Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / CodeGen / MachineScheduler.cpp
bloba8a17101b9c92d0795aede64f02de5f5af984997
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/CodeGenTypes/MachineValueType.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
72 using namespace llvm;
74 #define DEBUG_TYPE "machine-scheduler"
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 namespace llvm {
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81 cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83 cl::desc("Force bottom-up list scheduling"));
84 namespace MISchedPostRASched {
85 enum Direction {
86 TopDown,
87 BottomUp,
88 Bidirectional,
90 } // end namespace MISchedPostRASched
91 cl::opt<MISchedPostRASched::Direction> PostRADirection(
92 "misched-postra-direction", cl::Hidden,
93 cl::desc("Post reg-alloc list scheduling direction"),
94 // Default to top-down because it was implemented first and existing targets
95 // expect that behavior by default.
96 cl::init(MISchedPostRASched::TopDown),
97 cl::values(
98 clEnumValN(MISchedPostRASched::TopDown, "topdown",
99 "Force top-down post reg-alloc list scheduling"),
100 clEnumValN(MISchedPostRASched::BottomUp, "bottomup",
101 "Force bottom-up post reg-alloc list scheduling"),
102 clEnumValN(MISchedPostRASched::Bidirectional, "bidirectional",
103 "Force bidirectional post reg-alloc list scheduling")));
104 cl::opt<bool>
105 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
106 cl::desc("Print critical path length to stdout"));
108 cl::opt<bool> VerifyScheduling(
109 "verify-misched", cl::Hidden,
110 cl::desc("Verify machine instrs before and after machine scheduling"));
112 #ifndef NDEBUG
113 cl::opt<bool> ViewMISchedDAGs(
114 "view-misched-dags", cl::Hidden,
115 cl::desc("Pop up a window to show MISched dags after they are processed"));
116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
117 cl::desc("Print schedule DAGs"));
118 cl::opt<bool> MISchedDumpReservedCycles(
119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
120 cl::desc("Dump resource usage at schedule boundary."));
121 cl::opt<bool> MischedDetailResourceBooking(
122 "misched-detail-resource-booking", cl::Hidden, cl::init(false),
123 cl::desc("Show details of invoking getNextResoufceCycle."));
124 #else
125 const bool ViewMISchedDAGs = false;
126 const bool PrintDAGs = false;
127 const bool MischedDetailResourceBooking = false;
128 #ifdef LLVM_ENABLE_DUMP
129 const bool MISchedDumpReservedCycles = false;
130 #endif // LLVM_ENABLE_DUMP
131 #endif // NDEBUG
133 } // end namespace llvm
135 #ifndef NDEBUG
136 /// In some situations a few uninteresting nodes depend on nearly all other
137 /// nodes in the graph, provide a cutoff to hide them.
138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
139 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
145 cl::desc("Only schedule this function"));
146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
147 cl::desc("Only schedule this MBB#"));
148 #endif // NDEBUG
150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
151 /// size of the ready lists.
152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
153 cl::desc("Limit ready list to N instructions"), cl::init(256));
155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
156 cl::desc("Enable register pressure scheduling."), cl::init(true));
158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
159 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
162 cl::desc("Enable memop clustering."),
163 cl::init(true));
164 static cl::opt<bool>
165 ForceFastCluster("force-fast-cluster", cl::Hidden,
166 cl::desc("Switch to fast cluster algorithm with the lost "
167 "of some fusion opportunities"),
168 cl::init(false));
169 static cl::opt<unsigned>
170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
171 cl::desc("The threshold for fast cluster"),
172 cl::init(1000));
174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
175 static cl::opt<bool> MISchedDumpScheduleTrace(
176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
177 cl::desc("Dump resource usage at schedule boundary."));
178 static cl::opt<unsigned>
179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
180 cl::desc("Set width of the columns with "
181 "the resources and schedule units"),
182 cl::init(19));
183 static cl::opt<unsigned>
184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
185 cl::desc("Set width of the columns showing resource booking."),
186 cl::init(5));
187 static cl::opt<bool> MISchedSortResourcesInTrace(
188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
189 cl::desc("Sort the resources printed in the dump trace"));
190 #endif
192 static cl::opt<unsigned>
193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
194 cl::desc("Number of intervals to track"), cl::init(10));
196 // DAG subtrees must have at least this many nodes.
197 static const unsigned MinSubtreeSize = 8;
199 // Pin the vtables to this file.
200 void MachineSchedStrategy::anchor() {}
202 void ScheduleDAGMutation::anchor() {}
204 //===----------------------------------------------------------------------===//
205 // Machine Instruction Scheduling Pass and Registry
206 //===----------------------------------------------------------------------===//
208 MachineSchedContext::MachineSchedContext() {
209 RegClassInfo = new RegisterClassInfo();
212 MachineSchedContext::~MachineSchedContext() {
213 delete RegClassInfo;
216 namespace {
218 /// Base class for a machine scheduler class that can run at any point.
219 class MachineSchedulerBase : public MachineSchedContext,
220 public MachineFunctionPass {
221 public:
222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
224 void print(raw_ostream &O, const Module* = nullptr) const override;
226 protected:
227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
230 /// MachineScheduler runs after coalescing and before register allocation.
231 class MachineScheduler : public MachineSchedulerBase {
232 public:
233 MachineScheduler();
235 void getAnalysisUsage(AnalysisUsage &AU) const override;
237 bool runOnMachineFunction(MachineFunction&) override;
239 static char ID; // Class identification, replacement for typeinfo
241 protected:
242 ScheduleDAGInstrs *createMachineScheduler();
245 /// PostMachineScheduler runs after shortly before code emission.
246 class PostMachineScheduler : public MachineSchedulerBase {
247 public:
248 PostMachineScheduler();
250 void getAnalysisUsage(AnalysisUsage &AU) const override;
252 bool runOnMachineFunction(MachineFunction&) override;
254 static char ID; // Class identification, replacement for typeinfo
256 protected:
257 ScheduleDAGInstrs *createPostMachineScheduler();
260 } // end anonymous namespace
262 char MachineScheduler::ID = 0;
264 char &llvm::MachineSchedulerID = MachineScheduler::ID;
266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
267 "Machine Instruction Scheduler", false, false)
268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
274 "Machine Instruction Scheduler", false, false)
276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
277 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
281 AU.setPreservesCFG();
282 AU.addRequired<MachineDominatorTreeWrapperPass>();
283 AU.addRequired<MachineLoopInfoWrapperPass>();
284 AU.addRequired<AAResultsWrapperPass>();
285 AU.addRequired<TargetPassConfig>();
286 AU.addRequired<SlotIndexesWrapperPass>();
287 AU.addPreserved<SlotIndexesWrapperPass>();
288 AU.addRequired<LiveIntervalsWrapperPass>();
289 AU.addPreserved<LiveIntervalsWrapperPass>();
290 MachineFunctionPass::getAnalysisUsage(AU);
293 char PostMachineScheduler::ID = 0;
295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
298 "PostRA Machine Instruction Scheduler", false, false)
299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
303 "PostRA Machine Instruction Scheduler", false, false)
305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
306 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
310 AU.setPreservesCFG();
311 AU.addRequired<MachineDominatorTreeWrapperPass>();
312 AU.addRequired<MachineLoopInfoWrapperPass>();
313 AU.addRequired<AAResultsWrapperPass>();
314 AU.addRequired<TargetPassConfig>();
315 MachineFunctionPass::getAnalysisUsage(AU);
318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
319 MachineSchedRegistry::Registry;
321 /// A dummy default scheduler factory indicates whether the scheduler
322 /// is overridden on the command line.
323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
324 return nullptr;
327 /// MachineSchedOpt allows command line selection of the scheduler.
328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
329 RegisterPassParser<MachineSchedRegistry>>
330 MachineSchedOpt("misched",
331 cl::init(&useDefaultMachineSched), cl::Hidden,
332 cl::desc("Machine instruction scheduler to use"));
334 static MachineSchedRegistry
335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
336 useDefaultMachineSched);
338 static cl::opt<bool> EnableMachineSched(
339 "enable-misched",
340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
341 cl::Hidden);
343 static cl::opt<bool> EnablePostRAMachineSched(
344 "enable-post-misched",
345 cl::desc("Enable the post-ra machine instruction scheduling pass."),
346 cl::init(true), cl::Hidden);
348 /// Decrement this iterator until reaching the top or a non-debug instr.
349 static MachineBasicBlock::const_iterator
350 priorNonDebug(MachineBasicBlock::const_iterator I,
351 MachineBasicBlock::const_iterator Beg) {
352 assert(I != Beg && "reached the top of the region, cannot decrement");
353 while (--I != Beg) {
354 if (!I->isDebugOrPseudoInstr())
355 break;
357 return I;
360 /// Non-const version.
361 static MachineBasicBlock::iterator
362 priorNonDebug(MachineBasicBlock::iterator I,
363 MachineBasicBlock::const_iterator Beg) {
364 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
365 .getNonConstIterator();
368 /// If this iterator is a debug value, increment until reaching the End or a
369 /// non-debug instruction.
370 static MachineBasicBlock::const_iterator
371 nextIfDebug(MachineBasicBlock::const_iterator I,
372 MachineBasicBlock::const_iterator End) {
373 for(; I != End; ++I) {
374 if (!I->isDebugOrPseudoInstr())
375 break;
377 return I;
380 /// Non-const version.
381 static MachineBasicBlock::iterator
382 nextIfDebug(MachineBasicBlock::iterator I,
383 MachineBasicBlock::const_iterator End) {
384 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
385 .getNonConstIterator();
388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
390 // Select the scheduler, or set the default.
391 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
392 if (Ctor != useDefaultMachineSched)
393 return Ctor(this);
395 // Get the default scheduler set by the target for this function.
396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
397 if (Scheduler)
398 return Scheduler;
400 // Default to GenericScheduler.
401 return createGenericSchedLive(this);
404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
405 /// the caller. We don't have a command line option to override the postRA
406 /// scheduler. The Target must configure it.
407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
408 // Get the postRA scheduler set by the target for this function.
409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
410 if (Scheduler)
411 return Scheduler;
413 // Default to GenericScheduler.
414 return createGenericSchedPostRA(this);
417 /// Top-level MachineScheduler pass driver.
419 /// Visit blocks in function order. Divide each block into scheduling regions
420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
421 /// consistent with the DAG builder, which traverses the interior of the
422 /// scheduling regions bottom-up.
424 /// This design avoids exposing scheduling boundaries to the DAG builder,
425 /// simplifying the DAG builder's support for "special" target instructions.
426 /// At the same time the design allows target schedulers to operate across
427 /// scheduling boundaries, for example to bundle the boundary instructions
428 /// without reordering them. This creates complexity, because the target
429 /// scheduler must update the RegionBegin and RegionEnd positions cached by
430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
431 /// design would be to split blocks at scheduling boundaries, but LLVM has a
432 /// general bias against block splitting purely for implementation simplicity.
433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
434 if (skipFunction(mf.getFunction()))
435 return false;
437 if (EnableMachineSched.getNumOccurrences()) {
438 if (!EnableMachineSched)
439 return false;
440 } else if (!mf.getSubtarget().enableMachineScheduler())
441 return false;
443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
445 // Initialize the context of the pass.
446 MF = &mf;
447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
449 PassConfig = &getAnalysis<TargetPassConfig>();
450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
454 if (VerifyScheduling) {
455 LLVM_DEBUG(LIS->dump());
456 MF->verify(this, "Before machine scheduling.");
458 RegClassInfo->runOnMachineFunction(*MF);
460 // Instantiate the selected scheduler for this target, function, and
461 // optimization level.
462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
463 ScheduleDAGMI::DumpDirection D;
464 if (ForceTopDown)
465 D = ScheduleDAGMI::DumpDirection::TopDown;
466 else if (ForceBottomUp)
467 D = ScheduleDAGMI::DumpDirection::BottomUp;
468 else
469 D = ScheduleDAGMI::DumpDirection::Bidirectional;
470 Scheduler->setDumpDirection(D);
471 scheduleRegions(*Scheduler, false);
473 LLVM_DEBUG(LIS->dump());
474 if (VerifyScheduling)
475 MF->verify(this, "After machine scheduling.");
476 return true;
479 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
480 if (skipFunction(mf.getFunction()))
481 return false;
483 if (EnablePostRAMachineSched.getNumOccurrences()) {
484 if (!EnablePostRAMachineSched)
485 return false;
486 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
487 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
488 return false;
490 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
492 // Initialize the context of the pass.
493 MF = &mf;
494 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
495 PassConfig = &getAnalysis<TargetPassConfig>();
496 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
498 if (VerifyScheduling)
499 MF->verify(this, "Before post machine scheduling.");
501 // Instantiate the selected scheduler for this target, function, and
502 // optimization level.
503 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
504 ScheduleDAGMI::DumpDirection D;
505 if (PostRADirection == MISchedPostRASched::TopDown)
506 D = ScheduleDAGMI::DumpDirection::TopDown;
507 else if (PostRADirection == MISchedPostRASched::BottomUp)
508 D = ScheduleDAGMI::DumpDirection::BottomUp;
509 else
510 D = ScheduleDAGMI::DumpDirection::Bidirectional;
511 Scheduler->setDumpDirection(D);
512 scheduleRegions(*Scheduler, true);
514 if (VerifyScheduling)
515 MF->verify(this, "After post machine scheduling.");
516 return true;
519 /// Return true of the given instruction should not be included in a scheduling
520 /// region.
522 /// MachineScheduler does not currently support scheduling across calls. To
523 /// handle calls, the DAG builder needs to be modified to create register
524 /// anti/output dependencies on the registers clobbered by the call's regmask
525 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
526 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
527 /// the boundary, but there would be no benefit to postRA scheduling across
528 /// calls this late anyway.
529 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
530 MachineBasicBlock *MBB,
531 MachineFunction *MF,
532 const TargetInstrInfo *TII) {
533 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
536 /// A region of an MBB for scheduling.
537 namespace {
538 struct SchedRegion {
539 /// RegionBegin is the first instruction in the scheduling region, and
540 /// RegionEnd is either MBB->end() or the scheduling boundary after the
541 /// last instruction in the scheduling region. These iterators cannot refer
542 /// to instructions outside of the identified scheduling region because
543 /// those may be reordered before scheduling this region.
544 MachineBasicBlock::iterator RegionBegin;
545 MachineBasicBlock::iterator RegionEnd;
546 unsigned NumRegionInstrs;
548 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
549 unsigned N) :
550 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
552 } // end anonymous namespace
554 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
556 static void
557 getSchedRegions(MachineBasicBlock *MBB,
558 MBBRegionsVector &Regions,
559 bool RegionsTopDown) {
560 MachineFunction *MF = MBB->getParent();
561 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
563 MachineBasicBlock::iterator I = nullptr;
564 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
565 RegionEnd != MBB->begin(); RegionEnd = I) {
567 // Avoid decrementing RegionEnd for blocks with no terminator.
568 if (RegionEnd != MBB->end() ||
569 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
570 --RegionEnd;
573 // The next region starts above the previous region. Look backward in the
574 // instruction stream until we find the nearest boundary.
575 unsigned NumRegionInstrs = 0;
576 I = RegionEnd;
577 for (;I != MBB->begin(); --I) {
578 MachineInstr &MI = *std::prev(I);
579 if (isSchedBoundary(&MI, &*MBB, MF, TII))
580 break;
581 if (!MI.isDebugOrPseudoInstr()) {
582 // MBB::size() uses instr_iterator to count. Here we need a bundle to
583 // count as a single instruction.
584 ++NumRegionInstrs;
588 // It's possible we found a scheduling region that only has debug
589 // instructions. Don't bother scheduling these.
590 if (NumRegionInstrs != 0)
591 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
594 if (RegionsTopDown)
595 std::reverse(Regions.begin(), Regions.end());
598 /// Main driver for both MachineScheduler and PostMachineScheduler.
599 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
600 bool FixKillFlags) {
601 // Visit all machine basic blocks.
603 // TODO: Visit blocks in global postorder or postorder within the bottom-up
604 // loop tree. Then we can optionally compute global RegPressure.
605 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
606 MBB != MBBEnd; ++MBB) {
608 Scheduler.startBlock(&*MBB);
610 #ifndef NDEBUG
611 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
612 continue;
613 if (SchedOnlyBlock.getNumOccurrences()
614 && (int)SchedOnlyBlock != MBB->getNumber())
615 continue;
616 #endif
618 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
619 // points to the scheduling boundary at the bottom of the region. The DAG
620 // does not include RegionEnd, but the region does (i.e. the next
621 // RegionEnd is above the previous RegionBegin). If the current block has
622 // no terminator then RegionEnd == MBB->end() for the bottom region.
624 // All the regions of MBB are first found and stored in MBBRegions, which
625 // will be processed (MBB) top-down if initialized with true.
627 // The Scheduler may insert instructions during either schedule() or
628 // exitRegion(), even for empty regions. So the local iterators 'I' and
629 // 'RegionEnd' are invalid across these calls. Instructions must not be
630 // added to other regions than the current one without updating MBBRegions.
632 MBBRegionsVector MBBRegions;
633 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
634 for (const SchedRegion &R : MBBRegions) {
635 MachineBasicBlock::iterator I = R.RegionBegin;
636 MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
637 unsigned NumRegionInstrs = R.NumRegionInstrs;
639 // Notify the scheduler of the region, even if we may skip scheduling
640 // it. Perhaps it still needs to be bundled.
641 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
643 // Skip empty scheduling regions (0 or 1 schedulable instructions).
644 if (I == RegionEnd || I == std::prev(RegionEnd)) {
645 // Close the current region. Bundle the terminator if needed.
646 // This invalidates 'RegionEnd' and 'I'.
647 Scheduler.exitRegion();
648 continue;
650 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
651 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
652 << " " << MBB->getName() << "\n From: " << *I
653 << " To: ";
654 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
655 else dbgs() << "End\n";
656 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
657 if (DumpCriticalPathLength) {
658 errs() << MF->getName();
659 errs() << ":%bb. " << MBB->getNumber();
660 errs() << " " << MBB->getName() << " \n";
663 // Schedule a region: possibly reorder instructions.
664 // This invalidates the original region iterators.
665 Scheduler.schedule();
667 // Close the current region.
668 Scheduler.exitRegion();
670 Scheduler.finishBlock();
671 // FIXME: Ideally, no further passes should rely on kill flags. However,
672 // thumb2 size reduction is currently an exception, so the PostMIScheduler
673 // needs to do this.
674 if (FixKillFlags)
675 Scheduler.fixupKills(*MBB);
677 Scheduler.finalizeSchedule();
680 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
681 // unimplemented
684 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
685 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
686 dbgs() << "Queue " << Name << ": ";
687 for (const SUnit *SU : Queue)
688 dbgs() << SU->NodeNum << " ";
689 dbgs() << "\n";
691 #endif
693 //===----------------------------------------------------------------------===//
694 // ScheduleDAGMI - Basic machine instruction scheduling. This is
695 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
696 // virtual registers.
697 // ===----------------------------------------------------------------------===/
699 // Provide a vtable anchor.
700 ScheduleDAGMI::~ScheduleDAGMI() = default;
702 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
703 /// NumPredsLeft reaches zero, release the successor node.
705 /// FIXME: Adjust SuccSU height based on MinLatency.
706 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
707 SUnit *SuccSU = SuccEdge->getSUnit();
709 if (SuccEdge->isWeak()) {
710 --SuccSU->WeakPredsLeft;
711 if (SuccEdge->isCluster())
712 NextClusterSucc = SuccSU;
713 return;
715 #ifndef NDEBUG
716 if (SuccSU->NumPredsLeft == 0) {
717 dbgs() << "*** Scheduling failed! ***\n";
718 dumpNode(*SuccSU);
719 dbgs() << " has been released too many times!\n";
720 llvm_unreachable(nullptr);
722 #endif
723 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
724 // CurrCycle may have advanced since then.
725 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
726 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
728 --SuccSU->NumPredsLeft;
729 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
730 SchedImpl->releaseTopNode(SuccSU);
733 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
734 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
735 for (SDep &Succ : SU->Succs)
736 releaseSucc(SU, &Succ);
739 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
740 /// NumSuccsLeft reaches zero, release the predecessor node.
742 /// FIXME: Adjust PredSU height based on MinLatency.
743 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
744 SUnit *PredSU = PredEdge->getSUnit();
746 if (PredEdge->isWeak()) {
747 --PredSU->WeakSuccsLeft;
748 if (PredEdge->isCluster())
749 NextClusterPred = PredSU;
750 return;
752 #ifndef NDEBUG
753 if (PredSU->NumSuccsLeft == 0) {
754 dbgs() << "*** Scheduling failed! ***\n";
755 dumpNode(*PredSU);
756 dbgs() << " has been released too many times!\n";
757 llvm_unreachable(nullptr);
759 #endif
760 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
761 // CurrCycle may have advanced since then.
762 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
763 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
765 --PredSU->NumSuccsLeft;
766 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
767 SchedImpl->releaseBottomNode(PredSU);
770 /// releasePredecessors - Call releasePred on each of SU's predecessors.
771 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
772 for (SDep &Pred : SU->Preds)
773 releasePred(SU, &Pred);
776 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
777 ScheduleDAGInstrs::startBlock(bb);
778 SchedImpl->enterMBB(bb);
781 void ScheduleDAGMI::finishBlock() {
782 SchedImpl->leaveMBB();
783 ScheduleDAGInstrs::finishBlock();
786 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
787 /// after crossing a scheduling boundary. [begin, end) includes all instructions
788 /// in the region, including the boundary itself and single-instruction regions
789 /// that don't get scheduled.
790 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
791 MachineBasicBlock::iterator begin,
792 MachineBasicBlock::iterator end,
793 unsigned regioninstrs)
795 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
797 SchedImpl->initPolicy(begin, end, regioninstrs);
800 /// This is normally called from the main scheduler loop but may also be invoked
801 /// by the scheduling strategy to perform additional code motion.
802 void ScheduleDAGMI::moveInstruction(
803 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
804 // Advance RegionBegin if the first instruction moves down.
805 if (&*RegionBegin == MI)
806 ++RegionBegin;
808 // Update the instruction stream.
809 BB->splice(InsertPos, BB, MI);
811 // Update LiveIntervals
812 if (LIS)
813 LIS->handleMove(*MI, /*UpdateFlags=*/true);
815 // Recede RegionBegin if an instruction moves above the first.
816 if (RegionBegin == InsertPos)
817 RegionBegin = MI;
820 bool ScheduleDAGMI::checkSchedLimit() {
821 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
822 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
823 CurrentTop = CurrentBottom;
824 return false;
826 ++NumInstrsScheduled;
827 #endif
828 return true;
831 /// Per-region scheduling driver, called back from
832 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
833 /// that does not consider liveness or register pressure. It is useful for
834 /// PostRA scheduling and potentially other custom schedulers.
835 void ScheduleDAGMI::schedule() {
836 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
837 LLVM_DEBUG(SchedImpl->dumpPolicy());
839 // Build the DAG.
840 buildSchedGraph(AA);
842 postProcessDAG();
844 SmallVector<SUnit*, 8> TopRoots, BotRoots;
845 findRootsAndBiasEdges(TopRoots, BotRoots);
847 LLVM_DEBUG(dump());
848 if (PrintDAGs) dump();
849 if (ViewMISchedDAGs) viewGraph();
851 // Initialize the strategy before modifying the DAG.
852 // This may initialize a DFSResult to be used for queue priority.
853 SchedImpl->initialize(this);
855 // Initialize ready queues now that the DAG and priority data are finalized.
856 initQueues(TopRoots, BotRoots);
858 bool IsTopNode = false;
859 while (true) {
860 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
861 SUnit *SU = SchedImpl->pickNode(IsTopNode);
862 if (!SU) break;
864 assert(!SU->isScheduled && "Node already scheduled");
865 if (!checkSchedLimit())
866 break;
868 MachineInstr *MI = SU->getInstr();
869 if (IsTopNode) {
870 assert(SU->isTopReady() && "node still has unscheduled dependencies");
871 if (&*CurrentTop == MI)
872 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
873 else
874 moveInstruction(MI, CurrentTop);
875 } else {
876 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
877 MachineBasicBlock::iterator priorII =
878 priorNonDebug(CurrentBottom, CurrentTop);
879 if (&*priorII == MI)
880 CurrentBottom = priorII;
881 else {
882 if (&*CurrentTop == MI)
883 CurrentTop = nextIfDebug(++CurrentTop, priorII);
884 moveInstruction(MI, CurrentBottom);
885 CurrentBottom = MI;
888 // Notify the scheduling strategy before updating the DAG.
889 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
890 // runs, it can then use the accurate ReadyCycle time to determine whether
891 // newly released nodes can move to the readyQ.
892 SchedImpl->schedNode(SU, IsTopNode);
894 updateQueues(SU, IsTopNode);
896 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
898 placeDebugValues();
900 LLVM_DEBUG({
901 dbgs() << "*** Final schedule for "
902 << printMBBReference(*begin()->getParent()) << " ***\n";
903 dumpSchedule();
904 dbgs() << '\n';
908 /// Apply each ScheduleDAGMutation step in order.
909 void ScheduleDAGMI::postProcessDAG() {
910 for (auto &m : Mutations)
911 m->apply(this);
914 void ScheduleDAGMI::
915 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
916 SmallVectorImpl<SUnit*> &BotRoots) {
917 for (SUnit &SU : SUnits) {
918 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
920 // Order predecessors so DFSResult follows the critical path.
921 SU.biasCriticalPath();
923 // A SUnit is ready to top schedule if it has no predecessors.
924 if (!SU.NumPredsLeft)
925 TopRoots.push_back(&SU);
926 // A SUnit is ready to bottom schedule if it has no successors.
927 if (!SU.NumSuccsLeft)
928 BotRoots.push_back(&SU);
930 ExitSU.biasCriticalPath();
933 /// Identify DAG roots and setup scheduler queues.
934 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
935 ArrayRef<SUnit*> BotRoots) {
936 NextClusterSucc = nullptr;
937 NextClusterPred = nullptr;
939 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
941 // Nodes with unreleased weak edges can still be roots.
942 // Release top roots in forward order.
943 for (SUnit *SU : TopRoots)
944 SchedImpl->releaseTopNode(SU);
946 // Release bottom roots in reverse order so the higher priority nodes appear
947 // first. This is more natural and slightly more efficient.
948 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
949 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
950 SchedImpl->releaseBottomNode(*I);
953 releaseSuccessors(&EntrySU);
954 releasePredecessors(&ExitSU);
956 SchedImpl->registerRoots();
958 // Advance past initial DebugValues.
959 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
960 CurrentBottom = RegionEnd;
963 /// Update scheduler queues after scheduling an instruction.
964 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
965 // Release dependent instructions for scheduling.
966 if (IsTopNode)
967 releaseSuccessors(SU);
968 else
969 releasePredecessors(SU);
971 SU->isScheduled = true;
974 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
975 void ScheduleDAGMI::placeDebugValues() {
976 // If first instruction was a DBG_VALUE then put it back.
977 if (FirstDbgValue) {
978 BB->splice(RegionBegin, BB, FirstDbgValue);
979 RegionBegin = FirstDbgValue;
982 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
983 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
984 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
985 MachineInstr *DbgValue = P.first;
986 MachineBasicBlock::iterator OrigPrevMI = P.second;
987 if (&*RegionBegin == DbgValue)
988 ++RegionBegin;
989 BB->splice(std::next(OrigPrevMI), BB, DbgValue);
990 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
991 RegionEnd = DbgValue;
995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
996 static const char *scheduleTableLegend = " i: issue\n x: resource booked";
998 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
999 // Bail off when there is no schedule model to query.
1000 if (!SchedModel.hasInstrSchedModel())
1001 return;
1003 // Nothing to show if there is no or just one instruction.
1004 if (BB->size() < 2)
1005 return;
1007 dbgs() << " * Schedule table (TopDown):\n";
1008 dbgs() << scheduleTableLegend << "\n";
1009 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
1010 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
1011 for (MachineInstr &MI : *this) {
1012 SUnit *SU = getSUnit(&MI);
1013 if (!SU)
1014 continue;
1015 const MCSchedClassDesc *SC = getSchedClass(SU);
1016 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1017 PE = SchedModel.getWriteProcResEnd(SC);
1018 PI != PE; ++PI) {
1019 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
1020 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
1023 // Print the header with the cycles
1024 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1025 for (unsigned C = FirstCycle; C <= LastCycle; ++C)
1026 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1027 dbgs() << "|\n";
1029 for (MachineInstr &MI : *this) {
1030 SUnit *SU = getSUnit(&MI);
1031 if (!SU) {
1032 dbgs() << "Missing SUnit\n";
1033 continue;
1035 std::string NodeName("SU(");
1036 NodeName += std::to_string(SU->NodeNum) + ")";
1037 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1038 unsigned C = FirstCycle;
1039 for (; C <= LastCycle; ++C) {
1040 if (C == SU->TopReadyCycle)
1041 dbgs() << llvm::left_justify("| i", ColWidth);
1042 else
1043 dbgs() << llvm::left_justify("|", ColWidth);
1045 dbgs() << "|\n";
1046 const MCSchedClassDesc *SC = getSchedClass(SU);
1048 SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1049 make_range(SchedModel.getWriteProcResBegin(SC),
1050 SchedModel.getWriteProcResEnd(SC)));
1052 if (MISchedSortResourcesInTrace)
1053 llvm::stable_sort(ResourcesIt,
1054 [](const MCWriteProcResEntry &LHS,
1055 const MCWriteProcResEntry &RHS) -> bool {
1056 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1057 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1058 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1060 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1061 C = FirstCycle;
1062 const std::string ResName =
1063 SchedModel.getResourceName(PI.ProcResourceIdx);
1064 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1065 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1066 dbgs() << llvm::left_justify("|", ColWidth);
1068 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1069 ++I, ++C)
1070 dbgs() << llvm::left_justify("| x", ColWidth);
1071 while (C++ <= LastCycle)
1072 dbgs() << llvm::left_justify("|", ColWidth);
1073 // Place end char
1074 dbgs() << "| \n";
1079 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1080 // Bail off when there is no schedule model to query.
1081 if (!SchedModel.hasInstrSchedModel())
1082 return;
1084 // Nothing to show if there is no or just one instruction.
1085 if (BB->size() < 2)
1086 return;
1088 dbgs() << " * Schedule table (BottomUp):\n";
1089 dbgs() << scheduleTableLegend << "\n";
1091 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1092 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1093 for (MachineInstr &MI : *this) {
1094 SUnit *SU = getSUnit(&MI);
1095 if (!SU)
1096 continue;
1097 const MCSchedClassDesc *SC = getSchedClass(SU);
1098 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1099 PE = SchedModel.getWriteProcResEnd(SC);
1100 PI != PE; ++PI) {
1101 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1102 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1105 // Print the header with the cycles
1106 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1107 for (int C = FirstCycle; C >= LastCycle; --C)
1108 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1109 dbgs() << "|\n";
1111 for (MachineInstr &MI : *this) {
1112 SUnit *SU = getSUnit(&MI);
1113 if (!SU) {
1114 dbgs() << "Missing SUnit\n";
1115 continue;
1117 std::string NodeName("SU(");
1118 NodeName += std::to_string(SU->NodeNum) + ")";
1119 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1120 int C = FirstCycle;
1121 for (; C >= LastCycle; --C) {
1122 if (C == (int)SU->BotReadyCycle)
1123 dbgs() << llvm::left_justify("| i", ColWidth);
1124 else
1125 dbgs() << llvm::left_justify("|", ColWidth);
1127 dbgs() << "|\n";
1128 const MCSchedClassDesc *SC = getSchedClass(SU);
1129 SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1130 make_range(SchedModel.getWriteProcResBegin(SC),
1131 SchedModel.getWriteProcResEnd(SC)));
1133 if (MISchedSortResourcesInTrace)
1134 llvm::stable_sort(ResourcesIt,
1135 [](const MCWriteProcResEntry &LHS,
1136 const MCWriteProcResEntry &RHS) -> bool {
1137 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1138 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1139 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1141 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1142 C = FirstCycle;
1143 const std::string ResName =
1144 SchedModel.getResourceName(PI.ProcResourceIdx);
1145 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1146 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1147 dbgs() << llvm::left_justify("|", ColWidth);
1149 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1150 ++I, --C)
1151 dbgs() << llvm::left_justify("| x", ColWidth);
1152 while (C-- >= LastCycle)
1153 dbgs() << llvm::left_justify("|", ColWidth);
1154 // Place end char
1155 dbgs() << "| \n";
1159 #endif
1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1163 if (MISchedDumpScheduleTrace) {
1164 if (DumpDir == DumpDirection::TopDown)
1165 dumpScheduleTraceTopDown();
1166 else if (DumpDir == DumpDirection::BottomUp)
1167 dumpScheduleTraceBottomUp();
1168 else if (DumpDir == DumpDirection::Bidirectional) {
1169 dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1170 } else {
1171 dbgs() << "* Schedule table: DumpDirection not set.\n";
1175 for (MachineInstr &MI : *this) {
1176 if (SUnit *SU = getSUnit(&MI))
1177 dumpNode(*SU);
1178 else
1179 dbgs() << "Missing SUnit\n";
1182 #endif
1184 //===----------------------------------------------------------------------===//
1185 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1186 // preservation.
1187 //===----------------------------------------------------------------------===//
1189 ScheduleDAGMILive::~ScheduleDAGMILive() {
1190 delete DFSResult;
1193 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1194 const MachineInstr &MI = *SU.getInstr();
1195 for (const MachineOperand &MO : MI.operands()) {
1196 if (!MO.isReg())
1197 continue;
1198 if (!MO.readsReg())
1199 continue;
1200 if (TrackLaneMasks && !MO.isUse())
1201 continue;
1203 Register Reg = MO.getReg();
1204 if (!Reg.isVirtual())
1205 continue;
1207 // Ignore re-defs.
1208 if (TrackLaneMasks) {
1209 bool FoundDef = false;
1210 for (const MachineOperand &MO2 : MI.all_defs()) {
1211 if (MO2.getReg() == Reg && !MO2.isDead()) {
1212 FoundDef = true;
1213 break;
1216 if (FoundDef)
1217 continue;
1220 // Record this local VReg use.
1221 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1222 for (; UI != VRegUses.end(); ++UI) {
1223 if (UI->SU == &SU)
1224 break;
1226 if (UI == VRegUses.end())
1227 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1231 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1232 /// crossing a scheduling boundary. [begin, end) includes all instructions in
1233 /// the region, including the boundary itself and single-instruction regions
1234 /// that don't get scheduled.
1235 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1236 MachineBasicBlock::iterator begin,
1237 MachineBasicBlock::iterator end,
1238 unsigned regioninstrs)
1240 // ScheduleDAGMI initializes SchedImpl's per-region policy.
1241 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1243 // For convenience remember the end of the liveness region.
1244 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1246 SUPressureDiffs.clear();
1248 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1249 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1251 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1252 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1255 // Setup the register pressure trackers for the top scheduled and bottom
1256 // scheduled regions.
1257 void ScheduleDAGMILive::initRegPressure() {
1258 VRegUses.clear();
1259 VRegUses.setUniverse(MRI.getNumVirtRegs());
1260 for (SUnit &SU : SUnits)
1261 collectVRegUses(SU);
1263 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1264 ShouldTrackLaneMasks, false);
1265 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1266 ShouldTrackLaneMasks, false);
1268 // Close the RPTracker to finalize live ins.
1269 RPTracker.closeRegion();
1271 LLVM_DEBUG(RPTracker.dump());
1273 // Initialize the live ins and live outs.
1274 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1275 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1277 // Close one end of the tracker so we can call
1278 // getMaxUpward/DownwardPressureDelta before advancing across any
1279 // instructions. This converts currently live regs into live ins/outs.
1280 TopRPTracker.closeTop();
1281 BotRPTracker.closeBottom();
1283 BotRPTracker.initLiveThru(RPTracker);
1284 if (!BotRPTracker.getLiveThru().empty()) {
1285 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1286 LLVM_DEBUG(dbgs() << "Live Thru: ";
1287 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1290 // For each live out vreg reduce the pressure change associated with other
1291 // uses of the same vreg below the live-out reaching def.
1292 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1294 // Account for liveness generated by the region boundary.
1295 if (LiveRegionEnd != RegionEnd) {
1296 SmallVector<RegisterMaskPair, 8> LiveUses;
1297 BotRPTracker.recede(&LiveUses);
1298 updatePressureDiffs(LiveUses);
1301 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1302 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1303 dbgs() << "Bottom Pressure:\n";
1304 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1306 assert((BotRPTracker.getPos() == RegionEnd ||
1307 (RegionEnd->isDebugInstr() &&
1308 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1309 "Can't find the region bottom");
1311 // Cache the list of excess pressure sets in this region. This will also track
1312 // the max pressure in the scheduled code for these sets.
1313 RegionCriticalPSets.clear();
1314 const std::vector<unsigned> &RegionPressure =
1315 RPTracker.getPressure().MaxSetPressure;
1316 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1317 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1318 if (RegionPressure[i] > Limit) {
1319 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1320 << " Actual " << RegionPressure[i] << "\n");
1321 RegionCriticalPSets.push_back(PressureChange(i));
1324 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1325 for (const PressureChange &RCPS
1326 : RegionCriticalPSets) dbgs()
1327 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1328 dbgs() << "\n");
1331 void ScheduleDAGMILive::
1332 updateScheduledPressure(const SUnit *SU,
1333 const std::vector<unsigned> &NewMaxPressure) {
1334 const PressureDiff &PDiff = getPressureDiff(SU);
1335 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1336 for (const PressureChange &PC : PDiff) {
1337 if (!PC.isValid())
1338 break;
1339 unsigned ID = PC.getPSet();
1340 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1341 ++CritIdx;
1342 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1343 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1344 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1345 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1347 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1348 if (NewMaxPressure[ID] >= Limit - 2) {
1349 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1350 << NewMaxPressure[ID]
1351 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1352 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1353 << " livethru)\n");
1358 /// Update the PressureDiff array for liveness after scheduling this
1359 /// instruction.
1360 void ScheduleDAGMILive::updatePressureDiffs(
1361 ArrayRef<RegisterMaskPair> LiveUses) {
1362 for (const RegisterMaskPair &P : LiveUses) {
1363 Register Reg = P.RegUnit;
1364 /// FIXME: Currently assuming single-use physregs.
1365 if (!Reg.isVirtual())
1366 continue;
1368 if (ShouldTrackLaneMasks) {
1369 // If the register has just become live then other uses won't change
1370 // this fact anymore => decrement pressure.
1371 // If the register has just become dead then other uses make it come
1372 // back to life => increment pressure.
1373 bool Decrement = P.LaneMask.any();
1375 for (const VReg2SUnit &V2SU
1376 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1377 SUnit &SU = *V2SU.SU;
1378 if (SU.isScheduled || &SU == &ExitSU)
1379 continue;
1381 PressureDiff &PDiff = getPressureDiff(&SU);
1382 PDiff.addPressureChange(Reg, Decrement, &MRI);
1383 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1384 << printReg(Reg, TRI) << ':'
1385 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1386 dbgs() << " to "; PDiff.dump(*TRI););
1388 } else {
1389 assert(P.LaneMask.any());
1390 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1391 // This may be called before CurrentBottom has been initialized. However,
1392 // BotRPTracker must have a valid position. We want the value live into the
1393 // instruction or live out of the block, so ask for the previous
1394 // instruction's live-out.
1395 const LiveInterval &LI = LIS->getInterval(Reg);
1396 VNInfo *VNI;
1397 MachineBasicBlock::const_iterator I =
1398 nextIfDebug(BotRPTracker.getPos(), BB->end());
1399 if (I == BB->end())
1400 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1401 else {
1402 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1403 VNI = LRQ.valueIn();
1405 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1406 assert(VNI && "No live value at use.");
1407 for (const VReg2SUnit &V2SU
1408 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1409 SUnit *SU = V2SU.SU;
1410 // If this use comes before the reaching def, it cannot be a last use,
1411 // so decrease its pressure change.
1412 if (!SU->isScheduled && SU != &ExitSU) {
1413 LiveQueryResult LRQ =
1414 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1415 if (LRQ.valueIn() == VNI) {
1416 PressureDiff &PDiff = getPressureDiff(SU);
1417 PDiff.addPressureChange(Reg, true, &MRI);
1418 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1419 << *SU->getInstr();
1420 dbgs() << " to "; PDiff.dump(*TRI););
1428 void ScheduleDAGMILive::dump() const {
1429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1430 if (EntrySU.getInstr() != nullptr)
1431 dumpNodeAll(EntrySU);
1432 for (const SUnit &SU : SUnits) {
1433 dumpNodeAll(SU);
1434 if (ShouldTrackPressure) {
1435 dbgs() << " Pressure Diff : ";
1436 getPressureDiff(&SU).dump(*TRI);
1438 dbgs() << " Single Issue : ";
1439 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1440 SchedModel.mustEndGroup(SU.getInstr()))
1441 dbgs() << "true;";
1442 else
1443 dbgs() << "false;";
1444 dbgs() << '\n';
1446 if (ExitSU.getInstr() != nullptr)
1447 dumpNodeAll(ExitSU);
1448 #endif
1451 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1452 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1453 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1455 /// This is a skeletal driver, with all the functionality pushed into helpers,
1456 /// so that it can be easily extended by experimental schedulers. Generally,
1457 /// implementing MachineSchedStrategy should be sufficient to implement a new
1458 /// scheduling algorithm. However, if a scheduler further subclasses
1459 /// ScheduleDAGMILive then it will want to override this virtual method in order
1460 /// to update any specialized state.
1461 void ScheduleDAGMILive::schedule() {
1462 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1463 LLVM_DEBUG(SchedImpl->dumpPolicy());
1464 buildDAGWithRegPressure();
1466 postProcessDAG();
1468 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1469 findRootsAndBiasEdges(TopRoots, BotRoots);
1471 // Initialize the strategy before modifying the DAG.
1472 // This may initialize a DFSResult to be used for queue priority.
1473 SchedImpl->initialize(this);
1475 LLVM_DEBUG(dump());
1476 if (PrintDAGs) dump();
1477 if (ViewMISchedDAGs) viewGraph();
1479 // Initialize ready queues now that the DAG and priority data are finalized.
1480 initQueues(TopRoots, BotRoots);
1482 bool IsTopNode = false;
1483 while (true) {
1484 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1485 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1486 if (!SU) break;
1488 assert(!SU->isScheduled && "Node already scheduled");
1489 if (!checkSchedLimit())
1490 break;
1492 scheduleMI(SU, IsTopNode);
1494 if (DFSResult) {
1495 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1496 if (!ScheduledTrees.test(SubtreeID)) {
1497 ScheduledTrees.set(SubtreeID);
1498 DFSResult->scheduleTree(SubtreeID);
1499 SchedImpl->scheduleTree(SubtreeID);
1503 // Notify the scheduling strategy after updating the DAG.
1504 SchedImpl->schedNode(SU, IsTopNode);
1506 updateQueues(SU, IsTopNode);
1508 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1510 placeDebugValues();
1512 LLVM_DEBUG({
1513 dbgs() << "*** Final schedule for "
1514 << printMBBReference(*begin()->getParent()) << " ***\n";
1515 dumpSchedule();
1516 dbgs() << '\n';
1520 /// Build the DAG and setup three register pressure trackers.
1521 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1522 if (!ShouldTrackPressure) {
1523 RPTracker.reset();
1524 RegionCriticalPSets.clear();
1525 buildSchedGraph(AA);
1526 return;
1529 // Initialize the register pressure tracker used by buildSchedGraph.
1530 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1531 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1533 // Account for liveness generate by the region boundary.
1534 if (LiveRegionEnd != RegionEnd)
1535 RPTracker.recede();
1537 // Build the DAG, and compute current register pressure.
1538 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1540 // Initialize top/bottom trackers after computing region pressure.
1541 initRegPressure();
1544 void ScheduleDAGMILive::computeDFSResult() {
1545 if (!DFSResult)
1546 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1547 DFSResult->clear();
1548 ScheduledTrees.clear();
1549 DFSResult->resize(SUnits.size());
1550 DFSResult->compute(SUnits);
1551 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1554 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1555 /// only provides the critical path for single block loops. To handle loops that
1556 /// span blocks, we could use the vreg path latencies provided by
1557 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1558 /// available for use in the scheduler.
1560 /// The cyclic path estimation identifies a def-use pair that crosses the back
1561 /// edge and considers the depth and height of the nodes. For example, consider
1562 /// the following instruction sequence where each instruction has unit latency
1563 /// and defines an eponymous virtual register:
1565 /// a->b(a,c)->c(b)->d(c)->exit
1567 /// The cyclic critical path is a two cycles: b->c->b
1568 /// The acyclic critical path is four cycles: a->b->c->d->exit
1569 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1570 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1571 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1572 /// LiveInDepth = depth(b) = len(a->b) = 1
1574 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1575 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1576 /// CyclicCriticalPath = min(2, 2) = 2
1578 /// This could be relevant to PostRA scheduling, but is currently implemented
1579 /// assuming LiveIntervals.
1580 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1581 // This only applies to single block loop.
1582 if (!BB->isSuccessor(BB))
1583 return 0;
1585 unsigned MaxCyclicLatency = 0;
1586 // Visit each live out vreg def to find def/use pairs that cross iterations.
1587 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1588 Register Reg = P.RegUnit;
1589 if (!Reg.isVirtual())
1590 continue;
1591 const LiveInterval &LI = LIS->getInterval(Reg);
1592 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1593 if (!DefVNI)
1594 continue;
1596 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1597 const SUnit *DefSU = getSUnit(DefMI);
1598 if (!DefSU)
1599 continue;
1601 unsigned LiveOutHeight = DefSU->getHeight();
1602 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1603 // Visit all local users of the vreg def.
1604 for (const VReg2SUnit &V2SU
1605 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1606 SUnit *SU = V2SU.SU;
1607 if (SU == &ExitSU)
1608 continue;
1610 // Only consider uses of the phi.
1611 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1612 if (!LRQ.valueIn()->isPHIDef())
1613 continue;
1615 // Assume that a path spanning two iterations is a cycle, which could
1616 // overestimate in strange cases. This allows cyclic latency to be
1617 // estimated as the minimum slack of the vreg's depth or height.
1618 unsigned CyclicLatency = 0;
1619 if (LiveOutDepth > SU->getDepth())
1620 CyclicLatency = LiveOutDepth - SU->getDepth();
1622 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1623 if (LiveInHeight > LiveOutHeight) {
1624 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1625 CyclicLatency = LiveInHeight - LiveOutHeight;
1626 } else
1627 CyclicLatency = 0;
1629 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1630 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1631 if (CyclicLatency > MaxCyclicLatency)
1632 MaxCyclicLatency = CyclicLatency;
1635 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1636 return MaxCyclicLatency;
1639 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1640 /// the Top RP tracker in case the region beginning has changed.
1641 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1642 ArrayRef<SUnit*> BotRoots) {
1643 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1644 if (ShouldTrackPressure) {
1645 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1646 TopRPTracker.setPos(CurrentTop);
1650 /// Move an instruction and update register pressure.
1651 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1652 // Move the instruction to its new location in the instruction stream.
1653 MachineInstr *MI = SU->getInstr();
1655 if (IsTopNode) {
1656 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1657 if (&*CurrentTop == MI)
1658 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1659 else {
1660 moveInstruction(MI, CurrentTop);
1661 TopRPTracker.setPos(MI);
1664 if (ShouldTrackPressure) {
1665 // Update top scheduled pressure.
1666 RegisterOperands RegOpers;
1667 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1668 /*IgnoreDead=*/false);
1669 if (ShouldTrackLaneMasks) {
1670 // Adjust liveness and add missing dead+read-undef flags.
1671 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1672 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1673 } else {
1674 // Adjust for missing dead-def flags.
1675 RegOpers.detectDeadDefs(*MI, *LIS);
1678 TopRPTracker.advance(RegOpers);
1679 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1680 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1681 TopRPTracker.getRegSetPressureAtPos(), TRI););
1683 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1685 } else {
1686 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1687 MachineBasicBlock::iterator priorII =
1688 priorNonDebug(CurrentBottom, CurrentTop);
1689 if (&*priorII == MI)
1690 CurrentBottom = priorII;
1691 else {
1692 if (&*CurrentTop == MI) {
1693 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1694 TopRPTracker.setPos(CurrentTop);
1696 moveInstruction(MI, CurrentBottom);
1697 CurrentBottom = MI;
1698 BotRPTracker.setPos(CurrentBottom);
1700 if (ShouldTrackPressure) {
1701 RegisterOperands RegOpers;
1702 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1703 /*IgnoreDead=*/false);
1704 if (ShouldTrackLaneMasks) {
1705 // Adjust liveness and add missing dead+read-undef flags.
1706 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1707 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1708 } else {
1709 // Adjust for missing dead-def flags.
1710 RegOpers.detectDeadDefs(*MI, *LIS);
1713 if (BotRPTracker.getPos() != CurrentBottom)
1714 BotRPTracker.recedeSkipDebugValues();
1715 SmallVector<RegisterMaskPair, 8> LiveUses;
1716 BotRPTracker.recede(RegOpers, &LiveUses);
1717 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1718 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1719 BotRPTracker.getRegSetPressureAtPos(), TRI););
1721 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1722 updatePressureDiffs(LiveUses);
1727 //===----------------------------------------------------------------------===//
1728 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1729 //===----------------------------------------------------------------------===//
1731 namespace {
1733 /// Post-process the DAG to create cluster edges between neighboring
1734 /// loads or between neighboring stores.
1735 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1736 struct MemOpInfo {
1737 SUnit *SU;
1738 SmallVector<const MachineOperand *, 4> BaseOps;
1739 int64_t Offset;
1740 LocationSize Width;
1741 bool OffsetIsScalable;
1743 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1744 int64_t Offset, bool OffsetIsScalable, LocationSize Width)
1745 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1746 Width(Width), OffsetIsScalable(OffsetIsScalable) {}
1748 static bool Compare(const MachineOperand *const &A,
1749 const MachineOperand *const &B) {
1750 if (A->getType() != B->getType())
1751 return A->getType() < B->getType();
1752 if (A->isReg())
1753 return A->getReg() < B->getReg();
1754 if (A->isFI()) {
1755 const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1756 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1757 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1758 TargetFrameLowering::StackGrowsDown;
1759 return StackGrowsDown ? A->getIndex() > B->getIndex()
1760 : A->getIndex() < B->getIndex();
1763 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1764 "index bases.");
1767 bool operator<(const MemOpInfo &RHS) const {
1768 // FIXME: Don't compare everything twice. Maybe use C++20 three way
1769 // comparison instead when it's available.
1770 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1771 RHS.BaseOps.begin(), RHS.BaseOps.end(),
1772 Compare))
1773 return true;
1774 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1775 BaseOps.begin(), BaseOps.end(), Compare))
1776 return false;
1777 if (Offset != RHS.Offset)
1778 return Offset < RHS.Offset;
1779 return SU->NodeNum < RHS.SU->NodeNum;
1783 const TargetInstrInfo *TII;
1784 const TargetRegisterInfo *TRI;
1785 bool IsLoad;
1786 bool ReorderWhileClustering;
1788 public:
1789 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1790 const TargetRegisterInfo *tri, bool IsLoad,
1791 bool ReorderWhileClustering)
1792 : TII(tii), TRI(tri), IsLoad(IsLoad),
1793 ReorderWhileClustering(ReorderWhileClustering) {}
1795 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1797 protected:
1798 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1799 ScheduleDAGInstrs *DAG);
1800 void collectMemOpRecords(std::vector<SUnit> &SUnits,
1801 SmallVectorImpl<MemOpInfo> &MemOpRecords);
1802 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1803 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1806 class StoreClusterMutation : public BaseMemOpClusterMutation {
1807 public:
1808 StoreClusterMutation(const TargetInstrInfo *tii,
1809 const TargetRegisterInfo *tri,
1810 bool ReorderWhileClustering)
1811 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1814 class LoadClusterMutation : public BaseMemOpClusterMutation {
1815 public:
1816 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1817 bool ReorderWhileClustering)
1818 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1821 } // end anonymous namespace
1823 namespace llvm {
1825 std::unique_ptr<ScheduleDAGMutation>
1826 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1827 const TargetRegisterInfo *TRI,
1828 bool ReorderWhileClustering) {
1829 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1830 TII, TRI, ReorderWhileClustering)
1831 : nullptr;
1834 std::unique_ptr<ScheduleDAGMutation>
1835 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1836 const TargetRegisterInfo *TRI,
1837 bool ReorderWhileClustering) {
1838 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1839 TII, TRI, ReorderWhileClustering)
1840 : nullptr;
1843 } // end namespace llvm
1845 // Sorting all the loads/stores first, then for each load/store, checking the
1846 // following load/store one by one, until reach the first non-dependent one and
1847 // call target hook to see if they can cluster.
1848 // If FastCluster is enabled, we assume that, all the loads/stores have been
1849 // preprocessed and now, they didn't have dependencies on each other.
1850 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1851 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1852 ScheduleDAGInstrs *DAG) {
1853 // Keep track of the current cluster length and bytes for each SUnit.
1854 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1856 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1857 // cluster mem ops collected within `MemOpRecords` array.
1858 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1859 // Decision to cluster mem ops is taken based on target dependent logic
1860 auto MemOpa = MemOpRecords[Idx];
1862 // Seek for the next load/store to do the cluster.
1863 unsigned NextIdx = Idx + 1;
1864 for (; NextIdx < End; ++NextIdx)
1865 // Skip if MemOpb has been clustered already or has dependency with
1866 // MemOpa.
1867 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1868 (FastCluster ||
1869 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1870 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1871 break;
1872 if (NextIdx == End)
1873 continue;
1875 auto MemOpb = MemOpRecords[NextIdx];
1876 unsigned ClusterLength = 2;
1877 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() +
1878 MemOpb.Width.getValue().getKnownMinValue();
1879 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1880 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1881 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second +
1882 MemOpb.Width.getValue().getKnownMinValue();
1885 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1886 MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1887 MemOpb.Offset, MemOpb.OffsetIsScalable,
1888 ClusterLength, CurrentClusterBytes))
1889 continue;
1891 SUnit *SUa = MemOpa.SU;
1892 SUnit *SUb = MemOpb.SU;
1893 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1894 std::swap(SUa, SUb);
1896 // FIXME: Is this check really required?
1897 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1898 continue;
1900 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1901 << SUb->NodeNum << ")\n");
1902 ++NumClustered;
1904 if (IsLoad) {
1905 // Copy successor edges from SUa to SUb. Interleaving computation
1906 // dependent on SUa can prevent load combining due to register reuse.
1907 // Predecessor edges do not need to be copied from SUb to SUa since
1908 // nearby loads should have effectively the same inputs.
1909 for (const SDep &Succ : SUa->Succs) {
1910 if (Succ.getSUnit() == SUb)
1911 continue;
1912 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1913 << ")\n");
1914 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1916 } else {
1917 // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1918 // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1919 // do not need to be copied from SUa to SUb since no one will depend
1920 // on stores.
1921 // Notice that, we don't need to care about the memory dependency as
1922 // we won't try to cluster them if they have any memory dependency.
1923 for (const SDep &Pred : SUb->Preds) {
1924 if (Pred.getSUnit() == SUa)
1925 continue;
1926 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum
1927 << ")\n");
1928 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1932 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1933 CurrentClusterBytes};
1935 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength
1936 << ", Curr cluster bytes: " << CurrentClusterBytes
1937 << "\n");
1941 void BaseMemOpClusterMutation::collectMemOpRecords(
1942 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1943 for (auto &SU : SUnits) {
1944 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1945 (!IsLoad && !SU.getInstr()->mayStore()))
1946 continue;
1948 const MachineInstr &MI = *SU.getInstr();
1949 SmallVector<const MachineOperand *, 4> BaseOps;
1950 int64_t Offset;
1951 bool OffsetIsScalable;
1952 LocationSize Width = 0;
1953 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1954 OffsetIsScalable, Width, TRI)) {
1955 MemOpRecords.push_back(
1956 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1958 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1959 << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1960 << ", Width: " << Width << "\n");
1962 #ifndef NDEBUG
1963 for (const auto *Op : BaseOps)
1964 assert(Op);
1965 #endif
1969 bool BaseMemOpClusterMutation::groupMemOps(
1970 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1971 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1972 bool FastCluster =
1973 ForceFastCluster ||
1974 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1976 for (const auto &MemOp : MemOps) {
1977 unsigned ChainPredID = DAG->SUnits.size();
1978 if (FastCluster) {
1979 for (const SDep &Pred : MemOp.SU->Preds) {
1980 // We only want to cluster the mem ops that have the same ctrl(non-data)
1981 // pred so that they didn't have ctrl dependency for each other. But for
1982 // store instrs, we can still cluster them if the pred is load instr.
1983 if ((Pred.isCtrl() &&
1984 (IsLoad ||
1985 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1986 !Pred.isArtificial()) {
1987 ChainPredID = Pred.getSUnit()->NodeNum;
1988 break;
1991 } else
1992 ChainPredID = 0;
1994 Groups[ChainPredID].push_back(MemOp);
1996 return FastCluster;
1999 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
2000 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
2001 // Collect all the clusterable loads/stores
2002 SmallVector<MemOpInfo, 32> MemOpRecords;
2003 collectMemOpRecords(DAG->SUnits, MemOpRecords);
2005 if (MemOpRecords.size() < 2)
2006 return;
2008 // Put the loads/stores without dependency into the same group with some
2009 // heuristic if the DAG is too complex to avoid compiling time blow up.
2010 // Notice that, some fusion pair could be lost with this.
2011 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
2012 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
2014 for (auto &Group : Groups) {
2015 // Sorting the loads/stores, so that, we can stop the cluster as early as
2016 // possible.
2017 llvm::sort(Group.second);
2019 // Trying to cluster all the neighboring loads/stores.
2020 clusterNeighboringMemOps(Group.second, FastCluster, DAG);
2024 //===----------------------------------------------------------------------===//
2025 // CopyConstrain - DAG post-processing to encourage copy elimination.
2026 //===----------------------------------------------------------------------===//
2028 namespace {
2030 /// Post-process the DAG to create weak edges from all uses of a copy to
2031 /// the one use that defines the copy's source vreg, most likely an induction
2032 /// variable increment.
2033 class CopyConstrain : public ScheduleDAGMutation {
2034 // Transient state.
2035 SlotIndex RegionBeginIdx;
2037 // RegionEndIdx is the slot index of the last non-debug instruction in the
2038 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
2039 SlotIndex RegionEndIdx;
2041 public:
2042 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2044 void apply(ScheduleDAGInstrs *DAGInstrs) override;
2046 protected:
2047 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2050 } // end anonymous namespace
2052 namespace llvm {
2054 std::unique_ptr<ScheduleDAGMutation>
2055 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
2056 const TargetRegisterInfo *TRI) {
2057 return std::make_unique<CopyConstrain>(TII, TRI);
2060 } // end namespace llvm
2062 /// constrainLocalCopy handles two possibilities:
2063 /// 1) Local src:
2064 /// I0: = dst
2065 /// I1: src = ...
2066 /// I2: = dst
2067 /// I3: dst = src (copy)
2068 /// (create pred->succ edges I0->I1, I2->I1)
2070 /// 2) Local copy:
2071 /// I0: dst = src (copy)
2072 /// I1: = dst
2073 /// I2: src = ...
2074 /// I3: = dst
2075 /// (create pred->succ edges I1->I2, I3->I2)
2077 /// Although the MachineScheduler is currently constrained to single blocks,
2078 /// this algorithm should handle extended blocks. An EBB is a set of
2079 /// contiguously numbered blocks such that the previous block in the EBB is
2080 /// always the single predecessor.
2081 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2082 LiveIntervals *LIS = DAG->getLIS();
2083 MachineInstr *Copy = CopySU->getInstr();
2085 // Check for pure vreg copies.
2086 const MachineOperand &SrcOp = Copy->getOperand(1);
2087 Register SrcReg = SrcOp.getReg();
2088 if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2089 return;
2091 const MachineOperand &DstOp = Copy->getOperand(0);
2092 Register DstReg = DstOp.getReg();
2093 if (!DstReg.isVirtual() || DstOp.isDead())
2094 return;
2096 // Check if either the dest or source is local. If it's live across a back
2097 // edge, it's not local. Note that if both vregs are live across the back
2098 // edge, we cannot successfully contrain the copy without cyclic scheduling.
2099 // If both the copy's source and dest are local live intervals, then we
2100 // should treat the dest as the global for the purpose of adding
2101 // constraints. This adds edges from source's other uses to the copy.
2102 unsigned LocalReg = SrcReg;
2103 unsigned GlobalReg = DstReg;
2104 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2105 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2106 LocalReg = DstReg;
2107 GlobalReg = SrcReg;
2108 LocalLI = &LIS->getInterval(LocalReg);
2109 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2110 return;
2112 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2114 // Find the global segment after the start of the local LI.
2115 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2116 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2117 // local live range. We could create edges from other global uses to the local
2118 // start, but the coalescer should have already eliminated these cases, so
2119 // don't bother dealing with it.
2120 if (GlobalSegment == GlobalLI->end())
2121 return;
2123 // If GlobalSegment is killed at the LocalLI->start, the call to find()
2124 // returned the next global segment. But if GlobalSegment overlaps with
2125 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2126 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2127 if (GlobalSegment->contains(LocalLI->beginIndex()))
2128 ++GlobalSegment;
2130 if (GlobalSegment == GlobalLI->end())
2131 return;
2133 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2134 if (GlobalSegment != GlobalLI->begin()) {
2135 // Two address defs have no hole.
2136 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2137 GlobalSegment->start)) {
2138 return;
2140 // If the prior global segment may be defined by the same two-address
2141 // instruction that also defines LocalLI, then can't make a hole here.
2142 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2143 LocalLI->beginIndex())) {
2144 return;
2146 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2147 // it would be a disconnected component in the live range.
2148 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2149 "Disconnected LRG within the scheduling region.");
2151 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2152 if (!GlobalDef)
2153 return;
2155 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2156 if (!GlobalSU)
2157 return;
2159 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2160 // constraining the uses of the last local def to precede GlobalDef.
2161 SmallVector<SUnit*,8> LocalUses;
2162 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2163 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2164 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2165 for (const SDep &Succ : LastLocalSU->Succs) {
2166 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2167 continue;
2168 if (Succ.getSUnit() == GlobalSU)
2169 continue;
2170 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2171 return;
2172 LocalUses.push_back(Succ.getSUnit());
2174 // Open the top of the GlobalLI hole by constraining any earlier global uses
2175 // to precede the start of LocalLI.
2176 SmallVector<SUnit*,8> GlobalUses;
2177 MachineInstr *FirstLocalDef =
2178 LIS->getInstructionFromIndex(LocalLI->beginIndex());
2179 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2180 for (const SDep &Pred : GlobalSU->Preds) {
2181 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2182 continue;
2183 if (Pred.getSUnit() == FirstLocalSU)
2184 continue;
2185 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2186 return;
2187 GlobalUses.push_back(Pred.getSUnit());
2189 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2190 // Add the weak edges.
2191 for (SUnit *LU : LocalUses) {
2192 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("
2193 << GlobalSU->NodeNum << ")\n");
2194 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2196 for (SUnit *GU : GlobalUses) {
2197 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("
2198 << FirstLocalSU->NodeNum << ")\n");
2199 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2203 /// Callback from DAG postProcessing to create weak edges to encourage
2204 /// copy elimination.
2205 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2206 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2207 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2209 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2210 if (FirstPos == DAG->end())
2211 return;
2212 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2213 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2214 *priorNonDebug(DAG->end(), DAG->begin()));
2216 for (SUnit &SU : DAG->SUnits) {
2217 if (!SU.getInstr()->isCopy())
2218 continue;
2220 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2224 //===----------------------------------------------------------------------===//
2225 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2226 // and possibly other custom schedulers.
2227 //===----------------------------------------------------------------------===//
2229 static const unsigned InvalidCycle = ~0U;
2231 SchedBoundary::~SchedBoundary() { delete HazardRec; }
2233 /// Given a Count of resource usage and a Latency value, return true if a
2234 /// SchedBoundary becomes resource limited.
2235 /// If we are checking after scheduling a node, we should return true when
2236 /// we just reach the resource limit.
2237 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2238 unsigned Latency, bool AfterSchedNode) {
2239 int ResCntFactor = (int)(Count - (Latency * LFactor));
2240 if (AfterSchedNode)
2241 return ResCntFactor >= (int)LFactor;
2242 else
2243 return ResCntFactor > (int)LFactor;
2246 void SchedBoundary::reset() {
2247 // A new HazardRec is created for each DAG and owned by SchedBoundary.
2248 // Destroying and reconstructing it is very expensive though. So keep
2249 // invalid, placeholder HazardRecs.
2250 if (HazardRec && HazardRec->isEnabled()) {
2251 delete HazardRec;
2252 HazardRec = nullptr;
2254 Available.clear();
2255 Pending.clear();
2256 CheckPending = false;
2257 CurrCycle = 0;
2258 CurrMOps = 0;
2259 MinReadyCycle = std::numeric_limits<unsigned>::max();
2260 ExpectedLatency = 0;
2261 DependentLatency = 0;
2262 RetiredMOps = 0;
2263 MaxExecutedResCount = 0;
2264 ZoneCritResIdx = 0;
2265 IsResourceLimited = false;
2266 ReservedCycles.clear();
2267 ReservedResourceSegments.clear();
2268 ReservedCyclesIndex.clear();
2269 ResourceGroupSubUnitMasks.clear();
2270 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2271 // Track the maximum number of stall cycles that could arise either from the
2272 // latency of a DAG edge or the number of cycles that a processor resource is
2273 // reserved (SchedBoundary::ReservedCycles).
2274 MaxObservedStall = 0;
2275 #endif
2276 // Reserve a zero-count for invalid CritResIdx.
2277 ExecutedResCounts.resize(1);
2278 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2281 void SchedRemainder::
2282 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2283 reset();
2284 if (!SchedModel->hasInstrSchedModel())
2285 return;
2286 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2287 for (SUnit &SU : DAG->SUnits) {
2288 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2289 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2290 * SchedModel->getMicroOpFactor();
2291 for (TargetSchedModel::ProcResIter
2292 PI = SchedModel->getWriteProcResBegin(SC),
2293 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2294 unsigned PIdx = PI->ProcResourceIdx;
2295 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2296 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2297 RemainingCounts[PIdx] +=
2298 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2303 void SchedBoundary::
2304 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2305 reset();
2306 DAG = dag;
2307 SchedModel = smodel;
2308 Rem = rem;
2309 if (SchedModel->hasInstrSchedModel()) {
2310 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2311 ReservedCyclesIndex.resize(ResourceCount);
2312 ExecutedResCounts.resize(ResourceCount);
2313 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2314 unsigned NumUnits = 0;
2316 for (unsigned i = 0; i < ResourceCount; ++i) {
2317 ReservedCyclesIndex[i] = NumUnits;
2318 NumUnits += SchedModel->getProcResource(i)->NumUnits;
2319 if (isUnbufferedGroup(i)) {
2320 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2321 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2322 U != UE; ++U)
2323 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2327 ReservedCycles.resize(NumUnits, InvalidCycle);
2331 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2332 /// these "soft stalls" differently than the hard stall cycles based on CPU
2333 /// resources and computed by checkHazard(). A fully in-order model
2334 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2335 /// available for scheduling until they are ready. However, a weaker in-order
2336 /// model may use this for heuristics. For example, if a processor has in-order
2337 /// behavior when reading certain resources, this may come into play.
2338 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2339 if (!SU->isUnbuffered)
2340 return 0;
2342 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2343 if (ReadyCycle > CurrCycle)
2344 return ReadyCycle - CurrCycle;
2345 return 0;
2348 /// Compute the next cycle at which the given processor resource unit
2349 /// can be scheduled.
2350 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2351 unsigned ReleaseAtCycle,
2352 unsigned AcquireAtCycle) {
2353 if (SchedModel && SchedModel->enableIntervals()) {
2354 if (isTop())
2355 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2356 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2358 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2359 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2362 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2363 // If this resource has never been used, always return cycle zero.
2364 if (NextUnreserved == InvalidCycle)
2365 return CurrCycle;
2366 // For bottom-up scheduling add the cycles needed for the current operation.
2367 if (!isTop())
2368 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2369 return NextUnreserved;
2372 /// Compute the next cycle at which the given processor resource can be
2373 /// scheduled. Returns the next cycle and the index of the processor resource
2374 /// instance in the reserved cycles vector.
2375 std::pair<unsigned, unsigned>
2376 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2377 unsigned ReleaseAtCycle,
2378 unsigned AcquireAtCycle) {
2379 if (MischedDetailResourceBooking) {
2380 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n");
2381 LLVM_DEBUG(dumpReservedCycles());
2382 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n");
2384 unsigned MinNextUnreserved = InvalidCycle;
2385 unsigned InstanceIdx = 0;
2386 unsigned StartIndex = ReservedCyclesIndex[PIdx];
2387 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2388 assert(NumberOfInstances > 0 &&
2389 "Cannot have zero instances of a ProcResource");
2391 if (isUnbufferedGroup(PIdx)) {
2392 // If any subunits are used by the instruction, report that the
2393 // subunits of the resource group are available at the first cycle
2394 // in which the unit is available, effectively removing the group
2395 // record from hazarding and basing the hazarding decisions on the
2396 // subunit records. Otherwise, choose the first available instance
2397 // from among the subunits. Specifications which assign cycles to
2398 // both the subunits and the group or which use an unbuffered
2399 // group with buffered subunits will appear to schedule
2400 // strangely. In the first case, the additional cycles for the
2401 // group will be ignored. In the second, the group will be
2402 // ignored entirely.
2403 for (const MCWriteProcResEntry &PE :
2404 make_range(SchedModel->getWriteProcResBegin(SC),
2405 SchedModel->getWriteProcResEnd(SC)))
2406 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2407 return std::make_pair(getNextResourceCycleByInstance(
2408 StartIndex, ReleaseAtCycle, AcquireAtCycle),
2409 StartIndex);
2411 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2412 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2413 unsigned NextUnreserved, NextInstanceIdx;
2414 std::tie(NextUnreserved, NextInstanceIdx) =
2415 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2416 if (MinNextUnreserved > NextUnreserved) {
2417 InstanceIdx = NextInstanceIdx;
2418 MinNextUnreserved = NextUnreserved;
2421 return std::make_pair(MinNextUnreserved, InstanceIdx);
2424 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2425 ++I) {
2426 unsigned NextUnreserved =
2427 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2428 if (MischedDetailResourceBooking)
2429 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @"
2430 << NextUnreserved << "c\n");
2431 if (MinNextUnreserved > NextUnreserved) {
2432 InstanceIdx = I;
2433 MinNextUnreserved = NextUnreserved;
2436 if (MischedDetailResourceBooking)
2437 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx)
2438 << "[" << InstanceIdx - StartIndex << "]"
2439 << " available @" << MinNextUnreserved << "c"
2440 << "\n");
2441 return std::make_pair(MinNextUnreserved, InstanceIdx);
2444 /// Does this SU have a hazard within the current instruction group.
2446 /// The scheduler supports two modes of hazard recognition. The first is the
2447 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2448 /// supports highly complicated in-order reservation tables
2449 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2451 /// The second is a streamlined mechanism that checks for hazards based on
2452 /// simple counters that the scheduler itself maintains. It explicitly checks
2453 /// for instruction dispatch limitations, including the number of micro-ops that
2454 /// can dispatch per cycle.
2456 /// TODO: Also check whether the SU must start a new group.
2457 bool SchedBoundary::checkHazard(SUnit *SU) {
2458 if (HazardRec->isEnabled()
2459 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2460 return true;
2463 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2464 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2465 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2466 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2467 return true;
2470 if (CurrMOps > 0 &&
2471 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2472 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2473 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2474 << (isTop() ? "begin" : "end") << " group\n");
2475 return true;
2478 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2479 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2480 for (const MCWriteProcResEntry &PE :
2481 make_range(SchedModel->getWriteProcResBegin(SC),
2482 SchedModel->getWriteProcResEnd(SC))) {
2483 unsigned ResIdx = PE.ProcResourceIdx;
2484 unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2485 unsigned AcquireAtCycle = PE.AcquireAtCycle;
2486 unsigned NRCycle, InstanceIdx;
2487 std::tie(NRCycle, InstanceIdx) =
2488 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2489 if (NRCycle > CurrCycle) {
2490 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2491 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2492 #endif
2493 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2494 << SchedModel->getResourceName(ResIdx)
2495 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2496 << "=" << NRCycle << "c\n");
2497 return true;
2501 return false;
2504 // Find the unscheduled node in ReadySUs with the highest latency.
2505 unsigned SchedBoundary::
2506 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2507 SUnit *LateSU = nullptr;
2508 unsigned RemLatency = 0;
2509 for (SUnit *SU : ReadySUs) {
2510 unsigned L = getUnscheduledLatency(SU);
2511 if (L > RemLatency) {
2512 RemLatency = L;
2513 LateSU = SU;
2516 if (LateSU) {
2517 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2518 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2520 return RemLatency;
2523 // Count resources in this zone and the remaining unscheduled
2524 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2525 // resource index, or zero if the zone is issue limited.
2526 unsigned SchedBoundary::
2527 getOtherResourceCount(unsigned &OtherCritIdx) {
2528 OtherCritIdx = 0;
2529 if (!SchedModel->hasInstrSchedModel())
2530 return 0;
2532 unsigned OtherCritCount = Rem->RemIssueCount
2533 + (RetiredMOps * SchedModel->getMicroOpFactor());
2534 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2535 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2536 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2537 PIdx != PEnd; ++PIdx) {
2538 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2539 if (OtherCount > OtherCritCount) {
2540 OtherCritCount = OtherCount;
2541 OtherCritIdx = PIdx;
2544 if (OtherCritIdx) {
2545 LLVM_DEBUG(
2546 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2547 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2548 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2550 return OtherCritCount;
2553 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2554 unsigned Idx) {
2555 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2557 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2558 // ReadyCycle was been bumped up to the CurrCycle when this node was
2559 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2560 // scheduling, so may now be greater than ReadyCycle.
2561 if (ReadyCycle > CurrCycle)
2562 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2563 #endif
2565 if (ReadyCycle < MinReadyCycle)
2566 MinReadyCycle = ReadyCycle;
2568 // Check for interlocks first. For the purpose of other heuristics, an
2569 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2570 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2571 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2572 checkHazard(SU) || (Available.size() >= ReadyListLimit);
2574 if (!HazardDetected) {
2575 Available.push(SU);
2577 if (InPQueue)
2578 Pending.remove(Pending.begin() + Idx);
2579 return;
2582 if (!InPQueue)
2583 Pending.push(SU);
2586 /// Move the boundary of scheduled code by one cycle.
2587 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2588 if (SchedModel->getMicroOpBufferSize() == 0) {
2589 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2590 "MinReadyCycle uninitialized");
2591 if (MinReadyCycle > NextCycle)
2592 NextCycle = MinReadyCycle;
2594 // Update the current micro-ops, which will issue in the next cycle.
2595 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2596 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2598 // Decrement DependentLatency based on the next cycle.
2599 if ((NextCycle - CurrCycle) > DependentLatency)
2600 DependentLatency = 0;
2601 else
2602 DependentLatency -= (NextCycle - CurrCycle);
2604 if (!HazardRec->isEnabled()) {
2605 // Bypass HazardRec virtual calls.
2606 CurrCycle = NextCycle;
2607 } else {
2608 // Bypass getHazardType calls in case of long latency.
2609 for (; CurrCycle != NextCycle; ++CurrCycle) {
2610 if (isTop())
2611 HazardRec->AdvanceCycle();
2612 else
2613 HazardRec->RecedeCycle();
2616 CheckPending = true;
2617 IsResourceLimited =
2618 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2619 getScheduledLatency(), true);
2621 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2622 << '\n');
2625 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2626 ExecutedResCounts[PIdx] += Count;
2627 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2628 MaxExecutedResCount = ExecutedResCounts[PIdx];
2631 /// Add the given processor resource to this scheduled zone.
2633 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2634 /// cycles during which this resource is released.
2636 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2637 /// cycles at which the resource is aquired after issue (assuming no stalls).
2639 /// \return the next cycle at which the instruction may execute without
2640 /// oversubscribing resources.
2641 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2642 unsigned ReleaseAtCycle,
2643 unsigned NextCycle,
2644 unsigned AcquireAtCycle) {
2645 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2646 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2647 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2648 << ReleaseAtCycle << "x" << Factor << "u\n");
2650 // Update Executed resources counts.
2651 incExecutedResources(PIdx, Count);
2652 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2653 Rem->RemainingCounts[PIdx] -= Count;
2655 // Check if this resource exceeds the current critical resource. If so, it
2656 // becomes the critical resource.
2657 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2658 ZoneCritResIdx = PIdx;
2659 LLVM_DEBUG(dbgs() << " *** Critical resource "
2660 << SchedModel->getResourceName(PIdx) << ": "
2661 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2662 << "c\n");
2664 // For reserved resources, record the highest cycle using the resource.
2665 unsigned NextAvailable, InstanceIdx;
2666 std::tie(NextAvailable, InstanceIdx) =
2667 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2668 if (NextAvailable > CurrCycle) {
2669 LLVM_DEBUG(dbgs() << " Resource conflict: "
2670 << SchedModel->getResourceName(PIdx)
2671 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2672 << " reserved until @" << NextAvailable << "\n");
2674 return NextAvailable;
2677 /// Move the boundary of scheduled code by one SUnit.
2678 void SchedBoundary::bumpNode(SUnit *SU) {
2679 // Update the reservation table.
2680 if (HazardRec->isEnabled()) {
2681 if (!isTop() && SU->isCall) {
2682 // Calls are scheduled with their preceding instructions. For bottom-up
2683 // scheduling, clear the pipeline state before emitting.
2684 HazardRec->Reset();
2686 HazardRec->EmitInstruction(SU);
2687 // Scheduling an instruction may have made pending instructions available.
2688 CheckPending = true;
2690 // checkHazard should prevent scheduling multiple instructions per cycle that
2691 // exceed the issue width.
2692 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2693 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2694 assert(
2695 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2696 "Cannot schedule this instruction's MicroOps in the current cycle.");
2698 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2699 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2701 unsigned NextCycle = CurrCycle;
2702 switch (SchedModel->getMicroOpBufferSize()) {
2703 case 0:
2704 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2705 break;
2706 case 1:
2707 if (ReadyCycle > NextCycle) {
2708 NextCycle = ReadyCycle;
2709 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2711 break;
2712 default:
2713 // We don't currently model the OOO reorder buffer, so consider all
2714 // scheduled MOps to be "retired". We do loosely model in-order resource
2715 // latency. If this instruction uses an in-order resource, account for any
2716 // likely stall cycles.
2717 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2718 NextCycle = ReadyCycle;
2719 break;
2721 RetiredMOps += IncMOps;
2723 // Update resource counts and critical resource.
2724 if (SchedModel->hasInstrSchedModel()) {
2725 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2726 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2727 Rem->RemIssueCount -= DecRemIssue;
2728 if (ZoneCritResIdx) {
2729 // Scale scheduled micro-ops for comparing with the critical resource.
2730 unsigned ScaledMOps =
2731 RetiredMOps * SchedModel->getMicroOpFactor();
2733 // If scaled micro-ops are now more than the previous critical resource by
2734 // a full cycle, then micro-ops issue becomes critical.
2735 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2736 >= (int)SchedModel->getLatencyFactor()) {
2737 ZoneCritResIdx = 0;
2738 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2739 << ScaledMOps / SchedModel->getLatencyFactor()
2740 << "c\n");
2743 for (TargetSchedModel::ProcResIter
2744 PI = SchedModel->getWriteProcResBegin(SC),
2745 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2746 unsigned RCycle =
2747 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2748 PI->AcquireAtCycle);
2749 if (RCycle > NextCycle)
2750 NextCycle = RCycle;
2752 if (SU->hasReservedResource) {
2753 // For reserved resources, record the highest cycle using the resource.
2754 // For top-down scheduling, this is the cycle in which we schedule this
2755 // instruction plus the number of cycles the operations reserves the
2756 // resource. For bottom-up is it simply the instruction's cycle.
2757 for (TargetSchedModel::ProcResIter
2758 PI = SchedModel->getWriteProcResBegin(SC),
2759 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2760 unsigned PIdx = PI->ProcResourceIdx;
2761 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2763 if (SchedModel && SchedModel->enableIntervals()) {
2764 unsigned ReservedUntil, InstanceIdx;
2765 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2766 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2767 if (isTop()) {
2768 ReservedResourceSegments[InstanceIdx].add(
2769 ResourceSegments::getResourceIntervalTop(
2770 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2771 MIResourceCutOff);
2772 } else {
2773 ReservedResourceSegments[InstanceIdx].add(
2774 ResourceSegments::getResourceIntervalBottom(
2775 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2776 MIResourceCutOff);
2778 } else {
2780 unsigned ReservedUntil, InstanceIdx;
2781 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2782 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2783 if (isTop()) {
2784 ReservedCycles[InstanceIdx] =
2785 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2786 } else
2787 ReservedCycles[InstanceIdx] = NextCycle;
2793 // Update ExpectedLatency and DependentLatency.
2794 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2795 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2796 if (SU->getDepth() > TopLatency) {
2797 TopLatency = SU->getDepth();
2798 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2799 << SU->NodeNum << ") " << TopLatency << "c\n");
2801 if (SU->getHeight() > BotLatency) {
2802 BotLatency = SU->getHeight();
2803 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2804 << SU->NodeNum << ") " << BotLatency << "c\n");
2806 // If we stall for any reason, bump the cycle.
2807 if (NextCycle > CurrCycle)
2808 bumpCycle(NextCycle);
2809 else
2810 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2811 // resource limited. If a stall occurred, bumpCycle does this.
2812 IsResourceLimited =
2813 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2814 getScheduledLatency(), true);
2816 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2817 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2818 // one cycle. Since we commonly reach the max MOps here, opportunistically
2819 // bump the cycle to avoid uselessly checking everything in the readyQ.
2820 CurrMOps += IncMOps;
2822 // Bump the cycle count for issue group constraints.
2823 // This must be done after NextCycle has been adjust for all other stalls.
2824 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2825 // currCycle to X.
2826 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2827 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2828 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2829 << " group\n");
2830 bumpCycle(++NextCycle);
2833 while (CurrMOps >= SchedModel->getIssueWidth()) {
2834 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2835 << CurrCycle << '\n');
2836 bumpCycle(++NextCycle);
2838 LLVM_DEBUG(dumpScheduledState());
2841 /// Release pending ready nodes in to the available queue. This makes them
2842 /// visible to heuristics.
2843 void SchedBoundary::releasePending() {
2844 // If the available queue is empty, it is safe to reset MinReadyCycle.
2845 if (Available.empty())
2846 MinReadyCycle = std::numeric_limits<unsigned>::max();
2848 // Check to see if any of the pending instructions are ready to issue. If
2849 // so, add them to the available queue.
2850 for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2851 SUnit *SU = *(Pending.begin() + I);
2852 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2854 if (ReadyCycle < MinReadyCycle)
2855 MinReadyCycle = ReadyCycle;
2857 if (Available.size() >= ReadyListLimit)
2858 break;
2860 releaseNode(SU, ReadyCycle, true, I);
2861 if (E != Pending.size()) {
2862 --I;
2863 --E;
2866 CheckPending = false;
2869 /// Remove SU from the ready set for this boundary.
2870 void SchedBoundary::removeReady(SUnit *SU) {
2871 if (Available.isInQueue(SU))
2872 Available.remove(Available.find(SU));
2873 else {
2874 assert(Pending.isInQueue(SU) && "bad ready count");
2875 Pending.remove(Pending.find(SU));
2879 /// If this queue only has one ready candidate, return it. As a side effect,
2880 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2881 /// one node is ready. If multiple instructions are ready, return NULL.
2882 SUnit *SchedBoundary::pickOnlyChoice() {
2883 if (CheckPending)
2884 releasePending();
2886 // Defer any ready instrs that now have a hazard.
2887 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2888 if (checkHazard(*I)) {
2889 Pending.push(*I);
2890 I = Available.remove(I);
2891 continue;
2893 ++I;
2895 for (unsigned i = 0; Available.empty(); ++i) {
2896 // FIXME: Re-enable assert once PR20057 is resolved.
2897 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2898 // "permanent hazard");
2899 (void)i;
2900 bumpCycle(CurrCycle + 1);
2901 releasePending();
2904 LLVM_DEBUG(Pending.dump());
2905 LLVM_DEBUG(Available.dump());
2907 if (Available.size() == 1)
2908 return *Available.begin();
2909 return nullptr;
2912 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2914 /// Dump the content of the \ref ReservedCycles vector for the
2915 /// resources that are used in the basic block.
2917 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2918 if (!SchedModel->hasInstrSchedModel())
2919 return;
2921 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2922 unsigned StartIdx = 0;
2924 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2925 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2926 std::string ResName = SchedModel->getResourceName(ResIdx);
2927 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2928 dbgs() << ResName << "(" << UnitIdx << ") = ";
2929 if (SchedModel && SchedModel->enableIntervals()) {
2930 if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2931 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2932 else
2933 dbgs() << "{ }\n";
2934 } else
2935 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2937 StartIdx += NumUnits;
2941 // This is useful information to dump after bumpNode.
2942 // Note that the Queue contents are more useful before pickNodeFromQueue.
2943 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2944 unsigned ResFactor;
2945 unsigned ResCount;
2946 if (ZoneCritResIdx) {
2947 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2948 ResCount = getResourceCount(ZoneCritResIdx);
2949 } else {
2950 ResFactor = SchedModel->getMicroOpFactor();
2951 ResCount = RetiredMOps * ResFactor;
2953 unsigned LFactor = SchedModel->getLatencyFactor();
2954 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2955 << " Retired: " << RetiredMOps;
2956 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2957 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2958 << ResCount / ResFactor << " "
2959 << SchedModel->getResourceName(ZoneCritResIdx)
2960 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2961 << (IsResourceLimited ? " - Resource" : " - Latency")
2962 << " limited.\n";
2963 if (MISchedDumpReservedCycles)
2964 dumpReservedCycles();
2966 #endif
2968 //===----------------------------------------------------------------------===//
2969 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2970 //===----------------------------------------------------------------------===//
2972 void GenericSchedulerBase::SchedCandidate::
2973 initResourceDelta(const ScheduleDAGMI *DAG,
2974 const TargetSchedModel *SchedModel) {
2975 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2976 return;
2978 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2979 for (TargetSchedModel::ProcResIter
2980 PI = SchedModel->getWriteProcResBegin(SC),
2981 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2982 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2983 ResDelta.CritResources += PI->ReleaseAtCycle;
2984 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2985 ResDelta.DemandedResources += PI->ReleaseAtCycle;
2989 /// Compute remaining latency. We need this both to determine whether the
2990 /// overall schedule has become latency-limited and whether the instructions
2991 /// outside this zone are resource or latency limited.
2993 /// The "dependent" latency is updated incrementally during scheduling as the
2994 /// max height/depth of scheduled nodes minus the cycles since it was
2995 /// scheduled:
2996 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2998 /// The "independent" latency is the max ready queue depth:
2999 /// ILat = max N.depth for N in Available|Pending
3001 /// RemainingLatency is the greater of independent and dependent latency.
3003 /// These computations are expensive, especially in DAGs with many edges, so
3004 /// only do them if necessary.
3005 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
3006 unsigned RemLatency = CurrZone.getDependentLatency();
3007 RemLatency = std::max(RemLatency,
3008 CurrZone.findMaxLatency(CurrZone.Available.elements()));
3009 RemLatency = std::max(RemLatency,
3010 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
3011 return RemLatency;
3014 /// Returns true if the current cycle plus remaning latency is greater than
3015 /// the critical path in the scheduling region.
3016 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
3017 SchedBoundary &CurrZone,
3018 bool ComputeRemLatency,
3019 unsigned &RemLatency) const {
3020 // The current cycle is already greater than the critical path, so we are
3021 // already latency limited and don't need to compute the remaining latency.
3022 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
3023 return true;
3025 // If we haven't scheduled anything yet, then we aren't latency limited.
3026 if (CurrZone.getCurrCycle() == 0)
3027 return false;
3029 if (ComputeRemLatency)
3030 RemLatency = computeRemLatency(CurrZone);
3032 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
3035 /// Set the CandPolicy given a scheduling zone given the current resources and
3036 /// latencies inside and outside the zone.
3037 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
3038 SchedBoundary &CurrZone,
3039 SchedBoundary *OtherZone) {
3040 // Apply preemptive heuristics based on the total latency and resources
3041 // inside and outside this zone. Potential stalls should be considered before
3042 // following this policy.
3044 // Compute the critical resource outside the zone.
3045 unsigned OtherCritIdx = 0;
3046 unsigned OtherCount =
3047 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3049 bool OtherResLimited = false;
3050 unsigned RemLatency = 0;
3051 bool RemLatencyComputed = false;
3052 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3053 RemLatency = computeRemLatency(CurrZone);
3054 RemLatencyComputed = true;
3055 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3056 OtherCount, RemLatency, false);
3059 // Schedule aggressively for latency in PostRA mode. We don't check for
3060 // acyclic latency during PostRA, and highly out-of-order processors will
3061 // skip PostRA scheduling.
3062 if (!OtherResLimited &&
3063 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3064 RemLatency))) {
3065 Policy.ReduceLatency |= true;
3066 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
3067 << " RemainingLatency " << RemLatency << " + "
3068 << CurrZone.getCurrCycle() << "c > CritPath "
3069 << Rem.CriticalPath << "\n");
3071 // If the same resource is limiting inside and outside the zone, do nothing.
3072 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3073 return;
3075 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3076 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
3077 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3078 } if (OtherResLimited) dbgs()
3079 << " RemainingLimit: "
3080 << SchedModel->getResourceName(OtherCritIdx) << "\n";
3081 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3082 << " Latency limited both directions.\n");
3084 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3085 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3087 if (OtherResLimited)
3088 Policy.DemandResIdx = OtherCritIdx;
3091 #ifndef NDEBUG
3092 const char *GenericSchedulerBase::getReasonStr(
3093 GenericSchedulerBase::CandReason Reason) {
3094 switch (Reason) {
3095 case NoCand: return "NOCAND ";
3096 case Only1: return "ONLY1 ";
3097 case PhysReg: return "PHYS-REG ";
3098 case RegExcess: return "REG-EXCESS";
3099 case RegCritical: return "REG-CRIT ";
3100 case Stall: return "STALL ";
3101 case Cluster: return "CLUSTER ";
3102 case Weak: return "WEAK ";
3103 case RegMax: return "REG-MAX ";
3104 case ResourceReduce: return "RES-REDUCE";
3105 case ResourceDemand: return "RES-DEMAND";
3106 case TopDepthReduce: return "TOP-DEPTH ";
3107 case TopPathReduce: return "TOP-PATH ";
3108 case BotHeightReduce:return "BOT-HEIGHT";
3109 case BotPathReduce: return "BOT-PATH ";
3110 case NextDefUse: return "DEF-USE ";
3111 case NodeOrder: return "ORDER ";
3113 llvm_unreachable("Unknown reason!");
3116 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
3117 PressureChange P;
3118 unsigned ResIdx = 0;
3119 unsigned Latency = 0;
3120 switch (Cand.Reason) {
3121 default:
3122 break;
3123 case RegExcess:
3124 P = Cand.RPDelta.Excess;
3125 break;
3126 case RegCritical:
3127 P = Cand.RPDelta.CriticalMax;
3128 break;
3129 case RegMax:
3130 P = Cand.RPDelta.CurrentMax;
3131 break;
3132 case ResourceReduce:
3133 ResIdx = Cand.Policy.ReduceResIdx;
3134 break;
3135 case ResourceDemand:
3136 ResIdx = Cand.Policy.DemandResIdx;
3137 break;
3138 case TopDepthReduce:
3139 Latency = Cand.SU->getDepth();
3140 break;
3141 case TopPathReduce:
3142 Latency = Cand.SU->getHeight();
3143 break;
3144 case BotHeightReduce:
3145 Latency = Cand.SU->getHeight();
3146 break;
3147 case BotPathReduce:
3148 Latency = Cand.SU->getDepth();
3149 break;
3151 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3152 if (P.isValid())
3153 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3154 << ":" << P.getUnitInc() << " ";
3155 else
3156 dbgs() << " ";
3157 if (ResIdx)
3158 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3159 else
3160 dbgs() << " ";
3161 if (Latency)
3162 dbgs() << " " << Latency << " cycles ";
3163 else
3164 dbgs() << " ";
3165 dbgs() << '\n';
3167 #endif
3169 namespace llvm {
3170 /// Return true if this heuristic determines order.
3171 /// TODO: Consider refactor return type of these functions as integer or enum,
3172 /// as we may need to differentiate whether TryCand is better than Cand.
3173 bool tryLess(int TryVal, int CandVal,
3174 GenericSchedulerBase::SchedCandidate &TryCand,
3175 GenericSchedulerBase::SchedCandidate &Cand,
3176 GenericSchedulerBase::CandReason Reason) {
3177 if (TryVal < CandVal) {
3178 TryCand.Reason = Reason;
3179 return true;
3181 if (TryVal > CandVal) {
3182 if (Cand.Reason > Reason)
3183 Cand.Reason = Reason;
3184 return true;
3186 return false;
3189 bool tryGreater(int TryVal, int CandVal,
3190 GenericSchedulerBase::SchedCandidate &TryCand,
3191 GenericSchedulerBase::SchedCandidate &Cand,
3192 GenericSchedulerBase::CandReason Reason) {
3193 if (TryVal > CandVal) {
3194 TryCand.Reason = Reason;
3195 return true;
3197 if (TryVal < CandVal) {
3198 if (Cand.Reason > Reason)
3199 Cand.Reason = Reason;
3200 return true;
3202 return false;
3205 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3206 GenericSchedulerBase::SchedCandidate &Cand,
3207 SchedBoundary &Zone) {
3208 if (Zone.isTop()) {
3209 // Prefer the candidate with the lesser depth, but only if one of them has
3210 // depth greater than the total latency scheduled so far, otherwise either
3211 // of them could be scheduled now with no stall.
3212 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3213 Zone.getScheduledLatency()) {
3214 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3215 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3216 return true;
3218 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3219 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3220 return true;
3221 } else {
3222 // Prefer the candidate with the lesser height, but only if one of them has
3223 // height greater than the total latency scheduled so far, otherwise either
3224 // of them could be scheduled now with no stall.
3225 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3226 Zone.getScheduledLatency()) {
3227 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3228 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3229 return true;
3231 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3232 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3233 return true;
3235 return false;
3237 } // end namespace llvm
3239 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3240 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3241 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3244 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3245 tracePick(Cand.Reason, Cand.AtTop);
3248 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3249 assert(dag->hasVRegLiveness() &&
3250 "(PreRA)GenericScheduler needs vreg liveness");
3251 DAG = static_cast<ScheduleDAGMILive*>(dag);
3252 SchedModel = DAG->getSchedModel();
3253 TRI = DAG->TRI;
3255 if (RegionPolicy.ComputeDFSResult)
3256 DAG->computeDFSResult();
3258 Rem.init(DAG, SchedModel);
3259 Top.init(DAG, SchedModel, &Rem);
3260 Bot.init(DAG, SchedModel, &Rem);
3262 // Initialize resource counts.
3264 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3265 // are disabled, then these HazardRecs will be disabled.
3266 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3267 if (!Top.HazardRec) {
3268 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3270 if (!Bot.HazardRec) {
3271 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3273 TopCand.SU = nullptr;
3274 BotCand.SU = nullptr;
3277 /// Initialize the per-region scheduling policy.
3278 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3279 MachineBasicBlock::iterator End,
3280 unsigned NumRegionInstrs) {
3281 const MachineFunction &MF = *Begin->getMF();
3282 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3284 // Avoid setting up the register pressure tracker for small regions to save
3285 // compile time. As a rough heuristic, only track pressure when the number of
3286 // schedulable instructions exceeds half the allocatable integer register file
3287 // that is the largest legal integer regiser type.
3288 RegionPolicy.ShouldTrackPressure = true;
3289 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) {
3290 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3291 if (TLI->isTypeLegal(LegalIntVT)) {
3292 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3293 TLI->getRegClassFor(LegalIntVT));
3294 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3295 break;
3299 // For generic targets, we default to bottom-up, because it's simpler and more
3300 // compile-time optimizations have been implemented in that direction.
3301 RegionPolicy.OnlyBottomUp = true;
3303 // Allow the subtarget to override default policy.
3304 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3306 // After subtarget overrides, apply command line options.
3307 if (!EnableRegPressure) {
3308 RegionPolicy.ShouldTrackPressure = false;
3309 RegionPolicy.ShouldTrackLaneMasks = false;
3312 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3313 // e.g. -misched-bottomup=false allows scheduling in both directions.
3314 assert((!ForceTopDown || !ForceBottomUp) &&
3315 "-misched-topdown incompatible with -misched-bottomup");
3316 if (ForceBottomUp.getNumOccurrences() > 0) {
3317 RegionPolicy.OnlyBottomUp = ForceBottomUp;
3318 if (RegionPolicy.OnlyBottomUp)
3319 RegionPolicy.OnlyTopDown = false;
3321 if (ForceTopDown.getNumOccurrences() > 0) {
3322 RegionPolicy.OnlyTopDown = ForceTopDown;
3323 if (RegionPolicy.OnlyTopDown)
3324 RegionPolicy.OnlyBottomUp = false;
3328 void GenericScheduler::dumpPolicy() const {
3329 // Cannot completely remove virtual function even in release mode.
3330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3331 dbgs() << "GenericScheduler RegionPolicy: "
3332 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3333 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3334 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3335 << "\n";
3336 #endif
3339 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3340 /// critical path by more cycles than it takes to drain the instruction buffer.
3341 /// We estimate an upper bounds on in-flight instructions as:
3343 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3344 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3345 /// InFlightResources = InFlightIterations * LoopResources
3347 /// TODO: Check execution resources in addition to IssueCount.
3348 void GenericScheduler::checkAcyclicLatency() {
3349 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3350 return;
3352 // Scaled number of cycles per loop iteration.
3353 unsigned IterCount =
3354 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3355 Rem.RemIssueCount);
3356 // Scaled acyclic critical path.
3357 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3358 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3359 unsigned InFlightCount =
3360 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3361 unsigned BufferLimit =
3362 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3364 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3366 LLVM_DEBUG(
3367 dbgs() << "IssueCycles="
3368 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3369 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3370 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3371 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3372 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3373 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
3376 void GenericScheduler::registerRoots() {
3377 Rem.CriticalPath = DAG->ExitSU.getDepth();
3379 // Some roots may not feed into ExitSU. Check all of them in case.
3380 for (const SUnit *SU : Bot.Available) {
3381 if (SU->getDepth() > Rem.CriticalPath)
3382 Rem.CriticalPath = SU->getDepth();
3384 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3385 if (DumpCriticalPathLength) {
3386 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3389 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3390 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3391 checkAcyclicLatency();
3395 namespace llvm {
3396 bool tryPressure(const PressureChange &TryP,
3397 const PressureChange &CandP,
3398 GenericSchedulerBase::SchedCandidate &TryCand,
3399 GenericSchedulerBase::SchedCandidate &Cand,
3400 GenericSchedulerBase::CandReason Reason,
3401 const TargetRegisterInfo *TRI,
3402 const MachineFunction &MF) {
3403 // If one candidate decreases and the other increases, go with it.
3404 // Invalid candidates have UnitInc==0.
3405 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3406 Reason)) {
3407 return true;
3409 // Do not compare the magnitude of pressure changes between top and bottom
3410 // boundary.
3411 if (Cand.AtTop != TryCand.AtTop)
3412 return false;
3414 // If both candidates affect the same set in the same boundary, go with the
3415 // smallest increase.
3416 unsigned TryPSet = TryP.getPSetOrMax();
3417 unsigned CandPSet = CandP.getPSetOrMax();
3418 if (TryPSet == CandPSet) {
3419 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3420 Reason);
3423 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3424 std::numeric_limits<int>::max();
3426 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3427 std::numeric_limits<int>::max();
3429 // If the candidates are decreasing pressure, reverse priority.
3430 if (TryP.getUnitInc() < 0)
3431 std::swap(TryRank, CandRank);
3432 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3435 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3436 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3439 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3440 /// their physreg def/use.
3442 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3443 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3444 /// with the operation that produces or consumes the physreg. We'll do this when
3445 /// regalloc has support for parallel copies.
3446 int biasPhysReg(const SUnit *SU, bool isTop) {
3447 const MachineInstr *MI = SU->getInstr();
3449 if (MI->isCopy()) {
3450 unsigned ScheduledOper = isTop ? 1 : 0;
3451 unsigned UnscheduledOper = isTop ? 0 : 1;
3452 // If we have already scheduled the physreg produce/consumer, immediately
3453 // schedule the copy.
3454 if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3455 return 1;
3456 // If the physreg is at the boundary, defer it. Otherwise schedule it
3457 // immediately to free the dependent. We can hoist the copy later.
3458 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3459 if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3460 return AtBoundary ? -1 : 1;
3463 if (MI->isMoveImmediate()) {
3464 // If we have a move immediate and all successors have been assigned, bias
3465 // towards scheduling this later. Make sure all register defs are to
3466 // physical registers.
3467 bool DoBias = true;
3468 for (const MachineOperand &Op : MI->defs()) {
3469 if (Op.isReg() && !Op.getReg().isPhysical()) {
3470 DoBias = false;
3471 break;
3475 if (DoBias)
3476 return isTop ? -1 : 1;
3479 return 0;
3481 } // end namespace llvm
3483 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3484 bool AtTop,
3485 const RegPressureTracker &RPTracker,
3486 RegPressureTracker &TempTracker) {
3487 Cand.SU = SU;
3488 Cand.AtTop = AtTop;
3489 if (DAG->isTrackingPressure()) {
3490 if (AtTop) {
3491 TempTracker.getMaxDownwardPressureDelta(
3492 Cand.SU->getInstr(),
3493 Cand.RPDelta,
3494 DAG->getRegionCriticalPSets(),
3495 DAG->getRegPressure().MaxSetPressure);
3496 } else {
3497 if (VerifyScheduling) {
3498 TempTracker.getMaxUpwardPressureDelta(
3499 Cand.SU->getInstr(),
3500 &DAG->getPressureDiff(Cand.SU),
3501 Cand.RPDelta,
3502 DAG->getRegionCriticalPSets(),
3503 DAG->getRegPressure().MaxSetPressure);
3504 } else {
3505 RPTracker.getUpwardPressureDelta(
3506 Cand.SU->getInstr(),
3507 DAG->getPressureDiff(Cand.SU),
3508 Cand.RPDelta,
3509 DAG->getRegionCriticalPSets(),
3510 DAG->getRegPressure().MaxSetPressure);
3514 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3515 << " Try SU(" << Cand.SU->NodeNum << ") "
3516 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3517 << Cand.RPDelta.Excess.getUnitInc() << "\n");
3520 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3521 /// hierarchical. This may be more efficient than a graduated cost model because
3522 /// we don't need to evaluate all aspects of the model for each node in the
3523 /// queue. But it's really done to make the heuristics easier to debug and
3524 /// statistically analyze.
3526 /// \param Cand provides the policy and current best candidate.
3527 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3528 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3529 /// if Cand is from a different zone than TryCand.
3530 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3531 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3532 SchedCandidate &TryCand,
3533 SchedBoundary *Zone) const {
3534 // Initialize the candidate if needed.
3535 if (!Cand.isValid()) {
3536 TryCand.Reason = NodeOrder;
3537 return true;
3540 // Bias PhysReg Defs and copies to their uses and defined respectively.
3541 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3542 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3543 return TryCand.Reason != NoCand;
3545 // Avoid exceeding the target's limit.
3546 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3547 Cand.RPDelta.Excess,
3548 TryCand, Cand, RegExcess, TRI,
3549 DAG->MF))
3550 return TryCand.Reason != NoCand;
3552 // Avoid increasing the max critical pressure in the scheduled region.
3553 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3554 Cand.RPDelta.CriticalMax,
3555 TryCand, Cand, RegCritical, TRI,
3556 DAG->MF))
3557 return TryCand.Reason != NoCand;
3559 // We only compare a subset of features when comparing nodes between
3560 // Top and Bottom boundary. Some properties are simply incomparable, in many
3561 // other instances we should only override the other boundary if something
3562 // is a clear good pick on one boundary. Skip heuristics that are more
3563 // "tie-breaking" in nature.
3564 bool SameBoundary = Zone != nullptr;
3565 if (SameBoundary) {
3566 // For loops that are acyclic path limited, aggressively schedule for
3567 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3568 // heuristics to take precedence.
3569 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3570 tryLatency(TryCand, Cand, *Zone))
3571 return TryCand.Reason != NoCand;
3573 // Prioritize instructions that read unbuffered resources by stall cycles.
3574 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3575 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3576 return TryCand.Reason != NoCand;
3579 // Keep clustered nodes together to encourage downstream peephole
3580 // optimizations which may reduce resource requirements.
3582 // This is a best effort to set things up for a post-RA pass. Optimizations
3583 // like generating loads of multiple registers should ideally be done within
3584 // the scheduler pass by combining the loads during DAG postprocessing.
3585 const SUnit *CandNextClusterSU =
3586 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3587 const SUnit *TryCandNextClusterSU =
3588 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3589 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3590 Cand.SU == CandNextClusterSU,
3591 TryCand, Cand, Cluster))
3592 return TryCand.Reason != NoCand;
3594 if (SameBoundary) {
3595 // Weak edges are for clustering and other constraints.
3596 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3597 getWeakLeft(Cand.SU, Cand.AtTop),
3598 TryCand, Cand, Weak))
3599 return TryCand.Reason != NoCand;
3602 // Avoid increasing the max pressure of the entire region.
3603 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3604 Cand.RPDelta.CurrentMax,
3605 TryCand, Cand, RegMax, TRI,
3606 DAG->MF))
3607 return TryCand.Reason != NoCand;
3609 if (SameBoundary) {
3610 // Avoid critical resource consumption and balance the schedule.
3611 TryCand.initResourceDelta(DAG, SchedModel);
3612 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3613 TryCand, Cand, ResourceReduce))
3614 return TryCand.Reason != NoCand;
3615 if (tryGreater(TryCand.ResDelta.DemandedResources,
3616 Cand.ResDelta.DemandedResources,
3617 TryCand, Cand, ResourceDemand))
3618 return TryCand.Reason != NoCand;
3620 // Avoid serializing long latency dependence chains.
3621 // For acyclic path limited loops, latency was already checked above.
3622 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3623 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3624 return TryCand.Reason != NoCand;
3626 // Fall through to original instruction order.
3627 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3628 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3629 TryCand.Reason = NodeOrder;
3630 return true;
3634 return false;
3637 /// Pick the best candidate from the queue.
3639 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3640 /// DAG building. To adjust for the current scheduling location we need to
3641 /// maintain the number of vreg uses remaining to be top-scheduled.
3642 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3643 const CandPolicy &ZonePolicy,
3644 const RegPressureTracker &RPTracker,
3645 SchedCandidate &Cand) {
3646 // getMaxPressureDelta temporarily modifies the tracker.
3647 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3649 ReadyQueue &Q = Zone.Available;
3650 for (SUnit *SU : Q) {
3652 SchedCandidate TryCand(ZonePolicy);
3653 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3654 // Pass SchedBoundary only when comparing nodes from the same boundary.
3655 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3656 if (tryCandidate(Cand, TryCand, ZoneArg)) {
3657 // Initialize resource delta if needed in case future heuristics query it.
3658 if (TryCand.ResDelta == SchedResourceDelta())
3659 TryCand.initResourceDelta(DAG, SchedModel);
3660 Cand.setBest(TryCand);
3661 LLVM_DEBUG(traceCandidate(Cand));
3666 /// Pick the best candidate node from either the top or bottom queue.
3667 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3668 // Schedule as far as possible in the direction of no choice. This is most
3669 // efficient, but also provides the best heuristics for CriticalPSets.
3670 if (SUnit *SU = Bot.pickOnlyChoice()) {
3671 IsTopNode = false;
3672 tracePick(Only1, false);
3673 return SU;
3675 if (SUnit *SU = Top.pickOnlyChoice()) {
3676 IsTopNode = true;
3677 tracePick(Only1, true);
3678 return SU;
3680 // Set the bottom-up policy based on the state of the current bottom zone and
3681 // the instructions outside the zone, including the top zone.
3682 CandPolicy BotPolicy;
3683 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3684 // Set the top-down policy based on the state of the current top zone and
3685 // the instructions outside the zone, including the bottom zone.
3686 CandPolicy TopPolicy;
3687 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3689 // See if BotCand is still valid (because we previously scheduled from Top).
3690 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3691 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3692 BotCand.Policy != BotPolicy) {
3693 BotCand.reset(CandPolicy());
3694 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3695 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3696 } else {
3697 LLVM_DEBUG(traceCandidate(BotCand));
3698 #ifndef NDEBUG
3699 if (VerifyScheduling) {
3700 SchedCandidate TCand;
3701 TCand.reset(CandPolicy());
3702 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3703 assert(TCand.SU == BotCand.SU &&
3704 "Last pick result should correspond to re-picking right now");
3706 #endif
3709 // Check if the top Q has a better candidate.
3710 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3711 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3712 TopCand.Policy != TopPolicy) {
3713 TopCand.reset(CandPolicy());
3714 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3715 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3716 } else {
3717 LLVM_DEBUG(traceCandidate(TopCand));
3718 #ifndef NDEBUG
3719 if (VerifyScheduling) {
3720 SchedCandidate TCand;
3721 TCand.reset(CandPolicy());
3722 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3723 assert(TCand.SU == TopCand.SU &&
3724 "Last pick result should correspond to re-picking right now");
3726 #endif
3729 // Pick best from BotCand and TopCand.
3730 assert(BotCand.isValid());
3731 assert(TopCand.isValid());
3732 SchedCandidate Cand = BotCand;
3733 TopCand.Reason = NoCand;
3734 if (tryCandidate(Cand, TopCand, nullptr)) {
3735 Cand.setBest(TopCand);
3736 LLVM_DEBUG(traceCandidate(Cand));
3739 IsTopNode = Cand.AtTop;
3740 tracePick(Cand);
3741 return Cand.SU;
3744 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3745 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3746 if (DAG->top() == DAG->bottom()) {
3747 assert(Top.Available.empty() && Top.Pending.empty() &&
3748 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3749 return nullptr;
3751 SUnit *SU;
3752 do {
3753 if (RegionPolicy.OnlyTopDown) {
3754 SU = Top.pickOnlyChoice();
3755 if (!SU) {
3756 CandPolicy NoPolicy;
3757 TopCand.reset(NoPolicy);
3758 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3759 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3760 tracePick(TopCand);
3761 SU = TopCand.SU;
3763 IsTopNode = true;
3764 } else if (RegionPolicy.OnlyBottomUp) {
3765 SU = Bot.pickOnlyChoice();
3766 if (!SU) {
3767 CandPolicy NoPolicy;
3768 BotCand.reset(NoPolicy);
3769 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3770 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3771 tracePick(BotCand);
3772 SU = BotCand.SU;
3774 IsTopNode = false;
3775 } else {
3776 SU = pickNodeBidirectional(IsTopNode);
3778 } while (SU->isScheduled);
3780 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise,
3781 // if isTopReady(), then SU is in either Top.Available or Top.Pending.
3782 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise,
3783 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending.
3785 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode &&
3786 // isBottomReady. That is, it didn't factor into the decision to choose SU
3787 // because it isTopReady or isBottomReady, respectively. In fact, if the
3788 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top
3789 // queues respectivley contain the original roots and don't get updated when
3790 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was
3791 // because we schduled everything but the top roots. Conversley, if SU
3792 // isBottomReady on OnlyTopDown, then it was because we scheduled everything
3793 // but the bottom roots. If its in a queue even coincidentally, it should be
3794 // removed so it does not get re-picked in a subsequent pickNode call.
3795 if (SU->isTopReady())
3796 Top.removeReady(SU);
3797 if (SU->isBottomReady())
3798 Bot.removeReady(SU);
3800 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3801 << *SU->getInstr());
3802 return SU;
3805 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3806 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3807 if (!isTop)
3808 ++InsertPos;
3809 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3811 // Find already scheduled copies with a single physreg dependence and move
3812 // them just above the scheduled instruction.
3813 for (SDep &Dep : Deps) {
3814 if (Dep.getKind() != SDep::Data ||
3815 !Register::isPhysicalRegister(Dep.getReg()))
3816 continue;
3817 SUnit *DepSU = Dep.getSUnit();
3818 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3819 continue;
3820 MachineInstr *Copy = DepSU->getInstr();
3821 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3822 continue;
3823 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3824 DAG->dumpNode(*Dep.getSUnit()));
3825 DAG->moveInstruction(Copy, InsertPos);
3829 /// Update the scheduler's state after scheduling a node. This is the same node
3830 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3831 /// update it's state based on the current cycle before MachineSchedStrategy
3832 /// does.
3834 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3835 /// them here. See comments in biasPhysReg.
3836 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3837 if (IsTopNode) {
3838 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3839 Top.bumpNode(SU);
3840 if (SU->hasPhysRegUses)
3841 reschedulePhysReg(SU, true);
3842 } else {
3843 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3844 Bot.bumpNode(SU);
3845 if (SU->hasPhysRegDefs)
3846 reschedulePhysReg(SU, false);
3850 /// Create the standard converging machine scheduler. This will be used as the
3851 /// default scheduler if the target does not set a default.
3852 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3853 ScheduleDAGMILive *DAG =
3854 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3855 // Register DAG post-processors.
3857 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3858 // data and pass it to later mutations. Have a single mutation that gathers
3859 // the interesting nodes in one pass.
3860 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3862 const TargetSubtargetInfo &STI = C->MF->getSubtarget();
3863 // Add MacroFusion mutation if fusions are not empty.
3864 const auto &MacroFusions = STI.getMacroFusions();
3865 if (!MacroFusions.empty())
3866 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
3867 return DAG;
3870 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3871 return createGenericSchedLive(C);
3874 static MachineSchedRegistry
3875 GenericSchedRegistry("converge", "Standard converging scheduler.",
3876 createConvergingSched);
3878 //===----------------------------------------------------------------------===//
3879 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3880 //===----------------------------------------------------------------------===//
3882 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3883 DAG = Dag;
3884 SchedModel = DAG->getSchedModel();
3885 TRI = DAG->TRI;
3887 Rem.init(DAG, SchedModel);
3888 Top.init(DAG, SchedModel, &Rem);
3889 Bot.init(DAG, SchedModel, &Rem);
3891 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3892 // or are disabled, then these HazardRecs will be disabled.
3893 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3894 if (!Top.HazardRec) {
3895 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3897 if (!Bot.HazardRec) {
3898 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3902 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3903 MachineBasicBlock::iterator End,
3904 unsigned NumRegionInstrs) {
3905 if (PostRADirection == MISchedPostRASched::TopDown) {
3906 RegionPolicy.OnlyTopDown = true;
3907 RegionPolicy.OnlyBottomUp = false;
3908 } else if (PostRADirection == MISchedPostRASched::BottomUp) {
3909 RegionPolicy.OnlyTopDown = false;
3910 RegionPolicy.OnlyBottomUp = true;
3911 } else if (PostRADirection == MISchedPostRASched::Bidirectional) {
3912 RegionPolicy.OnlyBottomUp = false;
3913 RegionPolicy.OnlyTopDown = false;
3917 void PostGenericScheduler::registerRoots() {
3918 Rem.CriticalPath = DAG->ExitSU.getDepth();
3920 // Some roots may not feed into ExitSU. Check all of them in case.
3921 for (const SUnit *SU : Bot.Available) {
3922 if (SU->getDepth() > Rem.CriticalPath)
3923 Rem.CriticalPath = SU->getDepth();
3925 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3926 if (DumpCriticalPathLength) {
3927 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3931 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3933 /// \param Cand provides the policy and current best candidate.
3934 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3935 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3936 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3937 SchedCandidate &TryCand) {
3938 // Initialize the candidate if needed.
3939 if (!Cand.isValid()) {
3940 TryCand.Reason = NodeOrder;
3941 return true;
3944 // Prioritize instructions that read unbuffered resources by stall cycles.
3945 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3946 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3947 return TryCand.Reason != NoCand;
3949 // Keep clustered nodes together.
3950 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3951 Cand.SU == DAG->getNextClusterSucc(),
3952 TryCand, Cand, Cluster))
3953 return TryCand.Reason != NoCand;
3955 // Avoid critical resource consumption and balance the schedule.
3956 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3957 TryCand, Cand, ResourceReduce))
3958 return TryCand.Reason != NoCand;
3959 if (tryGreater(TryCand.ResDelta.DemandedResources,
3960 Cand.ResDelta.DemandedResources,
3961 TryCand, Cand, ResourceDemand))
3962 return TryCand.Reason != NoCand;
3964 // Avoid serializing long latency dependence chains.
3965 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3966 return TryCand.Reason != NoCand;
3969 // Fall through to original instruction order.
3970 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3971 TryCand.Reason = NodeOrder;
3972 return true;
3975 return false;
3978 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3979 SchedCandidate &Cand) {
3980 ReadyQueue &Q = Zone.Available;
3981 for (SUnit *SU : Q) {
3982 SchedCandidate TryCand(Cand.Policy);
3983 TryCand.SU = SU;
3984 TryCand.AtTop = Zone.isTop();
3985 TryCand.initResourceDelta(DAG, SchedModel);
3986 if (tryCandidate(Cand, TryCand)) {
3987 Cand.setBest(TryCand);
3988 LLVM_DEBUG(traceCandidate(Cand));
3993 /// Pick the best candidate node from either the top or bottom queue.
3994 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3995 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor
3996 // out common parts.
3998 // Schedule as far as possible in the direction of no choice. This is most
3999 // efficient, but also provides the best heuristics for CriticalPSets.
4000 if (SUnit *SU = Bot.pickOnlyChoice()) {
4001 IsTopNode = false;
4002 tracePick(Only1, false);
4003 return SU;
4005 if (SUnit *SU = Top.pickOnlyChoice()) {
4006 IsTopNode = true;
4007 tracePick(Only1, true);
4008 return SU;
4010 // Set the bottom-up policy based on the state of the current bottom zone and
4011 // the instructions outside the zone, including the top zone.
4012 CandPolicy BotPolicy;
4013 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top);
4014 // Set the top-down policy based on the state of the current top zone and
4015 // the instructions outside the zone, including the bottom zone.
4016 CandPolicy TopPolicy;
4017 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot);
4019 // See if BotCand is still valid (because we previously scheduled from Top).
4020 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
4021 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
4022 BotCand.Policy != BotPolicy) {
4023 BotCand.reset(CandPolicy());
4024 pickNodeFromQueue(Bot, BotCand);
4025 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
4026 } else {
4027 LLVM_DEBUG(traceCandidate(BotCand));
4028 #ifndef NDEBUG
4029 if (VerifyScheduling) {
4030 SchedCandidate TCand;
4031 TCand.reset(CandPolicy());
4032 pickNodeFromQueue(Bot, BotCand);
4033 assert(TCand.SU == BotCand.SU &&
4034 "Last pick result should correspond to re-picking right now");
4036 #endif
4039 // Check if the top Q has a better candidate.
4040 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
4041 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
4042 TopCand.Policy != TopPolicy) {
4043 TopCand.reset(CandPolicy());
4044 pickNodeFromQueue(Top, TopCand);
4045 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
4046 } else {
4047 LLVM_DEBUG(traceCandidate(TopCand));
4048 #ifndef NDEBUG
4049 if (VerifyScheduling) {
4050 SchedCandidate TCand;
4051 TCand.reset(CandPolicy());
4052 pickNodeFromQueue(Top, TopCand);
4053 assert(TCand.SU == TopCand.SU &&
4054 "Last pick result should correspond to re-picking right now");
4056 #endif
4059 // Pick best from BotCand and TopCand.
4060 assert(BotCand.isValid());
4061 assert(TopCand.isValid());
4062 SchedCandidate Cand = BotCand;
4063 TopCand.Reason = NoCand;
4064 if (tryCandidate(Cand, TopCand)) {
4065 Cand.setBest(TopCand);
4066 LLVM_DEBUG(traceCandidate(Cand));
4069 IsTopNode = Cand.AtTop;
4070 tracePick(Cand);
4071 return Cand.SU;
4074 /// Pick the next node to schedule.
4075 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
4076 if (DAG->top() == DAG->bottom()) {
4077 assert(Top.Available.empty() && Top.Pending.empty() &&
4078 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
4079 return nullptr;
4081 SUnit *SU;
4082 do {
4083 if (RegionPolicy.OnlyBottomUp) {
4084 SU = Bot.pickOnlyChoice();
4085 if (SU) {
4086 tracePick(Only1, true);
4087 } else {
4088 CandPolicy NoPolicy;
4089 BotCand.reset(NoPolicy);
4090 // Set the bottom-up policy based on the state of the current bottom
4091 // zone and the instructions outside the zone, including the top zone.
4092 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr);
4093 pickNodeFromQueue(Bot, BotCand);
4094 assert(BotCand.Reason != NoCand && "failed to find a candidate");
4095 tracePick(BotCand);
4096 SU = BotCand.SU;
4098 IsTopNode = false;
4099 } else if (RegionPolicy.OnlyTopDown) {
4100 SU = Top.pickOnlyChoice();
4101 if (SU) {
4102 tracePick(Only1, true);
4103 } else {
4104 CandPolicy NoPolicy;
4105 TopCand.reset(NoPolicy);
4106 // Set the top-down policy based on the state of the current top zone
4107 // and the instructions outside the zone, including the bottom zone.
4108 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
4109 pickNodeFromQueue(Top, TopCand);
4110 assert(TopCand.Reason != NoCand && "failed to find a candidate");
4111 tracePick(TopCand);
4112 SU = TopCand.SU;
4114 IsTopNode = true;
4115 } else {
4116 SU = pickNodeBidirectional(IsTopNode);
4118 } while (SU->isScheduled);
4120 if (SU->isTopReady())
4121 Top.removeReady(SU);
4122 if (SU->isBottomReady())
4123 Bot.removeReady(SU);
4125 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
4126 << *SU->getInstr());
4127 return SU;
4130 /// Called after ScheduleDAGMI has scheduled an instruction and updated
4131 /// scheduled/remaining flags in the DAG nodes.
4132 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
4133 if (IsTopNode) {
4134 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
4135 Top.bumpNode(SU);
4136 } else {
4137 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
4138 Bot.bumpNode(SU);
4142 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
4143 ScheduleDAGMI *DAG =
4144 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
4145 /*RemoveKillFlags=*/true);
4146 const TargetSubtargetInfo &STI = C->MF->getSubtarget();
4147 // Add MacroFusion mutation if fusions are not empty.
4148 const auto &MacroFusions = STI.getMacroFusions();
4149 if (!MacroFusions.empty())
4150 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
4151 return DAG;
4154 //===----------------------------------------------------------------------===//
4155 // ILP Scheduler. Currently for experimental analysis of heuristics.
4156 //===----------------------------------------------------------------------===//
4158 namespace {
4160 /// Order nodes by the ILP metric.
4161 struct ILPOrder {
4162 const SchedDFSResult *DFSResult = nullptr;
4163 const BitVector *ScheduledTrees = nullptr;
4164 bool MaximizeILP;
4166 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
4168 /// Apply a less-than relation on node priority.
4170 /// (Return true if A comes after B in the Q.)
4171 bool operator()(const SUnit *A, const SUnit *B) const {
4172 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
4173 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
4174 if (SchedTreeA != SchedTreeB) {
4175 // Unscheduled trees have lower priority.
4176 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
4177 return ScheduledTrees->test(SchedTreeB);
4179 // Trees with shallower connections have lower priority.
4180 if (DFSResult->getSubtreeLevel(SchedTreeA)
4181 != DFSResult->getSubtreeLevel(SchedTreeB)) {
4182 return DFSResult->getSubtreeLevel(SchedTreeA)
4183 < DFSResult->getSubtreeLevel(SchedTreeB);
4186 if (MaximizeILP)
4187 return DFSResult->getILP(A) < DFSResult->getILP(B);
4188 else
4189 return DFSResult->getILP(A) > DFSResult->getILP(B);
4193 /// Schedule based on the ILP metric.
4194 class ILPScheduler : public MachineSchedStrategy {
4195 ScheduleDAGMILive *DAG = nullptr;
4196 ILPOrder Cmp;
4198 std::vector<SUnit*> ReadyQ;
4200 public:
4201 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4203 void initialize(ScheduleDAGMI *dag) override {
4204 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4205 DAG = static_cast<ScheduleDAGMILive*>(dag);
4206 DAG->computeDFSResult();
4207 Cmp.DFSResult = DAG->getDFSResult();
4208 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4209 ReadyQ.clear();
4212 void registerRoots() override {
4213 // Restore the heap in ReadyQ with the updated DFS results.
4214 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4217 /// Implement MachineSchedStrategy interface.
4218 /// -----------------------------------------
4220 /// Callback to select the highest priority node from the ready Q.
4221 SUnit *pickNode(bool &IsTopNode) override {
4222 if (ReadyQ.empty()) return nullptr;
4223 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4224 SUnit *SU = ReadyQ.back();
4225 ReadyQ.pop_back();
4226 IsTopNode = false;
4227 LLVM_DEBUG(dbgs() << "Pick node "
4228 << "SU(" << SU->NodeNum << ") "
4229 << " ILP: " << DAG->getDFSResult()->getILP(SU)
4230 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4231 << " @"
4232 << DAG->getDFSResult()->getSubtreeLevel(
4233 DAG->getDFSResult()->getSubtreeID(SU))
4234 << '\n'
4235 << "Scheduling " << *SU->getInstr());
4236 return SU;
4239 /// Scheduler callback to notify that a new subtree is scheduled.
4240 void scheduleTree(unsigned SubtreeID) override {
4241 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4244 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4245 /// DFSResults, and resort the priority Q.
4246 void schedNode(SUnit *SU, bool IsTopNode) override {
4247 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4250 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4252 void releaseBottomNode(SUnit *SU) override {
4253 ReadyQ.push_back(SU);
4254 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4258 } // end anonymous namespace
4260 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
4261 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4263 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
4264 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4267 static MachineSchedRegistry ILPMaxRegistry(
4268 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4269 static MachineSchedRegistry ILPMinRegistry(
4270 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4272 //===----------------------------------------------------------------------===//
4273 // Machine Instruction Shuffler for Correctness Testing
4274 //===----------------------------------------------------------------------===//
4276 #ifndef NDEBUG
4277 namespace {
4279 /// Apply a less-than relation on the node order, which corresponds to the
4280 /// instruction order prior to scheduling. IsReverse implements greater-than.
4281 template<bool IsReverse>
4282 struct SUnitOrder {
4283 bool operator()(SUnit *A, SUnit *B) const {
4284 if (IsReverse)
4285 return A->NodeNum > B->NodeNum;
4286 else
4287 return A->NodeNum < B->NodeNum;
4291 /// Reorder instructions as much as possible.
4292 class InstructionShuffler : public MachineSchedStrategy {
4293 bool IsAlternating;
4294 bool IsTopDown;
4296 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4297 // gives nodes with a higher number higher priority causing the latest
4298 // instructions to be scheduled first.
4299 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4300 TopQ;
4302 // When scheduling bottom-up, use greater-than as the queue priority.
4303 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4304 BottomQ;
4306 public:
4307 InstructionShuffler(bool alternate, bool topdown)
4308 : IsAlternating(alternate), IsTopDown(topdown) {}
4310 void initialize(ScheduleDAGMI*) override {
4311 TopQ.clear();
4312 BottomQ.clear();
4315 /// Implement MachineSchedStrategy interface.
4316 /// -----------------------------------------
4318 SUnit *pickNode(bool &IsTopNode) override {
4319 SUnit *SU;
4320 if (IsTopDown) {
4321 do {
4322 if (TopQ.empty()) return nullptr;
4323 SU = TopQ.top();
4324 TopQ.pop();
4325 } while (SU->isScheduled);
4326 IsTopNode = true;
4327 } else {
4328 do {
4329 if (BottomQ.empty()) return nullptr;
4330 SU = BottomQ.top();
4331 BottomQ.pop();
4332 } while (SU->isScheduled);
4333 IsTopNode = false;
4335 if (IsAlternating)
4336 IsTopDown = !IsTopDown;
4337 return SU;
4340 void schedNode(SUnit *SU, bool IsTopNode) override {}
4342 void releaseTopNode(SUnit *SU) override {
4343 TopQ.push(SU);
4345 void releaseBottomNode(SUnit *SU) override {
4346 BottomQ.push(SU);
4350 } // end anonymous namespace
4352 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4353 bool Alternate = !ForceTopDown && !ForceBottomUp;
4354 bool TopDown = !ForceBottomUp;
4355 assert((TopDown || !ForceTopDown) &&
4356 "-misched-topdown incompatible with -misched-bottomup");
4357 return new ScheduleDAGMILive(
4358 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4361 static MachineSchedRegistry ShufflerRegistry(
4362 "shuffle", "Shuffle machine instructions alternating directions",
4363 createInstructionShuffler);
4364 #endif // !NDEBUG
4366 //===----------------------------------------------------------------------===//
4367 // GraphWriter support for ScheduleDAGMILive.
4368 //===----------------------------------------------------------------------===//
4370 #ifndef NDEBUG
4371 namespace llvm {
4373 template<> struct GraphTraits<
4374 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4376 template<>
4377 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4378 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4380 static std::string getGraphName(const ScheduleDAG *G) {
4381 return std::string(G->MF.getName());
4384 static bool renderGraphFromBottomUp() {
4385 return true;
4388 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4389 if (ViewMISchedCutoff == 0)
4390 return false;
4391 return (Node->Preds.size() > ViewMISchedCutoff
4392 || Node->Succs.size() > ViewMISchedCutoff);
4395 /// If you want to override the dot attributes printed for a particular
4396 /// edge, override this method.
4397 static std::string getEdgeAttributes(const SUnit *Node,
4398 SUnitIterator EI,
4399 const ScheduleDAG *Graph) {
4400 if (EI.isArtificialDep())
4401 return "color=cyan,style=dashed";
4402 if (EI.isCtrlDep())
4403 return "color=blue,style=dashed";
4404 return "";
4407 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4408 std::string Str;
4409 raw_string_ostream SS(Str);
4410 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4411 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4412 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4413 SS << "SU:" << SU->NodeNum;
4414 if (DFS)
4415 SS << " I:" << DFS->getNumInstrs(SU);
4416 return Str;
4419 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4420 return G->getGraphNodeLabel(SU);
4423 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4424 std::string Str("shape=Mrecord");
4425 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4426 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4427 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4428 if (DFS) {
4429 Str += ",style=filled,fillcolor=\"#";
4430 Str += DOT::getColorString(DFS->getSubtreeID(N));
4431 Str += '"';
4433 return Str;
4437 } // end namespace llvm
4438 #endif // NDEBUG
4440 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4441 /// rendered using 'dot'.
4442 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4443 #ifndef NDEBUG
4444 ViewGraph(this, Name, false, Title);
4445 #else
4446 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4447 << "systems with Graphviz or gv!\n";
4448 #endif // NDEBUG
4451 /// Out-of-line implementation with no arguments is handy for gdb.
4452 void ScheduleDAGMI::viewGraph() {
4453 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4456 /// Sort predicate for the intervals stored in an instance of
4457 /// ResourceSegments. Intervals are always disjoint (no intersection
4458 /// for any pairs of intervals), therefore we can sort the totality of
4459 /// the intervals by looking only at the left boundary.
4460 static bool sortIntervals(const ResourceSegments::IntervalTy &A,
4461 const ResourceSegments::IntervalTy &B) {
4462 return A.first < B.first;
4465 unsigned ResourceSegments::getFirstAvailableAt(
4466 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4467 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4468 IntervalBuilder) const {
4469 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4470 sortIntervals) &&
4471 "Cannot execute on an un-sorted set of intervals.");
4473 // Zero resource usage is allowed by TargetSchedule.td but we do not construct
4474 // a ResourceSegment interval for that situation.
4475 if (AcquireAtCycle == ReleaseAtCycle)
4476 return CurrCycle;
4478 unsigned RetCycle = CurrCycle;
4479 ResourceSegments::IntervalTy NewInterval =
4480 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4481 for (auto &Interval : _Intervals) {
4482 if (!intersects(NewInterval, Interval))
4483 continue;
4485 // Move the interval right next to the top of the one it
4486 // intersects.
4487 assert(Interval.second > NewInterval.first &&
4488 "Invalid intervals configuration.");
4489 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4490 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4492 return RetCycle;
4495 void ResourceSegments::add(ResourceSegments::IntervalTy A,
4496 const unsigned CutOff) {
4497 assert(A.first <= A.second && "Cannot add negative resource usage");
4498 assert(CutOff > 0 && "0-size interval history has no use.");
4499 // Zero resource usage is allowed by TargetSchedule.td, in the case that the
4500 // instruction needed the resource to be available but does not use it.
4501 // However, ResourceSegment represents an interval that is closed on the left
4502 // and open on the right. It is impossible to represent an empty interval when
4503 // the left is closed. Do not add it to Intervals.
4504 if (A.first == A.second)
4505 return;
4507 assert(all_of(_Intervals,
4508 [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4509 return !intersects(A, Interval);
4510 }) &&
4511 "A resource is being overwritten");
4512 _Intervals.push_back(A);
4514 sortAndMerge();
4516 // Do not keep the full history of the intervals, just the
4517 // latest #CutOff.
4518 while (_Intervals.size() > CutOff)
4519 _Intervals.pop_front();
4522 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A,
4523 ResourceSegments::IntervalTy B) {
4524 assert(A.first <= A.second && "Invalid interval");
4525 assert(B.first <= B.second && "Invalid interval");
4527 // Share one boundary.
4528 if ((A.first == B.first) || (A.second == B.second))
4529 return true;
4531 // full intersersect: [ *** ) B
4532 // [***) A
4533 if ((A.first > B.first) && (A.second < B.second))
4534 return true;
4536 // right intersect: [ ***) B
4537 // [*** ) A
4538 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4539 return true;
4541 // left intersect: [*** ) B
4542 // [ ***) A
4543 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4544 return true;
4546 return false;
4549 void ResourceSegments::sortAndMerge() {
4550 if (_Intervals.size() <= 1)
4551 return;
4553 // First sort the collection.
4554 _Intervals.sort(sortIntervals);
4556 // can use next because I have at least 2 elements in the list
4557 auto next = std::next(std::begin(_Intervals));
4558 auto E = std::end(_Intervals);
4559 for (; next != E; ++next) {
4560 if (std::prev(next)->second >= next->first) {
4561 next->first = std::prev(next)->first;
4562 _Intervals.erase(std::prev(next));
4563 continue;