1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass converts selects to conditional jumps when profitable.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
45 using namespace llvm::PatternMatch
;
47 #define DEBUG_TYPE "select-optimize"
49 STATISTIC(NumSelectOptAnalyzed
,
50 "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand
,
52 "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred
,
54 "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred
,
56 "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB
,
58 "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop
,
60 "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted
, "Number of selects converted");
63 static cl::opt
<unsigned> ColdOperandThreshold(
64 "cold-operand-threshold",
65 cl::desc("Maximum frequency of path for an operand to be considered cold."),
66 cl::init(20), cl::Hidden
);
68 static cl::opt
<unsigned> ColdOperandMaxCostMultiplier(
69 "cold-operand-max-cost-multiplier",
70 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71 "slice of a cold operand to be considered inexpensive."),
72 cl::init(1), cl::Hidden
);
74 static cl::opt
<unsigned>
75 GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76 cl::desc("Gradient gain threshold (%)."),
77 cl::init(25), cl::Hidden
);
79 static cl::opt
<unsigned>
80 GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81 cl::desc("Minimum gain per loop (in cycles) threshold."),
82 cl::init(4), cl::Hidden
);
84 static cl::opt
<unsigned> GainRelativeThreshold(
85 "select-opti-loop-relative-gain-threshold",
87 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88 cl::init(8), cl::Hidden
);
90 static cl::opt
<unsigned> MispredictDefaultRate(
91 "mispredict-default-rate", cl::Hidden
, cl::init(25),
92 cl::desc("Default mispredict rate (initialized to 25%)."));
95 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden
,
97 cl::desc("Disable loop-level heuristics."));
101 class SelectOptimizeImpl
{
102 const TargetMachine
*TM
= nullptr;
103 const TargetSubtargetInfo
*TSI
= nullptr;
104 const TargetLowering
*TLI
= nullptr;
105 const TargetTransformInfo
*TTI
= nullptr;
106 const LoopInfo
*LI
= nullptr;
107 BlockFrequencyInfo
*BFI
;
108 ProfileSummaryInfo
*PSI
= nullptr;
109 OptimizationRemarkEmitter
*ORE
= nullptr;
110 TargetSchedModel TSchedModel
;
113 SelectOptimizeImpl() = default;
114 SelectOptimizeImpl(const TargetMachine
*TM
) : TM(TM
){};
115 PreservedAnalyses
run(Function
&F
, FunctionAnalysisManager
&FAM
);
116 bool runOnFunction(Function
&F
, Pass
&P
);
118 using Scaled64
= ScaledNumber
<uint64_t>;
121 /// Predicated cost (with selects as conditional moves).
123 /// Non-predicated cost (with selects converted to branches).
124 Scaled64 NonPredCost
;
127 /// SelectLike is an abstraction over SelectInst and other operations that can
128 /// act like selects. For example Or(Zext(icmp), X) can be treated like
129 /// select(icmp, X|1, X).
131 SelectLike(Instruction
*I
) : I(I
) {}
133 /// The select (/or) instruction.
135 /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
136 /// opposed to the original condition.
137 bool Inverted
= false;
140 /// Match a select or select-like instruction, returning a SelectLike.
141 static SelectLike
match(Instruction
*I
) {
142 // Select instruction are what we are usually looking for.
143 if (isa
<SelectInst
>(I
))
144 return SelectLike(I
);
146 // An Or(zext(i1 X), Y) can also be treated like a select, with condition
147 // C and values Y|1 and Y.
149 if (PatternMatch::match(
150 I
, m_c_Or(m_OneUse(m_ZExt(m_Value(X
))), m_Value())) &&
151 X
->getType()->isIntegerTy(1))
152 return SelectLike(I
);
154 return SelectLike(nullptr);
157 bool isValid() { return I
; }
158 operator bool() { return isValid(); }
160 /// Invert the select by inverting the condition and switching the operands.
162 assert(!Inverted
&& "Trying to invert an inverted SelectLike");
163 assert(isa
<Instruction
>(getCondition()) &&
164 cast
<Instruction
>(getCondition())->getOpcode() ==
168 bool isInverted() const { return Inverted
; }
170 Instruction
*getI() { return I
; }
171 const Instruction
*getI() const { return I
; }
173 Type
*getType() const { return I
->getType(); }
175 Value
*getNonInvertedCondition() const {
176 if (auto *Sel
= dyn_cast
<SelectInst
>(I
))
177 return Sel
->getCondition();
179 if (auto *BO
= dyn_cast
<BinaryOperator
>(I
)) {
181 if (PatternMatch::match(BO
->getOperand(0),
182 m_OneUse(m_ZExt(m_Value(X
)))))
184 if (PatternMatch::match(BO
->getOperand(1),
185 m_OneUse(m_ZExt(m_Value(X
)))))
189 llvm_unreachable("Unhandled case in getCondition");
192 /// Return the condition for the SelectLike instruction. For example the
193 /// condition of a select or c in `or(zext(c), x)`
194 Value
*getCondition() const {
195 Value
*CC
= getNonInvertedCondition();
196 // For inverted conditions the CC is checked when created to be a not
197 // (xor) instruction.
199 return cast
<Instruction
>(CC
)->getOperand(0);
203 /// Return the true value for the SelectLike instruction. Note this may not
204 /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
205 /// the true value would be `or(x,1)`. As this value does not exist, nullptr
207 Value
*getTrueValue(bool HonorInverts
= true) const {
208 if (Inverted
&& HonorInverts
)
209 return getFalseValue(/*HonorInverts=*/false);
210 if (auto *Sel
= dyn_cast
<SelectInst
>(I
))
211 return Sel
->getTrueValue();
212 // Or(zext) case - The true value is Or(X), so return nullptr as the value
213 // does not yet exist.
214 if (isa
<BinaryOperator
>(I
))
217 llvm_unreachable("Unhandled case in getTrueValue");
220 /// Return the false value for the SelectLike instruction. For example the
221 /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
222 /// `select(c, x|1, x)`)
223 Value
*getFalseValue(bool HonorInverts
= true) const {
224 if (Inverted
&& HonorInverts
)
225 return getTrueValue(/*HonorInverts=*/false);
226 if (auto *Sel
= dyn_cast
<SelectInst
>(I
))
227 return Sel
->getFalseValue();
228 // Or(zext) case - return the operand which is not the zext.
229 if (auto *BO
= dyn_cast
<BinaryOperator
>(I
)) {
231 if (PatternMatch::match(BO
->getOperand(0),
232 m_OneUse(m_ZExt(m_Value(X
)))))
233 return BO
->getOperand(1);
234 if (PatternMatch::match(BO
->getOperand(1),
235 m_OneUse(m_ZExt(m_Value(X
)))))
236 return BO
->getOperand(0);
239 llvm_unreachable("Unhandled case in getFalseValue");
242 /// Return the NonPredCost cost of the true op, given the costs in
243 /// InstCostMap. This may need to be generated for select-like instructions.
244 Scaled64
getTrueOpCost(DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
,
245 const TargetTransformInfo
*TTI
) {
246 if (isa
<SelectInst
>(I
))
247 if (auto *I
= dyn_cast
<Instruction
>(getTrueValue()))
248 return InstCostMap
.contains(I
) ? InstCostMap
[I
].NonPredCost
249 : Scaled64::getZero();
251 // Or case - add the cost of an extra Or to the cost of the False case.
252 if (isa
<BinaryOperator
>(I
))
253 if (auto I
= dyn_cast
<Instruction
>(getFalseValue()))
254 if (InstCostMap
.contains(I
)) {
255 InstructionCost OrCost
= TTI
->getArithmeticInstrCost(
256 Instruction::Or
, I
->getType(), TargetTransformInfo::TCK_Latency
,
257 {TargetTransformInfo::OK_AnyValue
,
258 TargetTransformInfo::OP_None
},
259 {TTI::OK_UniformConstantValue
, TTI::OP_PowerOf2
});
260 return InstCostMap
[I
].NonPredCost
+
261 Scaled64::get(*OrCost
.getValue());
264 return Scaled64::getZero();
267 /// Return the NonPredCost cost of the false op, given the costs in
268 /// InstCostMap. This may need to be generated for select-like instructions.
270 getFalseOpCost(DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
,
271 const TargetTransformInfo
*TTI
) {
272 if (isa
<SelectInst
>(I
))
273 if (auto *I
= dyn_cast
<Instruction
>(getFalseValue()))
274 return InstCostMap
.contains(I
) ? InstCostMap
[I
].NonPredCost
275 : Scaled64::getZero();
277 // Or case - return the cost of the false case
278 if (isa
<BinaryOperator
>(I
))
279 if (auto I
= dyn_cast
<Instruction
>(getFalseValue()))
280 if (InstCostMap
.contains(I
))
281 return InstCostMap
[I
].NonPredCost
;
283 return Scaled64::getZero();
288 // Select groups consist of consecutive select instructions with the same
290 using SelectGroup
= SmallVector
<SelectLike
, 2>;
291 using SelectGroups
= SmallVector
<SelectGroup
, 2>;
293 // Converts select instructions of a function to conditional jumps when deemed
294 // profitable. Returns true if at least one select was converted.
295 bool optimizeSelects(Function
&F
);
297 // Heuristics for determining which select instructions can be profitably
298 // conveted to branches. Separate heuristics for selects in inner-most loops
299 // and the rest of code regions (base heuristics for non-inner-most loop
301 void optimizeSelectsBase(Function
&F
, SelectGroups
&ProfSIGroups
);
302 void optimizeSelectsInnerLoops(Function
&F
, SelectGroups
&ProfSIGroups
);
304 // Converts to branches the select groups that were deemed
305 // profitable-to-convert.
306 void convertProfitableSIGroups(SelectGroups
&ProfSIGroups
);
308 // Splits selects of a given basic block into select groups.
309 void collectSelectGroups(BasicBlock
&BB
, SelectGroups
&SIGroups
);
311 // Determines for which select groups it is profitable converting to branches
312 // (base and inner-most-loop heuristics).
313 void findProfitableSIGroupsBase(SelectGroups
&SIGroups
,
314 SelectGroups
&ProfSIGroups
);
315 void findProfitableSIGroupsInnerLoops(const Loop
*L
, SelectGroups
&SIGroups
,
316 SelectGroups
&ProfSIGroups
);
318 // Determines if a select group should be converted to a branch (base
320 bool isConvertToBranchProfitableBase(const SelectGroup
&ASI
);
322 // Returns true if there are expensive instructions in the cold value
323 // operand's (if any) dependence slice of any of the selects of the given
325 bool hasExpensiveColdOperand(const SelectGroup
&ASI
);
327 // For a given source instruction, collect its backwards dependence slice
328 // consisting of instructions exclusively computed for producing the operands
329 // of the source instruction.
330 void getExclBackwardsSlice(Instruction
*I
, std::stack
<Instruction
*> &Slice
,
331 Instruction
*SI
, bool ForSinking
= false);
333 // Returns true if the condition of the select is highly predictable.
334 bool isSelectHighlyPredictable(const SelectLike SI
);
336 // Loop-level checks to determine if a non-predicated version (with branches)
337 // of the given loop is more profitable than its predicated version.
338 bool checkLoopHeuristics(const Loop
*L
, const CostInfo LoopDepth
[2]);
340 // Computes instruction and loop-critical-path costs for both the predicated
341 // and non-predicated version of the given loop.
342 bool computeLoopCosts(const Loop
*L
, const SelectGroups
&SIGroups
,
343 DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
,
346 // Returns a set of all the select instructions in the given select groups.
347 SmallDenseMap
<const Instruction
*, SelectLike
, 2>
348 getSImap(const SelectGroups
&SIGroups
);
350 // Returns the latency cost of a given instruction.
351 std::optional
<uint64_t> computeInstCost(const Instruction
*I
);
353 // Returns the misprediction cost of a given select when converted to branch.
354 Scaled64
getMispredictionCost(const SelectLike SI
, const Scaled64 CondCost
);
356 // Returns the cost of a branch when the prediction is correct.
357 Scaled64
getPredictedPathCost(Scaled64 TrueCost
, Scaled64 FalseCost
,
358 const SelectLike SI
);
360 // Returns true if the target architecture supports lowering a given select.
361 bool isSelectKindSupported(const SelectLike SI
);
364 class SelectOptimize
: public FunctionPass
{
365 SelectOptimizeImpl Impl
;
370 SelectOptimize() : FunctionPass(ID
) {
371 initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
374 bool runOnFunction(Function
&F
) override
{
375 return Impl
.runOnFunction(F
, *this);
378 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
379 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
380 AU
.addRequired
<TargetPassConfig
>();
381 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
382 AU
.addRequired
<LoopInfoWrapperPass
>();
383 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
384 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
390 PreservedAnalyses
SelectOptimizePass::run(Function
&F
,
391 FunctionAnalysisManager
&FAM
) {
392 SelectOptimizeImpl
Impl(TM
);
393 return Impl
.run(F
, FAM
);
396 char SelectOptimize::ID
= 0;
398 INITIALIZE_PASS_BEGIN(SelectOptimize
, DEBUG_TYPE
, "Optimize selects", false,
400 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
402 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
403 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
404 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
405 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
406 INITIALIZE_PASS_END(SelectOptimize
, DEBUG_TYPE
, "Optimize selects", false,
409 FunctionPass
*llvm::createSelectOptimizePass() { return new SelectOptimize(); }
411 PreservedAnalyses
SelectOptimizeImpl::run(Function
&F
,
412 FunctionAnalysisManager
&FAM
) {
413 TSI
= TM
->getSubtargetImpl(F
);
414 TLI
= TSI
->getTargetLowering();
416 // If none of the select types are supported then skip this pass.
417 // This is an optimization pass. Legality issues will be handled by
418 // instruction selection.
419 if (!TLI
->isSelectSupported(TargetLowering::ScalarValSelect
) &&
420 !TLI
->isSelectSupported(TargetLowering::ScalarCondVectorVal
) &&
421 !TLI
->isSelectSupported(TargetLowering::VectorMaskSelect
))
422 return PreservedAnalyses::all();
424 TTI
= &FAM
.getResult
<TargetIRAnalysis
>(F
);
425 if (!TTI
->enableSelectOptimize())
426 return PreservedAnalyses::all();
428 PSI
= FAM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
)
429 .getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
430 assert(PSI
&& "This pass requires module analysis pass `profile-summary`!");
431 BFI
= &FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
433 // When optimizing for size, selects are preferable over branches.
434 if (F
.hasOptSize() || llvm::shouldOptimizeForSize(&F
, PSI
, BFI
))
435 return PreservedAnalyses::all();
437 LI
= &FAM
.getResult
<LoopAnalysis
>(F
);
438 ORE
= &FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
439 TSchedModel
.init(TSI
);
441 bool Changed
= optimizeSelects(F
);
442 return Changed
? PreservedAnalyses::none() : PreservedAnalyses::all();
445 bool SelectOptimizeImpl::runOnFunction(Function
&F
, Pass
&P
) {
446 TM
= &P
.getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
447 TSI
= TM
->getSubtargetImpl(F
);
448 TLI
= TSI
->getTargetLowering();
450 // If none of the select types are supported then skip this pass.
451 // This is an optimization pass. Legality issues will be handled by
452 // instruction selection.
453 if (!TLI
->isSelectSupported(TargetLowering::ScalarValSelect
) &&
454 !TLI
->isSelectSupported(TargetLowering::ScalarCondVectorVal
) &&
455 !TLI
->isSelectSupported(TargetLowering::VectorMaskSelect
))
458 TTI
= &P
.getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
460 if (!TTI
->enableSelectOptimize())
463 LI
= &P
.getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
464 BFI
= &P
.getAnalysis
<BlockFrequencyInfoWrapperPass
>().getBFI();
465 PSI
= &P
.getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
466 ORE
= &P
.getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
467 TSchedModel
.init(TSI
);
469 // When optimizing for size, selects are preferable over branches.
470 if (F
.hasOptSize() || llvm::shouldOptimizeForSize(&F
, PSI
, BFI
))
473 return optimizeSelects(F
);
476 bool SelectOptimizeImpl::optimizeSelects(Function
&F
) {
477 // Determine for which select groups it is profitable converting to branches.
478 SelectGroups ProfSIGroups
;
479 // Base heuristics apply only to non-loops and outer loops.
480 optimizeSelectsBase(F
, ProfSIGroups
);
481 // Separate heuristics for inner-most loops.
482 optimizeSelectsInnerLoops(F
, ProfSIGroups
);
484 // Convert to branches the select groups that were deemed
485 // profitable-to-convert.
486 convertProfitableSIGroups(ProfSIGroups
);
488 // Code modified if at least one select group was converted.
489 return !ProfSIGroups
.empty();
492 void SelectOptimizeImpl::optimizeSelectsBase(Function
&F
,
493 SelectGroups
&ProfSIGroups
) {
494 // Collect all the select groups.
495 SelectGroups SIGroups
;
496 for (BasicBlock
&BB
: F
) {
497 // Base heuristics apply only to non-loops and outer loops.
498 Loop
*L
= LI
->getLoopFor(&BB
);
499 if (L
&& L
->isInnermost())
501 collectSelectGroups(BB
, SIGroups
);
504 // Determine for which select groups it is profitable converting to branches.
505 findProfitableSIGroupsBase(SIGroups
, ProfSIGroups
);
508 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function
&F
,
509 SelectGroups
&ProfSIGroups
) {
510 SmallVector
<Loop
*, 4> Loops(LI
->begin(), LI
->end());
511 // Need to check size on each iteration as we accumulate child loops.
512 for (unsigned long i
= 0; i
< Loops
.size(); ++i
)
513 for (Loop
*ChildL
: Loops
[i
]->getSubLoops())
514 Loops
.push_back(ChildL
);
516 for (Loop
*L
: Loops
) {
517 if (!L
->isInnermost())
520 SelectGroups SIGroups
;
521 for (BasicBlock
*BB
: L
->getBlocks())
522 collectSelectGroups(*BB
, SIGroups
);
524 findProfitableSIGroupsInnerLoops(L
, SIGroups
, ProfSIGroups
);
528 /// If \p isTrue is true, return the true value of \p SI, otherwise return
529 /// false value of \p SI. If the true/false value of \p SI is defined by any
530 /// select instructions in \p Selects, look through the defining select
531 /// instruction until the true/false value is not defined in \p Selects.
533 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI
, bool isTrue
,
534 const SmallPtrSet
<const Instruction
*, 2> &Selects
,
537 for (SelectInst
*DefSI
= dyn_cast
<SelectInst
>(SI
.getI());
538 DefSI
!= nullptr && Selects
.count(DefSI
);
539 DefSI
= dyn_cast
<SelectInst
>(V
)) {
540 if (DefSI
->getCondition() == SI
.getCondition())
541 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
542 else // Handle inverted SI
543 V
= (!isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
546 if (isa
<BinaryOperator
>(SI
.getI())) {
547 assert(SI
.getI()->getOpcode() == Instruction::Or
&&
548 "Only currently handling Or instructions.");
549 V
= SI
.getFalseValue();
551 V
= IB
.CreateOr(V
, ConstantInt::get(V
->getType(), 1));
554 assert(V
&& "Failed to get select true/false value");
558 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups
&ProfSIGroups
) {
559 for (SelectGroup
&ASI
: ProfSIGroups
) {
560 // The code transformation here is a modified version of the sinking
561 // transformation in CodeGenPrepare::optimizeSelectInst with a more
562 // aggressive strategy of which instructions to sink.
564 // TODO: eliminate the redundancy of logic transforming selects to branches
565 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
566 // selects for all cases (with and without profile information).
568 // Transform a sequence like this:
570 // %cmp = cmp uge i32 %a, %b
571 // %sel = select i1 %cmp, i32 %c, i32 %d
575 // %cmp = cmp uge i32 %a, %b
576 // %cmp.frozen = freeze %cmp
577 // br i1 %cmp.frozen, label %select.true, label %select.false
579 // br label %select.end
581 // br label %select.end
583 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
585 // %cmp should be frozen, otherwise it may introduce undefined behavior.
586 // In addition, we may sink instructions that produce %c or %d into the
587 // destination(s) of the new branch.
588 // If the true or false blocks do not contain a sunken instruction, that
589 // block and its branch may be optimized away. In that case, one side of the
590 // first branch will point directly to select.end, and the corresponding PHI
591 // predecessor block will be the start block.
593 // Find all the instructions that can be soundly sunk to the true/false
594 // blocks. These are instructions that are computed solely for producing the
595 // operands of the select instructions in the group and can be sunk without
596 // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
597 // with side effects).
598 SmallVector
<std::stack
<Instruction
*>, 2> TrueSlices
, FalseSlices
;
599 typedef std::stack
<Instruction
*>::size_type StackSizeType
;
600 StackSizeType maxTrueSliceLen
= 0, maxFalseSliceLen
= 0;
601 for (SelectLike SI
: ASI
) {
602 // For each select, compute the sinkable dependence chains of the true and
604 if (auto *TI
= dyn_cast_or_null
<Instruction
>(SI
.getTrueValue())) {
605 std::stack
<Instruction
*> TrueSlice
;
606 getExclBackwardsSlice(TI
, TrueSlice
, SI
.getI(), true);
607 maxTrueSliceLen
= std::max(maxTrueSliceLen
, TrueSlice
.size());
608 TrueSlices
.push_back(TrueSlice
);
610 if (auto *FI
= dyn_cast_or_null
<Instruction
>(SI
.getFalseValue())) {
611 if (isa
<SelectInst
>(SI
.getI()) || !FI
->hasOneUse()) {
612 std::stack
<Instruction
*> FalseSlice
;
613 getExclBackwardsSlice(FI
, FalseSlice
, SI
.getI(), true);
614 maxFalseSliceLen
= std::max(maxFalseSliceLen
, FalseSlice
.size());
615 FalseSlices
.push_back(FalseSlice
);
619 // In the case of multiple select instructions in the same group, the order
620 // of non-dependent instructions (instructions of different dependence
621 // slices) in the true/false blocks appears to affect performance.
622 // Interleaving the slices seems to experimentally be the optimal approach.
623 // This interleaving scheduling allows for more ILP (with a natural downside
624 // of increasing a bit register pressure) compared to a simple ordering of
625 // one whole chain after another. One would expect that this ordering would
626 // not matter since the scheduling in the backend of the compiler would
627 // take care of it, but apparently the scheduler fails to deliver optimal
628 // ILP with a naive ordering here.
629 SmallVector
<Instruction
*, 2> TrueSlicesInterleaved
, FalseSlicesInterleaved
;
630 for (StackSizeType IS
= 0; IS
< maxTrueSliceLen
; ++IS
) {
631 for (auto &S
: TrueSlices
) {
633 TrueSlicesInterleaved
.push_back(S
.top());
638 for (StackSizeType IS
= 0; IS
< maxFalseSliceLen
; ++IS
) {
639 for (auto &S
: FalseSlices
) {
641 FalseSlicesInterleaved
.push_back(S
.top());
647 // We split the block containing the select(s) into two blocks.
648 SelectLike SI
= ASI
.front();
649 SelectLike LastSI
= ASI
.back();
650 BasicBlock
*StartBlock
= SI
.getI()->getParent();
651 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
.getI()));
652 // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
653 // RemoveDIs turned on, SplitPt would instead point to the next
654 // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
655 // tell splitBasicBlock that we want to include any DbgVariableRecords
656 // attached to SplitPt in the splice.
657 SplitPt
.setHeadBit(true);
658 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
659 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
));
660 // Delete the unconditional branch that was just created by the split.
661 StartBlock
->getTerminator()->eraseFromParent();
663 // Move any debug/pseudo instructions and not's that were in-between the
664 // select group to the newly-created end block.
665 SmallVector
<Instruction
*, 2> SinkInstrs
;
666 auto DIt
= SI
.getI()->getIterator();
667 while (&*DIt
!= LastSI
.getI()) {
668 if (DIt
->isDebugOrPseudoInst())
669 SinkInstrs
.push_back(&*DIt
);
670 if (match(&*DIt
, m_Not(m_Specific(SI
.getCondition()))))
671 SinkInstrs
.push_back(&*DIt
);
674 for (auto *DI
: SinkInstrs
)
675 DI
->moveBeforePreserving(&*EndBlock
->getFirstInsertionPt());
677 // Duplicate implementation for DbgRecords, the non-instruction debug-info
678 // format. Helper lambda for moving DbgRecords to the end block.
679 auto TransferDbgRecords
= [&](Instruction
&I
) {
680 for (auto &DbgRecord
:
681 llvm::make_early_inc_range(I
.getDbgRecordRange())) {
682 DbgRecord
.removeFromParent();
683 EndBlock
->insertDbgRecordBefore(&DbgRecord
,
684 EndBlock
->getFirstInsertionPt());
688 // Iterate over all instructions in between SI and LastSI, not including
689 // SI itself. These are all the variable assignments that happen "in the
690 // middle" of the select group.
691 auto R
= make_range(std::next(SI
.getI()->getIterator()),
692 std::next(LastSI
.getI()->getIterator()));
693 llvm::for_each(R
, TransferDbgRecords
);
695 // These are the new basic blocks for the conditional branch.
696 // At least one will become an actual new basic block.
697 BasicBlock
*TrueBlock
= nullptr, *FalseBlock
= nullptr;
698 BranchInst
*TrueBranch
= nullptr, *FalseBranch
= nullptr;
699 if (!TrueSlicesInterleaved
.empty()) {
700 TrueBlock
= BasicBlock::Create(EndBlock
->getContext(), "select.true.sink",
701 EndBlock
->getParent(), EndBlock
);
702 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
703 TrueBranch
->setDebugLoc(LastSI
.getI()->getDebugLoc());
704 for (Instruction
*TrueInst
: TrueSlicesInterleaved
)
705 TrueInst
->moveBefore(TrueBranch
);
707 if (!FalseSlicesInterleaved
.empty()) {
709 BasicBlock::Create(EndBlock
->getContext(), "select.false.sink",
710 EndBlock
->getParent(), EndBlock
);
711 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
712 FalseBranch
->setDebugLoc(LastSI
.getI()->getDebugLoc());
713 for (Instruction
*FalseInst
: FalseSlicesInterleaved
)
714 FalseInst
->moveBefore(FalseBranch
);
716 // If there was nothing to sink, then arbitrarily choose the 'false' side
717 // for a new input value to the PHI.
718 if (TrueBlock
== FalseBlock
) {
719 assert(TrueBlock
== nullptr &&
720 "Unexpected basic block transform while optimizing select");
722 FalseBlock
= BasicBlock::Create(StartBlock
->getContext(), "select.false",
723 EndBlock
->getParent(), EndBlock
);
724 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
725 FalseBranch
->setDebugLoc(SI
.getI()->getDebugLoc());
728 // Insert the real conditional branch based on the original condition.
729 // If we did not create a new block for one of the 'true' or 'false' paths
730 // of the condition, it means that side of the branch goes to the end block
731 // directly and the path originates from the start block from the point of
732 // view of the new PHI.
734 if (TrueBlock
== nullptr) {
737 TrueBlock
= StartBlock
;
738 } else if (FalseBlock
== nullptr) {
741 FalseBlock
= StartBlock
;
746 IRBuilder
<> IB(SI
.getI());
747 auto *CondFr
= IB
.CreateFreeze(SI
.getCondition(),
748 SI
.getCondition()->getName() + ".frozen");
750 SmallPtrSet
<const Instruction
*, 2> INS
;
752 INS
.insert(SI
.getI());
754 // Use reverse iterator because later select may use the value of the
755 // earlier select, and we need to propagate value through earlier select
756 // to get the PHI operand.
757 for (auto It
= ASI
.rbegin(); It
!= ASI
.rend(); ++It
) {
759 // The select itself is replaced with a PHI Node.
760 PHINode
*PN
= PHINode::Create(SI
.getType(), 2, "");
761 PN
->insertBefore(EndBlock
->begin());
762 PN
->takeName(SI
.getI());
763 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
, IB
), TrueBlock
);
764 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
, IB
), FalseBlock
);
765 PN
->setDebugLoc(SI
.getI()->getDebugLoc());
766 SI
.getI()->replaceAllUsesWith(PN
);
767 INS
.erase(SI
.getI());
768 ++NumSelectsConverted
;
770 IB
.CreateCondBr(CondFr
, TT
, FT
, SI
.getI());
772 // Remove the old select instructions, now that they are not longer used.
774 SI
.getI()->eraseFromParent();
778 void SelectOptimizeImpl::collectSelectGroups(BasicBlock
&BB
,
779 SelectGroups
&SIGroups
) {
780 BasicBlock::iterator BBIt
= BB
.begin();
781 while (BBIt
!= BB
.end()) {
782 Instruction
*I
= &*BBIt
++;
783 if (SelectLike SI
= SelectLike::match(I
)) {
784 if (!TTI
->shouldTreatInstructionLikeSelect(I
))
788 SIGroup
.push_back(SI
);
789 while (BBIt
!= BB
.end()) {
790 Instruction
*NI
= &*BBIt
;
791 // Debug/pseudo instructions should be skipped and not prevent the
792 // formation of a select group.
793 if (NI
->isDebugOrPseudoInst()) {
798 // Skip not(select(..)), if the not is part of the same select group
799 if (match(NI
, m_Not(m_Specific(SI
.getCondition())))) {
804 // We only allow selects in the same group, not other select-like
806 if (!isa
<SelectInst
>(NI
))
809 SelectLike NSI
= SelectLike::match(NI
);
810 if (NSI
&& SI
.getCondition() == NSI
.getCondition()) {
811 SIGroup
.push_back(NSI
);
812 } else if (NSI
&& match(NSI
.getCondition(),
813 m_Not(m_Specific(SI
.getCondition())))) {
815 SIGroup
.push_back(NSI
);
821 // If the select type is not supported, no point optimizing it.
822 // Instruction selection will take care of it.
823 if (!isSelectKindSupported(SI
))
827 dbgs() << "New Select group with\n";
828 for (auto SI
: SIGroup
)
829 dbgs() << " " << *SI
.getI() << "\n";
832 SIGroups
.push_back(SIGroup
);
837 void SelectOptimizeImpl::findProfitableSIGroupsBase(
838 SelectGroups
&SIGroups
, SelectGroups
&ProfSIGroups
) {
839 for (SelectGroup
&ASI
: SIGroups
) {
840 ++NumSelectOptAnalyzed
;
841 if (isConvertToBranchProfitableBase(ASI
))
842 ProfSIGroups
.push_back(ASI
);
846 static void EmitAndPrintRemark(OptimizationRemarkEmitter
*ORE
,
847 DiagnosticInfoOptimizationBase
&Rem
) {
848 LLVM_DEBUG(dbgs() << Rem
.getMsg() << "\n");
852 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
853 const Loop
*L
, SelectGroups
&SIGroups
, SelectGroups
&ProfSIGroups
) {
854 NumSelectOptAnalyzed
+= SIGroups
.size();
855 // For each select group in an inner-most loop,
856 // a branch is more preferable than a select/conditional-move if:
857 // i) conversion to branches for all the select groups of the loop satisfies
858 // loop-level heuristics including reducing the loop's critical path by
859 // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
860 // ii) the total cost of the select group is cheaper with a branch compared
861 // to its predicated version. The cost is in terms of latency and the cost
862 // of a select group is the cost of its most expensive select instruction
863 // (assuming infinite resources and thus fully leveraging available ILP).
865 DenseMap
<const Instruction
*, CostInfo
> InstCostMap
;
866 CostInfo LoopCost
[2] = {{Scaled64::getZero(), Scaled64::getZero()},
867 {Scaled64::getZero(), Scaled64::getZero()}};
868 if (!computeLoopCosts(L
, SIGroups
, InstCostMap
, LoopCost
) ||
869 !checkLoopHeuristics(L
, LoopCost
)) {
873 for (SelectGroup
&ASI
: SIGroups
) {
874 // Assuming infinite resources, the cost of a group of instructions is the
875 // cost of the most expensive instruction of the group.
876 Scaled64 SelectCost
= Scaled64::getZero(), BranchCost
= Scaled64::getZero();
877 for (SelectLike SI
: ASI
) {
878 SelectCost
= std::max(SelectCost
, InstCostMap
[SI
.getI()].PredCost
);
879 BranchCost
= std::max(BranchCost
, InstCostMap
[SI
.getI()].NonPredCost
);
881 if (BranchCost
< SelectCost
) {
882 OptimizationRemark
OR(DEBUG_TYPE
, "SelectOpti", ASI
.front().getI());
883 OR
<< "Profitable to convert to branch (loop analysis). BranchCost="
884 << BranchCost
.toString() << ", SelectCost=" << SelectCost
.toString()
886 EmitAndPrintRemark(ORE
, OR
);
887 ++NumSelectConvertedLoop
;
888 ProfSIGroups
.push_back(ASI
);
890 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti",
892 ORmiss
<< "Select is more profitable (loop analysis). BranchCost="
893 << BranchCost
.toString()
894 << ", SelectCost=" << SelectCost
.toString() << ". ";
895 EmitAndPrintRemark(ORE
, ORmiss
);
900 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
901 const SelectGroup
&ASI
) {
902 SelectLike SI
= ASI
.front();
903 LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI
.getI()
905 OptimizationRemark
OR(DEBUG_TYPE
, "SelectOpti", SI
.getI());
906 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti", SI
.getI());
908 // Skip cold basic blocks. Better to optimize for size for cold blocks.
909 if (PSI
->isColdBlock(SI
.getI()->getParent(), BFI
)) {
911 ORmiss
<< "Not converted to branch because of cold basic block. ";
912 EmitAndPrintRemark(ORE
, ORmiss
);
916 // If unpredictable, branch form is less profitable.
917 if (SI
.getI()->getMetadata(LLVMContext::MD_unpredictable
)) {
919 ORmiss
<< "Not converted to branch because of unpredictable branch. ";
920 EmitAndPrintRemark(ORE
, ORmiss
);
924 // If highly predictable, branch form is more profitable, unless a
925 // predictable select is inexpensive in the target architecture.
926 if (isSelectHighlyPredictable(SI
) && TLI
->isPredictableSelectExpensive()) {
927 ++NumSelectConvertedHighPred
;
928 OR
<< "Converted to branch because of highly predictable branch. ";
929 EmitAndPrintRemark(ORE
, OR
);
933 // Look for expensive instructions in the cold operand's (if any) dependence
934 // slice of any of the selects in the group.
935 if (hasExpensiveColdOperand(ASI
)) {
936 ++NumSelectConvertedExpColdOperand
;
937 OR
<< "Converted to branch because of expensive cold operand.";
938 EmitAndPrintRemark(ORE
, OR
);
942 ORmiss
<< "Not profitable to convert to branch (base heuristic).";
943 EmitAndPrintRemark(ORE
, ORmiss
);
947 static InstructionCost
divideNearest(InstructionCost Numerator
,
948 uint64_t Denominator
) {
949 return (Numerator
+ (Denominator
/ 2)) / Denominator
;
952 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI
,
953 uint64_t &TrueVal
, uint64_t &FalseVal
) {
954 if (isa
<SelectInst
>(SI
.getI()))
955 return extractBranchWeights(*SI
.getI(), TrueVal
, FalseVal
);
959 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup
&ASI
) {
960 bool ColdOperand
= false;
961 uint64_t TrueWeight
, FalseWeight
, TotalWeight
;
962 if (extractBranchWeights(ASI
.front(), TrueWeight
, FalseWeight
)) {
963 uint64_t MinWeight
= std::min(TrueWeight
, FalseWeight
);
964 TotalWeight
= TrueWeight
+ FalseWeight
;
965 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
966 ColdOperand
= TotalWeight
* ColdOperandThreshold
> 100 * MinWeight
;
967 } else if (PSI
->hasProfileSummary()) {
968 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti",
970 ORmiss
<< "Profile data available but missing branch-weights metadata for "
971 "select instruction. ";
972 EmitAndPrintRemark(ORE
, ORmiss
);
976 // Check if the cold path's dependence slice is expensive for any of the
977 // selects of the group.
978 for (SelectLike SI
: ASI
) {
979 Instruction
*ColdI
= nullptr;
981 if (TrueWeight
< FalseWeight
) {
982 ColdI
= dyn_cast_or_null
<Instruction
>(SI
.getTrueValue());
983 HotWeight
= FalseWeight
;
985 ColdI
= dyn_cast_or_null
<Instruction
>(SI
.getFalseValue());
986 HotWeight
= TrueWeight
;
989 std::stack
<Instruction
*> ColdSlice
;
990 getExclBackwardsSlice(ColdI
, ColdSlice
, SI
.getI());
991 InstructionCost SliceCost
= 0;
992 while (!ColdSlice
.empty()) {
993 SliceCost
+= TTI
->getInstructionCost(ColdSlice
.top(),
994 TargetTransformInfo::TCK_Latency
);
997 // The colder the cold value operand of the select is the more expensive
998 // the cmov becomes for computing the cold value operand every time. Thus,
999 // the colder the cold operand is the more its cost counts.
1000 // Get nearest integer cost adjusted for coldness.
1001 InstructionCost AdjSliceCost
=
1002 divideNearest(SliceCost
* HotWeight
, TotalWeight
);
1004 ColdOperandMaxCostMultiplier
* TargetTransformInfo::TCC_Expensive
)
1011 // Check if it is safe to move LoadI next to the SI.
1012 // Conservatively assume it is safe only if there is no instruction
1013 // modifying memory in-between the load and the select instruction.
1014 static bool isSafeToSinkLoad(Instruction
*LoadI
, Instruction
*SI
) {
1015 // Assume loads from different basic blocks are unsafe to move.
1016 if (LoadI
->getParent() != SI
->getParent())
1018 auto It
= LoadI
->getIterator();
1019 while (&*It
!= SI
) {
1020 if (It
->mayWriteToMemory())
1027 // For a given source instruction, collect its backwards dependence slice
1028 // consisting of instructions exclusively computed for the purpose of producing
1029 // the operands of the source instruction. As an approximation
1030 // (sufficiently-accurate in practice), we populate this set with the
1031 // instructions of the backwards dependence slice that only have one-use and
1032 // form an one-use chain that leads to the source instruction.
1033 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction
*I
,
1034 std::stack
<Instruction
*> &Slice
,
1037 SmallPtrSet
<Instruction
*, 2> Visited
;
1038 std::queue
<Instruction
*> Worklist
;
1040 while (!Worklist
.empty()) {
1041 Instruction
*II
= Worklist
.front();
1045 if (!Visited
.insert(II
).second
)
1048 if (!II
->hasOneUse())
1051 // Cannot soundly sink instructions with side-effects.
1052 // Terminator or phi instructions cannot be sunk.
1053 // Avoid sinking other select instructions (should be handled separetely).
1054 if (ForSinking
&& (II
->isTerminator() || II
->mayHaveSideEffects() ||
1055 isa
<SelectInst
>(II
) || isa
<PHINode
>(II
)))
1058 // Avoid sinking loads in order not to skip state-modifying instructions,
1059 // that may alias with the loaded address.
1060 // Only allow sinking of loads within the same basic block that are
1061 // conservatively proven to be safe.
1062 if (ForSinking
&& II
->mayReadFromMemory() && !isSafeToSinkLoad(II
, SI
))
1065 // Avoid considering instructions with less frequency than the source
1066 // instruction (i.e., avoid colder code regions of the dependence slice).
1067 if (BFI
->getBlockFreq(II
->getParent()) < BFI
->getBlockFreq(I
->getParent()))
1070 // Eligible one-use instruction added to the dependence slice.
1073 // Explore all the operands of the current instruction to expand the slice.
1074 for (Value
*Op
: II
->operand_values())
1075 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
1080 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI
) {
1081 uint64_t TrueWeight
, FalseWeight
;
1082 if (extractBranchWeights(SI
, TrueWeight
, FalseWeight
)) {
1083 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
1084 uint64_t Sum
= TrueWeight
+ FalseWeight
;
1086 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
1087 if (Probability
> TTI
->getPredictableBranchThreshold())
1094 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop
*L
,
1095 const CostInfo LoopCost
[2]) {
1096 // Loop-level checks to determine if a non-predicated version (with branches)
1097 // of the loop is more profitable than its predicated version.
1099 if (DisableLoopLevelHeuristics
)
1102 OptimizationRemarkMissed
ORmissL(DEBUG_TYPE
, "SelectOpti",
1103 L
->getHeader()->getFirstNonPHI());
1105 if (LoopCost
[0].NonPredCost
> LoopCost
[0].PredCost
||
1106 LoopCost
[1].NonPredCost
>= LoopCost
[1].PredCost
) {
1107 ORmissL
<< "No select conversion in the loop due to no reduction of loop's "
1109 EmitAndPrintRemark(ORE
, ORmissL
);
1113 Scaled64 Gain
[2] = {LoopCost
[0].PredCost
- LoopCost
[0].NonPredCost
,
1114 LoopCost
[1].PredCost
- LoopCost
[1].NonPredCost
};
1116 // Profitably converting to branches need to reduce the loop's critical path
1117 // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1118 // relative gain of 12.5%).
1119 if (Gain
[1] < Scaled64::get(GainCycleThreshold
) ||
1120 Gain
[1] * Scaled64::get(GainRelativeThreshold
) < LoopCost
[1].PredCost
) {
1121 Scaled64 RelativeGain
= Scaled64::get(100) * Gain
[1] / LoopCost
[1].PredCost
;
1122 ORmissL
<< "No select conversion in the loop due to small reduction of "
1123 "loop's critical path. Gain="
1124 << Gain
[1].toString()
1125 << ", RelativeGain=" << RelativeGain
.toString() << "%. ";
1126 EmitAndPrintRemark(ORE
, ORmissL
);
1130 // If the loop's critical path involves loop-carried dependences, the gradient
1131 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1132 // This check ensures that the latency reduction for the loop's critical path
1133 // keeps decreasing with sufficient rate beyond the two analyzed loop
1135 if (Gain
[1] > Gain
[0]) {
1136 Scaled64 GradientGain
= Scaled64::get(100) * (Gain
[1] - Gain
[0]) /
1137 (LoopCost
[1].PredCost
- LoopCost
[0].PredCost
);
1138 if (GradientGain
< Scaled64::get(GainGradientThreshold
)) {
1139 ORmissL
<< "No select conversion in the loop due to small gradient gain. "
1141 << GradientGain
.toString() << "%. ";
1142 EmitAndPrintRemark(ORE
, ORmissL
);
1146 // If the gain decreases it is not profitable to convert.
1147 else if (Gain
[1] < Gain
[0]) {
1149 << "No select conversion in the loop due to negative gradient gain. ";
1150 EmitAndPrintRemark(ORE
, ORmissL
);
1154 // Non-predicated version of the loop is more profitable than its
1155 // predicated version.
1159 // Computes instruction and loop-critical-path costs for both the predicated
1160 // and non-predicated version of the given loop.
1161 // Returns false if unable to compute these costs due to invalid cost of loop
1163 bool SelectOptimizeImpl::computeLoopCosts(
1164 const Loop
*L
, const SelectGroups
&SIGroups
,
1165 DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
, CostInfo
*LoopCost
) {
1166 LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1167 << L
->getHeader()->getName() << "\n");
1168 const auto &SImap
= getSImap(SIGroups
);
1169 // Compute instruction and loop-critical-path costs across two iterations for
1170 // both predicated and non-predicated version.
1171 const unsigned Iterations
= 2;
1172 for (unsigned Iter
= 0; Iter
< Iterations
; ++Iter
) {
1173 // Cost of the loop's critical path.
1174 CostInfo
&MaxCost
= LoopCost
[Iter
];
1175 for (BasicBlock
*BB
: L
->getBlocks()) {
1176 for (const Instruction
&I
: *BB
) {
1177 if (I
.isDebugOrPseudoInst())
1179 // Compute the predicated and non-predicated cost of the instruction.
1180 Scaled64 IPredCost
= Scaled64::getZero(),
1181 INonPredCost
= Scaled64::getZero();
1183 // Assume infinite resources that allow to fully exploit the available
1184 // instruction-level parallelism.
1185 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1186 for (const Use
&U
: I
.operands()) {
1187 auto UI
= dyn_cast
<Instruction
>(U
.get());
1190 if (InstCostMap
.count(UI
)) {
1191 IPredCost
= std::max(IPredCost
, InstCostMap
[UI
].PredCost
);
1192 INonPredCost
= std::max(INonPredCost
, InstCostMap
[UI
].NonPredCost
);
1195 auto ILatency
= computeInstCost(&I
);
1197 OptimizationRemarkMissed
ORmissL(DEBUG_TYPE
, "SelectOpti", &I
);
1198 ORmissL
<< "Invalid instruction cost preventing analysis and "
1199 "optimization of the inner-most loop containing this "
1201 EmitAndPrintRemark(ORE
, ORmissL
);
1204 IPredCost
+= Scaled64::get(*ILatency
);
1205 INonPredCost
+= Scaled64::get(*ILatency
);
1207 // For a select that can be converted to branch,
1208 // compute its cost as a branch (non-predicated cost).
1210 // BranchCost = PredictedPathCost + MispredictCost
1211 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1212 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1213 if (SImap
.contains(&I
)) {
1214 auto SI
= SImap
.at(&I
);
1215 Scaled64 TrueOpCost
= SI
.getTrueOpCost(InstCostMap
, TTI
);
1216 Scaled64 FalseOpCost
= SI
.getFalseOpCost(InstCostMap
, TTI
);
1217 Scaled64 PredictedPathCost
=
1218 getPredictedPathCost(TrueOpCost
, FalseOpCost
, SI
);
1220 Scaled64 CondCost
= Scaled64::getZero();
1221 if (auto *CI
= dyn_cast
<Instruction
>(SI
.getCondition()))
1222 if (InstCostMap
.count(CI
))
1223 CondCost
= InstCostMap
[CI
].NonPredCost
;
1224 Scaled64 MispredictCost
= getMispredictionCost(SI
, CondCost
);
1226 INonPredCost
= PredictedPathCost
+ MispredictCost
;
1228 LLVM_DEBUG(dbgs() << " " << ILatency
<< "/" << IPredCost
<< "/"
1229 << INonPredCost
<< " for " << I
<< "\n");
1231 InstCostMap
[&I
] = {IPredCost
, INonPredCost
};
1232 MaxCost
.PredCost
= std::max(MaxCost
.PredCost
, IPredCost
);
1233 MaxCost
.NonPredCost
= std::max(MaxCost
.NonPredCost
, INonPredCost
);
1236 LLVM_DEBUG(dbgs() << "Iteration " << Iter
+ 1
1237 << " MaxCost = " << MaxCost
.PredCost
<< " "
1238 << MaxCost
.NonPredCost
<< "\n");
1243 SmallDenseMap
<const Instruction
*, SelectOptimizeImpl::SelectLike
, 2>
1244 SelectOptimizeImpl::getSImap(const SelectGroups
&SIGroups
) {
1245 SmallDenseMap
<const Instruction
*, SelectLike
, 2> SImap
;
1246 for (const SelectGroup
&ASI
: SIGroups
)
1247 for (SelectLike SI
: ASI
)
1248 SImap
.try_emplace(SI
.getI(), SI
);
1252 std::optional
<uint64_t>
1253 SelectOptimizeImpl::computeInstCost(const Instruction
*I
) {
1254 InstructionCost ICost
=
1255 TTI
->getInstructionCost(I
, TargetTransformInfo::TCK_Latency
);
1256 if (auto OC
= ICost
.getValue())
1257 return std::optional
<uint64_t>(*OC
);
1258 return std::nullopt
;
1261 ScaledNumber
<uint64_t>
1262 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI
,
1263 const Scaled64 CondCost
) {
1264 uint64_t MispredictPenalty
= TSchedModel
.getMCSchedModel()->MispredictPenalty
;
1266 // Account for the default misprediction rate when using a branch
1267 // (conservatively set to 25% by default).
1268 uint64_t MispredictRate
= MispredictDefaultRate
;
1269 // If the select condition is obviously predictable, then the misprediction
1271 if (isSelectHighlyPredictable(SI
))
1274 // CondCost is included to account for cases where the computation of the
1275 // condition is part of a long dependence chain (potentially loop-carried)
1276 // that would delay detection of a misprediction and increase its cost.
1277 Scaled64 MispredictCost
=
1278 std::max(Scaled64::get(MispredictPenalty
), CondCost
) *
1279 Scaled64::get(MispredictRate
);
1280 MispredictCost
/= Scaled64::get(100);
1282 return MispredictCost
;
1285 // Returns the cost of a branch when the prediction is correct.
1286 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1287 ScaledNumber
<uint64_t>
1288 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost
, Scaled64 FalseCost
,
1289 const SelectLike SI
) {
1290 Scaled64 PredPathCost
;
1291 uint64_t TrueWeight
, FalseWeight
;
1292 if (extractBranchWeights(SI
, TrueWeight
, FalseWeight
)) {
1293 uint64_t SumWeight
= TrueWeight
+ FalseWeight
;
1294 if (SumWeight
!= 0) {
1295 PredPathCost
= TrueCost
* Scaled64::get(TrueWeight
) +
1296 FalseCost
* Scaled64::get(FalseWeight
);
1297 PredPathCost
/= Scaled64::get(SumWeight
);
1298 return PredPathCost
;
1301 // Without branch weight metadata, we assume 75% for the one path and 25% for
1302 // the other, and pick the result with the biggest cost.
1303 PredPathCost
= std::max(TrueCost
* Scaled64::get(3) + FalseCost
,
1304 FalseCost
* Scaled64::get(3) + TrueCost
);
1305 PredPathCost
/= Scaled64::get(4);
1306 return PredPathCost
;
1309 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI
) {
1310 bool VectorCond
= !SI
.getCondition()->getType()->isIntegerTy(1);
1313 TargetLowering::SelectSupportKind SelectKind
;
1314 if (SI
.getType()->isVectorTy())
1315 SelectKind
= TargetLowering::ScalarCondVectorVal
;
1317 SelectKind
= TargetLowering::ScalarValSelect
;
1318 return TLI
->isSelectSupported(SelectKind
);