Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / MC / MCAssembler.cpp
blobc3da4bb5cc363c15ad266791e700056b2148ebb2
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCCodeView.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDwarf.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCFixupKindInfo.h"
25 #include "llvm/MC/MCFragment.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <tuple>
41 #include <utility>
43 using namespace llvm;
45 namespace llvm {
46 class MCSubtargetInfo;
49 #define DEBUG_TYPE "assembler"
51 namespace {
52 namespace stats {
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56 "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58 "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedCompactEncodedInstFragments,
60 "Number of emitted assembler fragments - compact encoded inst");
61 STATISTIC(EmittedAlignFragments,
62 "Number of emitted assembler fragments - align");
63 STATISTIC(EmittedFillFragments,
64 "Number of emitted assembler fragments - fill");
65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
67 STATISTIC(evaluateFixup, "Number of evaluated fixups");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
72 } // end namespace stats
73 } // end anonymous namespace
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
80 /* *** */
82 MCAssembler::MCAssembler(MCContext &Context,
83 std::unique_ptr<MCAsmBackend> Backend,
84 std::unique_ptr<MCCodeEmitter> Emitter,
85 std::unique_ptr<MCObjectWriter> Writer)
86 : Context(Context), Backend(std::move(Backend)),
87 Emitter(std::move(Emitter)), Writer(std::move(Writer)) {}
89 void MCAssembler::reset() {
90 RelaxAll = false;
91 Sections.clear();
92 Symbols.clear();
93 ThumbFuncs.clear();
94 BundleAlignSize = 0;
96 // reset objects owned by us
97 if (getBackendPtr())
98 getBackendPtr()->reset();
99 if (getEmitterPtr())
100 getEmitterPtr()->reset();
101 if (Writer)
102 Writer->reset();
105 bool MCAssembler::registerSection(MCSection &Section) {
106 if (Section.isRegistered())
107 return false;
108 assert(Section.curFragList()->Head && "allocInitialFragment not called");
109 Sections.push_back(&Section);
110 Section.setIsRegistered(true);
111 return true;
114 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
115 if (ThumbFuncs.count(Symbol))
116 return true;
118 if (!Symbol->isVariable())
119 return false;
121 const MCExpr *Expr = Symbol->getVariableValue();
123 MCValue V;
124 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
125 return false;
127 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
128 return false;
130 const MCSymbolRefExpr *Ref = V.getSymA();
131 if (!Ref)
132 return false;
134 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
135 return false;
137 const MCSymbol &Sym = Ref->getSymbol();
138 if (!isThumbFunc(&Sym))
139 return false;
141 ThumbFuncs.insert(Symbol); // Cache it.
142 return true;
145 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF,
146 MCValue &Target, const MCSubtargetInfo *STI,
147 uint64_t &Value, bool &WasForced) const {
148 ++stats::evaluateFixup;
150 // FIXME: This code has some duplication with recordRelocation. We should
151 // probably merge the two into a single callback that tries to evaluate a
152 // fixup and records a relocation if one is needed.
154 // On error claim to have completely evaluated the fixup, to prevent any
155 // further processing from being done.
156 const MCExpr *Expr = Fixup.getValue();
157 MCContext &Ctx = getContext();
158 Value = 0;
159 WasForced = false;
160 if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) {
161 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
162 return true;
164 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
165 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
166 Ctx.reportError(Fixup.getLoc(),
167 "unsupported subtraction of qualified symbol");
168 return true;
172 assert(getBackendPtr() && "Expected assembler backend");
173 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
174 MCFixupKindInfo::FKF_IsTarget;
176 if (IsTarget)
177 return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI,
178 Value, WasForced);
180 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
181 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
182 MCFixupKindInfo::FKF_IsPCRel;
184 bool IsResolved = false;
185 if (IsPCRel) {
186 if (Target.getSymB()) {
187 IsResolved = false;
188 } else if (!Target.getSymA()) {
189 IsResolved = false;
190 } else {
191 const MCSymbolRefExpr *A = Target.getSymA();
192 const MCSymbol &SA = A->getSymbol();
193 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
194 IsResolved = false;
195 } else {
196 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
197 getWriter().isSymbolRefDifferenceFullyResolvedImpl(
198 *this, SA, *DF, false, true);
201 } else {
202 IsResolved = Target.isAbsolute();
205 Value = Target.getConstant();
207 if (const MCSymbolRefExpr *A = Target.getSymA()) {
208 const MCSymbol &Sym = A->getSymbol();
209 if (Sym.isDefined())
210 Value += getSymbolOffset(Sym);
212 if (const MCSymbolRefExpr *B = Target.getSymB()) {
213 const MCSymbol &Sym = B->getSymbol();
214 if (Sym.isDefined())
215 Value -= getSymbolOffset(Sym);
218 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
219 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
220 assert((ShouldAlignPC ? IsPCRel : true) &&
221 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
223 if (IsPCRel) {
224 uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset();
226 // A number of ARM fixups in Thumb mode require that the effective PC
227 // address be determined as the 32-bit aligned version of the actual offset.
228 if (ShouldAlignPC) Offset &= ~0x3;
229 Value -= Offset;
232 // Let the backend force a relocation if needed.
233 if (IsResolved &&
234 getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) {
235 IsResolved = false;
236 WasForced = true;
239 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
240 // recordRelocation handle non-VK_None cases like A@plt-B+C.
241 if (!IsResolved && Target.getSymA() && Target.getSymB() &&
242 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
243 getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value))
244 return true;
246 return IsResolved;
249 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
250 assert(getBackendPtr() && "Requires assembler backend");
251 switch (F.getKind()) {
252 case MCFragment::FT_Data:
253 return cast<MCDataFragment>(F).getContents().size();
254 case MCFragment::FT_Relaxable:
255 return cast<MCRelaxableFragment>(F).getContents().size();
256 case MCFragment::FT_CompactEncodedInst:
257 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
258 case MCFragment::FT_Fill: {
259 auto &FF = cast<MCFillFragment>(F);
260 int64_t NumValues = 0;
261 if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
262 getContext().reportError(FF.getLoc(),
263 "expected assembly-time absolute expression");
264 return 0;
266 int64_t Size = NumValues * FF.getValueSize();
267 if (Size < 0) {
268 getContext().reportError(FF.getLoc(), "invalid number of bytes");
269 return 0;
271 return Size;
274 case MCFragment::FT_Nops:
275 return cast<MCNopsFragment>(F).getNumBytes();
277 case MCFragment::FT_LEB:
278 return cast<MCLEBFragment>(F).getContents().size();
280 case MCFragment::FT_BoundaryAlign:
281 return cast<MCBoundaryAlignFragment>(F).getSize();
283 case MCFragment::FT_SymbolId:
284 return 4;
286 case MCFragment::FT_Align: {
287 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
288 unsigned Offset = getFragmentOffset(AF);
289 unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
291 // Insert extra Nops for code alignment if the target define
292 // shouldInsertExtraNopBytesForCodeAlign target hook.
293 if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
294 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
295 return Size;
297 // If we are padding with nops, force the padding to be larger than the
298 // minimum nop size.
299 if (Size > 0 && AF.hasEmitNops()) {
300 while (Size % getBackend().getMinimumNopSize())
301 Size += AF.getAlignment().value();
303 if (Size > AF.getMaxBytesToEmit())
304 return 0;
305 return Size;
308 case MCFragment::FT_Org: {
309 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
310 MCValue Value;
311 if (!OF.getOffset().evaluateAsValue(Value, *this)) {
312 getContext().reportError(OF.getLoc(),
313 "expected assembly-time absolute expression");
314 return 0;
317 uint64_t FragmentOffset = getFragmentOffset(OF);
318 int64_t TargetLocation = Value.getConstant();
319 if (const MCSymbolRefExpr *A = Value.getSymA()) {
320 uint64_t Val;
321 if (!getSymbolOffset(A->getSymbol(), Val)) {
322 getContext().reportError(OF.getLoc(), "expected absolute expression");
323 return 0;
325 TargetLocation += Val;
327 int64_t Size = TargetLocation - FragmentOffset;
328 if (Size < 0 || Size >= 0x40000000) {
329 getContext().reportError(
330 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
331 "' (at offset '" + Twine(FragmentOffset) + "')");
332 return 0;
334 return Size;
337 case MCFragment::FT_Dwarf:
338 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
339 case MCFragment::FT_DwarfFrame:
340 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
341 case MCFragment::FT_CVInlineLines:
342 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
343 case MCFragment::FT_CVDefRange:
344 return cast<MCCVDefRangeFragment>(F).getContents().size();
345 case MCFragment::FT_PseudoProbe:
346 return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
347 case MCFragment::FT_Dummy:
348 llvm_unreachable("Should not have been added");
351 llvm_unreachable("invalid fragment kind");
354 // Compute the amount of padding required before the fragment \p F to
355 // obey bundling restrictions, where \p FOffset is the fragment's offset in
356 // its section and \p FSize is the fragment's size.
357 static uint64_t computeBundlePadding(unsigned BundleSize,
358 const MCEncodedFragment *F,
359 uint64_t FOffset, uint64_t FSize) {
360 uint64_t OffsetInBundle = FOffset & (BundleSize - 1);
361 uint64_t EndOfFragment = OffsetInBundle + FSize;
363 // There are two kinds of bundling restrictions:
365 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
366 // *end* on a bundle boundary.
367 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
368 // would, add padding until the end of the bundle so that the fragment
369 // will start in a new one.
370 if (F->alignToBundleEnd()) {
371 // Three possibilities here:
373 // A) The fragment just happens to end at a bundle boundary, so we're good.
374 // B) The fragment ends before the current bundle boundary: pad it just
375 // enough to reach the boundary.
376 // C) The fragment ends after the current bundle boundary: pad it until it
377 // reaches the end of the next bundle boundary.
379 // Note: this code could be made shorter with some modulo trickery, but it's
380 // intentionally kept in its more explicit form for simplicity.
381 if (EndOfFragment == BundleSize)
382 return 0;
383 else if (EndOfFragment < BundleSize)
384 return BundleSize - EndOfFragment;
385 else { // EndOfFragment > BundleSize
386 return 2 * BundleSize - EndOfFragment;
388 } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
389 return BundleSize - OffsetInBundle;
390 else
391 return 0;
394 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const {
395 // If bundling is enabled and this fragment has instructions in it, it has to
396 // obey the bundling restrictions. With padding, we'll have:
399 // BundlePadding
400 // |||
401 // -------------------------------------
402 // Prev |##########| F |
403 // -------------------------------------
404 // ^
405 // |
406 // F->Offset
408 // The fragment's offset will point to after the padding, and its computed
409 // size won't include the padding.
411 // ".align N" is an example of a directive that introduces multiple
412 // fragments. We could add a special case to handle ".align N" by emitting
413 // within-fragment padding (which would produce less padding when N is less
414 // than the bundle size), but for now we don't.
416 assert(isa<MCEncodedFragment>(F) &&
417 "Only MCEncodedFragment implementations have instructions");
418 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
419 uint64_t FSize = computeFragmentSize(*EF);
421 if (FSize > getBundleAlignSize())
422 report_fatal_error("Fragment can't be larger than a bundle size");
424 uint64_t RequiredBundlePadding =
425 computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize);
426 if (RequiredBundlePadding > UINT8_MAX)
427 report_fatal_error("Padding cannot exceed 255 bytes");
428 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
429 EF->Offset += RequiredBundlePadding;
430 if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev))
431 if (DF->getContents().empty())
432 DF->Offset = EF->Offset;
435 void MCAssembler::ensureValid(MCSection &Sec) const {
436 if (Sec.hasLayout())
437 return;
438 Sec.setHasLayout(true);
439 MCFragment *Prev = nullptr;
440 uint64_t Offset = 0;
441 for (MCFragment &F : Sec) {
442 F.Offset = Offset;
443 if (isBundlingEnabled() && F.hasInstructions()) {
444 layoutBundle(Prev, &F);
445 Offset = F.Offset;
447 Offset += computeFragmentSize(F);
448 Prev = &F;
452 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const {
453 ensureValid(*F.getParent());
454 return F.Offset;
457 // Simple getSymbolOffset helper for the non-variable case.
458 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
459 bool ReportError, uint64_t &Val) {
460 if (!S.getFragment()) {
461 if (ReportError)
462 report_fatal_error("unable to evaluate offset to undefined symbol '" +
463 S.getName() + "'");
464 return false;
466 Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
467 return true;
470 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
471 bool ReportError, uint64_t &Val) {
472 if (!S.isVariable())
473 return getLabelOffset(Asm, S, ReportError, Val);
475 // If SD is a variable, evaluate it.
476 MCValue Target;
477 if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
478 report_fatal_error("unable to evaluate offset for variable '" +
479 S.getName() + "'");
481 uint64_t Offset = Target.getConstant();
483 const MCSymbolRefExpr *A = Target.getSymA();
484 if (A) {
485 uint64_t ValA;
486 // FIXME: On most platforms, `Target`'s component symbols are labels from
487 // having been simplified during evaluation, but on Mach-O they can be
488 // variables due to PR19203. This, and the line below for `B` can be
489 // restored to call `getLabelOffset` when PR19203 is fixed.
490 if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA))
491 return false;
492 Offset += ValA;
495 const MCSymbolRefExpr *B = Target.getSymB();
496 if (B) {
497 uint64_t ValB;
498 if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB))
499 return false;
500 Offset -= ValB;
503 Val = Offset;
504 return true;
507 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
508 return getSymbolOffsetImpl(*this, S, false, Val);
511 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
512 uint64_t Val;
513 getSymbolOffsetImpl(*this, S, true, Val);
514 return Val;
517 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
518 assert(HasLayout);
519 if (!Symbol.isVariable())
520 return &Symbol;
522 const MCExpr *Expr = Symbol.getVariableValue();
523 MCValue Value;
524 if (!Expr->evaluateAsValue(Value, *this)) {
525 getContext().reportError(Expr->getLoc(),
526 "expression could not be evaluated");
527 return nullptr;
530 const MCSymbolRefExpr *RefB = Value.getSymB();
531 if (RefB) {
532 getContext().reportError(
533 Expr->getLoc(),
534 Twine("symbol '") + RefB->getSymbol().getName() +
535 "' could not be evaluated in a subtraction expression");
536 return nullptr;
539 const MCSymbolRefExpr *A = Value.getSymA();
540 if (!A)
541 return nullptr;
543 const MCSymbol &ASym = A->getSymbol();
544 if (ASym.isCommon()) {
545 getContext().reportError(Expr->getLoc(),
546 "Common symbol '" + ASym.getName() +
547 "' cannot be used in assignment expr");
548 return nullptr;
551 return &ASym;
554 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
555 assert(HasLayout);
556 // The size is the last fragment's end offset.
557 const MCFragment &F = *Sec.curFragList()->Tail;
558 return getFragmentOffset(F) + computeFragmentSize(F);
561 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
562 // Virtual sections have no file size.
563 if (Sec.isVirtualSection())
564 return 0;
565 return getSectionAddressSize(Sec);
568 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
569 bool Changed = !Symbol.isRegistered();
570 if (Changed) {
571 Symbol.setIsRegistered(true);
572 Symbols.push_back(&Symbol);
574 return Changed;
577 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
578 const MCEncodedFragment &EF,
579 uint64_t FSize) const {
580 assert(getBackendPtr() && "Expected assembler backend");
581 // Should NOP padding be written out before this fragment?
582 unsigned BundlePadding = EF.getBundlePadding();
583 if (BundlePadding > 0) {
584 assert(isBundlingEnabled() &&
585 "Writing bundle padding with disabled bundling");
586 assert(EF.hasInstructions() &&
587 "Writing bundle padding for a fragment without instructions");
589 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
590 const MCSubtargetInfo *STI = EF.getSubtargetInfo();
591 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
592 // If the padding itself crosses a bundle boundary, it must be emitted
593 // in 2 pieces, since even nop instructions must not cross boundaries.
594 // v--------------v <- BundleAlignSize
595 // v---------v <- BundlePadding
596 // ----------------------------
597 // | Prev |####|####| F |
598 // ----------------------------
599 // ^-------------------^ <- TotalLength
600 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
601 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
602 report_fatal_error("unable to write NOP sequence of " +
603 Twine(DistanceToBoundary) + " bytes");
604 BundlePadding -= DistanceToBoundary;
606 if (!getBackend().writeNopData(OS, BundlePadding, STI))
607 report_fatal_error("unable to write NOP sequence of " +
608 Twine(BundlePadding) + " bytes");
612 /// Write the fragment \p F to the output file.
613 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
614 const MCFragment &F) {
615 // FIXME: Embed in fragments instead?
616 uint64_t FragmentSize = Asm.computeFragmentSize(F);
618 llvm::endianness Endian = Asm.getBackend().Endian;
620 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
621 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
623 // This variable (and its dummy usage) is to participate in the assert at
624 // the end of the function.
625 uint64_t Start = OS.tell();
626 (void) Start;
628 ++stats::EmittedFragments;
630 switch (F.getKind()) {
631 case MCFragment::FT_Align: {
632 ++stats::EmittedAlignFragments;
633 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
634 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
636 uint64_t Count = FragmentSize / AF.getValueSize();
638 // FIXME: This error shouldn't actually occur (the front end should emit
639 // multiple .align directives to enforce the semantics it wants), but is
640 // severe enough that we want to report it. How to handle this?
641 if (Count * AF.getValueSize() != FragmentSize)
642 report_fatal_error("undefined .align directive, value size '" +
643 Twine(AF.getValueSize()) +
644 "' is not a divisor of padding size '" +
645 Twine(FragmentSize) + "'");
647 // See if we are aligning with nops, and if so do that first to try to fill
648 // the Count bytes. Then if that did not fill any bytes or there are any
649 // bytes left to fill use the Value and ValueSize to fill the rest.
650 // If we are aligning with nops, ask that target to emit the right data.
651 if (AF.hasEmitNops()) {
652 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
653 report_fatal_error("unable to write nop sequence of " +
654 Twine(Count) + " bytes");
655 break;
658 // Otherwise, write out in multiples of the value size.
659 for (uint64_t i = 0; i != Count; ++i) {
660 switch (AF.getValueSize()) {
661 default: llvm_unreachable("Invalid size!");
662 case 1: OS << char(AF.getValue()); break;
663 case 2:
664 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
665 break;
666 case 4:
667 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
668 break;
669 case 8:
670 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
671 break;
674 break;
677 case MCFragment::FT_Data:
678 ++stats::EmittedDataFragments;
679 OS << cast<MCDataFragment>(F).getContents();
680 break;
682 case MCFragment::FT_Relaxable:
683 ++stats::EmittedRelaxableFragments;
684 OS << cast<MCRelaxableFragment>(F).getContents();
685 break;
687 case MCFragment::FT_CompactEncodedInst:
688 ++stats::EmittedCompactEncodedInstFragments;
689 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
690 break;
692 case MCFragment::FT_Fill: {
693 ++stats::EmittedFillFragments;
694 const MCFillFragment &FF = cast<MCFillFragment>(F);
695 uint64_t V = FF.getValue();
696 unsigned VSize = FF.getValueSize();
697 const unsigned MaxChunkSize = 16;
698 char Data[MaxChunkSize];
699 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
700 // Duplicate V into Data as byte vector to reduce number of
701 // writes done. As such, do endian conversion here.
702 for (unsigned I = 0; I != VSize; ++I) {
703 unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
704 Data[I] = uint8_t(V >> (index * 8));
706 for (unsigned I = VSize; I < MaxChunkSize; ++I)
707 Data[I] = Data[I - VSize];
709 // Set to largest multiple of VSize in Data.
710 const unsigned NumPerChunk = MaxChunkSize / VSize;
711 // Set ChunkSize to largest multiple of VSize in Data
712 const unsigned ChunkSize = VSize * NumPerChunk;
714 // Do copies by chunk.
715 StringRef Ref(Data, ChunkSize);
716 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
717 OS << Ref;
719 // do remainder if needed.
720 unsigned TrailingCount = FragmentSize % ChunkSize;
721 if (TrailingCount)
722 OS.write(Data, TrailingCount);
723 break;
726 case MCFragment::FT_Nops: {
727 ++stats::EmittedNopsFragments;
728 const MCNopsFragment &NF = cast<MCNopsFragment>(F);
730 int64_t NumBytes = NF.getNumBytes();
731 int64_t ControlledNopLength = NF.getControlledNopLength();
732 int64_t MaximumNopLength =
733 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
735 assert(NumBytes > 0 && "Expected positive NOPs fragment size");
736 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
738 if (ControlledNopLength > MaximumNopLength) {
739 Asm.getContext().reportError(NF.getLoc(),
740 "illegal NOP size " +
741 std::to_string(ControlledNopLength) +
742 ". (expected within [0, " +
743 std::to_string(MaximumNopLength) + "])");
744 // Clamp the NOP length as reportError does not stop the execution
745 // immediately.
746 ControlledNopLength = MaximumNopLength;
749 // Use maximum value if the size of each NOP is not specified
750 if (!ControlledNopLength)
751 ControlledNopLength = MaximumNopLength;
753 while (NumBytes) {
754 uint64_t NumBytesToEmit =
755 (uint64_t)std::min(NumBytes, ControlledNopLength);
756 assert(NumBytesToEmit && "try to emit empty NOP instruction");
757 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
758 NF.getSubtargetInfo())) {
759 report_fatal_error("unable to write nop sequence of the remaining " +
760 Twine(NumBytesToEmit) + " bytes");
761 break;
763 NumBytes -= NumBytesToEmit;
765 break;
768 case MCFragment::FT_LEB: {
769 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
770 OS << LF.getContents();
771 break;
774 case MCFragment::FT_BoundaryAlign: {
775 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
776 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
777 report_fatal_error("unable to write nop sequence of " +
778 Twine(FragmentSize) + " bytes");
779 break;
782 case MCFragment::FT_SymbolId: {
783 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
784 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
785 break;
788 case MCFragment::FT_Org: {
789 ++stats::EmittedOrgFragments;
790 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
792 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
793 OS << char(OF.getValue());
795 break;
798 case MCFragment::FT_Dwarf: {
799 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
800 OS << OF.getContents();
801 break;
803 case MCFragment::FT_DwarfFrame: {
804 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
805 OS << CF.getContents();
806 break;
808 case MCFragment::FT_CVInlineLines: {
809 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
810 OS << OF.getContents();
811 break;
813 case MCFragment::FT_CVDefRange: {
814 const auto &DRF = cast<MCCVDefRangeFragment>(F);
815 OS << DRF.getContents();
816 break;
818 case MCFragment::FT_PseudoProbe: {
819 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
820 OS << PF.getContents();
821 break;
823 case MCFragment::FT_Dummy:
824 llvm_unreachable("Should not have been added");
827 assert(OS.tell() - Start == FragmentSize &&
828 "The stream should advance by fragment size");
831 void MCAssembler::writeSectionData(raw_ostream &OS,
832 const MCSection *Sec) const {
833 assert(getBackendPtr() && "Expected assembler backend");
835 // Ignore virtual sections.
836 if (Sec->isVirtualSection()) {
837 assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
839 // Check that contents are only things legal inside a virtual section.
840 for (const MCFragment &F : *Sec) {
841 switch (F.getKind()) {
842 default: llvm_unreachable("Invalid fragment in virtual section!");
843 case MCFragment::FT_Data: {
844 // Check that we aren't trying to write a non-zero contents (or fixups)
845 // into a virtual section. This is to support clients which use standard
846 // directives to fill the contents of virtual sections.
847 const MCDataFragment &DF = cast<MCDataFragment>(F);
848 if (DF.fixup_begin() != DF.fixup_end())
849 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
850 " section '" + Sec->getName() +
851 "' cannot have fixups");
852 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
853 if (DF.getContents()[i]) {
854 getContext().reportError(SMLoc(),
855 Sec->getVirtualSectionKind() +
856 " section '" + Sec->getName() +
857 "' cannot have non-zero initializers");
858 break;
860 break;
862 case MCFragment::FT_Align:
863 // Check that we aren't trying to write a non-zero value into a virtual
864 // section.
865 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
866 cast<MCAlignFragment>(F).getValue() == 0) &&
867 "Invalid align in virtual section!");
868 break;
869 case MCFragment::FT_Fill:
870 assert((cast<MCFillFragment>(F).getValue() == 0) &&
871 "Invalid fill in virtual section!");
872 break;
873 case MCFragment::FT_Org:
874 break;
878 return;
881 uint64_t Start = OS.tell();
882 (void)Start;
884 for (const MCFragment &F : *Sec)
885 writeFragment(OS, *this, F);
887 assert(getContext().hadError() ||
888 OS.tell() - Start == getSectionAddressSize(*Sec));
891 std::tuple<MCValue, uint64_t, bool>
892 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup,
893 const MCSubtargetInfo *STI) {
894 // Evaluate the fixup.
895 MCValue Target;
896 uint64_t FixedValue;
897 bool WasForced;
898 bool IsResolved =
899 evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced);
900 if (!IsResolved) {
901 // The fixup was unresolved, we need a relocation. Inform the object
902 // writer of the relocation, and give it an opportunity to adjust the
903 // fixup value if need be.
904 getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue);
906 return std::make_tuple(Target, FixedValue, IsResolved);
909 void MCAssembler::layout() {
910 assert(getBackendPtr() && "Expected assembler backend");
911 DEBUG_WITH_TYPE("mc-dump", {
912 errs() << "assembler backend - pre-layout\n--\n";
913 dump(); });
915 // Assign section ordinals.
916 unsigned SectionIndex = 0;
917 for (MCSection &Sec : *this) {
918 Sec.setOrdinal(SectionIndex++);
920 // Chain together fragments from all subsections.
921 if (Sec.Subsections.size() > 1) {
922 MCDummyFragment Dummy;
923 MCFragment *Tail = &Dummy;
924 for (auto &[_, List] : Sec.Subsections) {
925 assert(List.Head);
926 Tail->Next = List.Head;
927 Tail = List.Tail;
929 Sec.Subsections.clear();
930 Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
931 Sec.CurFragList = &Sec.Subsections[0].second;
933 unsigned FragmentIndex = 0;
934 for (MCFragment &Frag : Sec)
935 Frag.setLayoutOrder(FragmentIndex++);
939 // Layout until everything fits.
940 this->HasLayout = true;
941 while (layoutOnce()) {
942 if (getContext().hadError())
943 return;
944 // Size of fragments in one section can depend on the size of fragments in
945 // another. If any fragment has changed size, we have to re-layout (and
946 // as a result possibly further relax) all.
947 for (MCSection &Sec : *this)
948 Sec.setHasLayout(false);
951 DEBUG_WITH_TYPE("mc-dump", {
952 errs() << "assembler backend - post-relaxation\n--\n";
953 dump(); });
955 // Finalize the layout, including fragment lowering.
956 getBackend().finishLayout(*this);
958 DEBUG_WITH_TYPE("mc-dump", {
959 errs() << "assembler backend - final-layout\n--\n";
960 dump(); });
962 // Allow the object writer a chance to perform post-layout binding (for
963 // example, to set the index fields in the symbol data).
964 getWriter().executePostLayoutBinding(*this);
966 // Evaluate and apply the fixups, generating relocation entries as necessary.
967 for (MCSection &Sec : *this) {
968 for (MCFragment &Frag : Sec) {
969 ArrayRef<MCFixup> Fixups;
970 MutableArrayRef<char> Contents;
971 const MCSubtargetInfo *STI = nullptr;
973 // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
974 switch (Frag.getKind()) {
975 default:
976 continue;
977 case MCFragment::FT_Align: {
978 MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
979 // Insert fixup type for code alignment if the target define
980 // shouldInsertFixupForCodeAlign target hook.
981 if (Sec.useCodeAlign() && AF.hasEmitNops())
982 getBackend().shouldInsertFixupForCodeAlign(*this, AF);
983 continue;
985 case MCFragment::FT_Data: {
986 MCDataFragment &DF = cast<MCDataFragment>(Frag);
987 Fixups = DF.getFixups();
988 Contents = DF.getContents();
989 STI = DF.getSubtargetInfo();
990 assert(!DF.hasInstructions() || STI != nullptr);
991 break;
993 case MCFragment::FT_Relaxable: {
994 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
995 Fixups = RF.getFixups();
996 Contents = RF.getContents();
997 STI = RF.getSubtargetInfo();
998 assert(!RF.hasInstructions() || STI != nullptr);
999 break;
1001 case MCFragment::FT_CVDefRange: {
1002 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
1003 Fixups = CF.getFixups();
1004 Contents = CF.getContents();
1005 break;
1007 case MCFragment::FT_Dwarf: {
1008 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
1009 Fixups = DF.getFixups();
1010 Contents = DF.getContents();
1011 break;
1013 case MCFragment::FT_DwarfFrame: {
1014 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
1015 Fixups = DF.getFixups();
1016 Contents = DF.getContents();
1017 break;
1019 case MCFragment::FT_LEB: {
1020 auto &LF = cast<MCLEBFragment>(Frag);
1021 Fixups = LF.getFixups();
1022 Contents = LF.getContents();
1023 break;
1025 case MCFragment::FT_PseudoProbe: {
1026 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
1027 Fixups = PF.getFixups();
1028 Contents = PF.getContents();
1029 break;
1032 for (const MCFixup &Fixup : Fixups) {
1033 uint64_t FixedValue;
1034 bool IsResolved;
1035 MCValue Target;
1036 std::tie(Target, FixedValue, IsResolved) =
1037 handleFixup(Frag, Fixup, STI);
1038 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
1039 IsResolved, STI);
1045 void MCAssembler::Finish() {
1046 layout();
1048 // Write the object file.
1049 stats::ObjectBytes += getWriter().writeObject(*this);
1051 HasLayout = false;
1054 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
1055 const MCRelaxableFragment *DF) const {
1056 assert(getBackendPtr() && "Expected assembler backend");
1057 MCValue Target;
1058 uint64_t Value;
1059 bool WasForced;
1060 bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(),
1061 Value, WasForced);
1062 if (Target.getSymA() &&
1063 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
1064 Fixup.getKind() == FK_Data_1)
1065 return false;
1066 return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved,
1067 Value, DF, WasForced);
1070 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const {
1071 assert(getBackendPtr() && "Expected assembler backend");
1072 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
1073 // are intentionally pushing out inst fragments, or because we relaxed a
1074 // previous instruction to one that doesn't need relaxation.
1075 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
1076 return false;
1078 for (const MCFixup &Fixup : F->getFixups())
1079 if (fixupNeedsRelaxation(Fixup, F))
1080 return true;
1082 return false;
1085 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) {
1086 assert(getEmitterPtr() &&
1087 "Expected CodeEmitter defined for relaxInstruction");
1088 if (!fragmentNeedsRelaxation(&F))
1089 return false;
1091 ++stats::RelaxedInstructions;
1093 // FIXME-PERF: We could immediately lower out instructions if we can tell
1094 // they are fully resolved, to avoid retesting on later passes.
1096 // Relax the fragment.
1098 MCInst Relaxed = F.getInst();
1099 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1101 // Encode the new instruction.
1102 F.setInst(Relaxed);
1103 F.getFixups().clear();
1104 F.getContents().clear();
1105 getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1106 *F.getSubtargetInfo());
1107 return true;
1110 bool MCAssembler::relaxLEB(MCLEBFragment &LF) {
1111 const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1112 unsigned PadTo = OldSize;
1113 int64_t Value;
1114 SmallVectorImpl<char> &Data = LF.getContents();
1115 LF.getFixups().clear();
1116 // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1117 // requires that .uleb128 A-B is foldable where A and B reside in different
1118 // fragments. This is used by __gcc_except_table.
1119 bool Abs = getWriter().getSubsectionsViaSymbols()
1120 ? LF.getValue().evaluateKnownAbsolute(Value, *this)
1121 : LF.getValue().evaluateAsAbsolute(Value, *this);
1122 if (!Abs) {
1123 bool Relaxed, UseZeroPad;
1124 std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value);
1125 if (!Relaxed) {
1126 getContext().reportError(LF.getValue().getLoc(),
1127 Twine(LF.isSigned() ? ".s" : ".u") +
1128 "leb128 expression is not absolute");
1129 LF.setValue(MCConstantExpr::create(0, Context));
1131 uint8_t Tmp[10]; // maximum size: ceil(64/7)
1132 PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1133 if (UseZeroPad)
1134 Value = 0;
1136 Data.clear();
1137 raw_svector_ostream OSE(Data);
1138 // The compiler can generate EH table assembly that is impossible to assemble
1139 // without either adding padding to an LEB fragment or adding extra padding
1140 // to a later alignment fragment. To accommodate such tables, relaxation can
1141 // only increase an LEB fragment size here, not decrease it. See PR35809.
1142 if (LF.isSigned())
1143 encodeSLEB128(Value, OSE, PadTo);
1144 else
1145 encodeULEB128(Value, OSE, PadTo);
1146 return OldSize != LF.getContents().size();
1149 /// Check if the branch crosses the boundary.
1151 /// \param StartAddr start address of the fused/unfused branch.
1152 /// \param Size size of the fused/unfused branch.
1153 /// \param BoundaryAlignment alignment requirement of the branch.
1154 /// \returns true if the branch cross the boundary.
1155 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1156 Align BoundaryAlignment) {
1157 uint64_t EndAddr = StartAddr + Size;
1158 return (StartAddr >> Log2(BoundaryAlignment)) !=
1159 ((EndAddr - 1) >> Log2(BoundaryAlignment));
1162 /// Check if the branch is against the boundary.
1164 /// \param StartAddr start address of the fused/unfused branch.
1165 /// \param Size size of the fused/unfused branch.
1166 /// \param BoundaryAlignment alignment requirement of the branch.
1167 /// \returns true if the branch is against the boundary.
1168 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1169 Align BoundaryAlignment) {
1170 uint64_t EndAddr = StartAddr + Size;
1171 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1174 /// Check if the branch needs padding.
1176 /// \param StartAddr start address of the fused/unfused branch.
1177 /// \param Size size of the fused/unfused branch.
1178 /// \param BoundaryAlignment alignment requirement of the branch.
1179 /// \returns true if the branch needs padding.
1180 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1181 Align BoundaryAlignment) {
1182 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1183 isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1186 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
1187 // BoundaryAlignFragment that doesn't need to align any fragment should not be
1188 // relaxed.
1189 if (!BF.getLastFragment())
1190 return false;
1192 uint64_t AlignedOffset = getFragmentOffset(BF);
1193 uint64_t AlignedSize = 0;
1194 for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
1195 AlignedSize += computeFragmentSize(*F);
1196 if (F == BF.getLastFragment())
1197 break;
1200 Align BoundaryAlignment = BF.getAlignment();
1201 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1202 ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1203 : 0U;
1204 if (NewSize == BF.getSize())
1205 return false;
1206 BF.setSize(NewSize);
1207 return true;
1210 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) {
1211 bool WasRelaxed;
1212 if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed))
1213 return WasRelaxed;
1215 MCContext &Context = getContext();
1216 uint64_t OldSize = DF.getContents().size();
1217 int64_t AddrDelta;
1218 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1219 assert(Abs && "We created a line delta with an invalid expression");
1220 (void)Abs;
1221 int64_t LineDelta;
1222 LineDelta = DF.getLineDelta();
1223 SmallVectorImpl<char> &Data = DF.getContents();
1224 Data.clear();
1225 DF.getFixups().clear();
1227 MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1228 AddrDelta, Data);
1229 return OldSize != Data.size();
1232 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) {
1233 bool WasRelaxed;
1234 if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed))
1235 return WasRelaxed;
1237 MCContext &Context = getContext();
1238 int64_t Value;
1239 bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this);
1240 if (!Abs) {
1241 getContext().reportError(DF.getAddrDelta().getLoc(),
1242 "invalid CFI advance_loc expression");
1243 DF.setAddrDelta(MCConstantExpr::create(0, Context));
1244 return false;
1247 SmallVectorImpl<char> &Data = DF.getContents();
1248 uint64_t OldSize = Data.size();
1249 Data.clear();
1250 DF.getFixups().clear();
1252 MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1253 return OldSize != Data.size();
1256 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
1257 unsigned OldSize = F.getContents().size();
1258 getContext().getCVContext().encodeInlineLineTable(*this, F);
1259 return OldSize != F.getContents().size();
1262 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
1263 unsigned OldSize = F.getContents().size();
1264 getContext().getCVContext().encodeDefRange(*this, F);
1265 return OldSize != F.getContents().size();
1268 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) {
1269 uint64_t OldSize = PF.getContents().size();
1270 int64_t AddrDelta;
1271 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1272 assert(Abs && "We created a pseudo probe with an invalid expression");
1273 (void)Abs;
1274 SmallVectorImpl<char> &Data = PF.getContents();
1275 Data.clear();
1276 raw_svector_ostream OSE(Data);
1277 PF.getFixups().clear();
1279 // AddrDelta is a signed integer
1280 encodeSLEB128(AddrDelta, OSE, OldSize);
1281 return OldSize != Data.size();
1284 bool MCAssembler::relaxFragment(MCFragment &F) {
1285 switch(F.getKind()) {
1286 default:
1287 return false;
1288 case MCFragment::FT_Relaxable:
1289 assert(!getRelaxAll() &&
1290 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1291 return relaxInstruction(cast<MCRelaxableFragment>(F));
1292 case MCFragment::FT_Dwarf:
1293 return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F));
1294 case MCFragment::FT_DwarfFrame:
1295 return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F));
1296 case MCFragment::FT_LEB:
1297 return relaxLEB(cast<MCLEBFragment>(F));
1298 case MCFragment::FT_BoundaryAlign:
1299 return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
1300 case MCFragment::FT_CVInlineLines:
1301 return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
1302 case MCFragment::FT_CVDefRange:
1303 return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
1304 case MCFragment::FT_PseudoProbe:
1305 return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F));
1309 bool MCAssembler::layoutOnce() {
1310 ++stats::RelaxationSteps;
1312 bool Changed = false;
1313 for (MCSection &Sec : *this)
1314 for (MCFragment &Frag : Sec)
1315 if (relaxFragment(Frag))
1316 Changed = true;
1317 return Changed;
1320 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1321 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1322 raw_ostream &OS = errs();
1324 OS << "<MCAssembler\n";
1325 OS << " Sections:[\n ";
1326 bool First = true;
1327 for (const MCSection &Sec : *this) {
1328 if (First)
1329 First = false;
1330 else
1331 OS << ",\n ";
1332 Sec.dump();
1334 OS << "],\n";
1335 OS << " Symbols:[";
1337 First = true;
1338 for (const MCSymbol &Sym : symbols()) {
1339 if (First)
1340 First = false;
1341 else
1342 OS << ",\n ";
1343 OS << "(";
1344 Sym.dump();
1345 OS << ", Index:" << Sym.getIndex() << ", ";
1346 OS << ")";
1348 OS << "]>\n";
1350 #endif