
= Use
;
1250 // Use one million as a high / reserved number.
1251 const unsigned MachineFunction::DebugOperandMemNumber
= 1000000;
1255 //===----------------------------------------------------------------------===//
1256 // MachineJumpTableInfo implementation
1257 //===----------------------------------------------------------------------===//
1259 /// Return the size of each entry in the jump table.
1260 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout
&TD
) const {
1261 // The size of a jump table entry is 4 bytes unless the entry is just the
1262 // address of a block, in which case it is the pointer size.
1263 switch (getEntryKind()) {
1264 case MachineJumpTableInfo::EK_BlockAddress
:
1265 return TD
.getPointerSize();
1266 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1267 case MachineJumpTableInfo::EK_LabelDifference64
:
1269 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1270 case MachineJumpTableInfo::EK_LabelDifference32
:
1271 case MachineJumpTableInfo::EK_Custom32
:
1273 case MachineJumpTableInfo::EK_Inline
:
1276 llvm_unreachable("Unknown jump table encoding!");
1279 /// Return the alignment of each entry in the jump table.
1280 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout
&TD
) const {
1281 // The alignment of a jump table entry is the alignment of int32 unless the
1282 // entry is just the address of a block, in which case it is the pointer
1284 switch (getEntryKind()) {
1285 case MachineJumpTableInfo::EK_BlockAddress
:
1286 return TD
.getPointerABIAlignment(0).value();
1287 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1288 case MachineJumpTableInfo::EK_LabelDifference64
:
1289 return TD
.getABIIntegerTypeAlignment(64).value();
1290 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1291 case MachineJumpTableInfo::EK_LabelDifference32
:
1292 case MachineJumpTableInfo::EK_Custom32
:
1293 return TD
.getABIIntegerTypeAlignment(32).value();
1294 case MachineJumpTableInfo::EK_Inline
:
1297 llvm_unreachable("Unknown jump table encoding!");
1300 /// Create a new jump table entry in the jump table info.
1301 unsigned MachineJumpTableInfo::createJumpTableIndex(
1302 const std::vector
<MachineBasicBlock
*> &DestBBs
) {
1303 assert(!DestBBs
.empty() && "Cannot create an empty jump table!");
1304 JumpTables
.push_back(MachineJumpTableEntry(DestBBs
));
1305 return JumpTables
.size()-1;
1308 /// If Old is the target of any jump tables, update the jump tables to branch
1310 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock
*Old
,
1311 MachineBasicBlock
*New
) {
1312 assert(Old
!= New
&& "Not making a change?");
1313 bool MadeChange
= false;
1314 for (size_t i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
)
1315 ReplaceMBBInJumpTable(i
, Old
, New
);
1319 /// If MBB is present in any jump tables, remove it.
1320 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock
*MBB
) {
1321 bool MadeChange
= false;
1322 for (MachineJumpTableEntry
&JTE
: JumpTables
) {
1323 auto removeBeginItr
= std::remove(JTE
.MBBs
.begin(), JTE
.MBBs
.end(), MBB
);
1324 MadeChange
|= (removeBeginItr
!= JTE
.MBBs
.end());
1325 JTE
.MBBs
.erase(removeBeginItr
, JTE
.MBBs
.end());
1330 /// If Old is a target of the jump tables, update the jump table to branch to
1332 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx
,
1333 MachineBasicBlock
*Old
,
1334 MachineBasicBlock
*New
) {
1335 assert(Old
!= New
&& "Not making a change?");
1336 bool MadeChange
= false;
1337 MachineJumpTableEntry
&JTE
= JumpTables
[Idx
];
1338 for (MachineBasicBlock
*&MBB
: JTE
.MBBs
)
1346 void MachineJumpTableInfo::print(raw_ostream
&OS
) const {
1347 if (JumpTables
.empty()) return;
1349 OS
<< "Jump Tables:\n";
1351 for (unsigned i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
) {
1352 OS
<< printJumpTableEntryReference(i
) << ':';
1353 for (const MachineBasicBlock
*MBB
: JumpTables
[i
].MBBs
)
1354 OS
<< ' ' << printMBBReference(*MBB
);
1362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1363 LLVM_DUMP_METHOD
void MachineJumpTableInfo::dump() const { print(dbgs()); }
1366 Printable
llvm::printJumpTableEntryReference(unsigned Idx
) {
1367 return Printable([Idx
](raw_ostream
&OS
) { OS
<< "%jump-table." << Idx
; });
1370 //===----------------------------------------------------------------------===//
1371 // MachineConstantPool implementation
1372 //===----------------------------------------------------------------------===//
1374 void MachineConstantPoolValue::anchor() {}
1376 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout
&DL
) const {
1377 return DL
.getTypeAllocSize(Ty
);
1380 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout
&DL
) const {
1381 if (isMachineConstantPoolEntry())
1382 return Val
.MachineCPVal
->getSizeInBytes(DL
);
1383 return DL
.getTypeAllocSize(Val
.ConstVal
->getType());
1386 bool MachineConstantPoolEntry::needsRelocation() const {
1387 if (isMachineConstantPoolEntry())
1389 return Val
.ConstVal
->needsDynamicRelocation();
1393 MachineConstantPoolEntry::getSectionKind(const DataLayout
*DL
) const {
1394 if (needsRelocation())
1395 return SectionKind::getReadOnlyWithRel();
1396 switch (getSizeInBytes(*DL
)) {
1398 return SectionKind::getMergeableConst4();
1400 return SectionKind::getMergeableConst8();
1402 return SectionKind::getMergeableConst16();
1404 return SectionKind::getMergeableConst32();
1406 return SectionKind::getReadOnly();
1410 MachineConstantPool::~MachineConstantPool() {
1411 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1412 // so keep track of which we've deleted to avoid double deletions.
1413 DenseSet
<MachineConstantPoolValue
*> Deleted
;
1414 for (const MachineConstantPoolEntry
&C
: Constants
)
1415 if (C
.isMachineConstantPoolEntry()) {
1416 Deleted
.insert(C
.Val
.MachineCPVal
);
1417 delete C
.Val
.MachineCPVal
;
1419 for (MachineConstantPoolValue
*CPV
: MachineCPVsSharingEntries
) {
1420 if (Deleted
.count(CPV
) == 0)
1425 /// Test whether the given two constants can be allocated the same constant pool
1426 /// entry referenced by \param A.
1427 static bool CanShareConstantPoolEntry(const Constant
*A
, const Constant
*B
,
1428 const DataLayout
&DL
) {
1429 // Handle the trivial case quickly.
1430 if (A
== B
) return true;
1432 // If they have the same type but weren't the same constant, quickly
1434 if (A
->getType() == B
->getType()) return false;
1436 // We can't handle structs or arrays.
1437 if (isa
<StructType
>(A
->getType()) || isa
<ArrayType
>(A
->getType()) ||
1438 isa
<StructType
>(B
->getType()) || isa
<ArrayType
>(B
->getType()))
1441 // For now, only support constants with the same size.
1442 uint64_t StoreSize
= DL
.getTypeStoreSize(A
->getType());
1443 if (StoreSize
!= DL
.getTypeStoreSize(B
->getType()) || StoreSize
> 128)
1446 bool ContainsUndefOrPoisonA
= A
->containsUndefOrPoisonElement();
1448 Type
*IntTy
= IntegerType::get(A
->getContext(), StoreSize
*8);
1450 // Try constant folding a bitcast of both instructions to an integer. If we
1451 // get two identical ConstantInt's, then we are good to share them. We use
1452 // the constant folding APIs to do this so that we get the benefit of
1454 if (isa
<PointerType
>(A
->getType()))
1455 A
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1456 const_cast<Constant
*>(A
), IntTy
, DL
);
1457 else if (A
->getType() != IntTy
)
1458 A
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(A
),
1460 if (isa
<PointerType
>(B
->getType()))
1461 B
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1462 const_cast<Constant
*>(B
), IntTy
, DL
);
1463 else if (B
->getType() != IntTy
)
1464 B
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(B
),
1470 // Constants only safely match if A doesn't contain undef/poison.
1471 // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1472 // TODO: Handle cases where A and B have the same undef/poison elements.
1473 // TODO: Merge A and B with mismatching undef/poison elements.
1474 return !ContainsUndefOrPoisonA
;
1477 /// Create a new entry in the constant pool or return an existing one.
1478 /// User must specify the log2 of the minimum required alignment for the object.
1479 unsigned MachineConstantPool::getConstantPoolIndex(const Constant
*C
,
1481 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1483 // Check to see if we already have this constant.
1485 // FIXME, this could be made much more efficient for large constant pools.
1486 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1487 if (!Constants
[i
].isMachineConstantPoolEntry() &&
1488 CanShareConstantPoolEntry(Constants
[i
].Val
.ConstVal
, C
, DL
)) {
1489 if (Constants
[i
].getAlign() < Alignment
)
1490 Constants
[i
].Alignment
= Alignment
;
1494 Constants
.push_back(MachineConstantPoolEntry(C
, Alignment
));
1495 return Constants
.size()-1;
1498 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue
*V
,
1500 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1502 // Check to see if we already have this constant.
1504 // FIXME, this could be made much more efficient for large constant pools.
1505 int Idx
= V
->getExistingMachineCPValue(this, Alignment
);
1507 MachineCPVsSharingEntries
.insert(V
);
1508 return (unsigned)Idx
;
1511 Constants
.push_back(MachineConstantPoolEntry(V
, Alignment
));
1512 return Constants
.size()-1;
1515 void MachineConstantPool::print(raw_ostream
&OS
) const {
1516 if (Constants
.empty()) return;
1518 OS
<< "Constant Pool:\n";
1519 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
) {
1520 OS
<< " cp#" << i
<< ": ";
1521 if (Constants
[i
].isMachineConstantPoolEntry())
1522 Constants
[i
].Val
.MachineCPVal
->print(OS
);
1524 Constants
[i
].Val
.ConstVal
->printAsOperand(OS
, /*PrintType=*/false);
1525 OS
<< ", align=" << Constants
[i
].getAlign().value();
1530 //===----------------------------------------------------------------------===//
1531 // Template specialization for MachineFunction implementation of
1532 // ProfileSummaryInfo::getEntryCount().
1533 //===----------------------------------------------------------------------===//
1535 std::optional
<Function::ProfileCount
>
1536 ProfileSummaryInfo::getEntryCount
<llvm::MachineFunction
>(
1537 const llvm::MachineFunction
*F
) const {
1538 return F
->getFunction().getEntryCount();
1541 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1542 LLVM_DUMP_METHOD
void MachineConstantPool::dump() const { print(dbgs()); }