Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUCallLowering.cpp
blob3e1d1283dd485e87f202827cb649254294ec9ec1
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/IR/IntrinsicsAMDGPU.h"
27 #define DEBUG_TYPE "amdgpu-call-lowering"
29 using namespace llvm;
31 namespace {
33 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35 Register ValVReg, const CCValAssign &VA) {
36 if (VA.getLocVT().getSizeInBits() < 32) {
37 // 16-bit types are reported as legal for 32-bit registers. We need to
38 // extend and do a 32-bit copy to avoid the verifier complaining about it.
39 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
42 return Handler.extendRegister(ValVReg, VA);
45 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47 MachineInstrBuilder MIB)
48 : OutgoingValueHandler(B, MRI), MIB(MIB) {}
50 MachineInstrBuilder MIB;
52 Register getStackAddress(uint64_t Size, int64_t Offset,
53 MachinePointerInfo &MPO,
54 ISD::ArgFlagsTy Flags) override {
55 llvm_unreachable("not implemented");
58 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59 const MachinePointerInfo &MPO,
60 const CCValAssign &VA) override {
61 llvm_unreachable("not implemented");
64 void assignValueToReg(Register ValVReg, Register PhysReg,
65 const CCValAssign &VA) override {
66 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
68 // If this is a scalar return, insert a readfirstlane just in case the value
69 // ends up in a VGPR.
70 // FIXME: Assert this is a shader return.
71 const SIRegisterInfo *TRI
72 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
73 if (TRI->isSGPRReg(MRI, PhysReg)) {
74 LLT Ty = MRI.getType(ExtReg);
75 LLT S32 = LLT::scalar(32);
76 if (Ty != S32) {
77 // FIXME: We should probably support readfirstlane intrinsics with all
78 // legal 32-bit types.
79 assert(Ty.getSizeInBits() == 32);
80 if (Ty.isPointer())
81 ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
82 else
83 ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
86 auto ToSGPR = MIRBuilder
87 .buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
88 {MRI.getType(ExtReg)})
89 .addReg(ExtReg);
90 ExtReg = ToSGPR.getReg(0);
93 MIRBuilder.buildCopy(PhysReg, ExtReg);
94 MIB.addUse(PhysReg, RegState::Implicit);
98 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
99 uint64_t StackUsed = 0;
101 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
102 : IncomingValueHandler(B, MRI) {}
104 Register getStackAddress(uint64_t Size, int64_t Offset,
105 MachinePointerInfo &MPO,
106 ISD::ArgFlagsTy Flags) override {
107 auto &MFI = MIRBuilder.getMF().getFrameInfo();
109 // Byval is assumed to be writable memory, but other stack passed arguments
110 // are not.
111 const bool IsImmutable = !Flags.isByVal();
112 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
113 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
114 auto AddrReg = MIRBuilder.buildFrameIndex(
115 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
116 StackUsed = std::max(StackUsed, Size + Offset);
117 return AddrReg.getReg(0);
120 void assignValueToReg(Register ValVReg, Register PhysReg,
121 const CCValAssign &VA) override {
122 markPhysRegUsed(PhysReg);
124 if (VA.getLocVT().getSizeInBits() < 32) {
125 // 16-bit types are reported as legal for 32-bit registers. We need to do
126 // a 32-bit copy, and truncate to avoid the verifier complaining about it.
127 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
129 // If we have signext/zeroext, it applies to the whole 32-bit register
130 // before truncation.
131 auto Extended =
132 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
133 MIRBuilder.buildTrunc(ValVReg, Extended);
134 return;
137 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
140 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
141 const MachinePointerInfo &MPO,
142 const CCValAssign &VA) override {
143 MachineFunction &MF = MIRBuilder.getMF();
145 auto MMO = MF.getMachineMemOperand(
146 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
147 inferAlignFromPtrInfo(MF, MPO));
148 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
151 /// How the physical register gets marked varies between formal
152 /// parameters (it's a basic-block live-in), and a call instruction
153 /// (it's an implicit-def of the BL).
154 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
157 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
158 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
159 : AMDGPUIncomingArgHandler(B, MRI) {}
161 void markPhysRegUsed(unsigned PhysReg) override {
162 MIRBuilder.getMBB().addLiveIn(PhysReg);
166 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
167 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
168 MachineInstrBuilder MIB)
169 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
171 void markPhysRegUsed(unsigned PhysReg) override {
172 MIB.addDef(PhysReg, RegState::Implicit);
175 MachineInstrBuilder MIB;
178 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
179 /// For tail calls, the byte offset of the call's argument area from the
180 /// callee's. Unused elsewhere.
181 int FPDiff;
183 // Cache the SP register vreg if we need it more than once in this call site.
184 Register SPReg;
186 bool IsTailCall;
188 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
189 MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
190 bool IsTailCall = false, int FPDiff = 0)
191 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
192 IsTailCall(IsTailCall) {}
194 Register getStackAddress(uint64_t Size, int64_t Offset,
195 MachinePointerInfo &MPO,
196 ISD::ArgFlagsTy Flags) override {
197 MachineFunction &MF = MIRBuilder.getMF();
198 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
199 const LLT S32 = LLT::scalar(32);
201 if (IsTailCall) {
202 Offset += FPDiff;
203 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
204 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
205 MPO = MachinePointerInfo::getFixedStack(MF, FI);
206 return FIReg.getReg(0);
209 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
211 if (!SPReg) {
212 const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
213 if (ST.enableFlatScratch()) {
214 // The stack is accessed unswizzled, so we can use a regular copy.
215 SPReg = MIRBuilder.buildCopy(PtrTy,
216 MFI->getStackPtrOffsetReg()).getReg(0);
217 } else {
218 // The address we produce here, without knowing the use context, is going
219 // to be interpreted as a vector address, so we need to convert to a
220 // swizzled address.
221 SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
222 {MFI->getStackPtrOffsetReg()}).getReg(0);
226 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
228 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
229 MPO = MachinePointerInfo::getStack(MF, Offset);
230 return AddrReg.getReg(0);
233 void assignValueToReg(Register ValVReg, Register PhysReg,
234 const CCValAssign &VA) override {
235 MIB.addUse(PhysReg, RegState::Implicit);
236 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
237 MIRBuilder.buildCopy(PhysReg, ExtReg);
240 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
241 const MachinePointerInfo &MPO,
242 const CCValAssign &VA) override {
243 MachineFunction &MF = MIRBuilder.getMF();
244 uint64_t LocMemOffset = VA.getLocMemOffset();
245 const auto &ST = MF.getSubtarget<GCNSubtarget>();
247 auto MMO = MF.getMachineMemOperand(
248 MPO, MachineMemOperand::MOStore, MemTy,
249 commonAlignment(ST.getStackAlignment(), LocMemOffset));
250 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
253 void assignValueToAddress(const CallLowering::ArgInfo &Arg,
254 unsigned ValRegIndex, Register Addr, LLT MemTy,
255 const MachinePointerInfo &MPO,
256 const CCValAssign &VA) override {
257 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
258 ? extendRegister(Arg.Regs[ValRegIndex], VA)
259 : Arg.Regs[ValRegIndex];
260 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
263 } // anonymous namespace
265 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
266 : CallLowering(&TLI) {
269 // FIXME: Compatibility shim
270 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
271 switch (MIOpc) {
272 case TargetOpcode::G_SEXT:
273 return ISD::SIGN_EXTEND;
274 case TargetOpcode::G_ZEXT:
275 return ISD::ZERO_EXTEND;
276 case TargetOpcode::G_ANYEXT:
277 return ISD::ANY_EXTEND;
278 default:
279 llvm_unreachable("not an extend opcode");
283 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
284 CallingConv::ID CallConv,
285 SmallVectorImpl<BaseArgInfo> &Outs,
286 bool IsVarArg) const {
287 // For shaders. Vector types should be explicitly handled by CC.
288 if (AMDGPU::isEntryFunctionCC(CallConv))
289 return true;
291 SmallVector<CCValAssign, 16> ArgLocs;
292 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
294 MF.getFunction().getContext());
296 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
299 /// Lower the return value for the already existing \p Ret. This assumes that
300 /// \p B's insertion point is correct.
301 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
302 const Value *Val, ArrayRef<Register> VRegs,
303 MachineInstrBuilder &Ret) const {
304 if (!Val)
305 return true;
307 auto &MF = B.getMF();
308 const auto &F = MF.getFunction();
309 const DataLayout &DL = MF.getDataLayout();
310 MachineRegisterInfo *MRI = B.getMRI();
311 LLVMContext &Ctx = F.getContext();
313 CallingConv::ID CC = F.getCallingConv();
314 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
316 SmallVector<EVT, 8> SplitEVTs;
317 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
318 assert(VRegs.size() == SplitEVTs.size() &&
319 "For each split Type there should be exactly one VReg.");
321 SmallVector<ArgInfo, 8> SplitRetInfos;
323 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
324 EVT VT = SplitEVTs[i];
325 Register Reg = VRegs[i];
326 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
327 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
329 if (VT.isScalarInteger()) {
330 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
331 if (RetInfo.Flags[0].isSExt()) {
332 assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
333 ExtendOp = TargetOpcode::G_SEXT;
334 } else if (RetInfo.Flags[0].isZExt()) {
335 assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
336 ExtendOp = TargetOpcode::G_ZEXT;
339 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
340 extOpcodeToISDExtOpcode(ExtendOp));
341 if (ExtVT != VT) {
342 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
343 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
344 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
348 if (Reg != RetInfo.Regs[0]) {
349 RetInfo.Regs[0] = Reg;
350 // Reset the arg flags after modifying Reg.
351 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
354 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
357 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
359 OutgoingValueAssigner Assigner(AssignFn);
360 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
361 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
362 CC, F.isVarArg());
365 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
366 ArrayRef<Register> VRegs,
367 FunctionLoweringInfo &FLI) const {
369 MachineFunction &MF = B.getMF();
370 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
371 MFI->setIfReturnsVoid(!Val);
373 assert(!Val == VRegs.empty() && "Return value without a vreg");
375 CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
376 const bool IsShader = AMDGPU::isShader(CC);
377 const bool IsWaveEnd =
378 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
379 if (IsWaveEnd) {
380 B.buildInstr(AMDGPU::S_ENDPGM)
381 .addImm(0);
382 return true;
385 unsigned ReturnOpc =
386 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
387 auto Ret = B.buildInstrNoInsert(ReturnOpc);
389 if (!FLI.CanLowerReturn)
390 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
391 else if (!lowerReturnVal(B, Val, VRegs, Ret))
392 return false;
394 // TODO: Handle CalleeSavedRegsViaCopy.
396 B.insertInstr(Ret);
397 return true;
400 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
401 uint64_t Offset) const {
402 MachineFunction &MF = B.getMF();
403 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
404 MachineRegisterInfo &MRI = MF.getRegInfo();
405 Register KernArgSegmentPtr =
406 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
407 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
409 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
411 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
414 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
415 uint64_t Offset,
416 Align Alignment) const {
417 MachineFunction &MF = B.getMF();
418 const Function &F = MF.getFunction();
419 const DataLayout &DL = F.getDataLayout();
420 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
422 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
424 SmallVector<ArgInfo, 32> SplitArgs;
425 SmallVector<uint64_t> FieldOffsets;
426 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
428 unsigned Idx = 0;
429 for (ArgInfo &SplitArg : SplitArgs) {
430 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
433 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
434 if (SplitArg.Flags[0].isPointer()) {
435 // Compensate for losing pointeriness in splitValueTypes.
436 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
437 ArgTy.getScalarSizeInBits());
438 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
439 : PtrTy;
442 MachineMemOperand *MMO = MF.getMachineMemOperand(
443 PtrInfo,
444 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
445 MachineMemOperand::MOInvariant,
446 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
448 assert(SplitArg.Regs.size() == 1);
450 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
451 ++Idx;
455 // Allocate special inputs passed in user SGPRs.
456 static void allocateHSAUserSGPRs(CCState &CCInfo,
457 MachineIRBuilder &B,
458 MachineFunction &MF,
459 const SIRegisterInfo &TRI,
460 SIMachineFunctionInfo &Info) {
461 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
462 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
463 if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
464 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
465 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
466 CCInfo.AllocateReg(PrivateSegmentBufferReg);
469 if (UserSGPRInfo.hasDispatchPtr()) {
470 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
471 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
472 CCInfo.AllocateReg(DispatchPtrReg);
475 const Module *M = MF.getFunction().getParent();
476 if (UserSGPRInfo.hasQueuePtr() &&
477 AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
478 Register QueuePtrReg = Info.addQueuePtr(TRI);
479 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
480 CCInfo.AllocateReg(QueuePtrReg);
483 if (UserSGPRInfo.hasKernargSegmentPtr()) {
484 MachineRegisterInfo &MRI = MF.getRegInfo();
485 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
486 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
487 Register VReg = MRI.createGenericVirtualRegister(P4);
488 MRI.addLiveIn(InputPtrReg, VReg);
489 B.getMBB().addLiveIn(InputPtrReg);
490 B.buildCopy(VReg, InputPtrReg);
491 CCInfo.AllocateReg(InputPtrReg);
494 if (UserSGPRInfo.hasDispatchID()) {
495 Register DispatchIDReg = Info.addDispatchID(TRI);
496 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
497 CCInfo.AllocateReg(DispatchIDReg);
500 if (UserSGPRInfo.hasFlatScratchInit()) {
501 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
502 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
503 CCInfo.AllocateReg(FlatScratchInitReg);
506 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
507 // these from the dispatch pointer.
510 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
511 MachineIRBuilder &B, const Function &F,
512 ArrayRef<ArrayRef<Register>> VRegs) const {
513 MachineFunction &MF = B.getMF();
514 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
515 MachineRegisterInfo &MRI = MF.getRegInfo();
516 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
517 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
518 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
519 const DataLayout &DL = F.getDataLayout();
521 SmallVector<CCValAssign, 16> ArgLocs;
522 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
524 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
526 unsigned i = 0;
527 const Align KernArgBaseAlign(16);
528 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset();
529 uint64_t ExplicitArgOffset = 0;
531 // TODO: Align down to dword alignment and extract bits for extending loads.
532 for (auto &Arg : F.args()) {
533 const bool IsByRef = Arg.hasByRefAttr();
534 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
535 unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
536 if (AllocSize == 0)
537 continue;
539 MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
540 Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
542 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
543 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
545 if (Arg.use_empty()) {
546 ++i;
547 continue;
550 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
552 if (IsByRef) {
553 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
555 assert(VRegs[i].size() == 1 &&
556 "expected only one register for byval pointers");
557 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
558 lowerParameterPtr(VRegs[i][0], B, ArgOffset);
559 } else {
560 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
561 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
562 lowerParameterPtr(PtrReg, B, ArgOffset);
564 B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
566 } else {
567 ArgInfo OrigArg(VRegs[i], Arg, i);
568 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
569 setArgFlags(OrigArg, OrigArgIdx, DL, F);
570 lowerParameter(B, OrigArg, ArgOffset, Alignment);
573 ++i;
576 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
577 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
578 return true;
581 bool AMDGPUCallLowering::lowerFormalArguments(
582 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
583 FunctionLoweringInfo &FLI) const {
584 CallingConv::ID CC = F.getCallingConv();
586 // The infrastructure for normal calling convention lowering is essentially
587 // useless for kernels. We want to avoid any kind of legalization or argument
588 // splitting.
589 if (CC == CallingConv::AMDGPU_KERNEL)
590 return lowerFormalArgumentsKernel(B, F, VRegs);
592 const bool IsGraphics = AMDGPU::isGraphics(CC);
593 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
595 MachineFunction &MF = B.getMF();
596 MachineBasicBlock &MBB = B.getMBB();
597 MachineRegisterInfo &MRI = MF.getRegInfo();
598 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
599 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
600 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
601 const DataLayout &DL = F.getDataLayout();
603 SmallVector<CCValAssign, 16> ArgLocs;
604 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
605 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
607 if (UserSGPRInfo.hasImplicitBufferPtr()) {
608 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
609 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
610 CCInfo.AllocateReg(ImplicitBufferPtrReg);
613 // FIXME: This probably isn't defined for mesa
614 if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
615 Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
616 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
617 CCInfo.AllocateReg(FlatScratchInitReg);
620 SmallVector<ArgInfo, 32> SplitArgs;
621 unsigned Idx = 0;
622 unsigned PSInputNum = 0;
624 // Insert the hidden sret parameter if the return value won't fit in the
625 // return registers.
626 if (!FLI.CanLowerReturn)
627 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
629 for (auto &Arg : F.args()) {
630 if (DL.getTypeStoreSize(Arg.getType()) == 0)
631 continue;
633 const bool InReg = Arg.hasAttribute(Attribute::InReg);
635 if (Arg.hasAttribute(Attribute::SwiftSelf) ||
636 Arg.hasAttribute(Attribute::SwiftError) ||
637 Arg.hasAttribute(Attribute::Nest))
638 return false;
640 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
641 const bool ArgUsed = !Arg.use_empty();
642 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
644 if (!SkipArg) {
645 Info->markPSInputAllocated(PSInputNum);
646 if (ArgUsed)
647 Info->markPSInputEnabled(PSInputNum);
650 ++PSInputNum;
652 if (SkipArg) {
653 for (Register R : VRegs[Idx])
654 B.buildUndef(R);
656 ++Idx;
657 continue;
661 ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
662 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
663 setArgFlags(OrigArg, OrigArgIdx, DL, F);
665 splitToValueTypes(OrigArg, SplitArgs, DL, CC);
666 ++Idx;
669 // At least one interpolation mode must be enabled or else the GPU will
670 // hang.
672 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
673 // set PSInputAddr, the user wants to enable some bits after the compilation
674 // based on run-time states. Since we can't know what the final PSInputEna
675 // will look like, so we shouldn't do anything here and the user should take
676 // responsibility for the correct programming.
678 // Otherwise, the following restrictions apply:
679 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
680 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
681 // enabled too.
682 if (CC == CallingConv::AMDGPU_PS) {
683 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
684 ((Info->getPSInputAddr() & 0xF) == 0 &&
685 Info->isPSInputAllocated(11))) {
686 CCInfo.AllocateReg(AMDGPU::VGPR0);
687 CCInfo.AllocateReg(AMDGPU::VGPR1);
688 Info->markPSInputAllocated(0);
689 Info->markPSInputEnabled(0);
692 if (Subtarget.isAmdPalOS()) {
693 // For isAmdPalOS, the user does not enable some bits after compilation
694 // based on run-time states; the register values being generated here are
695 // the final ones set in hardware. Therefore we need to apply the
696 // workaround to PSInputAddr and PSInputEnable together. (The case where
697 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
698 // set up an input arg for a particular interpolation mode, but nothing
699 // uses that input arg. Really we should have an earlier pass that removes
700 // such an arg.)
701 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
702 if ((PsInputBits & 0x7F) == 0 ||
703 ((PsInputBits & 0xF) == 0 &&
704 (PsInputBits >> 11 & 1)))
705 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
709 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
710 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
712 if (!MBB.empty())
713 B.setInstr(*MBB.begin());
715 if (!IsEntryFunc && !IsGraphics) {
716 // For the fixed ABI, pass workitem IDs in the last argument register.
717 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
719 if (!Subtarget.enableFlatScratch())
720 CCInfo.AllocateReg(Info->getScratchRSrcReg());
721 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
724 IncomingValueAssigner Assigner(AssignFn);
725 if (!determineAssignments(Assigner, SplitArgs, CCInfo))
726 return false;
728 FormalArgHandler Handler(B, MRI);
729 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
730 return false;
732 uint64_t StackSize = Assigner.StackSize;
734 // Start adding system SGPRs.
735 if (IsEntryFunc)
736 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
738 // When we tail call, we need to check if the callee's arguments will fit on
739 // the caller's stack. So, whenever we lower formal arguments, we should keep
740 // track of this information, since we might lower a tail call in this
741 // function later.
742 Info->setBytesInStackArgArea(StackSize);
744 // Move back to the end of the basic block.
745 B.setMBB(MBB);
747 return true;
750 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
751 CCState &CCInfo,
752 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
753 CallLoweringInfo &Info) const {
754 MachineFunction &MF = MIRBuilder.getMF();
756 // If there's no call site, this doesn't correspond to a call from the IR and
757 // doesn't need implicit inputs.
758 if (!Info.CB)
759 return true;
761 const AMDGPUFunctionArgInfo *CalleeArgInfo
762 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
764 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
765 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
768 // TODO: Unify with private memory register handling. This is complicated by
769 // the fact that at least in kernels, the input argument is not necessarily
770 // in the same location as the input.
771 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
772 AMDGPUFunctionArgInfo::DISPATCH_PTR,
773 AMDGPUFunctionArgInfo::QUEUE_PTR,
774 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
775 AMDGPUFunctionArgInfo::DISPATCH_ID,
776 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
777 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
778 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
779 AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
782 static constexpr StringLiteral ImplicitAttrNames[] = {
783 "amdgpu-no-dispatch-ptr",
784 "amdgpu-no-queue-ptr",
785 "amdgpu-no-implicitarg-ptr",
786 "amdgpu-no-dispatch-id",
787 "amdgpu-no-workgroup-id-x",
788 "amdgpu-no-workgroup-id-y",
789 "amdgpu-no-workgroup-id-z",
790 "amdgpu-no-lds-kernel-id",
793 MachineRegisterInfo &MRI = MF.getRegInfo();
795 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
796 const AMDGPULegalizerInfo *LI
797 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
799 unsigned I = 0;
800 for (auto InputID : InputRegs) {
801 const ArgDescriptor *OutgoingArg;
802 const TargetRegisterClass *ArgRC;
803 LLT ArgTy;
805 // If the callee does not use the attribute value, skip copying the value.
806 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
807 continue;
809 std::tie(OutgoingArg, ArgRC, ArgTy) =
810 CalleeArgInfo->getPreloadedValue(InputID);
811 if (!OutgoingArg)
812 continue;
814 const ArgDescriptor *IncomingArg;
815 const TargetRegisterClass *IncomingArgRC;
816 std::tie(IncomingArg, IncomingArgRC, ArgTy) =
817 CallerArgInfo.getPreloadedValue(InputID);
818 assert(IncomingArgRC == ArgRC);
820 Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
822 if (IncomingArg) {
823 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
824 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
825 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
826 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
827 std::optional<uint32_t> Id =
828 AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
829 if (Id) {
830 MIRBuilder.buildConstant(InputReg, *Id);
831 } else {
832 MIRBuilder.buildUndef(InputReg);
834 } else {
835 // We may have proven the input wasn't needed, although the ABI is
836 // requiring it. We just need to allocate the register appropriately.
837 MIRBuilder.buildUndef(InputReg);
840 if (OutgoingArg->isRegister()) {
841 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
842 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
843 report_fatal_error("failed to allocate implicit input argument");
844 } else {
845 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
846 return false;
850 // Pack workitem IDs into a single register or pass it as is if already
851 // packed.
852 const ArgDescriptor *OutgoingArg;
853 const TargetRegisterClass *ArgRC;
854 LLT ArgTy;
856 std::tie(OutgoingArg, ArgRC, ArgTy) =
857 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
858 if (!OutgoingArg)
859 std::tie(OutgoingArg, ArgRC, ArgTy) =
860 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
861 if (!OutgoingArg)
862 std::tie(OutgoingArg, ArgRC, ArgTy) =
863 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
864 if (!OutgoingArg)
865 return false;
867 auto WorkitemIDX =
868 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
869 auto WorkitemIDY =
870 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
871 auto WorkitemIDZ =
872 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
874 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
875 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
876 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
877 const LLT S32 = LLT::scalar(32);
879 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
880 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
881 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
883 // If incoming ids are not packed we need to pack them.
884 // FIXME: Should consider known workgroup size to eliminate known 0 cases.
885 Register InputReg;
886 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
887 NeedWorkItemIDX) {
888 if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
889 InputReg = MRI.createGenericVirtualRegister(S32);
890 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
891 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
892 } else {
893 InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
897 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
898 NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
899 Register Y = MRI.createGenericVirtualRegister(S32);
900 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
901 std::get<2>(WorkitemIDY));
903 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
904 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
907 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
908 NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
909 Register Z = MRI.createGenericVirtualRegister(S32);
910 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
911 std::get<2>(WorkitemIDZ));
913 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
914 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
917 if (!InputReg &&
918 (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
919 InputReg = MRI.createGenericVirtualRegister(S32);
920 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
921 // We're in a situation where the outgoing function requires the workitem
922 // ID, but the calling function does not have it (e.g a graphics function
923 // calling a C calling convention function). This is illegal, but we need
924 // to produce something.
925 MIRBuilder.buildUndef(InputReg);
926 } else {
927 // Workitem ids are already packed, any of present incoming arguments will
928 // carry all required fields.
929 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
930 IncomingArgX ? *IncomingArgX :
931 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
932 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
933 &AMDGPU::VGPR_32RegClass, S32);
937 if (OutgoingArg->isRegister()) {
938 if (InputReg)
939 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
941 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
942 report_fatal_error("failed to allocate implicit input argument");
943 } else {
944 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
945 return false;
948 return true;
951 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
952 /// CC.
953 static std::pair<CCAssignFn *, CCAssignFn *>
954 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
955 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
958 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
959 bool IsTailCall, bool isWave32,
960 CallingConv::ID CC) {
961 // For calls to amdgpu_cs_chain functions, the address is known to be uniform.
962 assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) &&
963 "Indirect calls can't be tail calls, "
964 "because the address can be divergent");
965 if (!IsTailCall)
966 return AMDGPU::G_SI_CALL;
968 if (AMDGPU::isChainCC(CC))
969 return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64;
971 return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
972 AMDGPU::SI_TCRETURN;
975 // Add operands to call instruction to track the callee.
976 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
977 MachineIRBuilder &MIRBuilder,
978 AMDGPUCallLowering::CallLoweringInfo &Info) {
979 if (Info.Callee.isReg()) {
980 CallInst.addReg(Info.Callee.getReg());
981 CallInst.addImm(0);
982 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
983 // The call lowering lightly assumed we can directly encode a call target in
984 // the instruction, which is not the case. Materialize the address here.
985 const GlobalValue *GV = Info.Callee.getGlobal();
986 auto Ptr = MIRBuilder.buildGlobalValue(
987 LLT::pointer(GV->getAddressSpace(), 64), GV);
988 CallInst.addReg(Ptr.getReg(0));
989 CallInst.add(Info.Callee);
990 } else
991 return false;
993 return true;
996 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
997 CallLoweringInfo &Info, MachineFunction &MF,
998 SmallVectorImpl<ArgInfo> &InArgs) const {
999 const Function &CallerF = MF.getFunction();
1000 CallingConv::ID CalleeCC = Info.CallConv;
1001 CallingConv::ID CallerCC = CallerF.getCallingConv();
1003 // If the calling conventions match, then everything must be the same.
1004 if (CalleeCC == CallerCC)
1005 return true;
1007 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1009 // Make sure that the caller and callee preserve all of the same registers.
1010 auto TRI = ST.getRegisterInfo();
1012 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1013 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1014 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1015 return false;
1017 // Check if the caller and callee will handle arguments in the same way.
1018 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1019 CCAssignFn *CalleeAssignFnFixed;
1020 CCAssignFn *CalleeAssignFnVarArg;
1021 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1022 getAssignFnsForCC(CalleeCC, TLI);
1024 CCAssignFn *CallerAssignFnFixed;
1025 CCAssignFn *CallerAssignFnVarArg;
1026 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1027 getAssignFnsForCC(CallerCC, TLI);
1029 // FIXME: We are not accounting for potential differences in implicitly passed
1030 // inputs, but only the fixed ABI is supported now anyway.
1031 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1032 CalleeAssignFnVarArg);
1033 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1034 CallerAssignFnVarArg);
1035 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1038 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1039 CallLoweringInfo &Info, MachineFunction &MF,
1040 SmallVectorImpl<ArgInfo> &OutArgs) const {
1041 // If there are no outgoing arguments, then we are done.
1042 if (OutArgs.empty())
1043 return true;
1045 const Function &CallerF = MF.getFunction();
1046 CallingConv::ID CalleeCC = Info.CallConv;
1047 CallingConv::ID CallerCC = CallerF.getCallingConv();
1048 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1050 CCAssignFn *AssignFnFixed;
1051 CCAssignFn *AssignFnVarArg;
1052 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1054 // We have outgoing arguments. Make sure that we can tail call with them.
1055 SmallVector<CCValAssign, 16> OutLocs;
1056 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1057 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1059 if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1060 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1061 return false;
1064 // Make sure that they can fit on the caller's stack.
1065 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1066 if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
1067 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1068 return false;
1071 // Verify that the parameters in callee-saved registers match.
1072 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1073 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1074 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1075 MachineRegisterInfo &MRI = MF.getRegInfo();
1076 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1079 /// Return true if the calling convention is one that we can guarantee TCO for.
1080 static bool canGuaranteeTCO(CallingConv::ID CC) {
1081 return CC == CallingConv::Fast;
1084 /// Return true if we might ever do TCO for calls with this calling convention.
1085 static bool mayTailCallThisCC(CallingConv::ID CC) {
1086 switch (CC) {
1087 case CallingConv::C:
1088 case CallingConv::AMDGPU_Gfx:
1089 return true;
1090 default:
1091 return canGuaranteeTCO(CC);
1095 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1096 MachineIRBuilder &B, CallLoweringInfo &Info,
1097 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1098 // Must pass all target-independent checks in order to tail call optimize.
1099 if (!Info.IsTailCall)
1100 return false;
1102 // Indirect calls can't be tail calls, because the address can be divergent.
1103 // TODO Check divergence info if the call really is divergent.
1104 if (Info.Callee.isReg())
1105 return false;
1107 MachineFunction &MF = B.getMF();
1108 const Function &CallerF = MF.getFunction();
1109 CallingConv::ID CalleeCC = Info.CallConv;
1110 CallingConv::ID CallerCC = CallerF.getCallingConv();
1112 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1113 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1114 // Kernels aren't callable, and don't have a live in return address so it
1115 // doesn't make sense to do a tail call with entry functions.
1116 if (!CallerPreserved)
1117 return false;
1119 if (!mayTailCallThisCC(CalleeCC)) {
1120 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1121 return false;
1124 if (any_of(CallerF.args(), [](const Argument &A) {
1125 return A.hasByValAttr() || A.hasSwiftErrorAttr();
1126 })) {
1127 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1128 "or swifterror arguments\n");
1129 return false;
1132 // If we have -tailcallopt, then we're done.
1133 if (MF.getTarget().Options.GuaranteedTailCallOpt)
1134 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1136 // Verify that the incoming and outgoing arguments from the callee are
1137 // safe to tail call.
1138 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1139 LLVM_DEBUG(
1140 dbgs()
1141 << "... Caller and callee have incompatible calling conventions.\n");
1142 return false;
1145 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1146 return false;
1148 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1149 return true;
1152 // Insert outgoing implicit arguments for a call, by inserting copies to the
1153 // implicit argument registers and adding the necessary implicit uses to the
1154 // call instruction.
1155 void AMDGPUCallLowering::handleImplicitCallArguments(
1156 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1157 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1158 CallingConv::ID CalleeCC,
1159 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1160 if (!ST.enableFlatScratch()) {
1161 // Insert copies for the SRD. In the HSA case, this should be an identity
1162 // copy.
1163 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1164 FuncInfo.getScratchRSrcReg());
1166 auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC)
1167 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
1168 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
1170 MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg);
1171 CallInst.addReg(CalleeRSrcReg, RegState::Implicit);
1174 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1175 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1176 CallInst.addReg(ArgReg.first, RegState::Implicit);
1180 bool AMDGPUCallLowering::lowerTailCall(
1181 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1182 SmallVectorImpl<ArgInfo> &OutArgs) const {
1183 MachineFunction &MF = MIRBuilder.getMF();
1184 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1185 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1186 const Function &F = MF.getFunction();
1187 MachineRegisterInfo &MRI = MF.getRegInfo();
1188 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1190 // True when we're tail calling, but without -tailcallopt.
1191 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1193 // Find out which ABI gets to decide where things go.
1194 CallingConv::ID CalleeCC = Info.CallConv;
1195 CCAssignFn *AssignFnFixed;
1196 CCAssignFn *AssignFnVarArg;
1197 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1199 MachineInstrBuilder CallSeqStart;
1200 if (!IsSibCall)
1201 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1203 unsigned Opc =
1204 getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC);
1205 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1206 if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1207 return false;
1209 // Byte offset for the tail call. When we are sibcalling, this will always
1210 // be 0.
1211 MIB.addImm(0);
1213 // If this is a chain call, we need to pass in the EXEC mask.
1214 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1215 if (AMDGPU::isChainCC(Info.CallConv)) {
1216 ArgInfo ExecArg = Info.OrigArgs[1];
1217 assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC");
1219 if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize()))
1220 return false;
1222 if (auto CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) {
1223 MIB.addImm(CI->getSExtValue());
1224 } else {
1225 MIB.addReg(ExecArg.Regs[0]);
1226 unsigned Idx = MIB->getNumOperands() - 1;
1227 MIB->getOperand(Idx).setReg(constrainOperandRegClass(
1228 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1229 MIB->getDesc(), MIB->getOperand(Idx), Idx));
1233 // Tell the call which registers are clobbered.
1234 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1235 MIB.addRegMask(Mask);
1237 // FPDiff is the byte offset of the call's argument area from the callee's.
1238 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1239 // by this amount for a tail call. In a sibling call it must be 0 because the
1240 // caller will deallocate the entire stack and the callee still expects its
1241 // arguments to begin at SP+0.
1242 int FPDiff = 0;
1244 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1245 // by -tailcallopt. For sibcalls, the memory operands for the call are
1246 // already available in the caller's incoming argument space.
1247 unsigned NumBytes = 0;
1248 if (!IsSibCall) {
1249 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1250 // before handling assignments, because FPDiff must be known for memory
1251 // arguments.
1252 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1253 SmallVector<CCValAssign, 16> OutLocs;
1254 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1256 // FIXME: Not accounting for callee implicit inputs
1257 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1258 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1259 return false;
1261 // The callee will pop the argument stack as a tail call. Thus, we must
1262 // keep it 16-byte aligned.
1263 NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment());
1265 // FPDiff will be negative if this tail call requires more space than we
1266 // would automatically have in our incoming argument space. Positive if we
1267 // actually shrink the stack.
1268 FPDiff = NumReusableBytes - NumBytes;
1270 // The stack pointer must be 16-byte aligned at all times it's used for a
1271 // memory operation, which in practice means at *all* times and in
1272 // particular across call boundaries. Therefore our own arguments started at
1273 // a 16-byte aligned SP and the delta applied for the tail call should
1274 // satisfy the same constraint.
1275 assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1276 "unaligned stack on tail call");
1279 SmallVector<CCValAssign, 16> ArgLocs;
1280 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1282 // We could pass MIB and directly add the implicit uses to the call
1283 // now. However, as an aesthetic choice, place implicit argument operands
1284 // after the ordinary user argument registers.
1285 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1287 if (Info.CallConv != CallingConv::AMDGPU_Gfx &&
1288 !AMDGPU::isChainCC(Info.CallConv)) {
1289 // With a fixed ABI, allocate fixed registers before user arguments.
1290 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1291 return false;
1294 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1296 if (!determineAssignments(Assigner, OutArgs, CCInfo))
1297 return false;
1299 // Do the actual argument marshalling.
1300 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1301 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1302 return false;
1304 if (Info.ConvergenceCtrlToken) {
1305 MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
1307 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC,
1308 ImplicitArgRegs);
1310 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1311 // sequence start and end here.
1312 if (!IsSibCall) {
1313 MIB->getOperand(1).setImm(FPDiff);
1314 CallSeqStart.addImm(NumBytes).addImm(0);
1315 // End the call sequence *before* emitting the call. Normally, we would
1316 // tidy the frame up after the call. However, here, we've laid out the
1317 // parameters so that when SP is reset, they will be in the correct
1318 // location.
1319 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1322 // Now we can add the actual call instruction to the correct basic block.
1323 MIRBuilder.insertInstr(MIB);
1325 // If Callee is a reg, since it is used by a target specific
1326 // instruction, it must have a register class matching the
1327 // constraint of that instruction.
1329 // FIXME: We should define regbankselectable call instructions to handle
1330 // divergent call targets.
1331 if (MIB->getOperand(0).isReg()) {
1332 MIB->getOperand(0).setReg(constrainOperandRegClass(
1333 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1334 MIB->getDesc(), MIB->getOperand(0), 0));
1337 MF.getFrameInfo().setHasTailCall();
1338 Info.LoweredTailCall = true;
1339 return true;
1342 /// Lower a call to the @llvm.amdgcn.cs.chain intrinsic.
1343 bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder,
1344 CallLoweringInfo &Info) const {
1345 ArgInfo Callee = Info.OrigArgs[0];
1346 ArgInfo SGPRArgs = Info.OrigArgs[2];
1347 ArgInfo VGPRArgs = Info.OrigArgs[3];
1348 ArgInfo Flags = Info.OrigArgs[4];
1350 assert(cast<ConstantInt>(Flags.OrigValue)->isZero() &&
1351 "Non-zero flags aren't supported yet.");
1352 assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet.");
1354 MachineFunction &MF = MIRBuilder.getMF();
1355 const Function &F = MF.getFunction();
1356 const DataLayout &DL = F.getDataLayout();
1358 // The function to jump to is actually the first argument, so we'll change the
1359 // Callee and other info to match that before using our existing helper.
1360 const Value *CalleeV = Callee.OrigValue->stripPointerCasts();
1361 if (const Function *F = dyn_cast<Function>(CalleeV)) {
1362 Info.Callee = MachineOperand::CreateGA(F, 0);
1363 Info.CallConv = F->getCallingConv();
1364 } else {
1365 assert(Callee.Regs.size() == 1 && "Too many regs for the callee");
1366 Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false);
1367 Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve
1368 // behaves the same here.
1371 // The function that we're calling cannot be vararg (only the intrinsic is).
1372 Info.IsVarArg = false;
1374 assert(std::all_of(SGPRArgs.Flags.begin(), SGPRArgs.Flags.end(),
1375 [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1376 "SGPR arguments should be marked inreg");
1377 assert(std::none_of(VGPRArgs.Flags.begin(), VGPRArgs.Flags.end(),
1378 [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1379 "VGPR arguments should not be marked inreg");
1381 SmallVector<ArgInfo, 8> OutArgs;
1382 splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv);
1383 splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv);
1385 Info.IsMustTailCall = true;
1386 return lowerTailCall(MIRBuilder, Info, OutArgs);
1389 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1390 CallLoweringInfo &Info) const {
1391 if (Function *F = Info.CB->getCalledFunction())
1392 if (F->isIntrinsic()) {
1393 assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain &&
1394 "Unexpected intrinsic");
1395 return lowerChainCall(MIRBuilder, Info);
1398 if (Info.IsVarArg) {
1399 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1400 return false;
1403 MachineFunction &MF = MIRBuilder.getMF();
1404 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1405 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1407 const Function &F = MF.getFunction();
1408 MachineRegisterInfo &MRI = MF.getRegInfo();
1409 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1410 const DataLayout &DL = F.getDataLayout();
1412 SmallVector<ArgInfo, 8> OutArgs;
1413 for (auto &OrigArg : Info.OrigArgs)
1414 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1416 SmallVector<ArgInfo, 8> InArgs;
1417 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1418 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1420 // If we can lower as a tail call, do that instead.
1421 bool CanTailCallOpt =
1422 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1424 // We must emit a tail call if we have musttail.
1425 if (Info.IsMustTailCall && !CanTailCallOpt) {
1426 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1427 return false;
1430 Info.IsTailCall = CanTailCallOpt;
1431 if (CanTailCallOpt)
1432 return lowerTailCall(MIRBuilder, Info, OutArgs);
1434 // Find out which ABI gets to decide where things go.
1435 CCAssignFn *AssignFnFixed;
1436 CCAssignFn *AssignFnVarArg;
1437 std::tie(AssignFnFixed, AssignFnVarArg) =
1438 getAssignFnsForCC(Info.CallConv, TLI);
1440 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1441 .addImm(0)
1442 .addImm(0);
1444 // Create a temporarily-floating call instruction so we can add the implicit
1445 // uses of arg registers.
1446 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(),
1447 Info.CallConv);
1449 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1450 MIB.addDef(TRI->getReturnAddressReg(MF));
1452 if (!Info.IsConvergent)
1453 MIB.setMIFlag(MachineInstr::NoConvergent);
1455 if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1456 return false;
1458 // Tell the call which registers are clobbered.
1459 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1460 MIB.addRegMask(Mask);
1462 SmallVector<CCValAssign, 16> ArgLocs;
1463 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1465 // We could pass MIB and directly add the implicit uses to the call
1466 // now. However, as an aesthetic choice, place implicit argument operands
1467 // after the ordinary user argument registers.
1468 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1470 if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1471 // With a fixed ABI, allocate fixed registers before user arguments.
1472 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1473 return false;
1476 // Do the actual argument marshalling.
1477 SmallVector<Register, 8> PhysRegs;
1479 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1480 if (!determineAssignments(Assigner, OutArgs, CCInfo))
1481 return false;
1483 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1484 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1485 return false;
1487 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1489 if (Info.ConvergenceCtrlToken) {
1490 MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
1492 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv,
1493 ImplicitArgRegs);
1495 // Get a count of how many bytes are to be pushed on the stack.
1496 unsigned NumBytes = CCInfo.getStackSize();
1498 // If Callee is a reg, since it is used by a target specific
1499 // instruction, it must have a register class matching the
1500 // constraint of that instruction.
1502 // FIXME: We should define regbankselectable call instructions to handle
1503 // divergent call targets.
1504 if (MIB->getOperand(1).isReg()) {
1505 MIB->getOperand(1).setReg(constrainOperandRegClass(
1506 MF, *TRI, MRI, *ST.getInstrInfo(),
1507 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1508 1));
1511 // Now we can add the actual call instruction to the correct position.
1512 MIRBuilder.insertInstr(MIB);
1514 // Finally we can copy the returned value back into its virtual-register. In
1515 // symmetry with the arguments, the physical register must be an
1516 // implicit-define of the call instruction.
1517 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1518 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1519 Info.IsVarArg);
1520 IncomingValueAssigner Assigner(RetAssignFn);
1521 CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1522 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1523 Info.CallConv, Info.IsVarArg))
1524 return false;
1527 uint64_t CalleePopBytes = NumBytes;
1529 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1530 .addImm(0)
1531 .addImm(CalleePopBytes);
1533 if (!Info.CanLowerReturn) {
1534 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1535 Info.DemoteRegister, Info.DemoteStackIndex);
1538 return true;