1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
59 #define DEBUG_TYPE "machinelicm"
62 AvoidSpeculation("avoid-speculation",
63 cl::desc("MachineLICM should avoid speculation"),
64 cl::init(true), cl::Hidden
);
67 HoistCheapInsts("hoist-cheap-insts",
68 cl::desc("MachineLICM should hoist even cheap instructions"),
69 cl::init(false), cl::Hidden
);
72 HoistConstStores("hoist-const-stores",
73 cl::desc("Hoist invariant stores"),
74 cl::init(true), cl::Hidden
);
76 static cl::opt
<bool> HoistConstLoads("hoist-const-loads",
77 cl::desc("Hoist invariant loads"),
78 cl::init(true), cl::Hidden
);
80 // The default threshold of 100 (i.e. if target block is 100 times hotter)
81 // is based on empirical data on a single target and is subject to tuning.
82 static cl::opt
<unsigned>
83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
84 cl::desc("Do not hoist instructions if target"
85 "block is N times hotter than the source."),
86 cl::init(100), cl::Hidden
);
88 enum class UseBFI
{ None
, PGO
, All
};
90 static cl::opt
<UseBFI
>
91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
92 cl::desc("Disable hoisting instructions to"
94 cl::init(UseBFI::PGO
), cl::Hidden
,
95 cl::values(clEnumValN(UseBFI::None
, "none",
96 "disable the feature"),
97 clEnumValN(UseBFI::PGO
, "pgo",
98 "enable the feature when using profile data"),
99 clEnumValN(UseBFI::All
, "all",
100 "enable the feature with/wo profile data")));
102 STATISTIC(NumHoisted
,
103 "Number of machine instructions hoisted out of loops");
105 "Number of instructions hoisted in low reg pressure situation");
106 STATISTIC(NumHighLatency
,
107 "Number of high latency instructions hoisted");
109 "Number of hoisted machine instructions CSEed");
110 STATISTIC(NumPostRAHoisted
,
111 "Number of machine instructions hoisted out of loops post regalloc");
112 STATISTIC(NumStoreConst
,
113 "Number of stores of const phys reg hoisted out of loops");
114 STATISTIC(NumNotHoistedDueToHotness
,
115 "Number of instructions not hoisted due to block frequency");
118 enum HoistResult
{ NotHoisted
= 1, Hoisted
= 2, ErasedMI
= 4 };
120 class MachineLICMBase
: public MachineFunctionPass
{
121 const TargetInstrInfo
*TII
= nullptr;
122 const TargetLoweringBase
*TLI
= nullptr;
123 const TargetRegisterInfo
*TRI
= nullptr;
124 const MachineFrameInfo
*MFI
= nullptr;
125 MachineRegisterInfo
*MRI
= nullptr;
126 TargetSchedModel SchedModel
;
127 bool PreRegAlloc
= false;
128 bool HasProfileData
= false;
130 // Various analyses that we use...
131 AliasAnalysis
*AA
= nullptr; // Alias analysis info.
132 MachineBlockFrequencyInfo
*MBFI
= nullptr; // Machine block frequncy info
133 MachineLoopInfo
*MLI
= nullptr; // Current MachineLoopInfo
134 MachineDominatorTree
*DT
= nullptr; // Machine dominator tree for the cur loop
136 // State that is updated as we process loops
137 bool Changed
= false; // True if a loop is changed.
138 bool FirstInLoop
= false; // True if it's the first LICM in the loop.
140 // Holds information about whether it is allowed to move load instructions
142 SmallDenseMap
<MachineLoop
*, bool> AllowedToHoistLoads
;
144 // Exit blocks of each Loop.
145 DenseMap
<MachineLoop
*, SmallVector
<MachineBasicBlock
*, 8>> ExitBlockMap
;
147 bool isExitBlock(MachineLoop
*CurLoop
, const MachineBasicBlock
*MBB
) {
148 if (ExitBlockMap
.contains(CurLoop
))
149 return is_contained(ExitBlockMap
[CurLoop
], MBB
);
151 SmallVector
<MachineBasicBlock
*, 8> ExitBlocks
;
152 CurLoop
->getExitBlocks(ExitBlocks
);
153 ExitBlockMap
[CurLoop
] = ExitBlocks
;
154 return is_contained(ExitBlocks
, MBB
);
157 // Track 'estimated' register pressure.
158 SmallDenseSet
<Register
> RegSeen
;
159 SmallVector
<unsigned, 8> RegPressure
;
161 // Register pressure "limit" per register pressure set. If the pressure
162 // is higher than the limit, then it's considered high.
163 SmallVector
<unsigned, 8> RegLimit
;
165 // Register pressure on path leading from loop preheader to current BB.
166 SmallVector
<SmallVector
<unsigned, 8>, 16> BackTrace
;
168 // For each opcode per preheader, keep a list of potential CSE instructions.
169 DenseMap
<MachineBasicBlock
*,
170 DenseMap
<unsigned, std::vector
<MachineInstr
*>>>
179 // If a MBB does not dominate loop exiting blocks then it may not safe
180 // to hoist loads from this block.
181 // Tri-state: 0 - false, 1 - true, 2 - unknown
182 unsigned SpeculationState
= SpeculateUnknown
;
185 MachineLICMBase(char &PassID
, bool PreRegAlloc
)
186 : MachineFunctionPass(PassID
), PreRegAlloc(PreRegAlloc
) {}
188 bool runOnMachineFunction(MachineFunction
&MF
) override
;
190 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
191 AU
.addRequired
<MachineLoopInfoWrapperPass
>();
192 if (DisableHoistingToHotterBlocks
!= UseBFI::None
)
193 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
194 AU
.addRequired
<MachineDominatorTreeWrapperPass
>();
195 AU
.addRequired
<AAResultsWrapperPass
>();
196 AU
.addPreserved
<MachineLoopInfoWrapperPass
>();
197 MachineFunctionPass::getAnalysisUsage(AU
);
200 void releaseMemory() override
{
206 ExitBlockMap
.clear();
210 /// Keep track of information about hoisting candidates.
211 struct CandidateInfo
{
216 CandidateInfo(MachineInstr
*mi
, unsigned def
, int fi
)
217 : MI(mi
), Def(def
), FI(fi
) {}
220 void HoistRegionPostRA(MachineLoop
*CurLoop
,
221 MachineBasicBlock
*CurPreheader
);
223 void HoistPostRA(MachineInstr
*MI
, unsigned Def
, MachineLoop
*CurLoop
,
224 MachineBasicBlock
*CurPreheader
);
226 void ProcessMI(MachineInstr
*MI
, BitVector
&RUDefs
, BitVector
&RUClobbers
,
227 SmallDenseSet
<int> &StoredFIs
,
228 SmallVectorImpl
<CandidateInfo
> &Candidates
,
229 MachineLoop
*CurLoop
);
231 void AddToLiveIns(MCRegister Reg
, MachineLoop
*CurLoop
);
233 bool IsLICMCandidate(MachineInstr
&I
, MachineLoop
*CurLoop
);
235 bool IsLoopInvariantInst(MachineInstr
&I
, MachineLoop
*CurLoop
);
237 bool HasLoopPHIUse(const MachineInstr
*MI
, MachineLoop
*CurLoop
);
239 bool HasHighOperandLatency(MachineInstr
&MI
, unsigned DefIdx
, Register Reg
,
240 MachineLoop
*CurLoop
) const;
242 bool IsCheapInstruction(MachineInstr
&MI
) const;
244 bool CanCauseHighRegPressure(const DenseMap
<unsigned, int> &Cost
,
247 void UpdateBackTraceRegPressure(const MachineInstr
*MI
);
249 bool IsProfitableToHoist(MachineInstr
&MI
, MachineLoop
*CurLoop
);
251 bool IsGuaranteedToExecute(MachineBasicBlock
*BB
, MachineLoop
*CurLoop
);
253 bool isTriviallyReMaterializable(const MachineInstr
&MI
) const;
255 void EnterScope(MachineBasicBlock
*MBB
);
257 void ExitScope(MachineBasicBlock
*MBB
);
259 void ExitScopeIfDone(
260 MachineDomTreeNode
*Node
,
261 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
262 const DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
);
264 void HoistOutOfLoop(MachineDomTreeNode
*HeaderN
, MachineLoop
*CurLoop
,
265 MachineBasicBlock
*CurPreheader
);
267 void InitRegPressure(MachineBasicBlock
*BB
);
269 DenseMap
<unsigned, int> calcRegisterCost(const MachineInstr
*MI
,
271 bool ConsiderUnseenAsDef
);
273 void UpdateRegPressure(const MachineInstr
*MI
,
274 bool ConsiderUnseenAsDef
= false);
276 MachineInstr
*ExtractHoistableLoad(MachineInstr
*MI
, MachineLoop
*CurLoop
);
278 MachineInstr
*LookForDuplicate(const MachineInstr
*MI
,
279 std::vector
<MachineInstr
*> &PrevMIs
);
282 EliminateCSE(MachineInstr
*MI
,
283 DenseMap
<unsigned, std::vector
<MachineInstr
*>>::iterator
&CI
);
285 bool MayCSE(MachineInstr
*MI
);
287 unsigned Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
,
288 MachineLoop
*CurLoop
);
290 void InitCSEMap(MachineBasicBlock
*BB
);
292 void InitializeLoadsHoistableLoops();
294 bool isTgtHotterThanSrc(MachineBasicBlock
*SrcBlock
,
295 MachineBasicBlock
*TgtBlock
);
296 MachineBasicBlock
*getCurPreheader(MachineLoop
*CurLoop
,
297 MachineBasicBlock
*CurPreheader
);
300 class MachineLICM
: public MachineLICMBase
{
303 MachineLICM() : MachineLICMBase(ID
, false) {
304 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
308 class EarlyMachineLICM
: public MachineLICMBase
{
311 EarlyMachineLICM() : MachineLICMBase(ID
, true) {
312 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
316 } // end anonymous namespace
318 char MachineLICM::ID
;
319 char EarlyMachineLICM::ID
;
321 char &llvm::MachineLICMID
= MachineLICM::ID
;
322 char &llvm::EarlyMachineLICMID
= EarlyMachineLICM::ID
;
324 INITIALIZE_PASS_BEGIN(MachineLICM
, DEBUG_TYPE
,
325 "Machine Loop Invariant Code Motion", false, false)
326 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass
)
327 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass
)
328 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass
)
329 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
330 INITIALIZE_PASS_END(MachineLICM
, DEBUG_TYPE
,
331 "Machine Loop Invariant Code Motion", false, false)
333 INITIALIZE_PASS_BEGIN(EarlyMachineLICM
, "early-machinelicm",
334 "Early Machine Loop Invariant Code Motion", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass
)
336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass
)
337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass
)
338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
339 INITIALIZE_PASS_END(EarlyMachineLICM
, "early-machinelicm",
340 "Early Machine Loop Invariant Code Motion", false, false)
342 bool MachineLICMBase::runOnMachineFunction(MachineFunction
&MF
) {
343 if (skipFunction(MF
.getFunction()))
346 Changed
= FirstInLoop
= false;
347 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
348 TII
= ST
.getInstrInfo();
349 TLI
= ST
.getTargetLowering();
350 TRI
= ST
.getRegisterInfo();
351 MFI
= &MF
.getFrameInfo();
352 MRI
= &MF
.getRegInfo();
353 SchedModel
.init(&ST
);
355 PreRegAlloc
= MRI
->isSSA();
356 HasProfileData
= MF
.getFunction().hasProfileData();
359 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
361 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
362 LLVM_DEBUG(dbgs() << MF
.getName() << " ********\n");
365 // Estimate register pressure during pre-regalloc pass.
366 unsigned NumRPS
= TRI
->getNumRegPressureSets();
367 RegPressure
.resize(NumRPS
);
368 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
369 RegLimit
.resize(NumRPS
);
370 for (unsigned i
= 0, e
= NumRPS
; i
!= e
; ++i
)
371 RegLimit
[i
] = TRI
->getRegPressureSetLimit(MF
, i
);
374 // Get our Loop information...
375 if (DisableHoistingToHotterBlocks
!= UseBFI::None
)
376 MBFI
= &getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI();
377 MLI
= &getAnalysis
<MachineLoopInfoWrapperPass
>().getLI();
378 DT
= &getAnalysis
<MachineDominatorTreeWrapperPass
>().getDomTree();
379 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
382 InitializeLoadsHoistableLoops();
384 SmallVector
<MachineLoop
*, 8> Worklist(MLI
->begin(), MLI
->end());
385 while (!Worklist
.empty()) {
386 MachineLoop
*CurLoop
= Worklist
.pop_back_val();
387 MachineBasicBlock
*CurPreheader
= nullptr;
390 HoistRegionPostRA(CurLoop
, CurPreheader
);
392 // CSEMap is initialized for loop header when the first instruction is
394 MachineDomTreeNode
*N
= DT
->getNode(CurLoop
->getHeader());
396 HoistOutOfLoop(N
, CurLoop
, CurPreheader
);
404 /// Return true if instruction stores to the specified frame.
405 static bool InstructionStoresToFI(const MachineInstr
*MI
, int FI
) {
406 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
407 // true since they have no memory operands.
410 // If we lost memory operands, conservatively assume that the instruction
411 // writes to all slots.
412 if (MI
->memoperands_empty())
414 for (const MachineMemOperand
*MemOp
: MI
->memoperands()) {
415 if (!MemOp
->isStore() || !MemOp
->getPseudoValue())
417 if (const FixedStackPseudoSourceValue
*Value
=
418 dyn_cast
<FixedStackPseudoSourceValue
>(MemOp
->getPseudoValue())) {
419 if (Value
->getFrameIndex() == FI
)
426 static void applyBitsNotInRegMaskToRegUnitsMask(const TargetRegisterInfo
&TRI
,
428 const uint32_t *Mask
) {
429 // FIXME: This intentionally works in reverse due to some issues with the
430 // Register Units infrastructure.
432 // This is used to apply callee-saved-register masks to the clobbered regunits
435 // The right way to approach this is to start with a BitVector full of ones,
436 // then reset all the bits of the regunits of each register that is set in the
437 // mask (registers preserved), then OR the resulting bits with the Clobbers
438 // mask. This correctly prioritizes the saved registers, so if a RU is shared
439 // between a register that is preserved, and one that is NOT preserved, that
440 // RU will not be set in the output vector (the clobbers).
442 // What we have to do for now is the opposite: we have to assume that the
443 // regunits of all registers that are NOT preserved are clobbered, even if
444 // those regunits are preserved by another register. So if a RU is shared
445 // like described previously, that RU will be set.
447 // This is to work around an issue which appears in AArch64, but isn't
448 // exclusive to that target: AArch64's Qn registers (128 bits) have Dn
449 // register (lower 64 bits). A few Dn registers are preserved by some calling
450 // conventions, but Qn and Dn share exactly the same reg units.
452 // If we do this the right way, Qn will be marked as NOT clobbered even though
453 // its upper 64 bits are NOT preserved. The conservative approach handles this
454 // correctly at the cost of some missed optimizations on other targets.
456 // This is caused by how RegUnits are handled within TableGen. Ideally, Qn
457 // should have an extra RegUnit to model the "unknown" bits not covered by the
459 BitVector
RUsFromRegsNotInMask(TRI
.getNumRegUnits());
460 const unsigned NumRegs
= TRI
.getNumRegs();
461 const unsigned MaskWords
= (NumRegs
+ 31) / 32;
462 for (unsigned K
= 0; K
< MaskWords
; ++K
) {
463 const uint32_t Word
= Mask
[K
];
464 for (unsigned Bit
= 0; Bit
< 32; ++Bit
) {
465 const unsigned PhysReg
= (K
* 32) + Bit
;
466 if (PhysReg
== NumRegs
)
469 if (PhysReg
&& !((Word
>> Bit
) & 1)) {
470 for (MCRegUnitIterator
RUI(PhysReg
, &TRI
); RUI
.isValid(); ++RUI
)
471 RUsFromRegsNotInMask
.set(*RUI
);
476 RUs
|= RUsFromRegsNotInMask
;
479 /// Examine the instruction for potentai LICM candidate. Also
480 /// gather register def and frame object update information.
481 void MachineLICMBase::ProcessMI(MachineInstr
*MI
, BitVector
&RUDefs
,
482 BitVector
&RUClobbers
,
483 SmallDenseSet
<int> &StoredFIs
,
484 SmallVectorImpl
<CandidateInfo
> &Candidates
,
485 MachineLoop
*CurLoop
) {
486 bool RuledOut
= false;
487 bool HasNonInvariantUse
= false;
489 for (const MachineOperand
&MO
: MI
->operands()) {
491 // Remember if the instruction stores to the frame index.
492 int FI
= MO
.getIndex();
493 if (!StoredFIs
.count(FI
) &&
494 MFI
->isSpillSlotObjectIndex(FI
) &&
495 InstructionStoresToFI(MI
, FI
))
496 StoredFIs
.insert(FI
);
497 HasNonInvariantUse
= true;
501 // We can't hoist an instruction defining a physreg that is clobbered in
503 if (MO
.isRegMask()) {
504 applyBitsNotInRegMaskToRegUnitsMask(*TRI
, RUClobbers
, MO
.getRegMask());
510 Register Reg
= MO
.getReg();
513 assert(Reg
.isPhysical() && "Not expecting virtual register!");
516 if (!HasNonInvariantUse
) {
517 for (MCRegUnitIterator
RUI(Reg
, TRI
); RUI
.isValid(); ++RUI
) {
518 // If it's using a non-loop-invariant register, then it's obviously
519 // not safe to hoist.
520 if (RUDefs
.test(*RUI
) || RUClobbers
.test(*RUI
)) {
521 HasNonInvariantUse
= true;
529 if (MO
.isImplicit()) {
530 for (MCRegUnitIterator
RUI(Reg
, TRI
); RUI
.isValid(); ++RUI
)
531 RUClobbers
.set(*RUI
);
533 // Non-dead implicit def? This cannot be hoisted.
535 // No need to check if a dead implicit def is also defined by
536 // another instruction.
540 // FIXME: For now, avoid instructions with multiple defs, unless
541 // it's a dead implicit def.
547 // If we have already seen another instruction that defines the same
548 // register, then this is not safe. Two defs is indicated by setting a
549 // PhysRegClobbers bit.
550 for (MCRegUnitIterator
RUI(Reg
, TRI
); RUI
.isValid(); ++RUI
) {
551 if (RUDefs
.test(*RUI
)) {
552 RUClobbers
.set(*RUI
);
554 } else if (RUClobbers
.test(*RUI
)) {
555 // MI defined register is seen defined by another instruction in
556 // the loop, it cannot be a LICM candidate.
564 // Only consider reloads for now and remats which do not have register
565 // operands. FIXME: Consider unfold load folding instructions.
566 if (Def
&& !RuledOut
) {
567 int FI
= std::numeric_limits
<int>::min();
568 if ((!HasNonInvariantUse
&& IsLICMCandidate(*MI
, CurLoop
)) ||
569 (TII
->isLoadFromStackSlot(*MI
, FI
) && MFI
->isSpillSlotObjectIndex(FI
)))
570 Candidates
.push_back(CandidateInfo(MI
, Def
, FI
));
574 /// Walk the specified region of the CFG and hoist loop invariants out to the
576 void MachineLICMBase::HoistRegionPostRA(MachineLoop
*CurLoop
,
577 MachineBasicBlock
*CurPreheader
) {
578 MachineBasicBlock
*Preheader
= getCurPreheader(CurLoop
, CurPreheader
);
582 unsigned NumRegUnits
= TRI
->getNumRegUnits();
583 BitVector
RUDefs(NumRegUnits
); // RUs defined once in the loop.
584 BitVector
RUClobbers(NumRegUnits
); // RUs defined more than once.
586 SmallVector
<CandidateInfo
, 32> Candidates
;
587 SmallDenseSet
<int> StoredFIs
;
589 // Walk the entire region, count number of defs for each register, and
590 // collect potential LICM candidates.
591 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
592 // If the header of the loop containing this basic block is a landing pad,
593 // then don't try to hoist instructions out of this loop.
594 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
595 if (ML
&& ML
->getHeader()->isEHPad()) continue;
597 // Conservatively treat live-in's as an external def.
598 // FIXME: That means a reload that're reused in successor block(s) will not
600 for (const auto &LI
: BB
->liveins()) {
601 for (MCRegUnitIterator
RUI(LI
.PhysReg
, TRI
); RUI
.isValid(); ++RUI
)
605 // Funclet entry blocks will clobber all registers
606 if (const uint32_t *Mask
= BB
->getBeginClobberMask(TRI
))
607 applyBitsNotInRegMaskToRegUnitsMask(*TRI
, RUClobbers
, Mask
);
609 SpeculationState
= SpeculateUnknown
;
610 for (MachineInstr
&MI
: *BB
)
611 ProcessMI(&MI
, RUDefs
, RUClobbers
, StoredFIs
, Candidates
, CurLoop
);
614 // Gather the registers read / clobbered by the terminator.
615 BitVector
TermRUs(NumRegUnits
);
616 MachineBasicBlock::iterator TI
= Preheader
->getFirstTerminator();
617 if (TI
!= Preheader
->end()) {
618 for (const MachineOperand
&MO
: TI
->operands()) {
621 Register Reg
= MO
.getReg();
624 for (MCRegUnitIterator
RUI(Reg
, TRI
); RUI
.isValid(); ++RUI
)
629 // Now evaluate whether the potential candidates qualify.
630 // 1. Check if the candidate defined register is defined by another
631 // instruction in the loop.
632 // 2. If the candidate is a load from stack slot (always true for now),
633 // check if the slot is stored anywhere in the loop.
634 // 3. Make sure candidate def should not clobber
635 // registers read by the terminator. Similarly its def should not be
636 // clobbered by the terminator.
637 for (CandidateInfo
&Candidate
: Candidates
) {
638 if (Candidate
.FI
!= std::numeric_limits
<int>::min() &&
639 StoredFIs
.count(Candidate
.FI
))
642 unsigned Def
= Candidate
.Def
;
644 for (MCRegUnitIterator
RUI(Def
, TRI
); RUI
.isValid(); ++RUI
) {
645 if (RUClobbers
.test(*RUI
) || TermRUs
.test(*RUI
)) {
654 MachineInstr
*MI
= Candidate
.MI
;
655 for (const MachineOperand
&MO
: MI
->all_uses()) {
658 for (MCRegUnitIterator
RUI(MO
.getReg(), TRI
); RUI
.isValid(); ++RUI
) {
659 if (RUDefs
.test(*RUI
) || RUClobbers
.test(*RUI
)) {
660 // If it's using a non-loop-invariant register, then it's obviously
661 // not safe to hoist.
672 HoistPostRA(MI
, Candidate
.Def
, CurLoop
, CurPreheader
);
676 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
677 /// sure it is not killed by any instructions in the loop.
678 void MachineLICMBase::AddToLiveIns(MCRegister Reg
, MachineLoop
*CurLoop
) {
679 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
680 if (!BB
->isLiveIn(Reg
))
682 for (MachineInstr
&MI
: *BB
) {
683 for (MachineOperand
&MO
: MI
.all_uses()) {
686 if (TRI
->regsOverlap(Reg
, MO
.getReg()))
693 /// When an instruction is found to only use loop invariant operands that is
694 /// safe to hoist, this instruction is called to do the dirty work.
695 void MachineLICMBase::HoistPostRA(MachineInstr
*MI
, unsigned Def
,
696 MachineLoop
*CurLoop
,
697 MachineBasicBlock
*CurPreheader
) {
698 MachineBasicBlock
*Preheader
= getCurPreheader(CurLoop
, CurPreheader
);
700 // Now move the instructions to the predecessor, inserting it before any
701 // terminator instructions.
702 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader
)
703 << " from " << printMBBReference(*MI
->getParent()) << ": "
706 // Splice the instruction to the preheader.
707 MachineBasicBlock
*MBB
= MI
->getParent();
708 Preheader
->splice(Preheader
->getFirstTerminator(), MBB
, MI
);
710 // Since we are moving the instruction out of its basic block, we do not
711 // retain its debug location. Doing so would degrade the debugging
712 // experience and adversely affect the accuracy of profiling information.
713 assert(!MI
->isDebugInstr() && "Should not hoist debug inst");
714 MI
->setDebugLoc(DebugLoc());
716 // Add register to livein list to all the BBs in the current loop since a
717 // loop invariant must be kept live throughout the whole loop. This is
718 // important to ensure later passes do not scavenge the def register.
719 AddToLiveIns(Def
, CurLoop
);
725 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
726 /// may not be safe to hoist.
727 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock
*BB
,
728 MachineLoop
*CurLoop
) {
729 if (SpeculationState
!= SpeculateUnknown
)
730 return SpeculationState
== SpeculateFalse
;
732 if (BB
!= CurLoop
->getHeader()) {
733 // Check loop exiting blocks.
734 SmallVector
<MachineBasicBlock
*, 8> CurrentLoopExitingBlocks
;
735 CurLoop
->getExitingBlocks(CurrentLoopExitingBlocks
);
736 for (MachineBasicBlock
*CurrentLoopExitingBlock
: CurrentLoopExitingBlocks
)
737 if (!DT
->dominates(BB
, CurrentLoopExitingBlock
)) {
738 SpeculationState
= SpeculateTrue
;
743 SpeculationState
= SpeculateFalse
;
747 /// Check if \p MI is trivially remateralizable and if it does not have any
748 /// virtual register uses. Even though rematerializable RA might not actually
749 /// rematerialize it in this scenario. In that case we do not want to hoist such
750 /// instruction out of the loop in a belief RA will sink it back if needed.
751 bool MachineLICMBase::isTriviallyReMaterializable(
752 const MachineInstr
&MI
) const {
753 if (!TII
->isTriviallyReMaterializable(MI
))
756 for (const MachineOperand
&MO
: MI
.all_uses()) {
757 if (MO
.getReg().isVirtual())
764 void MachineLICMBase::EnterScope(MachineBasicBlock
*MBB
) {
765 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB
) << '\n');
767 // Remember livein register pressure.
768 BackTrace
.push_back(RegPressure
);
771 void MachineLICMBase::ExitScope(MachineBasicBlock
*MBB
) {
772 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB
) << '\n');
773 BackTrace
.pop_back();
776 /// Destroy scope for the MBB that corresponds to the given dominator tree node
777 /// if its a leaf or all of its children are done. Walk up the dominator tree to
778 /// destroy ancestors which are now done.
779 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode
*Node
,
780 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
781 const DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
) {
782 if (OpenChildren
[Node
])
786 ExitScope(Node
->getBlock());
787 // Now traverse upwards to pop ancestors whose offsprings are all done.
788 MachineDomTreeNode
*Parent
= ParentMap
.lookup(Node
);
789 if (!Parent
|| --OpenChildren
[Parent
] != 0)
795 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
796 /// specified header block, and that are in the current loop) in depth first
797 /// order w.r.t the DominatorTree. This allows us to visit definitions before
798 /// uses, allowing us to hoist a loop body in one pass without iteration.
799 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode
*HeaderN
,
800 MachineLoop
*CurLoop
,
801 MachineBasicBlock
*CurPreheader
) {
802 MachineBasicBlock
*Preheader
= getCurPreheader(CurLoop
, CurPreheader
);
806 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
807 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
808 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> ParentMap
;
809 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
811 // Perform a DFS walk to determine the order of visit.
812 WorkList
.push_back(HeaderN
);
813 while (!WorkList
.empty()) {
814 MachineDomTreeNode
*Node
= WorkList
.pop_back_val();
815 assert(Node
&& "Null dominator tree node?");
816 MachineBasicBlock
*BB
= Node
->getBlock();
818 // If the header of the loop containing this basic block is a landing pad,
819 // then don't try to hoist instructions out of this loop.
820 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
821 if (ML
&& ML
->getHeader()->isEHPad())
824 // If this subregion is not in the top level loop at all, exit.
825 if (!CurLoop
->contains(BB
))
828 Scopes
.push_back(Node
);
829 unsigned NumChildren
= Node
->getNumChildren();
831 // Don't hoist things out of a large switch statement. This often causes
832 // code to be hoisted that wasn't going to be executed, and increases
833 // register pressure in a situation where it's likely to matter.
834 if (BB
->succ_size() >= 25)
837 OpenChildren
[Node
] = NumChildren
;
839 // Add children in reverse order as then the next popped worklist node is
840 // the first child of this node. This means we ultimately traverse the
841 // DOM tree in exactly the same order as if we'd recursed.
842 for (MachineDomTreeNode
*Child
: reverse(Node
->children())) {
843 ParentMap
[Child
] = Node
;
844 WorkList
.push_back(Child
);
849 if (Scopes
.size() == 0)
852 // Compute registers which are livein into the loop headers.
855 InitRegPressure(Preheader
);
858 for (MachineDomTreeNode
*Node
: Scopes
) {
859 MachineBasicBlock
*MBB
= Node
->getBlock();
864 SpeculationState
= SpeculateUnknown
;
865 for (MachineInstr
&MI
: llvm::make_early_inc_range(*MBB
)) {
866 unsigned HoistRes
= HoistResult::NotHoisted
;
867 HoistRes
= Hoist(&MI
, Preheader
, CurLoop
);
868 if (HoistRes
& HoistResult::NotHoisted
) {
869 // We have failed to hoist MI to outermost loop's preheader. If MI is in
870 // a subloop, try to hoist it to subloop's preheader.
871 SmallVector
<MachineLoop
*> InnerLoopWorkList
;
872 for (MachineLoop
*L
= MLI
->getLoopFor(MI
.getParent()); L
!= CurLoop
;
873 L
= L
->getParentLoop())
874 InnerLoopWorkList
.push_back(L
);
876 while (!InnerLoopWorkList
.empty()) {
877 MachineLoop
*InnerLoop
= InnerLoopWorkList
.pop_back_val();
878 MachineBasicBlock
*InnerLoopPreheader
= InnerLoop
->getLoopPreheader();
879 if (InnerLoopPreheader
) {
880 HoistRes
= Hoist(&MI
, InnerLoopPreheader
, InnerLoop
);
881 if (HoistRes
& HoistResult::Hoisted
)
887 if (HoistRes
& HoistResult::ErasedMI
)
890 UpdateRegPressure(&MI
);
893 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
894 ExitScopeIfDone(Node
, OpenChildren
, ParentMap
);
898 static bool isOperandKill(const MachineOperand
&MO
, MachineRegisterInfo
*MRI
) {
899 return MO
.isKill() || MRI
->hasOneNonDBGUse(MO
.getReg());
902 /// Find all virtual register references that are liveout of the preheader to
903 /// initialize the starting "register pressure". Note this does not count live
904 /// through (livein but not used) registers.
905 void MachineLICMBase::InitRegPressure(MachineBasicBlock
*BB
) {
906 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
908 // If the preheader has only a single predecessor and it ends with a
909 // fallthrough or an unconditional branch, then scan its predecessor for live
910 // defs as well. This happens whenever the preheader is created by splitting
911 // the critical edge from the loop predecessor to the loop header.
912 if (BB
->pred_size() == 1) {
913 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
914 SmallVector
<MachineOperand
, 4> Cond
;
915 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
, false) && Cond
.empty())
916 InitRegPressure(*BB
->pred_begin());
919 for (const MachineInstr
&MI
: *BB
)
920 UpdateRegPressure(&MI
, /*ConsiderUnseenAsDef=*/true);
923 /// Update estimate of register pressure after the specified instruction.
924 void MachineLICMBase::UpdateRegPressure(const MachineInstr
*MI
,
925 bool ConsiderUnseenAsDef
) {
926 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/true, ConsiderUnseenAsDef
);
927 for (const auto &RPIdAndCost
: Cost
) {
928 unsigned Class
= RPIdAndCost
.first
;
929 if (static_cast<int>(RegPressure
[Class
]) < -RPIdAndCost
.second
)
930 RegPressure
[Class
] = 0;
932 RegPressure
[Class
] += RPIdAndCost
.second
;
936 /// Calculate the additional register pressure that the registers used in MI
939 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
940 /// figure out which usages are live-ins.
941 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
942 DenseMap
<unsigned, int>
943 MachineLICMBase::calcRegisterCost(const MachineInstr
*MI
, bool ConsiderSeen
,
944 bool ConsiderUnseenAsDef
) {
945 DenseMap
<unsigned, int> Cost
;
946 if (MI
->isImplicitDef())
948 for (unsigned i
= 0, e
= MI
->getDesc().getNumOperands(); i
!= e
; ++i
) {
949 const MachineOperand
&MO
= MI
->getOperand(i
);
950 if (!MO
.isReg() || MO
.isImplicit())
952 Register Reg
= MO
.getReg();
953 if (!Reg
.isVirtual())
956 // FIXME: It seems bad to use RegSeen only for some of these calculations.
957 bool isNew
= ConsiderSeen
? RegSeen
.insert(Reg
).second
: false;
958 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
960 RegClassWeight W
= TRI
->getRegClassWeight(RC
);
963 RCCost
= W
.RegWeight
;
965 bool isKill
= isOperandKill(MO
, MRI
);
966 if (isNew
&& !isKill
&& ConsiderUnseenAsDef
)
967 // Haven't seen this, it must be a livein.
968 RCCost
= W
.RegWeight
;
969 else if (!isNew
&& isKill
)
970 RCCost
= -W
.RegWeight
;
974 const int *PS
= TRI
->getRegClassPressureSets(RC
);
975 for (; *PS
!= -1; ++PS
) {
976 if (!Cost
.contains(*PS
))
985 /// Return true if this machine instruction loads from global offset table or
987 static bool mayLoadFromGOTOrConstantPool(MachineInstr
&MI
) {
988 assert(MI
.mayLoad() && "Expected MI that loads!");
990 // If we lost memory operands, conservatively assume that the instruction
991 // reads from everything..
992 if (MI
.memoperands_empty())
995 for (MachineMemOperand
*MemOp
: MI
.memoperands())
996 if (const PseudoSourceValue
*PSV
= MemOp
->getPseudoValue())
997 if (PSV
->isGOT() || PSV
->isConstantPool())
1003 // This function iterates through all the operands of the input store MI and
1004 // checks that each register operand statisfies isCallerPreservedPhysReg.
1005 // This means, the value being stored and the address where it is being stored
1006 // is constant throughout the body of the function (not including prologue and
1007 // epilogue). When called with an MI that isn't a store, it returns false.
1008 // A future improvement can be to check if the store registers are constant
1009 // throughout the loop rather than throughout the funtion.
1010 static bool isInvariantStore(const MachineInstr
&MI
,
1011 const TargetRegisterInfo
*TRI
,
1012 const MachineRegisterInfo
*MRI
) {
1014 bool FoundCallerPresReg
= false;
1015 if (!MI
.mayStore() || MI
.hasUnmodeledSideEffects() ||
1016 (MI
.getNumOperands() == 0))
1019 // Check that all register operands are caller-preserved physical registers.
1020 for (const MachineOperand
&MO
: MI
.operands()) {
1022 Register Reg
= MO
.getReg();
1023 // If operand is a virtual register, check if it comes from a copy of a
1024 // physical register.
1025 if (Reg
.isVirtual())
1026 Reg
= TRI
->lookThruCopyLike(MO
.getReg(), MRI
);
1027 if (Reg
.isVirtual())
1029 if (!TRI
->isCallerPreservedPhysReg(Reg
.asMCReg(), *MI
.getMF()))
1032 FoundCallerPresReg
= true;
1033 } else if (!MO
.isImm()) {
1037 return FoundCallerPresReg
;
1040 // Return true if the input MI is a copy instruction that feeds an invariant
1041 // store instruction. This means that the src of the copy has to satisfy
1042 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
1043 // isInvariantStore.
1044 static bool isCopyFeedingInvariantStore(const MachineInstr
&MI
,
1045 const MachineRegisterInfo
*MRI
,
1046 const TargetRegisterInfo
*TRI
) {
1048 // FIXME: If targets would like to look through instructions that aren't
1049 // pure copies, this can be updated to a query.
1053 const MachineFunction
*MF
= MI
.getMF();
1054 // Check that we are copying a constant physical register.
1055 Register CopySrcReg
= MI
.getOperand(1).getReg();
1056 if (CopySrcReg
.isVirtual())
1059 if (!TRI
->isCallerPreservedPhysReg(CopySrcReg
.asMCReg(), *MF
))
1062 Register CopyDstReg
= MI
.getOperand(0).getReg();
1063 // Check if any of the uses of the copy are invariant stores.
1064 assert(CopyDstReg
.isVirtual() && "copy dst is not a virtual reg");
1066 for (MachineInstr
&UseMI
: MRI
->use_instructions(CopyDstReg
)) {
1067 if (UseMI
.mayStore() && isInvariantStore(UseMI
, TRI
, MRI
))
1073 /// Returns true if the instruction may be a suitable candidate for LICM.
1074 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
1075 bool MachineLICMBase::IsLICMCandidate(MachineInstr
&I
, MachineLoop
*CurLoop
) {
1076 // Check if it's safe to move the instruction.
1077 bool DontMoveAcrossStore
= !HoistConstLoads
|| !AllowedToHoistLoads
[CurLoop
];
1078 if ((!I
.isSafeToMove(AA
, DontMoveAcrossStore
)) &&
1079 !(HoistConstStores
&& isInvariantStore(I
, TRI
, MRI
))) {
1080 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
1084 // If it is a load then check if it is guaranteed to execute by making sure
1085 // that it dominates all exiting blocks. If it doesn't, then there is a path
1086 // out of the loop which does not execute this load, so we can't hoist it.
1087 // Loads from constant memory are safe to speculate, for example indexed load
1088 // from a jump table.
1089 // Stores and side effects are already checked by isSafeToMove.
1090 if (I
.mayLoad() && !mayLoadFromGOTOrConstantPool(I
) &&
1091 !IsGuaranteedToExecute(I
.getParent(), CurLoop
)) {
1092 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
1096 // Convergent attribute has been used on operations that involve inter-thread
1097 // communication which results are implicitly affected by the enclosing
1098 // control flows. It is not safe to hoist or sink such operations across
1100 if (I
.isConvergent())
1103 if (!TII
->shouldHoist(I
, CurLoop
))
1109 /// Returns true if the instruction is loop invariant.
1110 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr
&I
,
1111 MachineLoop
*CurLoop
) {
1112 if (!IsLICMCandidate(I
, CurLoop
)) {
1113 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
1116 return CurLoop
->isLoopInvariant(I
);
1119 /// Return true if the specified instruction is used by a phi node and hoisting
1120 /// it could cause a copy to be inserted.
1121 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr
*MI
,
1122 MachineLoop
*CurLoop
) {
1123 SmallVector
<const MachineInstr
*, 8> Work(1, MI
);
1125 MI
= Work
.pop_back_val();
1126 for (const MachineOperand
&MO
: MI
->all_defs()) {
1127 Register Reg
= MO
.getReg();
1128 if (!Reg
.isVirtual())
1130 for (MachineInstr
&UseMI
: MRI
->use_instructions(Reg
)) {
1131 // A PHI may cause a copy to be inserted.
1132 if (UseMI
.isPHI()) {
1133 // A PHI inside the loop causes a copy because the live range of Reg is
1134 // extended across the PHI.
1135 if (CurLoop
->contains(&UseMI
))
1137 // A PHI in an exit block can cause a copy to be inserted if the PHI
1138 // has multiple predecessors in the loop with different values.
1139 // For now, approximate by rejecting all exit blocks.
1140 if (isExitBlock(CurLoop
, UseMI
.getParent()))
1144 // Look past copies as well.
1145 if (UseMI
.isCopy() && CurLoop
->contains(&UseMI
))
1146 Work
.push_back(&UseMI
);
1149 } while (!Work
.empty());
1153 /// Compute operand latency between a def of 'Reg' and an use in the current
1154 /// loop, return true if the target considered it high.
1155 bool MachineLICMBase::HasHighOperandLatency(MachineInstr
&MI
, unsigned DefIdx
,
1157 MachineLoop
*CurLoop
) const {
1158 if (MRI
->use_nodbg_empty(Reg
))
1161 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(Reg
)) {
1162 if (UseMI
.isCopyLike())
1164 if (!CurLoop
->contains(UseMI
.getParent()))
1166 for (unsigned i
= 0, e
= UseMI
.getNumOperands(); i
!= e
; ++i
) {
1167 const MachineOperand
&MO
= UseMI
.getOperand(i
);
1168 if (!MO
.isReg() || !MO
.isUse())
1170 Register MOReg
= MO
.getReg();
1174 if (TII
->hasHighOperandLatency(SchedModel
, MRI
, MI
, DefIdx
, UseMI
, i
))
1178 // Only look at the first in loop use.
1185 /// Return true if the instruction is marked "cheap" or the operand latency
1186 /// between its def and a use is one or less.
1187 bool MachineLICMBase::IsCheapInstruction(MachineInstr
&MI
) const {
1188 if (TII
->isAsCheapAsAMove(MI
) || MI
.isCopyLike())
1191 bool isCheap
= false;
1192 unsigned NumDefs
= MI
.getDesc().getNumDefs();
1193 for (unsigned i
= 0, e
= MI
.getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
1194 MachineOperand
&DefMO
= MI
.getOperand(i
);
1195 if (!DefMO
.isReg() || !DefMO
.isDef())
1198 Register Reg
= DefMO
.getReg();
1199 if (Reg
.isPhysical())
1202 if (!TII
->hasLowDefLatency(SchedModel
, MI
, i
))
1210 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1211 /// given cost matrix can cause high register pressure.
1213 MachineLICMBase::CanCauseHighRegPressure(const DenseMap
<unsigned, int>& Cost
,
1215 for (const auto &RPIdAndCost
: Cost
) {
1216 if (RPIdAndCost
.second
<= 0)
1219 unsigned Class
= RPIdAndCost
.first
;
1220 int Limit
= RegLimit
[Class
];
1222 // Don't hoist cheap instructions if they would increase register pressure,
1223 // even if we're under the limit.
1224 if (CheapInstr
&& !HoistCheapInsts
)
1227 for (const auto &RP
: BackTrace
)
1228 if (static_cast<int>(RP
[Class
]) + RPIdAndCost
.second
>= Limit
)
1235 /// Traverse the back trace from header to the current block and update their
1236 /// register pressures to reflect the effect of hoisting MI from the current
1237 /// block to the preheader.
1238 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr
*MI
) {
1239 // First compute the 'cost' of the instruction, i.e. its contribution
1240 // to register pressure.
1241 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/false,
1242 /*ConsiderUnseenAsDef=*/false);
1244 // Update register pressure of blocks from loop header to current block.
1245 for (auto &RP
: BackTrace
)
1246 for (const auto &RPIdAndCost
: Cost
)
1247 RP
[RPIdAndCost
.first
] += RPIdAndCost
.second
;
1250 /// Return true if it is potentially profitable to hoist the given loop
1252 bool MachineLICMBase::IsProfitableToHoist(MachineInstr
&MI
,
1253 MachineLoop
*CurLoop
) {
1254 if (MI
.isImplicitDef())
1257 // Besides removing computation from the loop, hoisting an instruction has
1260 // - The value defined by the instruction becomes live across the entire
1261 // loop. This increases register pressure in the loop.
1263 // - If the value is used by a PHI in the loop, a copy will be required for
1264 // lowering the PHI after extending the live range.
1266 // - When hoisting the last use of a value in the loop, that value no longer
1267 // needs to be live in the loop. This lowers register pressure in the loop.
1269 if (HoistConstStores
&& isCopyFeedingInvariantStore(MI
, MRI
, TRI
))
1272 bool CheapInstr
= IsCheapInstruction(MI
);
1273 bool CreatesCopy
= HasLoopPHIUse(&MI
, CurLoop
);
1275 // Don't hoist a cheap instruction if it would create a copy in the loop.
1276 if (CheapInstr
&& CreatesCopy
) {
1277 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI
);
1281 // Rematerializable instructions should always be hoisted providing the
1282 // register allocator can just pull them down again when needed.
1283 if (isTriviallyReMaterializable(MI
))
1286 // FIXME: If there are long latency loop-invariant instructions inside the
1287 // loop at this point, why didn't the optimizer's LICM hoist them?
1288 for (unsigned i
= 0, e
= MI
.getDesc().getNumOperands(); i
!= e
; ++i
) {
1289 const MachineOperand
&MO
= MI
.getOperand(i
);
1290 if (!MO
.isReg() || MO
.isImplicit())
1292 Register Reg
= MO
.getReg();
1293 if (!Reg
.isVirtual())
1295 if (MO
.isDef() && HasHighOperandLatency(MI
, i
, Reg
, CurLoop
)) {
1296 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI
);
1302 // Estimate register pressure to determine whether to LICM the instruction.
1303 // In low register pressure situation, we can be more aggressive about
1304 // hoisting. Also, favors hoisting long latency instructions even in
1305 // moderately high pressure situation.
1306 // Cheap instructions will only be hoisted if they don't increase register
1308 auto Cost
= calcRegisterCost(&MI
, /*ConsiderSeen=*/false,
1309 /*ConsiderUnseenAsDef=*/false);
1311 // Visit BBs from header to current BB, if hoisting this doesn't cause
1312 // high register pressure, then it's safe to proceed.
1313 if (!CanCauseHighRegPressure(Cost
, CheapInstr
)) {
1314 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI
);
1319 // Don't risk increasing register pressure if it would create copies.
1321 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI
);
1325 // Do not "speculate" in high register pressure situation. If an
1326 // instruction is not guaranteed to be executed in the loop, it's best to be
1328 if (AvoidSpeculation
&&
1329 (!IsGuaranteedToExecute(MI
.getParent(), CurLoop
) && !MayCSE(&MI
))) {
1330 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI
);
1334 // If we have a COPY with other uses in the loop, hoist to allow the users to
1336 // TODO: Handle all isCopyLike?
1337 if (MI
.isCopy() || MI
.isRegSequence()) {
1338 Register DefReg
= MI
.getOperand(0).getReg();
1339 if (DefReg
.isVirtual() &&
1341 [this](const MachineOperand
&UseOp
) {
1342 return !UseOp
.isReg() || UseOp
.getReg().isVirtual() ||
1343 MRI
->isConstantPhysReg(UseOp
.getReg());
1345 IsLoopInvariantInst(MI
, CurLoop
) &&
1346 any_of(MRI
->use_nodbg_instructions(DefReg
),
1347 [&CurLoop
, this, DefReg
, Cost
](MachineInstr
&UseMI
) {
1348 if (!CurLoop
->contains(&UseMI
))
1351 // COPY is a cheap instruction, but if moving it won't cause
1352 // high RP we're fine to hoist it even if the user can't be
1353 // hoisted later Otherwise we want to check the user if it's
1355 if (CanCauseHighRegPressure(Cost
, false) &&
1356 !CurLoop
->isLoopInvariant(UseMI
, DefReg
))
1364 // High register pressure situation, only hoist if the instruction is going
1366 if (!isTriviallyReMaterializable(MI
) &&
1367 !MI
.isDereferenceableInvariantLoad()) {
1368 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI
);
1375 /// Unfold a load from the given machineinstr if the load itself could be
1376 /// hoisted. Return the unfolded and hoistable load, or null if the load
1377 /// couldn't be unfolded or if it wouldn't be hoistable.
1378 MachineInstr
*MachineLICMBase::ExtractHoistableLoad(MachineInstr
*MI
,
1379 MachineLoop
*CurLoop
) {
1380 // Don't unfold simple loads.
1381 if (MI
->canFoldAsLoad())
1384 // If not, we may be able to unfold a load and hoist that.
1385 // First test whether the instruction is loading from an amenable
1387 if (!MI
->isDereferenceableInvariantLoad())
1390 // Next determine the register class for a temporary register.
1391 unsigned LoadRegIndex
;
1393 TII
->getOpcodeAfterMemoryUnfold(MI
->getOpcode(),
1394 /*UnfoldLoad=*/true,
1395 /*UnfoldStore=*/false,
1397 if (NewOpc
== 0) return nullptr;
1398 const MCInstrDesc
&MID
= TII
->get(NewOpc
);
1399 MachineFunction
&MF
= *MI
->getMF();
1400 const TargetRegisterClass
*RC
= TII
->getRegClass(MID
, LoadRegIndex
, TRI
, MF
);
1401 // Ok, we're unfolding. Create a temporary register and do the unfold.
1402 Register Reg
= MRI
->createVirtualRegister(RC
);
1404 SmallVector
<MachineInstr
*, 2> NewMIs
;
1405 bool Success
= TII
->unfoldMemoryOperand(MF
, *MI
, Reg
,
1406 /*UnfoldLoad=*/true,
1407 /*UnfoldStore=*/false, NewMIs
);
1410 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1412 assert(NewMIs
.size() == 2 &&
1413 "Unfolded a load into multiple instructions!");
1414 MachineBasicBlock
*MBB
= MI
->getParent();
1415 MachineBasicBlock::iterator Pos
= MI
;
1416 MBB
->insert(Pos
, NewMIs
[0]);
1417 MBB
->insert(Pos
, NewMIs
[1]);
1418 // If unfolding produced a load that wasn't loop-invariant or profitable to
1419 // hoist, discard the new instructions and bail.
1420 if (!IsLoopInvariantInst(*NewMIs
[0], CurLoop
) ||
1421 !IsProfitableToHoist(*NewMIs
[0], CurLoop
)) {
1422 NewMIs
[0]->eraseFromParent();
1423 NewMIs
[1]->eraseFromParent();
1427 // Update register pressure for the unfolded instruction.
1428 UpdateRegPressure(NewMIs
[1]);
1430 // Otherwise we successfully unfolded a load that we can hoist.
1432 // Update the call site info.
1433 if (MI
->shouldUpdateCallSiteInfo())
1434 MF
.eraseCallSiteInfo(MI
);
1436 MI
->eraseFromParent();
1440 /// Initialize the CSE map with instructions that are in the current loop
1441 /// preheader that may become duplicates of instructions that are hoisted
1442 /// out of the loop.
1443 void MachineLICMBase::InitCSEMap(MachineBasicBlock
*BB
) {
1444 for (MachineInstr
&MI
: *BB
)
1445 CSEMap
[BB
][MI
.getOpcode()].push_back(&MI
);
1448 /// Initialize AllowedToHoistLoads with information about whether invariant
1449 /// loads can be moved outside a given loop
1450 void MachineLICMBase::InitializeLoadsHoistableLoops() {
1451 SmallVector
<MachineLoop
*, 8> Worklist(MLI
->begin(), MLI
->end());
1452 SmallVector
<MachineLoop
*, 8> LoopsInPreOrder
;
1454 // Mark all loops as hoistable initially and prepare a list of loops in
1456 while (!Worklist
.empty()) {
1457 auto *L
= Worklist
.pop_back_val();
1458 AllowedToHoistLoads
[L
] = true;
1459 LoopsInPreOrder
.push_back(L
);
1460 Worklist
.insert(Worklist
.end(), L
->getSubLoops().begin(),
1461 L
->getSubLoops().end());
1464 // Going from the innermost to outermost loops, check if a loop has
1465 // instructions preventing invariant load hoisting. If such instruction is
1466 // found, mark this loop and its parent as non-hoistable and continue
1467 // investigating the next loop.
1468 // Visiting in a reversed pre-ordered DFS manner
1469 // allows us to not process all the instructions of the outer loop if the
1470 // inner loop is proved to be non-load-hoistable.
1471 for (auto *Loop
: reverse(LoopsInPreOrder
)) {
1472 for (auto *MBB
: Loop
->blocks()) {
1473 // If this loop has already been marked as non-hoistable, skip it.
1474 if (!AllowedToHoistLoads
[Loop
])
1476 for (auto &MI
: *MBB
) {
1477 if (!MI
.mayStore() && !MI
.isCall() &&
1478 !(MI
.mayLoad() && MI
.hasOrderedMemoryRef()))
1480 for (MachineLoop
*L
= Loop
; L
!= nullptr; L
= L
->getParentLoop())
1481 AllowedToHoistLoads
[L
] = false;
1488 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1489 /// Return this instruction if it's found.
1491 MachineLICMBase::LookForDuplicate(const MachineInstr
*MI
,
1492 std::vector
<MachineInstr
*> &PrevMIs
) {
1493 for (MachineInstr
*PrevMI
: PrevMIs
)
1494 if (TII
->produceSameValue(*MI
, *PrevMI
, (PreRegAlloc
? MRI
: nullptr)))
1500 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1501 /// computes the same value. If it's found, do a RAU on with the definition of
1502 /// the existing instruction rather than hoisting the instruction to the
1504 bool MachineLICMBase::EliminateCSE(
1506 DenseMap
<unsigned, std::vector
<MachineInstr
*>>::iterator
&CI
) {
1507 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1508 // the undef property onto uses.
1509 if (MI
->isImplicitDef())
1512 // Do not CSE normal loads because between them could be store instructions
1513 // that change the loaded value
1514 if (MI
->mayLoad() && !MI
->isDereferenceableInvariantLoad())
1517 if (MachineInstr
*Dup
= LookForDuplicate(MI
, CI
->second
)) {
1518 LLVM_DEBUG(dbgs() << "CSEing " << *MI
<< " with " << *Dup
);
1520 // Replace virtual registers defined by MI by their counterparts defined
1522 SmallVector
<unsigned, 2> Defs
;
1523 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1524 const MachineOperand
&MO
= MI
->getOperand(i
);
1526 // Physical registers may not differ here.
1527 assert((!MO
.isReg() || MO
.getReg() == 0 || !MO
.getReg().isPhysical() ||
1528 MO
.getReg() == Dup
->getOperand(i
).getReg()) &&
1529 "Instructions with different phys regs are not identical!");
1531 if (MO
.isReg() && MO
.isDef() && !MO
.getReg().isPhysical())
1535 SmallVector
<const TargetRegisterClass
*, 2> OrigRCs
;
1536 for (unsigned i
= 0, e
= Defs
.size(); i
!= e
; ++i
) {
1537 unsigned Idx
= Defs
[i
];
1538 Register Reg
= MI
->getOperand(Idx
).getReg();
1539 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1540 OrigRCs
.push_back(MRI
->getRegClass(DupReg
));
1542 if (!MRI
->constrainRegClass(DupReg
, MRI
->getRegClass(Reg
))) {
1543 // Restore old RCs if more than one defs.
1544 for (unsigned j
= 0; j
!= i
; ++j
)
1545 MRI
->setRegClass(Dup
->getOperand(Defs
[j
]).getReg(), OrigRCs
[j
]);
1550 for (unsigned Idx
: Defs
) {
1551 Register Reg
= MI
->getOperand(Idx
).getReg();
1552 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1553 MRI
->replaceRegWith(Reg
, DupReg
);
1554 MRI
->clearKillFlags(DupReg
);
1555 // Clear Dup dead flag if any, we reuse it for Reg.
1556 if (!MRI
->use_nodbg_empty(DupReg
))
1557 Dup
->getOperand(Idx
).setIsDead(false);
1560 MI
->eraseFromParent();
1567 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1569 bool MachineLICMBase::MayCSE(MachineInstr
*MI
) {
1570 if (MI
->mayLoad() && !MI
->isDereferenceableInvariantLoad())
1573 unsigned Opcode
= MI
->getOpcode();
1574 for (auto &Map
: CSEMap
) {
1575 // Check this CSEMap's preheader dominates MI's basic block.
1576 if (DT
->dominates(Map
.first
, MI
->getParent())) {
1577 DenseMap
<unsigned, std::vector
<MachineInstr
*>>::iterator CI
=
1578 Map
.second
.find(Opcode
);
1579 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1580 // the undef property onto uses.
1581 if (CI
== Map
.second
.end() || MI
->isImplicitDef())
1583 if (LookForDuplicate(MI
, CI
->second
) != nullptr)
1591 /// When an instruction is found to use only loop invariant operands
1592 /// that are safe to hoist, this instruction is called to do the dirty work.
1593 /// It returns true if the instruction is hoisted.
1594 unsigned MachineLICMBase::Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
,
1595 MachineLoop
*CurLoop
) {
1596 MachineBasicBlock
*SrcBlock
= MI
->getParent();
1598 // Disable the instruction hoisting due to block hotness
1599 if ((DisableHoistingToHotterBlocks
== UseBFI::All
||
1600 (DisableHoistingToHotterBlocks
== UseBFI::PGO
&& HasProfileData
)) &&
1601 isTgtHotterThanSrc(SrcBlock
, Preheader
)) {
1602 ++NumNotHoistedDueToHotness
;
1603 return HoistResult::NotHoisted
;
1605 // First check whether we should hoist this instruction.
1606 bool HasExtractHoistableLoad
= false;
1607 if (!IsLoopInvariantInst(*MI
, CurLoop
) ||
1608 !IsProfitableToHoist(*MI
, CurLoop
)) {
1609 // If not, try unfolding a hoistable load.
1610 MI
= ExtractHoistableLoad(MI
, CurLoop
);
1612 return HoistResult::NotHoisted
;
1613 HasExtractHoistableLoad
= true;
1616 // If we have hoisted an instruction that may store, it can only be a constant
1621 // Now move the instructions to the predecessor, inserting it before any
1622 // terminator instructions.
1624 dbgs() << "Hoisting " << *MI
;
1625 if (MI
->getParent()->getBasicBlock())
1626 dbgs() << " from " << printMBBReference(*MI
->getParent());
1627 if (Preheader
->getBasicBlock())
1628 dbgs() << " to " << printMBBReference(*Preheader
);
1632 // If this is the first instruction being hoisted to the preheader,
1633 // initialize the CSE map with potential common expressions.
1635 InitCSEMap(Preheader
);
1636 FirstInLoop
= false;
1639 // Look for opportunity to CSE the hoisted instruction.
1640 unsigned Opcode
= MI
->getOpcode();
1641 bool HasCSEDone
= false;
1642 for (auto &Map
: CSEMap
) {
1643 // Check this CSEMap's preheader dominates MI's basic block.
1644 if (DT
->dominates(Map
.first
, MI
->getParent())) {
1645 DenseMap
<unsigned, std::vector
<MachineInstr
*>>::iterator CI
=
1646 Map
.second
.find(Opcode
);
1647 if (CI
!= Map
.second
.end()) {
1648 if (EliminateCSE(MI
, CI
)) {
1657 // Otherwise, splice the instruction to the preheader.
1658 Preheader
->splice(Preheader
->getFirstTerminator(),MI
->getParent(),MI
);
1660 // Since we are moving the instruction out of its basic block, we do not
1661 // retain its debug location. Doing so would degrade the debugging
1662 // experience and adversely affect the accuracy of profiling information.
1663 assert(!MI
->isDebugInstr() && "Should not hoist debug inst");
1664 MI
->setDebugLoc(DebugLoc());
1666 // Update register pressure for BBs from header to this block.
1667 UpdateBackTraceRegPressure(MI
);
1669 // Clear the kill flags of any register this instruction defines,
1670 // since they may need to be live throughout the entire loop
1671 // rather than just live for part of it.
1672 for (MachineOperand
&MO
: MI
->all_defs())
1674 MRI
->clearKillFlags(MO
.getReg());
1676 CSEMap
[Preheader
][Opcode
].push_back(MI
);
1682 if (HasCSEDone
|| HasExtractHoistableLoad
)
1683 return HoistResult::Hoisted
| HoistResult::ErasedMI
;
1684 return HoistResult::Hoisted
;
1687 /// Get the preheader for the current loop, splitting a critical edge if needed.
1689 MachineLICMBase::getCurPreheader(MachineLoop
*CurLoop
,
1690 MachineBasicBlock
*CurPreheader
) {
1691 // Determine the block to which to hoist instructions. If we can't find a
1692 // suitable loop predecessor, we can't do any hoisting.
1694 // If we've tried to get a preheader and failed, don't try again.
1695 if (CurPreheader
== reinterpret_cast<MachineBasicBlock
*>(-1))
1698 if (!CurPreheader
) {
1699 CurPreheader
= CurLoop
->getLoopPreheader();
1700 if (!CurPreheader
) {
1701 MachineBasicBlock
*Pred
= CurLoop
->getLoopPredecessor();
1703 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1707 CurPreheader
= Pred
->SplitCriticalEdge(CurLoop
->getHeader(), *this);
1708 if (!CurPreheader
) {
1709 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1714 return CurPreheader
;
1717 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1718 /// times hotter than the source basic block.
1719 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock
*SrcBlock
,
1720 MachineBasicBlock
*TgtBlock
) {
1721 // Parse source and target basic block frequency from MBFI
1722 uint64_t SrcBF
= MBFI
->getBlockFreq(SrcBlock
).getFrequency();
1723 uint64_t DstBF
= MBFI
->getBlockFreq(TgtBlock
).getFrequency();
1725 // Disable the hoisting if source block frequency is zero
1729 double Ratio
= (double)DstBF
/ SrcBF
;
1731 // Compare the block frequency ratio with the threshold
1732 return Ratio
> BlockFrequencyRatioThreshold
;