Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / CodeGen / TargetSchedule.cpp
blobce59b096992d8e2daca6015d94224523df210d17
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <cstdint>
29 #include <numeric>
31 using namespace llvm;
33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
34 cl::desc("Use TargetSchedModel for latency lookup"));
36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
37 cl::desc("Use InstrItineraryData for latency lookup"));
39 static cl::opt<bool> ForceEnableIntervals(
40 "sched-model-force-enable-intervals", cl::Hidden, cl::init(false),
41 cl::desc("Force the use of resource intervals in the schedule model"));
43 bool TargetSchedModel::hasInstrSchedModel() const {
44 return EnableSchedModel && SchedModel.hasInstrSchedModel();
47 bool TargetSchedModel::hasInstrItineraries() const {
48 return EnableSchedItins && !InstrItins.isEmpty();
51 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
52 STI = TSInfo;
53 SchedModel = TSInfo->getSchedModel();
54 TII = TSInfo->getInstrInfo();
55 STI->initInstrItins(InstrItins);
57 unsigned NumRes = SchedModel.getNumProcResourceKinds();
58 ResourceFactors.resize(NumRes);
59 ResourceLCM = SchedModel.IssueWidth;
60 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
61 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
62 if (NumUnits > 0)
63 ResourceLCM = std::lcm(ResourceLCM, NumUnits);
65 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
66 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
67 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
68 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
72 /// Returns true only if instruction is specified as single issue.
73 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
74 const MCSchedClassDesc *SC) const {
75 if (hasInstrSchedModel()) {
76 if (!SC)
77 SC = resolveSchedClass(MI);
78 if (SC->isValid())
79 return SC->BeginGroup;
81 return false;
84 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
85 const MCSchedClassDesc *SC) const {
86 if (hasInstrSchedModel()) {
87 if (!SC)
88 SC = resolveSchedClass(MI);
89 if (SC->isValid())
90 return SC->EndGroup;
92 return false;
95 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
96 const MCSchedClassDesc *SC) const {
97 if (hasInstrItineraries()) {
98 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
99 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
101 if (hasInstrSchedModel()) {
102 if (!SC)
103 SC = resolveSchedClass(MI);
104 if (SC->isValid())
105 return SC->NumMicroOps;
107 return MI->isTransient() ? 0 : 1;
110 // The machine model may explicitly specify an invalid latency, which
111 // effectively means infinite latency. Since users of the TargetSchedule API
112 // don't know how to handle this, we convert it to a very large latency that is
113 // easy to distinguish when debugging the DAG but won't induce overflow.
114 static unsigned capLatency(int Cycles) {
115 return Cycles >= 0 ? Cycles : 1000;
118 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
119 /// evaluation of predicates that depend on instruction operands or flags.
120 const MCSchedClassDesc *TargetSchedModel::
121 resolveSchedClass(const MachineInstr *MI) const {
122 // Get the definition's scheduling class descriptor from this machine model.
123 unsigned SchedClass = MI->getDesc().getSchedClass();
124 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
125 if (!SCDesc->isValid())
126 return SCDesc;
128 #ifndef NDEBUG
129 unsigned NIter = 0;
130 #endif
131 while (SCDesc->isVariant()) {
132 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
134 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
135 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
137 return SCDesc;
140 /// Find the def index of this operand. This index maps to the machine model and
141 /// is independent of use operands. Def operands may be reordered with uses or
142 /// merged with uses without affecting the def index (e.g. before/after
143 /// regalloc). However, an instruction's def operands must never be reordered
144 /// with respect to each other.
145 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
146 unsigned DefIdx = 0;
147 for (unsigned i = 0; i != DefOperIdx; ++i) {
148 const MachineOperand &MO = MI->getOperand(i);
149 if (MO.isReg() && MO.isDef())
150 ++DefIdx;
152 return DefIdx;
155 /// Find the use index of this operand. This is independent of the instruction's
156 /// def operands.
158 /// Note that uses are not determined by the operand's isUse property, which
159 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
160 /// a "use". The machine model allows an operand to be both a Def and Use.
161 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
162 unsigned UseIdx = 0;
163 for (unsigned i = 0; i != UseOperIdx; ++i) {
164 const MachineOperand &MO = MI->getOperand(i);
165 if (MO.isReg() && MO.readsReg() && !MO.isDef())
166 ++UseIdx;
168 return UseIdx;
171 // Top-level API for clients that know the operand indices. This doesn't need to
172 // return std::optional<unsigned>, as it always returns a valid latency.
173 unsigned TargetSchedModel::computeOperandLatency(
174 const MachineInstr *DefMI, unsigned DefOperIdx,
175 const MachineInstr *UseMI, unsigned UseOperIdx) const {
177 const unsigned InstrLatency = computeInstrLatency(DefMI);
178 const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, *DefMI);
180 if (!hasInstrSchedModel() && !hasInstrItineraries())
181 return DefaultDefLatency;
183 if (hasInstrItineraries()) {
184 std::optional<unsigned> OperLatency;
185 if (UseMI) {
186 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
187 *UseMI, UseOperIdx);
189 else {
190 unsigned DefClass = DefMI->getDesc().getSchedClass();
191 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
194 // Expected latency is the max of InstrLatency and DefaultDefLatency, if we
195 // didn't find an operand latency.
196 return OperLatency ? *OperLatency
197 : std::max(InstrLatency, DefaultDefLatency);
200 // hasInstrSchedModel()
201 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
202 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
203 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
204 // Lookup the definition's write latency in SubtargetInfo.
205 const MCWriteLatencyEntry *WLEntry =
206 STI->getWriteLatencyEntry(SCDesc, DefIdx);
207 unsigned WriteID = WLEntry->WriteResourceID;
208 unsigned Latency = capLatency(WLEntry->Cycles);
209 if (!UseMI)
210 return Latency;
212 // Lookup the use's latency adjustment in SubtargetInfo.
213 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
214 if (UseDesc->NumReadAdvanceEntries == 0)
215 return Latency;
216 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
217 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
218 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
219 return 0;
220 return Latency - Advance;
222 // If DefIdx does not exist in the model (e.g. implicit defs), then return
223 // unit latency (defaultDefLatency may be too conservative).
224 #ifndef NDEBUG
225 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() &&
226 !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() &&
227 SchedModel.isComplete()) {
228 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
229 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
230 llvm_unreachable("incomplete machine model");
232 #endif
233 // FIXME: Automatically giving all implicit defs defaultDefLatency is
234 // undesirable. We should only do it for defs that are known to the MC
235 // desc like flags. Truly implicit defs should get 1 cycle latency.
236 return DefMI->isTransient() ? 0 : DefaultDefLatency;
239 unsigned
240 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
241 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
244 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
245 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
246 unsigned SCIdx = TII->get(Opcode).getSchedClass();
247 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
250 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
251 if (hasInstrSchedModel())
252 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
253 return computeInstrLatency(Inst.getOpcode());
256 unsigned
257 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
258 bool UseDefaultDefLatency) const {
259 // For the itinerary model, fall back to the old subtarget hook.
260 // Allow subtargets to compute Bundle latencies outside the machine model.
261 if (hasInstrItineraries() || MI->isBundle() ||
262 (!hasInstrSchedModel() && !UseDefaultDefLatency))
263 return TII->getInstrLatency(&InstrItins, *MI);
265 if (hasInstrSchedModel()) {
266 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
267 if (SCDesc->isValid())
268 return computeInstrLatency(*SCDesc);
270 return TII->defaultDefLatency(SchedModel, *MI);
273 unsigned TargetSchedModel::
274 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
275 const MachineInstr *DepMI) const {
276 if (!SchedModel.isOutOfOrder())
277 return 1;
279 // Out-of-order processor can dispatch WAW dependencies in the same cycle.
281 // Treat predication as a data dependency for out-of-order cpus. In-order
282 // cpus do not need to treat predicated writes specially.
284 // TODO: The following hack exists because predication passes do not
285 // correctly append imp-use operands, and readsReg() strangely returns false
286 // for predicated defs.
287 Register Reg = DefMI->getOperand(DefOperIdx).getReg();
288 const MachineFunction &MF = *DefMI->getMF();
289 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
290 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
291 return computeInstrLatency(DefMI);
293 // If we have a per operand scheduling model, check if this def is writing
294 // an unbuffered resource. If so, it treated like an in-order cpu.
295 if (hasInstrSchedModel()) {
296 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
297 if (SCDesc->isValid()) {
298 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
299 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
300 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
301 return 1;
305 return 0;
308 double
309 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
310 if (hasInstrItineraries()) {
311 unsigned SchedClass = MI->getDesc().getSchedClass();
312 return MCSchedModel::getReciprocalThroughput(SchedClass,
313 *getInstrItineraries());
316 if (hasInstrSchedModel())
317 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
319 return 0.0;
322 double
323 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
324 unsigned SchedClass = TII->get(Opcode).getSchedClass();
325 if (hasInstrItineraries())
326 return MCSchedModel::getReciprocalThroughput(SchedClass,
327 *getInstrItineraries());
328 if (hasInstrSchedModel()) {
329 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
330 if (SCDesc.isValid() && !SCDesc.isVariant())
331 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
334 return 0.0;
337 double
338 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
339 if (hasInstrSchedModel())
340 return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
341 return computeReciprocalThroughput(MI.getOpcode());
344 bool TargetSchedModel::enableIntervals() const {
345 if (ForceEnableIntervals)
346 return true;
348 return SchedModel.EnableIntervals;