1 //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a MachineFunctionPass that inserts the appropriate
10 // XRay instrumentation instructions. We look for XRay-specific attributes
11 // on the function to determine whether we should insert the replacement
14 //===---------------------------------------------------------------------===//
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/TargetParser/Triple.h"
37 struct InstrumentationOptions
{
38 // Whether to emit PATCHABLE_TAIL_CALL.
41 // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
42 // return, e.g. conditional return.
43 bool HandleAllReturns
;
46 struct XRayInstrumentation
: public MachineFunctionPass
{
49 XRayInstrumentation() : MachineFunctionPass(ID
) {
50 initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
53 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
55 AU
.addPreserved
<MachineLoopInfoWrapperPass
>();
56 AU
.addPreserved
<MachineDominatorTreeWrapperPass
>();
57 MachineFunctionPass::getAnalysisUsage(AU
);
60 bool runOnMachineFunction(MachineFunction
&MF
) override
;
63 // Replace the original RET instruction with the exit sled code ("patchable
64 // ret" pseudo-instruction), so that at runtime XRay can replace the sled
65 // with a code jumping to XRay trampoline, which calls the tracing handler
66 // and, in the end, issues the RET instruction.
67 // This is the approach to go on CPUs which have a single RET instruction,
69 void replaceRetWithPatchableRet(MachineFunction
&MF
,
70 const TargetInstrInfo
*TII
,
71 InstrumentationOptions
);
73 // Prepend the original return instruction with the exit sled code ("patchable
74 // function exit" pseudo-instruction), preserving the original return
75 // instruction just after the exit sled code.
76 // This is the approach to go on CPUs which have multiple options for the
77 // return instruction, like ARM. For such CPUs we can't just jump into the
78 // XRay trampoline and issue a single return instruction there. We rather
79 // have to call the trampoline and return from it to the original return
80 // instruction of the function being instrumented.
81 void prependRetWithPatchableExit(MachineFunction
&MF
,
82 const TargetInstrInfo
*TII
,
83 InstrumentationOptions
);
86 } // end anonymous namespace
88 void XRayInstrumentation::replaceRetWithPatchableRet(
89 MachineFunction
&MF
, const TargetInstrInfo
*TII
,
90 InstrumentationOptions op
) {
91 // We look for *all* terminators and returns, then replace those with
92 // PATCHABLE_RET instructions.
93 SmallVector
<MachineInstr
*, 4> Terminators
;
94 for (auto &MBB
: MF
) {
95 for (auto &T
: MBB
.terminators()) {
98 (op
.HandleAllReturns
|| T
.getOpcode() == TII
->getReturnOpcode())) {
99 // Replace return instructions with:
100 // PATCHABLE_RET <Opcode>, <Operand>...
101 Opc
= TargetOpcode::PATCHABLE_RET
;
103 if (TII
->isTailCall(T
) && op
.HandleTailcall
) {
104 // Treat the tail call as a return instruction, which has a
105 // different-looking sled than the normal return case.
106 Opc
= TargetOpcode::PATCHABLE_TAIL_CALL
;
109 auto MIB
= BuildMI(MBB
, T
, T
.getDebugLoc(), TII
->get(Opc
))
110 .addImm(T
.getOpcode());
111 for (auto &MO
: T
.operands())
113 Terminators
.push_back(&T
);
114 if (T
.shouldUpdateCallSiteInfo())
115 MF
.eraseCallSiteInfo(&T
);
120 for (auto &I
: Terminators
)
121 I
->eraseFromParent();
124 void XRayInstrumentation::prependRetWithPatchableExit(
125 MachineFunction
&MF
, const TargetInstrInfo
*TII
,
126 InstrumentationOptions op
) {
128 for (auto &T
: MBB
.terminators()) {
131 (op
.HandleAllReturns
|| T
.getOpcode() == TII
->getReturnOpcode())) {
132 Opc
= TargetOpcode::PATCHABLE_FUNCTION_EXIT
;
134 if (TII
->isTailCall(T
) && op
.HandleTailcall
) {
135 Opc
= TargetOpcode::PATCHABLE_TAIL_CALL
;
138 // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
139 // PATCHABLE_TAIL_CALL .
140 BuildMI(MBB
, T
, T
.getDebugLoc(), TII
->get(Opc
));
145 bool XRayInstrumentation::runOnMachineFunction(MachineFunction
&MF
) {
146 auto &F
= MF
.getFunction();
147 auto InstrAttr
= F
.getFnAttribute("function-instrument");
148 bool AlwaysInstrument
= InstrAttr
.isStringAttribute() &&
149 InstrAttr
.getValueAsString() == "xray-always";
150 bool NeverInstrument
= InstrAttr
.isStringAttribute() &&
151 InstrAttr
.getValueAsString() == "xray-never";
152 if (NeverInstrument
&& !AlwaysInstrument
)
154 auto IgnoreLoopsAttr
= F
.getFnAttribute("xray-ignore-loops");
156 uint64_t XRayThreshold
= 0;
157 if (!AlwaysInstrument
) {
158 bool IgnoreLoops
= IgnoreLoopsAttr
.isValid();
159 XRayThreshold
= F
.getFnAttributeAsParsedInteger(
160 "xray-instruction-threshold", std::numeric_limits
<uint64_t>::max());
161 if (XRayThreshold
== std::numeric_limits
<uint64_t>::max())
164 // Count the number of MachineInstr`s in MachineFunction
165 uint64_t MICount
= 0;
166 for (const auto &MBB
: MF
)
167 MICount
+= MBB
.size();
169 bool TooFewInstrs
= MICount
< XRayThreshold
;
172 // Get MachineDominatorTree or compute it on the fly if it's unavailable
174 getAnalysisIfAvailable
<MachineDominatorTreeWrapperPass
>();
175 auto *MDT
= MDTWrapper
? &MDTWrapper
->getDomTree() : nullptr;
176 MachineDominatorTree ComputedMDT
;
178 ComputedMDT
.getBase().recalculate(MF
);
182 // Get MachineLoopInfo or compute it on the fly if it's unavailable
183 auto *MLIWrapper
= getAnalysisIfAvailable
<MachineLoopInfoWrapperPass
>();
184 auto *MLI
= MLIWrapper
? &MLIWrapper
->getLI() : nullptr;
185 MachineLoopInfo ComputedMLI
;
187 ComputedMLI
.analyze(MDT
->getBase());
191 // Check if we have a loop.
192 // FIXME: Maybe make this smarter, and see whether the loops are dependent
193 // on inputs or side-effects?
194 if (MLI
->empty() && TooFewInstrs
)
195 return false; // Function is too small and has no loops.
196 } else if (TooFewInstrs
) {
197 // Function is too small
202 // We look for the first non-empty MachineBasicBlock, so that we can insert
203 // the function instrumentation in the appropriate place.
204 auto MBI
= llvm::find_if(
205 MF
, [&](const MachineBasicBlock
&MBB
) { return !MBB
.empty(); });
207 return false; // The function is empty.
209 auto *TII
= MF
.getSubtarget().getInstrInfo();
210 auto &FirstMBB
= *MBI
;
211 auto &FirstMI
= *FirstMBB
.begin();
213 if (!MF
.getSubtarget().isXRaySupported()) {
214 FirstMI
.emitError("An attempt to perform XRay instrumentation for an"
215 " unsupported target.");
219 if (!F
.hasFnAttribute("xray-skip-entry")) {
220 // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
222 BuildMI(FirstMBB
, FirstMI
, FirstMI
.getDebugLoc(),
223 TII
->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER
));
226 if (!F
.hasFnAttribute("xray-skip-exit")) {
227 switch (MF
.getTarget().getTargetTriple().getArch()) {
228 case Triple::ArchType::arm
:
229 case Triple::ArchType::thumb
:
230 case Triple::ArchType::aarch64
:
231 case Triple::ArchType::hexagon
:
232 case Triple::ArchType::loongarch64
:
233 case Triple::ArchType::mips
:
234 case Triple::ArchType::mipsel
:
235 case Triple::ArchType::mips64
:
236 case Triple::ArchType::mips64el
: {
237 // For the architectures which don't have a single return instruction
238 InstrumentationOptions op
;
239 op
.HandleTailcall
= false;
240 op
.HandleAllReturns
= true;
241 prependRetWithPatchableExit(MF
, TII
, op
);
244 case Triple::ArchType::ppc64le
: {
245 // PPC has conditional returns. Turn them into branch and plain returns.
246 InstrumentationOptions op
;
247 op
.HandleTailcall
= false;
248 op
.HandleAllReturns
= true;
249 replaceRetWithPatchableRet(MF
, TII
, op
);
253 // For the architectures that have a single return instruction (such as
255 InstrumentationOptions op
;
256 op
.HandleTailcall
= true;
257 op
.HandleAllReturns
= false;
258 replaceRetWithPatchableRet(MF
, TII
, op
);
266 char XRayInstrumentation::ID
= 0;
267 char &llvm::XRayInstrumentationID
= XRayInstrumentation::ID
;
268 INITIALIZE_PASS_BEGIN(XRayInstrumentation
, "xray-instrumentation",
269 "Insert XRay ops", false, false)
270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass
)
271 INITIALIZE_PASS_END(XRayInstrumentation
, "xray-instrumentation",
272 "Insert XRay ops", false, false)