Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / CodeGen / TargetRegisterInfo.cpp
blobffc8055dd27e8f09d883e71219b560dac55a7581
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetFrameLowering.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/VirtRegMap.h"
28 #include "llvm/CodeGenTypes/MachineValueType.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Printable.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <utility>
43 #define DEBUG_TYPE "target-reg-info"
45 using namespace llvm;
47 static cl::opt<unsigned>
48 HugeSizeForSplit("huge-size-for-split", cl::Hidden,
49 cl::desc("A threshold of live range size which may cause "
50 "high compile time cost in global splitting."),
51 cl::init(5000));
53 TargetRegisterInfo::TargetRegisterInfo(
54 const TargetRegisterInfoDesc *ID, regclass_iterator RCB,
55 regclass_iterator RCE, const char *const *SRINames,
56 const SubRegCoveredBits *SubIdxRanges, const LaneBitmask *SRILaneMasks,
57 LaneBitmask SRICoveringLanes, const RegClassInfo *const RCIs,
58 const MVT::SimpleValueType *const RCVTLists, unsigned Mode)
59 : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIdxRanges(SubIdxRanges),
60 SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE),
61 CoveringLanes(SRICoveringLanes), RCInfos(RCIs), RCVTLists(RCVTLists),
62 HwMode(Mode) {}
64 TargetRegisterInfo::~TargetRegisterInfo() = default;
66 bool TargetRegisterInfo::shouldRegionSplitForVirtReg(
67 const MachineFunction &MF, const LiveInterval &VirtReg) const {
68 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
69 const MachineRegisterInfo &MRI = MF.getRegInfo();
70 MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg());
71 if (MI && TII->isTriviallyReMaterializable(*MI) &&
72 VirtReg.size() > HugeSizeForSplit)
73 return false;
74 return true;
77 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet,
78 MCRegister Reg) const {
79 for (MCPhysReg SR : superregs_inclusive(Reg))
80 RegisterSet.set(SR);
83 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
84 ArrayRef<MCPhysReg> Exceptions) const {
85 // Check that all super registers of reserved regs are reserved as well.
86 BitVector Checked(getNumRegs());
87 for (unsigned Reg : RegisterSet.set_bits()) {
88 if (Checked[Reg])
89 continue;
90 for (MCPhysReg SR : superregs(Reg)) {
91 if (!RegisterSet[SR] && !is_contained(Exceptions, Reg)) {
92 dbgs() << "Error: Super register " << printReg(SR, this)
93 << " of reserved register " << printReg(Reg, this)
94 << " is not reserved.\n";
95 return false;
98 // We transitively check superregs. So we can remember this for later
99 // to avoid compiletime explosion in deep register hierarchies.
100 Checked.set(SR);
103 return true;
106 namespace llvm {
108 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
109 unsigned SubIdx, const MachineRegisterInfo *MRI) {
110 return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
111 if (!Reg)
112 OS << "$noreg";
113 else if (Register::isStackSlot(Reg))
114 OS << "SS#" << Register::stackSlot2Index(Reg);
115 else if (Reg.isVirtual()) {
116 StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
117 if (Name != "") {
118 OS << '%' << Name;
119 } else {
120 OS << '%' << Register::virtReg2Index(Reg);
122 } else if (!TRI)
123 OS << '$' << "physreg" << Reg;
124 else if (Reg < TRI->getNumRegs()) {
125 OS << '$';
126 printLowerCase(TRI->getName(Reg), OS);
127 } else
128 llvm_unreachable("Register kind is unsupported.");
130 if (SubIdx) {
131 if (TRI)
132 OS << ':' << TRI->getSubRegIndexName(SubIdx);
133 else
134 OS << ":sub(" << SubIdx << ')';
139 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
140 return Printable([Unit, TRI](raw_ostream &OS) {
141 // Generic printout when TRI is missing.
142 if (!TRI) {
143 OS << "Unit~" << Unit;
144 return;
147 // Check for invalid register units.
148 if (Unit >= TRI->getNumRegUnits()) {
149 OS << "BadUnit~" << Unit;
150 return;
153 // Normal units have at least one root.
154 MCRegUnitRootIterator Roots(Unit, TRI);
155 assert(Roots.isValid() && "Unit has no roots.");
156 OS << TRI->getName(*Roots);
157 for (++Roots; Roots.isValid(); ++Roots)
158 OS << '~' << TRI->getName(*Roots);
162 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
163 return Printable([Unit, TRI](raw_ostream &OS) {
164 if (Register::isVirtualRegister(Unit)) {
165 OS << '%' << Register::virtReg2Index(Unit);
166 } else {
167 OS << printRegUnit(Unit, TRI);
172 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
173 const TargetRegisterInfo *TRI) {
174 return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
175 if (RegInfo.getRegClassOrNull(Reg))
176 OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
177 else if (RegInfo.getRegBankOrNull(Reg))
178 OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
179 else {
180 OS << "_";
181 assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
182 "Generic registers must have a valid type");
187 } // end namespace llvm
189 /// getAllocatableClass - Return the maximal subclass of the given register
190 /// class that is alloctable, or NULL.
191 const TargetRegisterClass *
192 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
193 if (!RC || RC->isAllocatable())
194 return RC;
196 for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
197 ++It) {
198 const TargetRegisterClass *SubRC = getRegClass(It.getID());
199 if (SubRC->isAllocatable())
200 return SubRC;
202 return nullptr;
205 /// getMinimalPhysRegClass - Returns the Register Class of a physical
206 /// register of the given type, picking the most sub register class of
207 /// the right type that contains this physreg.
208 const TargetRegisterClass *
209 TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const {
210 assert(Register::isPhysicalRegister(reg) &&
211 "reg must be a physical register");
213 // Pick the most sub register class of the right type that contains
214 // this physreg.
215 const TargetRegisterClass* BestRC = nullptr;
216 for (const TargetRegisterClass* RC : regclasses()) {
217 if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
218 RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
219 BestRC = RC;
222 assert(BestRC && "Couldn't find the register class");
223 return BestRC;
226 const TargetRegisterClass *
227 TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister reg, LLT Ty) const {
228 assert(Register::isPhysicalRegister(reg) &&
229 "reg must be a physical register");
231 // Pick the most sub register class of the right type that contains
232 // this physreg.
233 const TargetRegisterClass *BestRC = nullptr;
234 for (const TargetRegisterClass *RC : regclasses()) {
235 if ((!Ty.isValid() || isTypeLegalForClass(*RC, Ty)) && RC->contains(reg) &&
236 (!BestRC || BestRC->hasSubClass(RC)))
237 BestRC = RC;
240 return BestRC;
243 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
244 /// registers for the specific register class.
245 static void getAllocatableSetForRC(const MachineFunction &MF,
246 const TargetRegisterClass *RC, BitVector &R){
247 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
248 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
249 for (MCPhysReg PR : Order)
250 R.set(PR);
253 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
254 const TargetRegisterClass *RC) const {
255 BitVector Allocatable(getNumRegs());
256 if (RC) {
257 // A register class with no allocatable subclass returns an empty set.
258 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
259 if (SubClass)
260 getAllocatableSetForRC(MF, SubClass, Allocatable);
261 } else {
262 for (const TargetRegisterClass *C : regclasses())
263 if (C->isAllocatable())
264 getAllocatableSetForRC(MF, C, Allocatable);
267 // Mask out the reserved registers
268 const MachineRegisterInfo &MRI = MF.getRegInfo();
269 const BitVector &Reserved = MRI.getReservedRegs();
270 Allocatable.reset(Reserved);
272 return Allocatable;
275 static inline
276 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
277 const uint32_t *B,
278 const TargetRegisterInfo *TRI) {
279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
280 if (unsigned Common = *A++ & *B++)
281 return TRI->getRegClass(I + llvm::countr_zero(Common));
282 return nullptr;
285 const TargetRegisterClass *
286 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
287 const TargetRegisterClass *B) const {
288 // First take care of the trivial cases.
289 if (A == B)
290 return A;
291 if (!A || !B)
292 return nullptr;
294 // Register classes are ordered topologically, so the largest common
295 // sub-class it the common sub-class with the smallest ID.
296 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
299 const TargetRegisterClass *
300 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
301 const TargetRegisterClass *B,
302 unsigned Idx) const {
303 assert(A && B && "Missing register class");
304 assert(Idx && "Bad sub-register index");
306 // Find Idx in the list of super-register indices.
307 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
308 if (RCI.getSubReg() == Idx)
309 // The bit mask contains all register classes that are projected into B
310 // by Idx. Find a class that is also a sub-class of A.
311 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
312 return nullptr;
315 const TargetRegisterClass *TargetRegisterInfo::
316 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
317 const TargetRegisterClass *RCB, unsigned SubB,
318 unsigned &PreA, unsigned &PreB) const {
319 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
321 // Search all pairs of sub-register indices that project into RCA and RCB
322 // respectively. This is quadratic, but usually the sets are very small. On
323 // most targets like X86, there will only be a single sub-register index
324 // (e.g., sub_16bit projecting into GR16).
326 // The worst case is a register class like DPR on ARM.
327 // We have indices dsub_0..dsub_7 projecting into that class.
329 // It is very common that one register class is a sub-register of the other.
330 // Arrange for RCA to be the larger register so the answer will be found in
331 // the first iteration. This makes the search linear for the most common
332 // case.
333 const TargetRegisterClass *BestRC = nullptr;
334 unsigned *BestPreA = &PreA;
335 unsigned *BestPreB = &PreB;
336 if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
337 std::swap(RCA, RCB);
338 std::swap(SubA, SubB);
339 std::swap(BestPreA, BestPreB);
342 // Also terminate the search one we have found a register class as small as
343 // RCA.
344 unsigned MinSize = getRegSizeInBits(*RCA);
346 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
347 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
348 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
349 // Check if a common super-register class exists for this index pair.
350 const TargetRegisterClass *RC =
351 firstCommonClass(IA.getMask(), IB.getMask(), this);
352 if (!RC || getRegSizeInBits(*RC) < MinSize)
353 continue;
355 // The indexes must compose identically: PreA+SubA == PreB+SubB.
356 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
357 if (FinalA != FinalB)
358 continue;
360 // Is RC a better candidate than BestRC?
361 if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
362 continue;
364 // Yes, RC is the smallest super-register seen so far.
365 BestRC = RC;
366 *BestPreA = IA.getSubReg();
367 *BestPreB = IB.getSubReg();
369 // Bail early if we reached MinSize. We won't find a better candidate.
370 if (getRegSizeInBits(*BestRC) == MinSize)
371 return BestRC;
374 return BestRC;
377 /// Check if the registers defined by the pair (RegisterClass, SubReg)
378 /// share the same register file.
379 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
380 const TargetRegisterClass *DefRC,
381 unsigned DefSubReg,
382 const TargetRegisterClass *SrcRC,
383 unsigned SrcSubReg) {
384 // Same register class.
385 if (DefRC == SrcRC)
386 return true;
388 // Both operands are sub registers. Check if they share a register class.
389 unsigned SrcIdx, DefIdx;
390 if (SrcSubReg && DefSubReg) {
391 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
392 SrcIdx, DefIdx) != nullptr;
395 // At most one of the register is a sub register, make it Src to avoid
396 // duplicating the test.
397 if (!SrcSubReg) {
398 std::swap(DefSubReg, SrcSubReg);
399 std::swap(DefRC, SrcRC);
402 // One of the register is a sub register, check if we can get a superclass.
403 if (SrcSubReg)
404 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
406 // Plain copy.
407 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
410 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
411 unsigned DefSubReg,
412 const TargetRegisterClass *SrcRC,
413 unsigned SrcSubReg) const {
414 // If this source does not incur a cross register bank copy, use it.
415 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
418 // Compute target-independent register allocator hints to help eliminate copies.
419 bool TargetRegisterInfo::getRegAllocationHints(
420 Register VirtReg, ArrayRef<MCPhysReg> Order,
421 SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
422 const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
423 const MachineRegisterInfo &MRI = MF.getRegInfo();
424 const std::pair<unsigned, SmallVector<Register, 4>> &Hints_MRI =
425 MRI.getRegAllocationHints(VirtReg);
427 SmallSet<Register, 32> HintedRegs;
428 // First hint may be a target hint.
429 bool Skip = (Hints_MRI.first != 0);
430 for (auto Reg : Hints_MRI.second) {
431 if (Skip) {
432 Skip = false;
433 continue;
436 // Target-independent hints are either a physical or a virtual register.
437 Register Phys = Reg;
438 if (VRM && Phys.isVirtual())
439 Phys = VRM->getPhys(Phys);
441 // Don't add the same reg twice (Hints_MRI may contain multiple virtual
442 // registers allocated to the same physreg).
443 if (!HintedRegs.insert(Phys).second)
444 continue;
445 // Check that Phys is a valid hint in VirtReg's register class.
446 if (!Phys.isPhysical())
447 continue;
448 if (MRI.isReserved(Phys))
449 continue;
450 // Check that Phys is in the allocation order. We shouldn't heed hints
451 // from VirtReg's register class if they aren't in the allocation order. The
452 // target probably has a reason for removing the register.
453 if (!is_contained(Order, Phys))
454 continue;
456 // All clear, tell the register allocator to prefer this register.
457 Hints.push_back(Phys);
459 return false;
462 bool TargetRegisterInfo::isCalleeSavedPhysReg(
463 MCRegister PhysReg, const MachineFunction &MF) const {
464 if (PhysReg == 0)
465 return false;
466 const uint32_t *callerPreservedRegs =
467 getCallPreservedMask(MF, MF.getFunction().getCallingConv());
468 if (callerPreservedRegs) {
469 assert(Register::isPhysicalRegister(PhysReg) &&
470 "Expected physical register");
471 return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
473 return false;
476 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
477 return MF.getFrameInfo().isStackRealignable();
480 bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const {
481 return MF.getFrameInfo().shouldRealignStack();
484 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
485 const uint32_t *mask1) const {
486 unsigned N = (getNumRegs()+31) / 32;
487 for (unsigned I = 0; I < N; ++I)
488 if ((mask0[I] & mask1[I]) != mask0[I])
489 return false;
490 return true;
493 TypeSize
494 TargetRegisterInfo::getRegSizeInBits(Register Reg,
495 const MachineRegisterInfo &MRI) const {
496 const TargetRegisterClass *RC{};
497 if (Reg.isPhysical()) {
498 // The size is not directly available for physical registers.
499 // Instead, we need to access a register class that contains Reg and
500 // get the size of that register class.
501 RC = getMinimalPhysRegClass(Reg);
502 assert(RC && "Unable to deduce the register class");
503 return getRegSizeInBits(*RC);
505 LLT Ty = MRI.getType(Reg);
506 if (Ty.isValid())
507 return Ty.getSizeInBits();
509 // Since Reg is not a generic register, it may have a register class.
510 RC = MRI.getRegClass(Reg);
511 assert(RC && "Unable to deduce the register class");
512 return getRegSizeInBits(*RC);
515 bool TargetRegisterInfo::getCoveringSubRegIndexes(
516 const MachineRegisterInfo &MRI, const TargetRegisterClass *RC,
517 LaneBitmask LaneMask, SmallVectorImpl<unsigned> &NeededIndexes) const {
518 SmallVector<unsigned, 8> PossibleIndexes;
519 unsigned BestIdx = 0;
520 unsigned BestCover = 0;
522 for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) {
523 // Is this index even compatible with the given class?
524 if (getSubClassWithSubReg(RC, Idx) != RC)
525 continue;
526 LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
527 // Early exit if we found a perfect match.
528 if (SubRegMask == LaneMask) {
529 BestIdx = Idx;
530 break;
533 // The index must not cover any lanes outside \p LaneMask.
534 if ((SubRegMask & ~LaneMask).any())
535 continue;
537 unsigned PopCount = SubRegMask.getNumLanes();
538 PossibleIndexes.push_back(Idx);
539 if (PopCount > BestCover) {
540 BestCover = PopCount;
541 BestIdx = Idx;
545 // Abort if we cannot possibly implement the COPY with the given indexes.
546 if (BestIdx == 0)
547 return false;
549 NeededIndexes.push_back(BestIdx);
551 // Greedy heuristic: Keep iterating keeping the best covering subreg index
552 // each time.
553 LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx);
554 while (LanesLeft.any()) {
555 unsigned BestIdx = 0;
556 int BestCover = std::numeric_limits<int>::min();
557 for (unsigned Idx : PossibleIndexes) {
558 LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
559 // Early exit if we found a perfect match.
560 if (SubRegMask == LanesLeft) {
561 BestIdx = Idx;
562 break;
565 // Do not cover already-covered lanes to avoid creating cycles
566 // in copy bundles (= bundle contains copies that write to the
567 // registers).
568 if ((SubRegMask & ~LanesLeft).any())
569 continue;
571 // Try to cover as many of the remaining lanes as possible.
572 const int Cover = (SubRegMask & LanesLeft).getNumLanes();
573 if (Cover > BestCover) {
574 BestCover = Cover;
575 BestIdx = Idx;
579 if (BestIdx == 0)
580 return false; // Impossible to handle
582 NeededIndexes.push_back(BestIdx);
584 LanesLeft &= ~getSubRegIndexLaneMask(BestIdx);
587 return BestIdx;
590 unsigned TargetRegisterInfo::getSubRegIdxSize(unsigned Idx) const {
591 assert(Idx && Idx < getNumSubRegIndices() &&
592 "This is not a subregister index");
593 return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Size;
596 unsigned TargetRegisterInfo::getSubRegIdxOffset(unsigned Idx) const {
597 assert(Idx && Idx < getNumSubRegIndices() &&
598 "This is not a subregister index");
599 return SubRegIdxRanges[HwMode * getNumSubRegIndices() + Idx].Offset;
602 Register
603 TargetRegisterInfo::lookThruCopyLike(Register SrcReg,
604 const MachineRegisterInfo *MRI) const {
605 while (true) {
606 const MachineInstr *MI = MRI->getVRegDef(SrcReg);
607 if (!MI->isCopyLike())
608 return SrcReg;
610 Register CopySrcReg;
611 if (MI->isCopy())
612 CopySrcReg = MI->getOperand(1).getReg();
613 else {
614 assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
615 CopySrcReg = MI->getOperand(2).getReg();
618 if (!CopySrcReg.isVirtual())
619 return CopySrcReg;
621 SrcReg = CopySrcReg;
625 Register TargetRegisterInfo::lookThruSingleUseCopyChain(
626 Register SrcReg, const MachineRegisterInfo *MRI) const {
627 while (true) {
628 const MachineInstr *MI = MRI->getVRegDef(SrcReg);
629 // Found the real definition, return it if it has a single use.
630 if (!MI->isCopyLike())
631 return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register();
633 Register CopySrcReg;
634 if (MI->isCopy())
635 CopySrcReg = MI->getOperand(1).getReg();
636 else {
637 assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
638 CopySrcReg = MI->getOperand(2).getReg();
641 // Continue only if the next definition in the chain is for a virtual
642 // register that has a single use.
643 if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg))
644 return Register();
646 SrcReg = CopySrcReg;
650 void TargetRegisterInfo::getOffsetOpcodes(
651 const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
652 assert(!Offset.getScalable() && "Scalable offsets are not handled");
653 DIExpression::appendOffset(Ops, Offset.getFixed());
656 DIExpression *
657 TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr,
658 unsigned PrependFlags,
659 const StackOffset &Offset) const {
660 assert((PrependFlags &
661 ~(DIExpression::DerefBefore | DIExpression::DerefAfter |
662 DIExpression::StackValue | DIExpression::EntryValue)) == 0 &&
663 "Unsupported prepend flag");
664 SmallVector<uint64_t, 16> OffsetExpr;
665 if (PrependFlags & DIExpression::DerefBefore)
666 OffsetExpr.push_back(dwarf::DW_OP_deref);
667 getOffsetOpcodes(Offset, OffsetExpr);
668 if (PrependFlags & DIExpression::DerefAfter)
669 OffsetExpr.push_back(dwarf::DW_OP_deref);
670 return DIExpression::prependOpcodes(Expr, OffsetExpr,
671 PrependFlags & DIExpression::StackValue,
672 PrependFlags & DIExpression::EntryValue);
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 LLVM_DUMP_METHOD
677 void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex,
678 const TargetRegisterInfo *TRI) {
679 dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
681 #endif