1 //===----- TypePromotion.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/TypePromotion.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
47 static cl::opt
<bool> DisablePromotion("disable-type-promotion", cl::Hidden
,
49 cl::desc("Disable type promotion pass"));
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
55 // define hidden i32 @cmp(i8 zeroext) {
56 // %2 = add i8 %0, -49
57 // %3 = icmp ult i8 %2, 3
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
65 // t19: i32 = add t4, Constant:i32<-49>
66 // t24: i32 = and t19, Constant:i32<255>
68 // Consequently, we generate code like this:
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
81 // We achieve this by type promoting the IR to i32 like so for this example:
83 // define i32 @cmp(i8 zeroext %c) {
84 // %0 = zext i8 %c to i32
85 // %c.off = add i32 %0, -49
86 // %1 = icmp ult i32 %c.off, 3
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
106 unsigned PromotedWidth
= 0;
107 SetVector
<Value
*> &Visited
;
108 SetVector
<Value
*> &Sources
;
109 SetVector
<Instruction
*> &Sinks
;
110 SmallPtrSetImpl
<Instruction
*> &SafeWrap
;
111 SmallPtrSetImpl
<Instruction
*> &InstsToRemove
;
112 IntegerType
*ExtTy
= nullptr;
113 SmallPtrSet
<Value
*, 8> NewInsts
;
114 DenseMap
<Value
*, SmallVector
<Type
*, 4>> TruncTysMap
;
115 SmallPtrSet
<Value
*, 8> Promoted
;
117 void ReplaceAllUsersOfWith(Value
*From
, Value
*To
);
118 void ExtendSources();
119 void ConvertTruncs();
121 void TruncateSinks();
125 IRPromoter(LLVMContext
&C
, unsigned Width
, SetVector
<Value
*> &visited
,
126 SetVector
<Value
*> &sources
, SetVector
<Instruction
*> &sinks
,
127 SmallPtrSetImpl
<Instruction
*> &wrap
,
128 SmallPtrSetImpl
<Instruction
*> &instsToRemove
)
129 : Ctx(C
), PromotedWidth(Width
), Visited(visited
), Sources(sources
),
130 Sinks(sinks
), SafeWrap(wrap
), InstsToRemove(instsToRemove
) {
131 ExtTy
= IntegerType::get(Ctx
, PromotedWidth
);
137 class TypePromotionImpl
{
138 unsigned TypeSize
= 0;
139 const TargetLowering
*TLI
= nullptr;
140 LLVMContext
*Ctx
= nullptr;
141 unsigned RegisterBitWidth
= 0;
142 SmallPtrSet
<Value
*, 16> AllVisited
;
143 SmallPtrSet
<Instruction
*, 8> SafeToPromote
;
144 SmallPtrSet
<Instruction
*, 4> SafeWrap
;
145 SmallPtrSet
<Instruction
*, 4> InstsToRemove
;
147 // Does V have the same size result type as TypeSize.
148 bool EqualTypeSize(Value
*V
);
149 // Does V have the same size, or narrower, result type as TypeSize.
150 bool LessOrEqualTypeSize(Value
*V
);
151 // Does V have a result type that is wider than TypeSize.
152 bool GreaterThanTypeSize(Value
*V
);
153 // Does V have a result type that is narrower than TypeSize.
154 bool LessThanTypeSize(Value
*V
);
155 // Should V be a leaf in the promote tree?
156 bool isSource(Value
*V
);
157 // Should V be a root in the promotion tree?
158 bool isSink(Value
*V
);
159 // Should we change the result type of V? It will result in the users of V
161 bool shouldPromote(Value
*V
);
162 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
163 // result won't affect the computation?
164 bool isSafeWrap(Instruction
*I
);
165 // Can V have its integer type promoted, or can the type be ignored.
166 bool isSupportedType(Value
*V
);
167 // Is V an instruction with a supported opcode or another value that we can
168 // handle, such as constants and basic blocks.
169 bool isSupportedValue(Value
*V
);
170 // Is V an instruction thats result can trivially promoted, or has safe
172 bool isLegalToPromote(Value
*V
);
173 bool TryToPromote(Value
*V
, unsigned PromotedWidth
, const LoopInfo
&LI
);
176 bool run(Function
&F
, const TargetMachine
*TM
,
177 const TargetTransformInfo
&TTI
, const LoopInfo
&LI
);
180 class TypePromotionLegacy
: public FunctionPass
{
184 TypePromotionLegacy() : FunctionPass(ID
) {}
186 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
187 AU
.addRequired
<LoopInfoWrapperPass
>();
188 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
189 AU
.addRequired
<TargetPassConfig
>();
190 AU
.setPreservesCFG();
191 AU
.addPreserved
<LoopInfoWrapperPass
>();
194 StringRef
getPassName() const override
{ return PASS_NAME
; }
196 bool runOnFunction(Function
&F
) override
;
201 static bool GenerateSignBits(Instruction
*I
) {
202 unsigned Opc
= I
->getOpcode();
203 return Opc
== Instruction::AShr
|| Opc
== Instruction::SDiv
||
204 Opc
== Instruction::SRem
|| Opc
== Instruction::SExt
;
207 bool TypePromotionImpl::EqualTypeSize(Value
*V
) {
208 return V
->getType()->getScalarSizeInBits() == TypeSize
;
211 bool TypePromotionImpl::LessOrEqualTypeSize(Value
*V
) {
212 return V
->getType()->getScalarSizeInBits() <= TypeSize
;
215 bool TypePromotionImpl::GreaterThanTypeSize(Value
*V
) {
216 return V
->getType()->getScalarSizeInBits() > TypeSize
;
219 bool TypePromotionImpl::LessThanTypeSize(Value
*V
) {
220 return V
->getType()->getScalarSizeInBits() < TypeSize
;
223 /// Return true if the given value is a source in the use-def chain, producing
224 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
225 /// of the tree to i32. We guarantee that these won't populate the upper bits
226 /// of the register. ZExt on the loads will be free, and the same for call
227 /// return values because we only accept ones that guarantee a zeroext ret val.
228 /// Many arguments will have the zeroext attribute too, so those would be free
230 bool TypePromotionImpl::isSource(Value
*V
) {
231 if (!isa
<IntegerType
>(V
->getType()))
234 // TODO Allow zext to be sources.
235 if (isa
<Argument
>(V
))
237 else if (isa
<LoadInst
>(V
))
239 else if (auto *Call
= dyn_cast
<CallInst
>(V
))
240 return Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
241 else if (auto *Trunc
= dyn_cast
<TruncInst
>(V
))
242 return EqualTypeSize(Trunc
);
246 /// Return true if V will require any promoted values to be truncated for the
247 /// the IR to remain valid. We can't mutate the value type of these
249 bool TypePromotionImpl::isSink(Value
*V
) {
250 // TODO The truncate also isn't actually necessary because we would already
251 // proved that the data value is kept within the range of the original data
252 // type. We currently remove any truncs inserted for handling zext sinks.
255 // - points where the value in the register is being observed, such as an
256 // icmp, switch or store.
257 // - points where value types have to match, such as calls and returns.
258 // - zext are included to ease the transformation and are generally removed
260 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
261 return LessOrEqualTypeSize(Store
->getValueOperand());
262 if (auto *Return
= dyn_cast
<ReturnInst
>(V
))
263 return LessOrEqualTypeSize(Return
->getReturnValue());
264 if (auto *ZExt
= dyn_cast
<ZExtInst
>(V
))
265 return GreaterThanTypeSize(ZExt
);
266 if (auto *Switch
= dyn_cast
<SwitchInst
>(V
))
267 return LessThanTypeSize(Switch
->getCondition());
268 if (auto *ICmp
= dyn_cast
<ICmpInst
>(V
))
269 return ICmp
->isSigned() || LessThanTypeSize(ICmp
->getOperand(0));
271 return isa
<CallInst
>(V
);
274 /// Return whether this instruction can safely wrap.
275 bool TypePromotionImpl::isSafeWrap(Instruction
*I
) {
276 // We can support a potentially wrapping Add/Sub instruction (I) if:
277 // - It is only used by an unsigned icmp.
278 // - The icmp uses a constant.
279 // - The wrapping instruction (I) also uses a constant.
281 // This a common pattern emitted to check if a value is within a range.
285 // %sub = sub i8 %a, C1
286 // %cmp = icmp ule i8 %sub, C2
290 // %add = add i8 %a, C1
291 // %cmp = icmp ule i8 %add, C2.
293 // We will treat an add as though it were a subtract by -C1. To promote
294 // the Add/Sub we will zero extend the LHS and the subtracted amount. For Add,
295 // this means we need to negate the constant, zero extend to RegisterBitWidth,
296 // and negate in the larger type.
298 // This will produce a value in the range [-zext(C1), zext(X)-zext(C1)] where
299 // C1 is the subtracted amount. This is either a small unsigned number or a
300 // large unsigned number in the promoted type.
302 // Now we need to correct the compare constant C2. Values >= C1 in the
303 // original add result range have been remapped to large values in the
304 // promoted range. If the compare constant fell into this range we need to
305 // remap it as well. We can do this as -(zext(-C2)).
309 // %sub = sub i8 %a, 2
310 // %cmp = icmp ule i8 %sub, 254
314 // %zext = zext %a to i32
315 // %sub = sub i32 %zext, 2
316 // %cmp = icmp ule i32 %sub, 4294967294
320 // %sub = sub i8 %a, 1
321 // %cmp = icmp ule i8 %sub, 254
325 // %zext = zext %a to i32
326 // %sub = sub i32 %zext, 1
327 // %cmp = icmp ule i32 %sub, 254
329 unsigned Opc
= I
->getOpcode();
330 if (Opc
!= Instruction::Add
&& Opc
!= Instruction::Sub
)
333 if (!I
->hasOneUse() || !isa
<ICmpInst
>(*I
->user_begin()) ||
334 !isa
<ConstantInt
>(I
->getOperand(1)))
337 // Don't support an icmp that deals with sign bits.
338 auto *CI
= cast
<ICmpInst
>(*I
->user_begin());
339 if (CI
->isSigned() || CI
->isEquality())
342 ConstantInt
*ICmpConstant
= nullptr;
343 if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(0)))
344 ICmpConstant
= Const
;
345 else if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(1)))
346 ICmpConstant
= Const
;
350 const APInt
&ICmpConst
= ICmpConstant
->getValue();
351 APInt OverflowConst
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
352 if (Opc
== Instruction::Sub
)
353 OverflowConst
= -OverflowConst
;
355 // If the constant is positive, we will end up filling the promoted bits with
356 // all 1s. Make sure that results in a cheap add constant.
357 if (!OverflowConst
.isNonPositive()) {
358 // We don't have the true promoted width, just use 64 so we can create an
359 // int64_t for the isLegalAddImmediate call.
360 if (OverflowConst
.getBitWidth() >= 64)
363 APInt NewConst
= -((-OverflowConst
).zext(64));
364 if (!TLI
->isLegalAddImmediate(NewConst
.getSExtValue()))
370 if (OverflowConst
== 0 || OverflowConst
.ugt(ICmpConst
)) {
371 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
372 << "const of " << *I
<< "\n");
376 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
377 << "const of " << *I
<< " and " << *CI
<< "\n");
382 bool TypePromotionImpl::shouldPromote(Value
*V
) {
383 if (!isa
<IntegerType
>(V
->getType()) || isSink(V
))
389 auto *I
= dyn_cast
<Instruction
>(V
);
393 if (isa
<ICmpInst
>(I
))
399 /// Return whether we can safely mutate V's type to ExtTy without having to be
400 /// concerned with zero extending or truncation.
401 static bool isPromotedResultSafe(Instruction
*I
) {
402 if (GenerateSignBits(I
))
405 if (!isa
<OverflowingBinaryOperator
>(I
))
408 return I
->hasNoUnsignedWrap();
411 void IRPromoter::ReplaceAllUsersOfWith(Value
*From
, Value
*To
) {
412 SmallVector
<Instruction
*, 4> Users
;
413 Instruction
*InstTo
= dyn_cast
<Instruction
>(To
);
414 bool ReplacedAll
= true;
416 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From
<< " with " << *To
419 for (Use
&U
: From
->uses()) {
420 auto *User
= cast
<Instruction
>(U
.getUser());
421 if (InstTo
&& User
->isIdenticalTo(InstTo
)) {
425 Users
.push_back(User
);
428 for (auto *U
: Users
)
429 U
->replaceUsesOfWith(From
, To
);
432 if (auto *I
= dyn_cast
<Instruction
>(From
))
433 InstsToRemove
.insert(I
);
436 void IRPromoter::ExtendSources() {
437 IRBuilder
<> Builder
{Ctx
};
439 auto InsertZExt
= [&](Value
*V
, Instruction
*InsertPt
) {
440 assert(V
->getType() != ExtTy
&& "zext already extends to i32");
441 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V
<< "\n");
442 Builder
.SetInsertPoint(InsertPt
);
443 if (auto *I
= dyn_cast
<Instruction
>(V
))
444 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
446 Value
*ZExt
= Builder
.CreateZExt(V
, ExtTy
);
447 if (auto *I
= dyn_cast
<Instruction
>(ZExt
)) {
448 if (isa
<Argument
>(V
))
449 I
->moveBefore(InsertPt
);
451 I
->moveAfter(InsertPt
);
455 ReplaceAllUsersOfWith(V
, ZExt
);
458 // Now, insert extending instructions between the sources and their users.
459 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
460 for (auto *V
: Sources
) {
461 LLVM_DEBUG(dbgs() << " - " << *V
<< "\n");
462 if (auto *I
= dyn_cast
<Instruction
>(V
))
464 else if (auto *Arg
= dyn_cast
<Argument
>(V
)) {
465 BasicBlock
&BB
= Arg
->getParent()->front();
466 InsertZExt(Arg
, &*BB
.getFirstInsertionPt());
468 llvm_unreachable("unhandled source that needs extending");
474 void IRPromoter::PromoteTree() {
475 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
477 // Mutate the types of the instructions within the tree. Here we handle
478 // constant operands.
479 for (auto *V
: Visited
) {
480 if (Sources
.count(V
))
483 auto *I
= cast
<Instruction
>(V
);
487 for (unsigned i
= 0, e
= I
->getNumOperands(); i
< e
; ++i
) {
488 Value
*Op
= I
->getOperand(i
);
489 if ((Op
->getType() == ExtTy
) || !isa
<IntegerType
>(Op
->getType()))
492 if (auto *Const
= dyn_cast
<ConstantInt
>(Op
)) {
493 // For subtract, we only need to zext the constant. We only put it in
494 // SafeWrap because SafeWrap.size() is used elsewhere.
495 // For Add and ICmp we need to find how far the constant is from the
496 // top of its original unsigned range and place it the same distance
497 // from the top of its new unsigned range. We can do this by negating
498 // the constant, zero extending it, then negating in the new type.
500 if (SafeWrap
.contains(I
)) {
501 if (I
->getOpcode() == Instruction::ICmp
)
502 NewConst
= -((-Const
->getValue()).zext(PromotedWidth
));
503 else if (I
->getOpcode() == Instruction::Add
&& i
== 1)
504 NewConst
= -((-Const
->getValue()).zext(PromotedWidth
));
506 NewConst
= Const
->getValue().zext(PromotedWidth
);
508 NewConst
= Const
->getValue().zext(PromotedWidth
);
510 I
->setOperand(i
, ConstantInt::get(Const
->getContext(), NewConst
));
511 } else if (isa
<UndefValue
>(Op
))
512 I
->setOperand(i
, ConstantInt::get(ExtTy
, 0));
515 // Mutate the result type, unless this is an icmp or switch.
516 if (!isa
<ICmpInst
>(I
) && !isa
<SwitchInst
>(I
)) {
517 I
->mutateType(ExtTy
);
523 void IRPromoter::TruncateSinks() {
524 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
526 IRBuilder
<> Builder
{Ctx
};
528 auto InsertTrunc
= [&](Value
*V
, Type
*TruncTy
) -> Instruction
* {
529 if (!isa
<Instruction
>(V
) || !isa
<IntegerType
>(V
->getType()))
532 if ((!Promoted
.count(V
) && !NewInsts
.count(V
)) || Sources
.count(V
))
535 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy
<< " Trunc for "
537 Builder
.SetInsertPoint(cast
<Instruction
>(V
));
538 auto *Trunc
= dyn_cast
<Instruction
>(Builder
.CreateTrunc(V
, TruncTy
));
540 NewInsts
.insert(Trunc
);
544 // Fix up any stores or returns that use the results of the promoted
546 for (auto *I
: Sinks
) {
547 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I
<< "\n");
549 // Handle calls separately as we need to iterate over arg operands.
550 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
551 for (unsigned i
= 0; i
< Call
->arg_size(); ++i
) {
552 Value
*Arg
= Call
->getArgOperand(i
);
553 Type
*Ty
= TruncTysMap
[Call
][i
];
554 if (Instruction
*Trunc
= InsertTrunc(Arg
, Ty
)) {
555 Trunc
->moveBefore(Call
);
556 Call
->setArgOperand(i
, Trunc
);
562 // Special case switches because we need to truncate the condition.
563 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
)) {
564 Type
*Ty
= TruncTysMap
[Switch
][0];
565 if (Instruction
*Trunc
= InsertTrunc(Switch
->getCondition(), Ty
)) {
566 Trunc
->moveBefore(Switch
);
567 Switch
->setCondition(Trunc
);
572 // Don't insert a trunc for a zext which can still legally promote.
573 // Nor insert a trunc when the input value to that trunc has the same width
574 // as the zext we are inserting it for. When this happens the input operand
575 // for the zext will be promoted to the same width as the zext's return type
576 // rendering that zext unnecessary. This zext gets removed before the end
578 if (auto ZExt
= dyn_cast
<ZExtInst
>(I
))
579 if (ZExt
->getType()->getScalarSizeInBits() >= PromotedWidth
)
582 // Now handle the others.
583 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
584 Type
*Ty
= TruncTysMap
[I
][i
];
585 if (Instruction
*Trunc
= InsertTrunc(I
->getOperand(i
), Ty
)) {
586 Trunc
->moveBefore(I
);
587 I
->setOperand(i
, Trunc
);
593 void IRPromoter::Cleanup() {
594 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
595 // Some zexts will now have become redundant, along with their trunc
596 // operands, so remove them.
597 for (auto *V
: Visited
) {
598 if (!isa
<ZExtInst
>(V
))
601 auto ZExt
= cast
<ZExtInst
>(V
);
602 if (ZExt
->getDestTy() != ExtTy
)
605 Value
*Src
= ZExt
->getOperand(0);
606 if (ZExt
->getSrcTy() == ZExt
->getDestTy()) {
607 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
609 ReplaceAllUsersOfWith(ZExt
, Src
);
613 // We've inserted a trunc for a zext sink, but we already know that the
614 // input is in range, negating the need for the trunc.
615 if (NewInsts
.count(Src
) && isa
<TruncInst
>(Src
)) {
616 auto *Trunc
= cast
<TruncInst
>(Src
);
617 assert(Trunc
->getOperand(0)->getType() == ExtTy
&&
618 "expected inserted trunc to be operating on i32");
619 ReplaceAllUsersOfWith(ZExt
, Trunc
->getOperand(0));
623 for (auto *I
: InstsToRemove
) {
624 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I
<< "\n");
625 I
->dropAllReferences();
629 void IRPromoter::ConvertTruncs() {
630 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
631 IRBuilder
<> Builder
{Ctx
};
633 for (auto *V
: Visited
) {
634 if (!isa
<TruncInst
>(V
) || Sources
.count(V
))
637 auto *Trunc
= cast
<TruncInst
>(V
);
638 Builder
.SetInsertPoint(Trunc
);
639 IntegerType
*SrcTy
= cast
<IntegerType
>(Trunc
->getOperand(0)->getType());
640 IntegerType
*DestTy
= cast
<IntegerType
>(TruncTysMap
[Trunc
][0]);
642 unsigned NumBits
= DestTy
->getScalarSizeInBits();
644 ConstantInt::get(SrcTy
, APInt::getMaxValue(NumBits
).getZExtValue());
645 Value
*Masked
= Builder
.CreateAnd(Trunc
->getOperand(0), Mask
);
646 if (SrcTy
->getBitWidth() > ExtTy
->getBitWidth())
647 Masked
= Builder
.CreateTrunc(Masked
, ExtTy
);
649 if (auto *I
= dyn_cast
<Instruction
>(Masked
))
652 ReplaceAllUsersOfWith(Trunc
, Masked
);
656 void IRPromoter::Mutate() {
657 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
658 << PromotedWidth
<< "-bits\n");
660 // Cache original types of the values that will likely need truncating
661 for (auto *I
: Sinks
) {
662 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
663 for (Value
*Arg
: Call
->args())
664 TruncTysMap
[Call
].push_back(Arg
->getType());
665 } else if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
666 TruncTysMap
[I
].push_back(Switch
->getCondition()->getType());
668 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
)
669 TruncTysMap
[I
].push_back(I
->getOperand(i
)->getType());
672 for (auto *V
: Visited
) {
673 if (!isa
<TruncInst
>(V
) || Sources
.count(V
))
675 auto *Trunc
= cast
<TruncInst
>(V
);
676 TruncTysMap
[Trunc
].push_back(Trunc
->getDestTy());
679 // Insert zext instructions between sources and their users.
682 // Promote visited instructions, mutating their types in place.
685 // Convert any truncs, that aren't sources, into AND masks.
688 // Insert trunc instructions for use by calls, stores etc...
691 // Finally, remove unecessary zexts and truncs, delete old instructions and
692 // clear the data structures.
695 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
698 /// We disallow booleans to make life easier when dealing with icmps but allow
699 /// any other integer that fits in a scalar register. Void types are accepted
700 /// so we can handle switches.
701 bool TypePromotionImpl::isSupportedType(Value
*V
) {
702 Type
*Ty
= V
->getType();
704 // Allow voids and pointers, these won't be promoted.
705 if (Ty
->isVoidTy() || Ty
->isPointerTy())
708 if (!isa
<IntegerType
>(Ty
) || cast
<IntegerType
>(Ty
)->getBitWidth() == 1 ||
709 cast
<IntegerType
>(Ty
)->getBitWidth() > RegisterBitWidth
)
712 return LessOrEqualTypeSize(V
);
715 /// We accept most instructions, as well as Arguments and ConstantInsts. We
716 /// Disallow casts other than zext and truncs and only allow calls if their
717 /// return value is zeroext. We don't allow opcodes that can introduce sign
719 bool TypePromotionImpl::isSupportedValue(Value
*V
) {
720 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
721 switch (I
->getOpcode()) {
723 return isa
<BinaryOperator
>(I
) && isSupportedType(I
) &&
724 !GenerateSignBits(I
);
725 case Instruction::GetElementPtr
:
726 case Instruction::Store
:
727 case Instruction::Br
:
728 case Instruction::Switch
:
730 case Instruction::PHI
:
731 case Instruction::Select
:
732 case Instruction::Ret
:
733 case Instruction::Load
:
734 case Instruction::Trunc
:
735 return isSupportedType(I
);
736 case Instruction::BitCast
:
737 return I
->getOperand(0)->getType() == I
->getType();
738 case Instruction::ZExt
:
739 return isSupportedType(I
->getOperand(0));
740 case Instruction::ICmp
:
741 // Now that we allow small types than TypeSize, only allow icmp of
742 // TypeSize because they will require a trunc to be legalised.
743 // TODO: Allow icmp of smaller types, and calculate at the end
744 // whether the transform would be beneficial.
745 if (isa
<PointerType
>(I
->getOperand(0)->getType()))
747 return EqualTypeSize(I
->getOperand(0));
748 case Instruction::Call
: {
749 // Special cases for calls as we need to check for zeroext
750 // TODO We should accept calls even if they don't have zeroext, as they
751 // can still be sinks.
752 auto *Call
= cast
<CallInst
>(I
);
753 return isSupportedType(Call
) &&
754 Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
757 } else if (isa
<Constant
>(V
) && !isa
<ConstantExpr
>(V
)) {
758 return isSupportedType(V
);
759 } else if (isa
<Argument
>(V
))
760 return isSupportedType(V
);
762 return isa
<BasicBlock
>(V
);
765 /// Check that the type of V would be promoted and that the original type is
766 /// smaller than the targeted promoted type. Check that we're not trying to
767 /// promote something larger than our base 'TypeSize' type.
768 bool TypePromotionImpl::isLegalToPromote(Value
*V
) {
769 auto *I
= dyn_cast
<Instruction
>(V
);
773 if (SafeToPromote
.count(I
))
776 if (isPromotedResultSafe(I
) || isSafeWrap(I
)) {
777 SafeToPromote
.insert(I
);
783 bool TypePromotionImpl::TryToPromote(Value
*V
, unsigned PromotedWidth
,
784 const LoopInfo
&LI
) {
785 Type
*OrigTy
= V
->getType();
786 TypeSize
= OrigTy
->getPrimitiveSizeInBits().getFixedValue();
787 SafeToPromote
.clear();
790 if (!isSupportedValue(V
) || !shouldPromote(V
) || !isLegalToPromote(V
))
793 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V
<< ", from "
794 << TypeSize
<< " bits to " << PromotedWidth
<< "\n");
796 SetVector
<Value
*> WorkList
;
797 SetVector
<Value
*> Sources
;
798 SetVector
<Instruction
*> Sinks
;
799 SetVector
<Value
*> CurrentVisited
;
802 // Return true if V was added to the worklist as a supported instruction,
803 // if it was already visited, or if we don't need to explore it (e.g.
804 // pointer values and GEPs), and false otherwise.
805 auto AddLegalInst
= [&](Value
*V
) {
806 if (CurrentVisited
.count(V
))
809 // Ignore GEPs because they don't need promoting and the constant indices
810 // will prevent the transformation.
811 if (isa
<GetElementPtrInst
>(V
))
814 if (!isSupportedValue(V
) || (shouldPromote(V
) && !isLegalToPromote(V
))) {
815 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V
<< "\n");
823 // Iterate through, and add to, a tree of operands and users in the use-def.
824 while (!WorkList
.empty()) {
825 Value
*V
= WorkList
.pop_back_val();
826 if (CurrentVisited
.count(V
))
829 // Ignore non-instructions, other than arguments.
830 if (!isa
<Instruction
>(V
) && !isSource(V
))
833 // If we've already visited this value from somewhere, bail now because
834 // the tree has already been explored.
835 // TODO: This could limit the transform, ie if we try to promote something
836 // from an i8 and fail first, before trying an i16.
837 if (AllVisited
.count(V
))
840 CurrentVisited
.insert(V
);
841 AllVisited
.insert(V
);
843 // Calls can be both sources and sinks.
845 Sinks
.insert(cast
<Instruction
>(V
));
850 if (!isSink(V
) && !isSource(V
)) {
851 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
852 // Visit operands of any instruction visited.
853 for (auto &U
: I
->operands()) {
854 if (!AddLegalInst(U
))
860 // Don't visit users of a node which isn't going to be mutated unless its a
862 if (isSource(V
) || shouldPromote(V
)) {
863 for (Use
&U
: V
->uses()) {
864 if (!AddLegalInst(U
.getUser()))
871 dbgs() << "IR Promotion: Visited nodes:\n";
872 for (auto *I
: CurrentVisited
)
876 unsigned ToPromote
= 0;
877 unsigned NonFreeArgs
= 0;
878 unsigned NonLoopSources
= 0, LoopSinks
= 0;
879 SmallPtrSet
<BasicBlock
*, 4> Blocks
;
880 for (auto *CV
: CurrentVisited
) {
881 if (auto *I
= dyn_cast
<Instruction
>(CV
))
882 Blocks
.insert(I
->getParent());
884 if (Sources
.count(CV
)) {
885 if (auto *Arg
= dyn_cast
<Argument
>(CV
))
886 if (!Arg
->hasZExtAttr() && !Arg
->hasSExtAttr())
888 if (!isa
<Instruction
>(CV
) ||
889 !LI
.getLoopFor(cast
<Instruction
>(CV
)->getParent()))
894 if (isa
<PHINode
>(CV
))
896 if (LI
.getLoopFor(cast
<Instruction
>(CV
)->getParent()))
898 if (Sinks
.count(cast
<Instruction
>(CV
)))
903 // DAG optimizations should be able to handle these cases better, especially
904 // for function arguments.
905 if (!isa
<PHINode
>(V
) && !(LoopSinks
&& NonLoopSources
) &&
906 (ToPromote
< 2 || (Blocks
.size() == 1 && NonFreeArgs
> SafeWrap
.size())))
909 IRPromoter
Promoter(*Ctx
, PromotedWidth
, CurrentVisited
, Sources
, Sinks
,
910 SafeWrap
, InstsToRemove
);
915 bool TypePromotionImpl::run(Function
&F
, const TargetMachine
*TM
,
916 const TargetTransformInfo
&TTI
,
917 const LoopInfo
&LI
) {
918 if (DisablePromotion
)
921 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F
.getName() << "\n");
924 SafeToPromote
.clear();
926 bool MadeChange
= false;
927 const DataLayout
&DL
= F
.getDataLayout();
928 const TargetSubtargetInfo
*SubtargetInfo
= TM
->getSubtargetImpl(F
);
929 TLI
= SubtargetInfo
->getTargetLowering();
931 TTI
.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar
).getFixedValue();
932 Ctx
= &F
.getContext();
934 // Return the preferred integer width of the instruction, or zero if we
936 auto GetPromoteWidth
= [&](Instruction
*I
) -> uint32_t {
937 if (!isa
<IntegerType
>(I
->getType()))
940 EVT SrcVT
= TLI
->getValueType(DL
, I
->getType());
941 if (SrcVT
.isSimple() && TLI
->isTypeLegal(SrcVT
.getSimpleVT()))
944 if (TLI
->getTypeAction(*Ctx
, SrcVT
) != TargetLowering::TypePromoteInteger
)
947 EVT PromotedVT
= TLI
->getTypeToTransformTo(*Ctx
, SrcVT
);
948 if (TLI
->isSExtCheaperThanZExt(SrcVT
, PromotedVT
))
950 if (RegisterBitWidth
< PromotedVT
.getFixedSizeInBits()) {
951 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
952 << "for promoted type\n");
956 // TODO: Should we prefer to use RegisterBitWidth instead?
957 return PromotedVT
.getFixedSizeInBits();
960 auto BBIsInLoop
= [&](BasicBlock
*BB
) -> bool {
967 for (BasicBlock
&BB
: F
) {
968 for (Instruction
&I
: BB
) {
969 if (AllVisited
.count(&I
))
972 if (isa
<ZExtInst
>(&I
) && isa
<PHINode
>(I
.getOperand(0)) &&
973 isa
<IntegerType
>(I
.getType()) && BBIsInLoop(&BB
)) {
974 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: "
975 << *I
.getOperand(0) << "\n");
976 EVT ZExtVT
= TLI
->getValueType(DL
, I
.getType());
977 Instruction
*Phi
= static_cast<Instruction
*>(I
.getOperand(0));
978 auto PromoteWidth
= ZExtVT
.getFixedSizeInBits();
979 if (RegisterBitWidth
< PromoteWidth
) {
980 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target "
981 << "register for ZExt type\n");
984 MadeChange
|= TryToPromote(Phi
, PromoteWidth
, LI
);
985 } else if (auto *ICmp
= dyn_cast
<ICmpInst
>(&I
)) {
986 // Search up from icmps to try to promote their operands.
987 // Skip signed or pointer compares
988 if (ICmp
->isSigned())
991 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp
<< "\n");
993 for (auto &Op
: ICmp
->operands()) {
994 if (auto *OpI
= dyn_cast
<Instruction
>(Op
)) {
995 if (auto PromotedWidth
= GetPromoteWidth(OpI
)) {
996 MadeChange
|= TryToPromote(OpI
, PromotedWidth
, LI
);
1003 if (!InstsToRemove
.empty()) {
1004 for (auto *I
: InstsToRemove
)
1005 I
->eraseFromParent();
1006 InstsToRemove
.clear();
1011 SafeToPromote
.clear();
1017 INITIALIZE_PASS_BEGIN(TypePromotionLegacy
, DEBUG_TYPE
, PASS_NAME
, false, false)
1018 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
1019 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
1020 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1021 INITIALIZE_PASS_END(TypePromotionLegacy
, DEBUG_TYPE
, PASS_NAME
, false, false)
1023 char TypePromotionLegacy::ID
= 0;
1025 bool TypePromotionLegacy::runOnFunction(Function
&F
) {
1026 if (skipFunction(F
))
1029 auto &TPC
= getAnalysis
<TargetPassConfig
>();
1030 auto *TM
= &TPC
.getTM
<TargetMachine
>();
1031 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1032 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1034 TypePromotionImpl TP
;
1035 return TP
.run(F
, TM
, TTI
, LI
);
1038 FunctionPass
*llvm::createTypePromotionLegacyPass() {
1039 return new TypePromotionLegacy();
1042 PreservedAnalyses
TypePromotionPass::run(Function
&F
,
1043 FunctionAnalysisManager
&AM
) {
1044 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1045 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1046 TypePromotionImpl TP
;
1048 bool Changed
= TP
.run(F
, TM
, TTI
, LI
);
1050 return PreservedAnalyses::all();
1052 PreservedAnalyses PA
;
1053 PA
.preserveSet
<CFGAnalyses
>();
1054 PA
.preserve
<LoopAnalysis
>();