Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
blobb7471bab128509df0e9fa010002f19e81223f908
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPUISelDAGToDAG.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "MCTargetDesc/R600MCTargetDesc.h"
21 #include "R600RegisterInfo.h"
22 #include "SIISelLowering.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/Analysis/UniformityAnalysis.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/IntrinsicsAMDGPU.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
34 #ifdef EXPENSIVE_CHECKS
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #endif
39 #define DEBUG_TYPE "amdgpu-isel"
41 using namespace llvm;
43 //===----------------------------------------------------------------------===//
44 // Instruction Selector Implementation
45 //===----------------------------------------------------------------------===//
47 namespace {
48 static SDValue stripBitcast(SDValue Val) {
49 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
52 // Figure out if this is really an extract of the high 16-bits of a dword.
53 static bool isExtractHiElt(SDValue In, SDValue &Out) {
54 In = stripBitcast(In);
56 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
57 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
58 if (!Idx->isOne())
59 return false;
60 Out = In.getOperand(0);
61 return true;
65 if (In.getOpcode() != ISD::TRUNCATE)
66 return false;
68 SDValue Srl = In.getOperand(0);
69 if (Srl.getOpcode() == ISD::SRL) {
70 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
71 if (ShiftAmt->getZExtValue() == 16) {
72 Out = stripBitcast(Srl.getOperand(0));
73 return true;
78 return false;
81 // Look through operations that obscure just looking at the low 16-bits of the
82 // same register.
83 static SDValue stripExtractLoElt(SDValue In) {
84 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
85 SDValue Idx = In.getOperand(1);
86 if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32)
87 return In.getOperand(0);
90 if (In.getOpcode() == ISD::TRUNCATE) {
91 SDValue Src = In.getOperand(0);
92 if (Src.getValueType().getSizeInBits() == 32)
93 return stripBitcast(Src);
96 return In;
99 } // end anonymous namespace
101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel",
102 "AMDGPU DAG->DAG Pattern Instruction Selection", false,
103 false)
104 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
105 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
106 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
107 #ifdef EXPENSIVE_CHECKS
108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
109 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
110 #endif
111 INITIALIZE_PASS_END(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel",
112 "AMDGPU DAG->DAG Pattern Instruction Selection", false,
113 false)
115 /// This pass converts a legalized DAG into a AMDGPU-specific
116 // DAG, ready for instruction scheduling.
117 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM,
118 CodeGenOptLevel OptLevel) {
119 return new AMDGPUDAGToDAGISelLegacy(TM, OptLevel);
122 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM,
123 CodeGenOptLevel OptLevel)
124 : SelectionDAGISel(TM, OptLevel) {
125 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
128 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
129 Subtarget = &MF.getSubtarget<GCNSubtarget>();
130 Subtarget->checkSubtargetFeatures(MF.getFunction());
131 Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget);
132 return SelectionDAGISel::runOnMachineFunction(MF);
135 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const {
136 // XXX - only need to list legal operations.
137 switch (Opc) {
138 case ISD::FADD:
139 case ISD::FSUB:
140 case ISD::FMUL:
141 case ISD::FDIV:
142 case ISD::FREM:
143 case ISD::FCANONICALIZE:
144 case ISD::UINT_TO_FP:
145 case ISD::SINT_TO_FP:
146 case ISD::FABS:
147 // Fabs is lowered to a bit operation, but it's an and which will clear the
148 // high bits anyway.
149 case ISD::FSQRT:
150 case ISD::FSIN:
151 case ISD::FCOS:
152 case ISD::FPOWI:
153 case ISD::FPOW:
154 case ISD::FLOG:
155 case ISD::FLOG2:
156 case ISD::FLOG10:
157 case ISD::FEXP:
158 case ISD::FEXP2:
159 case ISD::FCEIL:
160 case ISD::FTRUNC:
161 case ISD::FRINT:
162 case ISD::FNEARBYINT:
163 case ISD::FROUNDEVEN:
164 case ISD::FROUND:
165 case ISD::FFLOOR:
166 case ISD::FMINNUM:
167 case ISD::FMAXNUM:
168 case ISD::FLDEXP:
169 case AMDGPUISD::FRACT:
170 case AMDGPUISD::CLAMP:
171 case AMDGPUISD::COS_HW:
172 case AMDGPUISD::SIN_HW:
173 case AMDGPUISD::FMIN3:
174 case AMDGPUISD::FMAX3:
175 case AMDGPUISD::FMED3:
176 case AMDGPUISD::FMAD_FTZ:
177 case AMDGPUISD::RCP:
178 case AMDGPUISD::RSQ:
179 case AMDGPUISD::RCP_IFLAG:
180 // On gfx10, all 16-bit instructions preserve the high bits.
181 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9;
182 case ISD::FP_ROUND:
183 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
184 // high bits on gfx9.
185 // TODO: If we had the source node we could see if the source was fma/mad
186 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
187 case ISD::FMA:
188 case ISD::FMAD:
189 case AMDGPUISD::DIV_FIXUP:
190 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
191 default:
192 // fcopysign, select and others may be lowered to 32-bit bit operations
193 // which don't zero the high bits.
194 return false;
198 bool AMDGPUDAGToDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) {
199 #ifdef EXPENSIVE_CHECKS
200 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
201 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
202 for (auto &L : LI->getLoopsInPreorder()) {
203 assert(L->isLCSSAForm(DT));
205 #endif
206 return SelectionDAGISelLegacy::runOnMachineFunction(MF);
209 void AMDGPUDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
210 AU.addRequired<AMDGPUArgumentUsageInfo>();
211 AU.addRequired<UniformityInfoWrapperPass>();
212 #ifdef EXPENSIVE_CHECKS
213 AU.addRequired<DominatorTreeWrapperPass>();
214 AU.addRequired<LoopInfoWrapperPass>();
215 #endif
216 SelectionDAGISelLegacy::getAnalysisUsage(AU);
219 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
220 assert(Subtarget->d16PreservesUnusedBits());
221 MVT VT = N->getValueType(0).getSimpleVT();
222 if (VT != MVT::v2i16 && VT != MVT::v2f16)
223 return false;
225 SDValue Lo = N->getOperand(0);
226 SDValue Hi = N->getOperand(1);
228 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
230 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
231 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
232 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
234 // Need to check for possible indirect dependencies on the other half of the
235 // vector to avoid introducing a cycle.
236 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
237 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
239 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
240 SDValue Ops[] = {
241 LdHi->getChain(), LdHi->getBasePtr(), TiedIn
244 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
245 if (LdHi->getMemoryVT() == MVT::i8) {
246 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
247 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
248 } else {
249 assert(LdHi->getMemoryVT() == MVT::i16);
252 SDValue NewLoadHi =
253 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
254 Ops, LdHi->getMemoryVT(),
255 LdHi->getMemOperand());
257 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
258 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
259 return true;
262 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
263 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
264 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
265 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
266 if (LdLo && Lo.hasOneUse()) {
267 SDValue TiedIn = getHi16Elt(Hi);
268 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
269 return false;
271 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
272 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
273 if (LdLo->getMemoryVT() == MVT::i8) {
274 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
275 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
276 } else {
277 assert(LdLo->getMemoryVT() == MVT::i16);
280 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
282 SDValue Ops[] = {
283 LdLo->getChain(), LdLo->getBasePtr(), TiedIn
286 SDValue NewLoadLo =
287 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
288 Ops, LdLo->getMemoryVT(),
289 LdLo->getMemOperand());
291 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
292 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
293 return true;
296 return false;
299 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
300 if (!Subtarget->d16PreservesUnusedBits())
301 return;
303 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
305 bool MadeChange = false;
306 while (Position != CurDAG->allnodes_begin()) {
307 SDNode *N = &*--Position;
308 if (N->use_empty())
309 continue;
311 switch (N->getOpcode()) {
312 case ISD::BUILD_VECTOR:
313 // TODO: Match load d16 from shl (extload:i16), 16
314 MadeChange |= matchLoadD16FromBuildVector(N);
315 break;
316 default:
317 break;
321 if (MadeChange) {
322 CurDAG->RemoveDeadNodes();
323 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
324 CurDAG->dump(););
328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const {
329 if (N->isUndef())
330 return true;
332 const SIInstrInfo *TII = Subtarget->getInstrInfo();
333 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
334 return TII->isInlineConstant(C->getAPIntValue());
336 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
337 return TII->isInlineConstant(C->getValueAPF());
339 return false;
342 /// Determine the register class for \p OpNo
343 /// \returns The register class of the virtual register that will be used for
344 /// the given operand number \OpNo or NULL if the register class cannot be
345 /// determined.
346 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
347 unsigned OpNo) const {
348 if (!N->isMachineOpcode()) {
349 if (N->getOpcode() == ISD::CopyToReg) {
350 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
351 if (Reg.isVirtual()) {
352 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
353 return MRI.getRegClass(Reg);
356 const SIRegisterInfo *TRI
357 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
358 return TRI->getPhysRegBaseClass(Reg);
361 return nullptr;
364 switch (N->getMachineOpcode()) {
365 default: {
366 const MCInstrDesc &Desc =
367 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
368 unsigned OpIdx = Desc.getNumDefs() + OpNo;
369 if (OpIdx >= Desc.getNumOperands())
370 return nullptr;
371 int RegClass = Desc.operands()[OpIdx].RegClass;
372 if (RegClass == -1)
373 return nullptr;
375 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
377 case AMDGPU::REG_SEQUENCE: {
378 unsigned RCID = N->getConstantOperandVal(0);
379 const TargetRegisterClass *SuperRC =
380 Subtarget->getRegisterInfo()->getRegClass(RCID);
382 SDValue SubRegOp = N->getOperand(OpNo + 1);
383 unsigned SubRegIdx = SubRegOp->getAsZExtVal();
384 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
385 SubRegIdx);
390 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
391 SDValue Glue) const {
392 SmallVector <SDValue, 8> Ops;
393 Ops.push_back(NewChain); // Replace the chain.
394 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
395 Ops.push_back(N->getOperand(i));
397 Ops.push_back(Glue);
398 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
401 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
402 const SITargetLowering& Lowering =
403 *static_cast<const SITargetLowering*>(getTargetLowering());
405 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
407 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
408 return glueCopyToOp(N, M0, M0.getValue(1));
411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
412 unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
413 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
414 if (Subtarget->ldsRequiresM0Init())
415 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
416 } else if (AS == AMDGPUAS::REGION_ADDRESS) {
417 MachineFunction &MF = CurDAG->getMachineFunction();
418 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
419 return
420 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
422 return N;
425 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
426 EVT VT) const {
427 SDNode *Lo = CurDAG->getMachineNode(
428 AMDGPU::S_MOV_B32, DL, MVT::i32,
429 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
430 SDNode *Hi =
431 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
432 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
433 const SDValue Ops[] = {
434 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
435 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
436 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
438 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
441 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
442 EVT VT = N->getValueType(0);
443 unsigned NumVectorElts = VT.getVectorNumElements();
444 EVT EltVT = VT.getVectorElementType();
445 SDLoc DL(N);
446 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
448 if (NumVectorElts == 1) {
449 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
450 RegClass);
451 return;
454 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
455 "supported yet");
456 // 32 = Max Num Vector Elements
457 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
458 // 1 = Vector Register Class
459 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
461 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
462 Triple::amdgcn;
463 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
464 bool IsRegSeq = true;
465 unsigned NOps = N->getNumOperands();
466 for (unsigned i = 0; i < NOps; i++) {
467 // XXX: Why is this here?
468 if (isa<RegisterSDNode>(N->getOperand(i))) {
469 IsRegSeq = false;
470 break;
472 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
473 : R600RegisterInfo::getSubRegFromChannel(i);
474 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
475 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
477 if (NOps != NumVectorElts) {
478 // Fill in the missing undef elements if this was a scalar_to_vector.
479 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
480 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
481 DL, EltVT);
482 for (unsigned i = NOps; i < NumVectorElts; ++i) {
483 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
484 : R600RegisterInfo::getSubRegFromChannel(i);
485 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
486 RegSeqArgs[1 + (2 * i) + 1] =
487 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
491 if (!IsRegSeq)
492 SelectCode(N);
493 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
496 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
497 unsigned int Opc = N->getOpcode();
498 if (N->isMachineOpcode()) {
499 N->setNodeId(-1);
500 return; // Already selected.
503 // isa<MemSDNode> almost works but is slightly too permissive for some DS
504 // intrinsics.
505 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N)) {
506 N = glueCopyToM0LDSInit(N);
507 SelectCode(N);
508 return;
511 switch (Opc) {
512 default:
513 break;
514 // We are selecting i64 ADD here instead of custom lower it during
515 // DAG legalization, so we can fold some i64 ADDs used for address
516 // calculation into the LOAD and STORE instructions.
517 case ISD::ADDC:
518 case ISD::ADDE:
519 case ISD::SUBC:
520 case ISD::SUBE: {
521 if (N->getValueType(0) != MVT::i64)
522 break;
524 SelectADD_SUB_I64(N);
525 return;
527 case ISD::UADDO_CARRY:
528 case ISD::USUBO_CARRY:
529 if (N->getValueType(0) != MVT::i32)
530 break;
532 SelectAddcSubb(N);
533 return;
534 case ISD::UADDO:
535 case ISD::USUBO: {
536 SelectUADDO_USUBO(N);
537 return;
539 case AMDGPUISD::FMUL_W_CHAIN: {
540 SelectFMUL_W_CHAIN(N);
541 return;
543 case AMDGPUISD::FMA_W_CHAIN: {
544 SelectFMA_W_CHAIN(N);
545 return;
548 case ISD::SCALAR_TO_VECTOR:
549 case ISD::BUILD_VECTOR: {
550 EVT VT = N->getValueType(0);
551 unsigned NumVectorElts = VT.getVectorNumElements();
552 if (VT.getScalarSizeInBits() == 16) {
553 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
554 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
555 ReplaceNode(N, Packed);
556 return;
560 break;
563 assert(VT.getVectorElementType().bitsEq(MVT::i32));
564 unsigned RegClassID =
565 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
566 SelectBuildVector(N, RegClassID);
567 return;
569 case ISD::BUILD_PAIR: {
570 SDValue RC, SubReg0, SubReg1;
571 SDLoc DL(N);
572 if (N->getValueType(0) == MVT::i128) {
573 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
574 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
575 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
576 } else if (N->getValueType(0) == MVT::i64) {
577 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
578 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
579 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
580 } else {
581 llvm_unreachable("Unhandled value type for BUILD_PAIR");
583 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
584 N->getOperand(1), SubReg1 };
585 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
586 N->getValueType(0), Ops));
587 return;
590 case ISD::Constant:
591 case ISD::ConstantFP: {
592 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
593 break;
595 uint64_t Imm;
596 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) {
597 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
598 if (AMDGPU::isValid32BitLiteral(Imm, true))
599 break;
600 } else {
601 ConstantSDNode *C = cast<ConstantSDNode>(N);
602 Imm = C->getZExtValue();
603 if (AMDGPU::isValid32BitLiteral(Imm, false))
604 break;
607 SDLoc DL(N);
608 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
609 return;
611 case AMDGPUISD::BFE_I32:
612 case AMDGPUISD::BFE_U32: {
613 // There is a scalar version available, but unlike the vector version which
614 // has a separate operand for the offset and width, the scalar version packs
615 // the width and offset into a single operand. Try to move to the scalar
616 // version if the offsets are constant, so that we can try to keep extended
617 // loads of kernel arguments in SGPRs.
619 // TODO: Technically we could try to pattern match scalar bitshifts of
620 // dynamic values, but it's probably not useful.
621 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
622 if (!Offset)
623 break;
625 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
626 if (!Width)
627 break;
629 bool Signed = Opc == AMDGPUISD::BFE_I32;
631 uint32_t OffsetVal = Offset->getZExtValue();
632 uint32_t WidthVal = Width->getZExtValue();
634 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal,
635 WidthVal));
636 return;
638 case AMDGPUISD::DIV_SCALE: {
639 SelectDIV_SCALE(N);
640 return;
642 case AMDGPUISD::MAD_I64_I32:
643 case AMDGPUISD::MAD_U64_U32: {
644 SelectMAD_64_32(N);
645 return;
647 case ISD::SMUL_LOHI:
648 case ISD::UMUL_LOHI:
649 return SelectMUL_LOHI(N);
650 case ISD::CopyToReg: {
651 const SITargetLowering& Lowering =
652 *static_cast<const SITargetLowering*>(getTargetLowering());
653 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
654 break;
656 case ISD::AND:
657 case ISD::SRL:
658 case ISD::SRA:
659 case ISD::SIGN_EXTEND_INREG:
660 if (N->getValueType(0) != MVT::i32)
661 break;
663 SelectS_BFE(N);
664 return;
665 case ISD::BRCOND:
666 SelectBRCOND(N);
667 return;
668 case ISD::FP_EXTEND:
669 SelectFP_EXTEND(N);
670 return;
671 case AMDGPUISD::CVT_PKRTZ_F16_F32:
672 case AMDGPUISD::CVT_PKNORM_I16_F32:
673 case AMDGPUISD::CVT_PKNORM_U16_F32:
674 case AMDGPUISD::CVT_PK_U16_U32:
675 case AMDGPUISD::CVT_PK_I16_I32: {
676 // Hack around using a legal type if f16 is illegal.
677 if (N->getValueType(0) == MVT::i32) {
678 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
679 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
680 { N->getOperand(0), N->getOperand(1) });
681 SelectCode(N);
682 return;
685 break;
687 case ISD::INTRINSIC_W_CHAIN: {
688 SelectINTRINSIC_W_CHAIN(N);
689 return;
691 case ISD::INTRINSIC_WO_CHAIN: {
692 SelectINTRINSIC_WO_CHAIN(N);
693 return;
695 case ISD::INTRINSIC_VOID: {
696 SelectINTRINSIC_VOID(N);
697 return;
699 case AMDGPUISD::WAVE_ADDRESS: {
700 SelectWAVE_ADDRESS(N);
701 return;
703 case ISD::STACKRESTORE: {
704 SelectSTACKRESTORE(N);
705 return;
709 SelectCode(N);
712 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
713 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
714 const Instruction *Term = BB->getTerminator();
715 return Term->getMetadata("amdgpu.uniform") ||
716 Term->getMetadata("structurizecfg.uniform");
719 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N,
720 unsigned ShAmtBits) const {
721 assert(N->getOpcode() == ISD::AND);
723 const APInt &RHS = N->getConstantOperandAPInt(1);
724 if (RHS.countr_one() >= ShAmtBits)
725 return true;
727 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero;
728 return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits;
731 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
732 SDValue &N0, SDValue &N1) {
733 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
734 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
735 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
736 // (i64 (bitcast (v2i32 (build_vector
737 // (or (extract_vector_elt V, 0), OFFSET),
738 // (extract_vector_elt V, 1)))))
739 SDValue Lo = Addr.getOperand(0).getOperand(0);
740 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
741 SDValue BaseLo = Lo.getOperand(0);
742 SDValue BaseHi = Addr.getOperand(0).getOperand(1);
743 // Check that split base (Lo and Hi) are extracted from the same one.
744 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
745 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
746 BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
747 // Lo is statically extracted from index 0.
748 isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
749 BaseLo.getConstantOperandVal(1) == 0 &&
750 // Hi is statically extracted from index 0.
751 isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
752 BaseHi.getConstantOperandVal(1) == 1) {
753 N0 = BaseLo.getOperand(0).getOperand(0);
754 N1 = Lo.getOperand(1);
755 return true;
759 return false;
762 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
763 SDValue &RHS) const {
764 if (CurDAG->isBaseWithConstantOffset(Addr)) {
765 LHS = Addr.getOperand(0);
766 RHS = Addr.getOperand(1);
767 return true;
770 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
771 assert(LHS && RHS && isa<ConstantSDNode>(RHS));
772 return true;
775 return false;
778 StringRef AMDGPUDAGToDAGISelLegacy::getPassName() const {
779 return "AMDGPU DAG->DAG Pattern Instruction Selection";
782 AMDGPUISelDAGToDAGPass::AMDGPUISelDAGToDAGPass(TargetMachine &TM)
783 : SelectionDAGISelPass(
784 std::make_unique<AMDGPUDAGToDAGISel>(TM, TM.getOptLevel())) {}
786 PreservedAnalyses
787 AMDGPUISelDAGToDAGPass::run(MachineFunction &MF,
788 MachineFunctionAnalysisManager &MFAM) {
789 #ifdef EXPENSIVE_CHECKS
790 auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF)
791 .getManager();
792 auto &F = MF.getFunction();
793 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
794 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
795 for (auto &L : LI.getLoopsInPreorder())
796 assert(L->isLCSSAForm(DT) && "Loop is not in LCSSA form!");
797 #endif
798 return SelectionDAGISelPass::run(MF, MFAM);
801 //===----------------------------------------------------------------------===//
802 // Complex Patterns
803 //===----------------------------------------------------------------------===//
805 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
806 SDValue &Offset) {
807 return false;
810 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
811 SDValue &Offset) {
812 ConstantSDNode *C;
813 SDLoc DL(Addr);
815 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
816 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
817 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
818 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
819 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
820 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
821 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
822 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
823 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
824 Base = Addr.getOperand(0);
825 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
826 } else {
827 Base = Addr;
828 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
831 return true;
834 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
835 const SDLoc &DL) const {
836 SDNode *Mov = CurDAG->getMachineNode(
837 AMDGPU::S_MOV_B32, DL, MVT::i32,
838 CurDAG->getTargetConstant(Val, DL, MVT::i32));
839 return SDValue(Mov, 0);
842 // FIXME: Should only handle uaddo_carry/usubo_carry
843 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
844 SDLoc DL(N);
845 SDValue LHS = N->getOperand(0);
846 SDValue RHS = N->getOperand(1);
848 unsigned Opcode = N->getOpcode();
849 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
850 bool ProduceCarry =
851 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
852 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
854 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
855 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
857 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
858 DL, MVT::i32, LHS, Sub0);
859 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
860 DL, MVT::i32, LHS, Sub1);
862 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
863 DL, MVT::i32, RHS, Sub0);
864 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
865 DL, MVT::i32, RHS, Sub1);
867 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
869 static const unsigned OpcMap[2][2][2] = {
870 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
871 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
872 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
873 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
875 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
876 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
878 SDNode *AddLo;
879 if (!ConsumeCarry) {
880 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
881 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
882 } else {
883 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
884 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
886 SDValue AddHiArgs[] = {
887 SDValue(Hi0, 0),
888 SDValue(Hi1, 0),
889 SDValue(AddLo, 1)
891 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
893 SDValue RegSequenceArgs[] = {
894 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
895 SDValue(AddLo,0),
896 Sub0,
897 SDValue(AddHi,0),
898 Sub1,
900 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
901 MVT::i64, RegSequenceArgs);
903 if (ProduceCarry) {
904 // Replace the carry-use
905 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
908 // Replace the remaining uses.
909 ReplaceNode(N, RegSequence);
912 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
913 SDLoc DL(N);
914 SDValue LHS = N->getOperand(0);
915 SDValue RHS = N->getOperand(1);
916 SDValue CI = N->getOperand(2);
918 if (N->isDivergent()) {
919 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64
920 : AMDGPU::V_SUBB_U32_e64;
921 CurDAG->SelectNodeTo(
922 N, Opc, N->getVTList(),
923 {LHS, RHS, CI,
924 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
925 } else {
926 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO
927 : AMDGPU::S_SUB_CO_PSEUDO;
928 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
932 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
933 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
934 // carry out despite the _i32 name. These were renamed in VI to _U32.
935 // FIXME: We should probably rename the opcodes here.
936 bool IsAdd = N->getOpcode() == ISD::UADDO;
937 bool IsVALU = N->isDivergent();
939 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
940 ++UI)
941 if (UI.getUse().getResNo() == 1) {
942 if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) ||
943 (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) {
944 IsVALU = true;
945 break;
949 if (IsVALU) {
950 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
952 CurDAG->SelectNodeTo(
953 N, Opc, N->getVTList(),
954 {N->getOperand(0), N->getOperand(1),
955 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
956 } else {
957 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
958 : AMDGPU::S_USUBO_PSEUDO;
960 CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
961 {N->getOperand(0), N->getOperand(1)});
965 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
966 SDLoc SL(N);
967 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
968 SDValue Ops[10];
970 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
971 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
972 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
973 Ops[8] = N->getOperand(0);
974 Ops[9] = N->getOperand(4);
976 // If there are no source modifiers, prefer fmac over fma because it can use
977 // the smaller VOP2 encoding.
978 bool UseFMAC = Subtarget->hasDLInsts() &&
979 cast<ConstantSDNode>(Ops[0])->isZero() &&
980 cast<ConstantSDNode>(Ops[2])->isZero() &&
981 cast<ConstantSDNode>(Ops[4])->isZero();
982 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64;
983 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops);
986 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
987 SDLoc SL(N);
988 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
989 SDValue Ops[8];
991 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
992 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
993 Ops[6] = N->getOperand(0);
994 Ops[7] = N->getOperand(3);
996 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
999 // We need to handle this here because tablegen doesn't support matching
1000 // instructions with multiple outputs.
1001 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1002 SDLoc SL(N);
1003 EVT VT = N->getValueType(0);
1005 assert(VT == MVT::f32 || VT == MVT::f64);
1007 unsigned Opc
1008 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
1010 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
1011 // omod
1012 SDValue Ops[8];
1013 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1014 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
1015 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
1016 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1019 // We need to handle this here because tablegen doesn't support matching
1020 // instructions with multiple outputs.
1021 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1022 SDLoc SL(N);
1023 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1024 unsigned Opc;
1025 if (Subtarget->hasMADIntraFwdBug())
1026 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1027 : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1028 else
1029 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1031 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1032 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1033 Clamp };
1034 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1037 // We need to handle this here because tablegen doesn't support matching
1038 // instructions with multiple outputs.
1039 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) {
1040 SDLoc SL(N);
1041 bool Signed = N->getOpcode() == ISD::SMUL_LOHI;
1042 unsigned Opc;
1043 if (Subtarget->hasMADIntraFwdBug())
1044 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1045 : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1046 else
1047 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1049 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64);
1050 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1051 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp};
1052 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops);
1053 if (!SDValue(N, 0).use_empty()) {
1054 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32);
1055 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1056 MVT::i32, SDValue(Mad, 0), Sub0);
1057 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0));
1059 if (!SDValue(N, 1).use_empty()) {
1060 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32);
1061 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1062 MVT::i32, SDValue(Mad, 0), Sub1);
1063 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0));
1065 CurDAG->RemoveDeadNode(N);
1068 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
1069 if (!isUInt<16>(Offset))
1070 return false;
1072 if (!Base || Subtarget->hasUsableDSOffset() ||
1073 Subtarget->unsafeDSOffsetFoldingEnabled())
1074 return true;
1076 // On Southern Islands instruction with a negative base value and an offset
1077 // don't seem to work.
1078 return CurDAG->SignBitIsZero(Base);
1081 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1082 SDValue &Offset) const {
1083 SDLoc DL(Addr);
1084 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1085 SDValue N0 = Addr.getOperand(0);
1086 SDValue N1 = Addr.getOperand(1);
1087 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1088 if (isDSOffsetLegal(N0, C1->getSExtValue())) {
1089 // (add n0, c0)
1090 Base = N0;
1091 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1092 return true;
1094 } else if (Addr.getOpcode() == ISD::SUB) {
1095 // sub C, x -> add (sub 0, x), C
1096 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1097 int64_t ByteOffset = C->getSExtValue();
1098 if (isDSOffsetLegal(SDValue(), ByteOffset)) {
1099 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1101 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1102 // the known bits in isDSOffsetLegal. We need to emit the selected node
1103 // here, so this is thrown away.
1104 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1105 Zero, Addr.getOperand(1));
1107 if (isDSOffsetLegal(Sub, ByteOffset)) {
1108 SmallVector<SDValue, 3> Opnds;
1109 Opnds.push_back(Zero);
1110 Opnds.push_back(Addr.getOperand(1));
1112 // FIXME: Select to VOP3 version for with-carry.
1113 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1114 if (Subtarget->hasAddNoCarry()) {
1115 SubOp = AMDGPU::V_SUB_U32_e64;
1116 Opnds.push_back(
1117 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1120 MachineSDNode *MachineSub =
1121 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1123 Base = SDValue(MachineSub, 0);
1124 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1125 return true;
1129 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1130 // If we have a constant address, prefer to put the constant into the
1131 // offset. This can save moves to load the constant address since multiple
1132 // operations can share the zero base address register, and enables merging
1133 // into read2 / write2 instructions.
1135 SDLoc DL(Addr);
1137 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
1138 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1139 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1140 DL, MVT::i32, Zero);
1141 Base = SDValue(MovZero, 0);
1142 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1143 return true;
1147 // default case
1148 Base = Addr;
1149 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1150 return true;
1153 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
1154 unsigned Offset1,
1155 unsigned Size) const {
1156 if (Offset0 % Size != 0 || Offset1 % Size != 0)
1157 return false;
1158 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
1159 return false;
1161 if (!Base || Subtarget->hasUsableDSOffset() ||
1162 Subtarget->unsafeDSOffsetFoldingEnabled())
1163 return true;
1165 // On Southern Islands instruction with a negative base value and an offset
1166 // don't seem to work.
1167 return CurDAG->SignBitIsZero(Base);
1170 // Return whether the operation has NoUnsignedWrap property.
1171 static bool isNoUnsignedWrap(SDValue Addr) {
1172 return (Addr.getOpcode() == ISD::ADD &&
1173 Addr->getFlags().hasNoUnsignedWrap()) ||
1174 Addr->getOpcode() == ISD::OR;
1177 // Check that the base address of flat scratch load/store in the form of `base +
1178 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware
1179 // requirement). We always treat the first operand as the base address here.
1180 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const {
1181 if (isNoUnsignedWrap(Addr))
1182 return true;
1184 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1185 // values.
1186 if (Subtarget->hasSignedScratchOffsets())
1187 return true;
1189 auto LHS = Addr.getOperand(0);
1190 auto RHS = Addr.getOperand(1);
1192 // If the immediate offset is negative and within certain range, the base
1193 // address cannot also be negative. If the base is also negative, the sum
1194 // would be either negative or much larger than the valid range of scratch
1195 // memory a thread can access.
1196 ConstantSDNode *ImmOp = nullptr;
1197 if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) {
1198 if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000)
1199 return true;
1202 return CurDAG->SignBitIsZero(LHS);
1205 // Check address value in SGPR/VGPR are legal for flat scratch in the form
1206 // of: SGPR + VGPR.
1207 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const {
1208 if (isNoUnsignedWrap(Addr))
1209 return true;
1211 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1212 // values.
1213 if (Subtarget->hasSignedScratchOffsets())
1214 return true;
1216 auto LHS = Addr.getOperand(0);
1217 auto RHS = Addr.getOperand(1);
1218 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS);
1221 // Check address value in SGPR/VGPR are legal for flat scratch in the form
1222 // of: SGPR + VGPR + Imm.
1223 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const {
1224 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1225 // values.
1226 if (AMDGPU::isGFX12Plus(*Subtarget))
1227 return true;
1229 auto Base = Addr.getOperand(0);
1230 auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1));
1231 // If the immediate offset is negative and within certain range, the base
1232 // address cannot also be negative. If the base is also negative, the sum
1233 // would be either negative or much larger than the valid range of scratch
1234 // memory a thread can access.
1235 if (isNoUnsignedWrap(Base) &&
1236 (isNoUnsignedWrap(Addr) ||
1237 (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000)))
1238 return true;
1240 auto LHS = Base.getOperand(0);
1241 auto RHS = Base.getOperand(1);
1242 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS);
1245 // TODO: If offset is too big, put low 16-bit into offset.
1246 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1247 SDValue &Offset0,
1248 SDValue &Offset1) const {
1249 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
1252 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
1253 SDValue &Offset0,
1254 SDValue &Offset1) const {
1255 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
1258 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
1259 SDValue &Offset0, SDValue &Offset1,
1260 unsigned Size) const {
1261 SDLoc DL(Addr);
1263 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1264 SDValue N0 = Addr.getOperand(0);
1265 SDValue N1 = Addr.getOperand(1);
1266 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1267 unsigned OffsetValue0 = C1->getZExtValue();
1268 unsigned OffsetValue1 = OffsetValue0 + Size;
1270 // (add n0, c0)
1271 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
1272 Base = N0;
1273 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1274 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1275 return true;
1277 } else if (Addr.getOpcode() == ISD::SUB) {
1278 // sub C, x -> add (sub 0, x), C
1279 if (const ConstantSDNode *C =
1280 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1281 unsigned OffsetValue0 = C->getZExtValue();
1282 unsigned OffsetValue1 = OffsetValue0 + Size;
1284 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1285 SDLoc DL(Addr);
1286 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1288 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1289 // the known bits in isDSOffsetLegal. We need to emit the selected node
1290 // here, so this is thrown away.
1291 SDValue Sub =
1292 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
1294 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
1295 SmallVector<SDValue, 3> Opnds;
1296 Opnds.push_back(Zero);
1297 Opnds.push_back(Addr.getOperand(1));
1298 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1299 if (Subtarget->hasAddNoCarry()) {
1300 SubOp = AMDGPU::V_SUB_U32_e64;
1301 Opnds.push_back(
1302 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1305 MachineSDNode *MachineSub = CurDAG->getMachineNode(
1306 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
1308 Base = SDValue(MachineSub, 0);
1309 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1310 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1311 return true;
1315 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1316 unsigned OffsetValue0 = CAddr->getZExtValue();
1317 unsigned OffsetValue1 = OffsetValue0 + Size;
1319 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1320 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1321 MachineSDNode *MovZero =
1322 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
1323 Base = SDValue(MovZero, 0);
1324 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1325 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1326 return true;
1330 // default case
1332 Base = Addr;
1333 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1334 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1335 return true;
1338 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
1339 SDValue &SOffset, SDValue &Offset,
1340 SDValue &Offen, SDValue &Idxen,
1341 SDValue &Addr64) const {
1342 // Subtarget prefers to use flat instruction
1343 // FIXME: This should be a pattern predicate and not reach here
1344 if (Subtarget->useFlatForGlobal())
1345 return false;
1347 SDLoc DL(Addr);
1349 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1350 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1351 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1352 SOffset = Subtarget->hasRestrictedSOffset()
1353 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32)
1354 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1356 ConstantSDNode *C1 = nullptr;
1357 SDValue N0 = Addr;
1358 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1359 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1360 if (isUInt<32>(C1->getZExtValue()))
1361 N0 = Addr.getOperand(0);
1362 else
1363 C1 = nullptr;
1366 if (N0.getOpcode() == ISD::ADD) {
1367 // (add N2, N3) -> addr64, or
1368 // (add (add N2, N3), C1) -> addr64
1369 SDValue N2 = N0.getOperand(0);
1370 SDValue N3 = N0.getOperand(1);
1371 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1373 if (N2->isDivergent()) {
1374 if (N3->isDivergent()) {
1375 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1376 // addr64, and construct the resource from a 0 address.
1377 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1378 VAddr = N0;
1379 } else {
1380 // N2 is divergent, N3 is not.
1381 Ptr = N3;
1382 VAddr = N2;
1384 } else {
1385 // N2 is not divergent.
1386 Ptr = N2;
1387 VAddr = N3;
1389 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1390 } else if (N0->isDivergent()) {
1391 // N0 is divergent. Use it as the addr64, and construct the resource from a
1392 // 0 address.
1393 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1394 VAddr = N0;
1395 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1396 } else {
1397 // N0 -> offset, or
1398 // (N0 + C1) -> offset
1399 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1400 Ptr = N0;
1403 if (!C1) {
1404 // No offset.
1405 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1406 return true;
1409 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1410 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) {
1411 // Legal offset for instruction.
1412 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1413 return true;
1416 // Illegal offset, store it in soffset.
1417 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1418 SOffset =
1419 SDValue(CurDAG->getMachineNode(
1420 AMDGPU::S_MOV_B32, DL, MVT::i32,
1421 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1423 return true;
1426 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1427 SDValue &VAddr, SDValue &SOffset,
1428 SDValue &Offset) const {
1429 SDValue Ptr, Offen, Idxen, Addr64;
1431 // addr64 bit was removed for volcanic islands.
1432 // FIXME: This should be a pattern predicate and not reach here
1433 if (!Subtarget->hasAddr64())
1434 return false;
1436 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1437 return false;
1439 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1440 if (C->getSExtValue()) {
1441 SDLoc DL(Addr);
1443 const SITargetLowering& Lowering =
1444 *static_cast<const SITargetLowering*>(getTargetLowering());
1446 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1447 return true;
1450 return false;
1453 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1454 SDLoc DL(N);
1456 auto *FI = dyn_cast<FrameIndexSDNode>(N);
1457 SDValue TFI =
1458 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
1460 // We rebase the base address into an absolute stack address and hence
1461 // use constant 0 for soffset. This value must be retained until
1462 // frame elimination and eliminateFrameIndex will choose the appropriate
1463 // frame register if need be.
1464 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
1467 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1468 SDValue Addr, SDValue &Rsrc,
1469 SDValue &VAddr, SDValue &SOffset,
1470 SDValue &ImmOffset) const {
1472 SDLoc DL(Addr);
1473 MachineFunction &MF = CurDAG->getMachineFunction();
1474 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1476 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1478 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1479 int64_t Imm = CAddr->getSExtValue();
1480 const int64_t NullPtr =
1481 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1482 // Don't fold null pointer.
1483 if (Imm != NullPtr) {
1484 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
1485 SDValue HighBits =
1486 CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32);
1487 MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1488 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1489 VAddr = SDValue(MovHighBits, 0);
1491 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1492 ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32);
1493 return true;
1497 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1498 // (add n0, c1)
1500 SDValue N0 = Addr.getOperand(0);
1501 uint64_t C1 = Addr.getConstantOperandVal(1);
1503 // Offsets in vaddr must be positive if range checking is enabled.
1505 // The total computation of vaddr + soffset + offset must not overflow. If
1506 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1507 // overflowing.
1509 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1510 // always perform a range check. If a negative vaddr base index was used,
1511 // this would fail the range check. The overall address computation would
1512 // compute a valid address, but this doesn't happen due to the range
1513 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1515 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1516 // MUBUF vaddr, but not on older subtargets which can only do this if the
1517 // sign bit is known 0.
1518 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1519 if (TII->isLegalMUBUFImmOffset(C1) &&
1520 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1521 CurDAG->SignBitIsZero(N0))) {
1522 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1523 ImmOffset = CurDAG->getTargetConstant(C1, DL, MVT::i32);
1524 return true;
1528 // (node)
1529 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1530 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1531 return true;
1534 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) {
1535 if (Val.getOpcode() != ISD::CopyFromReg)
1536 return false;
1537 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg();
1538 if (!Reg.isPhysical())
1539 return false;
1540 auto RC = TRI.getPhysRegBaseClass(Reg);
1541 return RC && TRI.isSGPRClass(RC);
1544 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1545 SDValue Addr,
1546 SDValue &SRsrc,
1547 SDValue &SOffset,
1548 SDValue &Offset) const {
1549 const SIRegisterInfo *TRI =
1550 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1551 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1552 MachineFunction &MF = CurDAG->getMachineFunction();
1553 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1554 SDLoc DL(Addr);
1556 // CopyFromReg <sgpr>
1557 if (IsCopyFromSGPR(*TRI, Addr)) {
1558 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1559 SOffset = Addr;
1560 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1561 return true;
1564 ConstantSDNode *CAddr;
1565 if (Addr.getOpcode() == ISD::ADD) {
1566 // Add (CopyFromReg <sgpr>) <constant>
1567 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
1568 if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1569 return false;
1570 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0)))
1571 return false;
1573 SOffset = Addr.getOperand(0);
1574 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) &&
1575 TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) {
1576 // <constant>
1577 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1578 } else {
1579 return false;
1582 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1584 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32);
1585 return true;
1588 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1589 SDValue &SOffset, SDValue &Offset
1590 ) const {
1591 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1592 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1594 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1595 return false;
1597 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1598 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1599 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1600 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1601 APInt::getAllOnes(32).getZExtValue(); // Size
1602 SDLoc DL(Addr);
1604 const SITargetLowering& Lowering =
1605 *static_cast<const SITargetLowering*>(getTargetLowering());
1607 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1608 return true;
1610 return false;
1613 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode,
1614 SDValue &SOffset) const {
1615 if (Subtarget->hasRestrictedSOffset() && isNullConstant(ByteOffsetNode)) {
1616 SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32);
1617 return true;
1620 SOffset = ByteOffsetNode;
1621 return true;
1624 // Find a load or store from corresponding pattern root.
1625 // Roots may be build_vector, bitconvert or their combinations.
1626 static MemSDNode* findMemSDNode(SDNode *N) {
1627 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1628 if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1629 return MN;
1630 assert(isa<BuildVectorSDNode>(N));
1631 for (SDValue V : N->op_values())
1632 if (MemSDNode *MN =
1633 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1634 return MN;
1635 llvm_unreachable("cannot find MemSDNode in the pattern!");
1638 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
1639 SDValue &VAddr, SDValue &Offset,
1640 uint64_t FlatVariant) const {
1641 int64_t OffsetVal = 0;
1643 unsigned AS = findMemSDNode(N)->getAddressSpace();
1645 bool CanHaveFlatSegmentOffsetBug =
1646 Subtarget->hasFlatSegmentOffsetBug() &&
1647 FlatVariant == SIInstrFlags::FLAT &&
1648 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
1650 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
1651 SDValue N0, N1;
1652 if (isBaseWithConstantOffset64(Addr, N0, N1) &&
1653 (FlatVariant != SIInstrFlags::FlatScratch ||
1654 isFlatScratchBaseLegal(Addr))) {
1655 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1657 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1658 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
1659 Addr = N0;
1660 OffsetVal = COffsetVal;
1661 } else {
1662 // If the offset doesn't fit, put the low bits into the offset field and
1663 // add the rest.
1665 // For a FLAT instruction the hardware decides whether to access
1666 // global/scratch/shared memory based on the high bits of vaddr,
1667 // ignoring the offset field, so we have to ensure that when we add
1668 // remainder to vaddr it still points into the same underlying object.
1669 // The easiest way to do that is to make sure that we split the offset
1670 // into two pieces that are both >= 0 or both <= 0.
1672 SDLoc DL(N);
1673 uint64_t RemainderOffset;
1675 std::tie(OffsetVal, RemainderOffset) =
1676 TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
1678 SDValue AddOffsetLo =
1679 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1680 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1682 if (Addr.getValueType().getSizeInBits() == 32) {
1683 SmallVector<SDValue, 3> Opnds;
1684 Opnds.push_back(N0);
1685 Opnds.push_back(AddOffsetLo);
1686 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
1687 if (Subtarget->hasAddNoCarry()) {
1688 AddOp = AMDGPU::V_ADD_U32_e64;
1689 Opnds.push_back(Clamp);
1691 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
1692 } else {
1693 // TODO: Should this try to use a scalar add pseudo if the base address
1694 // is uniform and saddr is usable?
1695 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1696 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1698 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1699 DL, MVT::i32, N0, Sub0);
1700 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1701 DL, MVT::i32, N0, Sub1);
1703 SDValue AddOffsetHi =
1704 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1706 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1708 SDNode *Add =
1709 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
1710 {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1712 SDNode *Addc = CurDAG->getMachineNode(
1713 AMDGPU::V_ADDC_U32_e64, DL, VTs,
1714 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1716 SDValue RegSequenceArgs[] = {
1717 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1718 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1720 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1721 MVT::i64, RegSequenceArgs),
1728 VAddr = Addr;
1729 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
1730 return true;
1733 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
1734 SDValue &VAddr,
1735 SDValue &Offset) const {
1736 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
1739 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
1740 SDValue &VAddr,
1741 SDValue &Offset) const {
1742 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
1745 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
1746 SDValue &VAddr,
1747 SDValue &Offset) const {
1748 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
1749 SIInstrFlags::FlatScratch);
1752 // If this matches zero_extend i32:x, return x
1753 static SDValue matchZExtFromI32(SDValue Op) {
1754 if (Op.getOpcode() != ISD::ZERO_EXTEND)
1755 return SDValue();
1757 SDValue ExtSrc = Op.getOperand(0);
1758 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
1761 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
1762 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
1763 SDValue Addr,
1764 SDValue &SAddr,
1765 SDValue &VOffset,
1766 SDValue &Offset) const {
1767 int64_t ImmOffset = 0;
1769 // Match the immediate offset first, which canonically is moved as low as
1770 // possible.
1772 SDValue LHS, RHS;
1773 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1774 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1775 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1777 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
1778 SIInstrFlags::FlatGlobal)) {
1779 Addr = LHS;
1780 ImmOffset = COffsetVal;
1781 } else if (!LHS->isDivergent()) {
1782 if (COffsetVal > 0) {
1783 SDLoc SL(N);
1784 // saddr + large_offset -> saddr +
1785 // (voffset = large_offset & ~MaxOffset) +
1786 // (large_offset & MaxOffset);
1787 int64_t SplitImmOffset, RemainderOffset;
1788 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1789 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
1791 if (isUInt<32>(RemainderOffset)) {
1792 SDNode *VMov = CurDAG->getMachineNode(
1793 AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1794 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1795 VOffset = SDValue(VMov, 0);
1796 SAddr = LHS;
1797 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32);
1798 return true;
1802 // We are adding a 64 bit SGPR and a constant. If constant bus limit
1803 // is 1 we would need to perform 1 or 2 extra moves for each half of
1804 // the constant and it is better to do a scalar add and then issue a
1805 // single VALU instruction to materialize zero. Otherwise it is less
1806 // instructions to perform VALU adds with immediates or inline literals.
1807 unsigned NumLiterals =
1808 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
1809 !TII->isInlineConstant(APInt(32, COffsetVal >> 32));
1810 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
1811 return false;
1815 // Match the variable offset.
1816 if (Addr.getOpcode() == ISD::ADD) {
1817 LHS = Addr.getOperand(0);
1818 RHS = Addr.getOperand(1);
1820 if (!LHS->isDivergent()) {
1821 // add (i64 sgpr), (zero_extend (i32 vgpr))
1822 if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
1823 SAddr = LHS;
1824 VOffset = ZextRHS;
1828 if (!SAddr && !RHS->isDivergent()) {
1829 // add (zero_extend (i32 vgpr)), (i64 sgpr)
1830 if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
1831 SAddr = RHS;
1832 VOffset = ZextLHS;
1836 if (SAddr) {
1837 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32);
1838 return true;
1842 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
1843 isa<ConstantSDNode>(Addr))
1844 return false;
1846 // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1847 // moves required to copy a 64-bit SGPR to VGPR.
1848 SAddr = Addr;
1849 SDNode *VMov =
1850 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
1851 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
1852 VOffset = SDValue(VMov, 0);
1853 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32);
1854 return true;
1857 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
1858 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
1859 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
1860 } else if (SAddr.getOpcode() == ISD::ADD &&
1861 isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
1862 // Materialize this into a scalar move for scalar address to avoid
1863 // readfirstlane.
1864 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
1865 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1866 FI->getValueType(0));
1867 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr),
1868 MVT::i32, TFI, SAddr.getOperand(1)),
1872 return SAddr;
1875 // Match (32-bit SGPR base) + sext(imm offset)
1876 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr,
1877 SDValue &SAddr,
1878 SDValue &Offset) const {
1879 if (Addr->isDivergent())
1880 return false;
1882 SDLoc DL(Addr);
1884 int64_t COffsetVal = 0;
1886 if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) {
1887 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
1888 SAddr = Addr.getOperand(0);
1889 } else {
1890 SAddr = Addr;
1893 SAddr = SelectSAddrFI(CurDAG, SAddr);
1895 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1897 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
1898 SIInstrFlags::FlatScratch)) {
1899 int64_t SplitImmOffset, RemainderOffset;
1900 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1901 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch);
1903 COffsetVal = SplitImmOffset;
1905 SDValue AddOffset =
1906 SAddr.getOpcode() == ISD::TargetFrameIndex
1907 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL)
1908 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32);
1909 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32,
1910 SAddr, AddOffset),
1914 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16);
1916 return true;
1919 // Check whether the flat scratch SVS swizzle bug affects this access.
1920 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug(
1921 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const {
1922 if (!Subtarget->hasFlatScratchSVSSwizzleBug())
1923 return false;
1925 // The bug affects the swizzling of SVS accesses if there is any carry out
1926 // from the two low order bits (i.e. from bit 1 into bit 2) when adding
1927 // voffset to (soffset + inst_offset).
1928 KnownBits VKnown = CurDAG->computeKnownBits(VAddr);
1929 KnownBits SKnown = KnownBits::computeForAddSub(
1930 /*Add=*/true, /*NSW=*/false, /*NUW=*/false,
1931 CurDAG->computeKnownBits(SAddr),
1932 KnownBits::makeConstant(APInt(32, ImmOffset)));
1933 uint64_t VMax = VKnown.getMaxValue().getZExtValue();
1934 uint64_t SMax = SKnown.getMaxValue().getZExtValue();
1935 return (VMax & 3) + (SMax & 3) >= 4;
1938 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr,
1939 SDValue &VAddr, SDValue &SAddr,
1940 SDValue &Offset) const {
1941 int64_t ImmOffset = 0;
1943 SDValue LHS, RHS;
1944 SDValue OrigAddr = Addr;
1945 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1946 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1947 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1949 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) {
1950 Addr = LHS;
1951 ImmOffset = COffsetVal;
1952 } else if (!LHS->isDivergent() && COffsetVal > 0) {
1953 SDLoc SL(N);
1954 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) +
1955 // (large_offset & MaxOffset);
1956 int64_t SplitImmOffset, RemainderOffset;
1957 std::tie(SplitImmOffset, RemainderOffset)
1958 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true);
1960 if (isUInt<32>(RemainderOffset)) {
1961 SDNode *VMov = CurDAG->getMachineNode(
1962 AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1963 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1964 VAddr = SDValue(VMov, 0);
1965 SAddr = LHS;
1966 if (!isFlatScratchBaseLegal(Addr))
1967 return false;
1968 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset))
1969 return false;
1970 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1971 return true;
1976 if (Addr.getOpcode() != ISD::ADD)
1977 return false;
1979 LHS = Addr.getOperand(0);
1980 RHS = Addr.getOperand(1);
1982 if (!LHS->isDivergent() && RHS->isDivergent()) {
1983 SAddr = LHS;
1984 VAddr = RHS;
1985 } else if (!RHS->isDivergent() && LHS->isDivergent()) {
1986 SAddr = RHS;
1987 VAddr = LHS;
1988 } else {
1989 return false;
1992 if (OrigAddr != Addr) {
1993 if (!isFlatScratchBaseLegalSVImm(OrigAddr))
1994 return false;
1995 } else {
1996 if (!isFlatScratchBaseLegalSV(OrigAddr))
1997 return false;
2000 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset))
2001 return false;
2002 SAddr = SelectSAddrFI(CurDAG, SAddr);
2003 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
2004 return true;
2007 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
2008 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
2009 // Handle the case where the Immediate Offset + SOffset is negative.
2010 bool AMDGPUDAGToDAGISel::isSOffsetLegalWithImmOffset(SDValue *SOffset,
2011 bool Imm32Only,
2012 bool IsBuffer,
2013 int64_t ImmOffset) const {
2014 if (!IsBuffer && !Imm32Only && ImmOffset < 0 &&
2015 AMDGPU::hasSMRDSignedImmOffset(*Subtarget)) {
2016 KnownBits SKnown = CurDAG->computeKnownBits(*SOffset);
2017 if (ImmOffset + SKnown.getMinValue().getSExtValue() < 0)
2018 return false;
2021 return true;
2024 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is
2025 // not null) offset. If Imm32Only is true, match only 32-bit immediate
2026 // offsets available on CI.
2027 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
2028 SDValue *SOffset, SDValue *Offset,
2029 bool Imm32Only, bool IsBuffer,
2030 bool HasSOffset,
2031 int64_t ImmOffset) const {
2032 assert((!SOffset || !Offset) &&
2033 "Cannot match both soffset and offset at the same time!");
2035 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
2036 if (!C) {
2037 if (!SOffset)
2038 return false;
2040 if (ByteOffsetNode.getValueType().isScalarInteger() &&
2041 ByteOffsetNode.getValueType().getSizeInBits() == 32) {
2042 *SOffset = ByteOffsetNode;
2043 return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer,
2044 ImmOffset);
2046 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
2047 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
2048 *SOffset = ByteOffsetNode.getOperand(0);
2049 return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer,
2050 ImmOffset);
2053 return false;
2056 SDLoc SL(ByteOffsetNode);
2058 // GFX9 and GFX10 have signed byte immediate offsets. The immediate
2059 // offset for S_BUFFER instructions is unsigned.
2060 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue();
2061 std::optional<int64_t> EncodedOffset = AMDGPU::getSMRDEncodedOffset(
2062 *Subtarget, ByteOffset, IsBuffer, HasSOffset);
2063 if (EncodedOffset && Offset && !Imm32Only) {
2064 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
2065 return true;
2068 // SGPR and literal offsets are unsigned.
2069 if (ByteOffset < 0)
2070 return false;
2072 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
2073 if (EncodedOffset && Offset && Imm32Only) {
2074 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
2075 return true;
2078 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
2079 return false;
2081 if (SOffset) {
2082 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
2083 *SOffset = SDValue(
2084 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
2085 return true;
2088 return false;
2091 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
2092 if (Addr.getValueType() != MVT::i32)
2093 return Addr;
2095 // Zero-extend a 32-bit address.
2096 SDLoc SL(Addr);
2098 const MachineFunction &MF = CurDAG->getMachineFunction();
2099 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2100 unsigned AddrHiVal = Info->get32BitAddressHighBits();
2101 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
2103 const SDValue Ops[] = {
2104 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
2105 Addr,
2106 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2107 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
2109 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
2112 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
2113 Ops), 0);
2116 // Match a base and an immediate (if Offset is not null) or an SGPR (if
2117 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is
2118 // true, match only 32-bit immediate offsets available on CI.
2119 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase,
2120 SDValue *SOffset, SDValue *Offset,
2121 bool Imm32Only, bool IsBuffer,
2122 bool HasSOffset,
2123 int64_t ImmOffset) const {
2124 if (SOffset && Offset) {
2125 assert(!Imm32Only && !IsBuffer);
2126 SDValue B;
2128 if (!SelectSMRDBaseOffset(Addr, B, nullptr, Offset, false, false, true))
2129 return false;
2131 int64_t ImmOff = 0;
2132 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(*Offset))
2133 ImmOff = C->getSExtValue();
2135 return SelectSMRDBaseOffset(B, SBase, SOffset, nullptr, false, false, true,
2136 ImmOff);
2139 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
2140 // wraparound, because s_load instructions perform the addition in 64 bits.
2141 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD &&
2142 !Addr->getFlags().hasNoUnsignedWrap())
2143 return false;
2145 SDValue N0, N1;
2146 // Extract the base and offset if possible.
2147 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) {
2148 N0 = Addr.getOperand(0);
2149 N1 = Addr.getOperand(1);
2150 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
2151 assert(N0 && N1 && isa<ConstantSDNode>(N1));
2153 if (!N0 || !N1)
2154 return false;
2156 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset,
2157 ImmOffset)) {
2158 SBase = N0;
2159 return true;
2161 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset,
2162 ImmOffset)) {
2163 SBase = N1;
2164 return true;
2166 return false;
2169 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
2170 SDValue *SOffset, SDValue *Offset,
2171 bool Imm32Only) const {
2172 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) {
2173 SBase = Expand32BitAddress(SBase);
2174 return true;
2177 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) {
2178 SBase = Expand32BitAddress(Addr);
2179 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2180 return true;
2183 return false;
2186 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
2187 SDValue &Offset) const {
2188 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset);
2191 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
2192 SDValue &Offset) const {
2193 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2194 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset,
2195 /* Imm32Only */ true);
2198 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
2199 SDValue &SOffset) const {
2200 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr);
2203 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase,
2204 SDValue &SOffset,
2205 SDValue &Offset) const {
2206 return SelectSMRD(Addr, SBase, &SOffset, &Offset);
2209 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const {
2210 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2211 /* Imm32Only */ false, /* IsBuffer */ true);
2214 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N,
2215 SDValue &Offset) const {
2216 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2217 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2218 /* Imm32Only */ true, /* IsBuffer */ true);
2221 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset,
2222 SDValue &Offset) const {
2223 // Match the (soffset + offset) pair as a 32-bit register base and
2224 // an immediate offset.
2225 return N.getValueType() == MVT::i32 &&
2226 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr,
2227 &Offset, /* Imm32Only */ false,
2228 /* IsBuffer */ true);
2231 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
2232 SDValue &Base,
2233 SDValue &Offset) const {
2234 SDLoc DL(Index);
2236 if (CurDAG->isBaseWithConstantOffset(Index)) {
2237 SDValue N0 = Index.getOperand(0);
2238 SDValue N1 = Index.getOperand(1);
2239 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
2241 // (add n0, c0)
2242 // Don't peel off the offset (c0) if doing so could possibly lead
2243 // the base (n0) to be negative.
2244 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2245 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
2246 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
2247 Base = N0;
2248 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
2249 return true;
2253 if (isa<ConstantSDNode>(Index))
2254 return false;
2256 Base = Index;
2257 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2258 return true;
2261 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL,
2262 SDValue Val, uint32_t Offset,
2263 uint32_t Width) {
2264 if (Val->isDivergent()) {
2265 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64;
2266 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32);
2267 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32);
2269 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W);
2271 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2272 // Transformation function, pack the offset and width of a BFE into
2273 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2274 // source, bits [5:0] contain the offset and bits [22:16] the width.
2275 uint32_t PackedVal = Offset | (Width << 16);
2276 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
2278 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
2281 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
2282 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2283 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2284 // Predicate: 0 < b <= c < 32
2286 const SDValue &Shl = N->getOperand(0);
2287 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
2288 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2290 if (B && C) {
2291 uint32_t BVal = B->getZExtValue();
2292 uint32_t CVal = C->getZExtValue();
2294 if (0 < BVal && BVal <= CVal && CVal < 32) {
2295 bool Signed = N->getOpcode() == ISD::SRA;
2296 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2297 32 - CVal));
2298 return;
2301 SelectCode(N);
2304 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2305 switch (N->getOpcode()) {
2306 case ISD::AND:
2307 if (N->getOperand(0).getOpcode() == ISD::SRL) {
2308 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2309 // Predicate: isMask(mask)
2310 const SDValue &Srl = N->getOperand(0);
2311 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2312 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2314 if (Shift && Mask) {
2315 uint32_t ShiftVal = Shift->getZExtValue();
2316 uint32_t MaskVal = Mask->getZExtValue();
2318 if (isMask_32(MaskVal)) {
2319 uint32_t WidthVal = llvm::popcount(MaskVal);
2320 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal,
2321 WidthVal));
2322 return;
2326 break;
2327 case ISD::SRL:
2328 if (N->getOperand(0).getOpcode() == ISD::AND) {
2329 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2330 // Predicate: isMask(mask >> b)
2331 const SDValue &And = N->getOperand(0);
2332 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2333 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2335 if (Shift && Mask) {
2336 uint32_t ShiftVal = Shift->getZExtValue();
2337 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2339 if (isMask_32(MaskVal)) {
2340 uint32_t WidthVal = llvm::popcount(MaskVal);
2341 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal,
2342 WidthVal));
2343 return;
2346 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2347 SelectS_BFEFromShifts(N);
2348 return;
2350 break;
2351 case ISD::SRA:
2352 if (N->getOperand(0).getOpcode() == ISD::SHL) {
2353 SelectS_BFEFromShifts(N);
2354 return;
2356 break;
2358 case ISD::SIGN_EXTEND_INREG: {
2359 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2360 SDValue Src = N->getOperand(0);
2361 if (Src.getOpcode() != ISD::SRL)
2362 break;
2364 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2365 if (!Amt)
2366 break;
2368 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2369 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0),
2370 Amt->getZExtValue(), Width));
2371 return;
2375 SelectCode(N);
2378 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2379 assert(N->getOpcode() == ISD::BRCOND);
2380 if (!N->hasOneUse())
2381 return false;
2383 SDValue Cond = N->getOperand(1);
2384 if (Cond.getOpcode() == ISD::CopyToReg)
2385 Cond = Cond.getOperand(2);
2387 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2388 return false;
2390 MVT VT = Cond.getOperand(0).getSimpleValueType();
2391 if (VT == MVT::i32)
2392 return true;
2394 if (VT == MVT::i64) {
2395 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2397 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2398 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2401 return false;
2404 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) {
2405 assert(VCMP->getOpcode() == AMDGPUISD::SETCC);
2406 // Special case for amdgcn.ballot:
2407 // %Cond = i1 (and/or combination of i1 ISD::SETCCs)
2408 // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq
2409 // =>
2410 // Use i1 %Cond value instead of i(WaveSize) %VCMP.
2411 // This is possible because divergent ISD::SETCC is selected as V_CMP and
2412 // Cond becomes a i(WaveSize) full mask value.
2413 // Note that ballot doesn't use SETEQ condition but its easy to support it
2414 // here for completeness, so in this case Negate is set true on return.
2415 auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get();
2416 if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) &&
2417 isNullConstant(VCMP.getOperand(1))) {
2419 auto Cond = VCMP.getOperand(0);
2420 if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension.
2421 Cond = Cond.getOperand(0);
2423 if (isBoolSGPR(Cond)) {
2424 Negate = VCMP_CC == ISD::SETEQ;
2425 return Cond;
2428 return SDValue();
2431 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2432 SDValue Cond = N->getOperand(1);
2434 if (Cond.isUndef()) {
2435 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2436 N->getOperand(2), N->getOperand(0));
2437 return;
2440 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2441 const SIRegisterInfo *TRI = ST->getRegisterInfo();
2443 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2444 bool AndExec = !UseSCCBr;
2445 bool Negate = false;
2447 if (Cond.getOpcode() == ISD::SETCC &&
2448 Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) {
2449 SDValue VCMP = Cond->getOperand(0);
2450 auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get();
2451 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
2452 isNullConstant(Cond->getOperand(1)) &&
2453 // We may encounter ballot.i64 in wave32 mode on -O0.
2454 VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) {
2455 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ...
2456 // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq
2457 // BRCOND i1 %C, %BB
2458 // =>
2459 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ...
2460 // VCC = COPY i(WaveSize) %VCMP
2461 // S_CBRANCH_VCCNZ/VCCZ %BB
2462 Negate = CC == ISD::SETEQ;
2463 bool NegatedBallot = false;
2464 if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) {
2465 Cond = BallotCond;
2466 UseSCCBr = !BallotCond->isDivergent();
2467 Negate = Negate ^ NegatedBallot;
2468 } else {
2469 // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always
2470 // selected as V_CMP, but this may change for uniform condition.
2471 Cond = VCMP;
2472 UseSCCBr = false;
2475 // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of
2476 // V_CMPs resulted from ballot or ballot has uniform condition and SCC is
2477 // used.
2478 AndExec = false;
2481 unsigned BrOp =
2482 UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1)
2483 : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ);
2484 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2485 SDLoc SL(N);
2487 if (AndExec) {
2488 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
2489 // analyzed what generates the vcc value, so we do not know whether vcc
2490 // bits for disabled lanes are 0. Thus we need to mask out bits for
2491 // disabled lanes.
2493 // For the case that we select S_CBRANCH_SCC1 and it gets
2494 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2495 // SIInstrInfo::moveToVALU which inserts the S_AND).
2497 // We could add an analysis of what generates the vcc value here and omit
2498 // the S_AND when is unnecessary. But it would be better to add a separate
2499 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2500 // catches both cases.
2501 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2502 : AMDGPU::S_AND_B64,
2503 SL, MVT::i1,
2504 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2505 : AMDGPU::EXEC,
2506 MVT::i1),
2507 Cond),
2511 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2512 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2513 N->getOperand(2), // Basic Block
2514 VCC.getValue(0));
2517 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) {
2518 if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 &&
2519 !N->isDivergent()) {
2520 SDValue Src = N->getOperand(0);
2521 if (Src.getValueType() == MVT::f16) {
2522 if (isExtractHiElt(Src, Src)) {
2523 CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(),
2524 {Src});
2525 return;
2530 SelectCode(N);
2533 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2534 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2535 // be copied to an SGPR with readfirstlane.
2536 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2537 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2539 SDValue Chain = N->getOperand(0);
2540 SDValue Ptr = N->getOperand(2);
2541 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2542 MachineMemOperand *MMO = M->getMemOperand();
2543 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2545 SDValue Offset;
2546 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2547 SDValue PtrBase = Ptr.getOperand(0);
2548 SDValue PtrOffset = Ptr.getOperand(1);
2550 const APInt &OffsetVal = PtrOffset->getAsAPIntVal();
2551 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
2552 N = glueCopyToM0(N, PtrBase);
2553 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2557 if (!Offset) {
2558 N = glueCopyToM0(N, Ptr);
2559 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2562 SDValue Ops[] = {
2563 Offset,
2564 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2565 Chain,
2566 N->getOperand(N->getNumOperands() - 1) // New glue
2569 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2570 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2573 // We need to handle this here because tablegen doesn't support matching
2574 // instructions with multiple outputs.
2575 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) {
2576 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32;
2577 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4),
2578 N->getOperand(5), N->getOperand(0)};
2580 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2581 MachineMemOperand *MMO = M->getMemOperand();
2582 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2583 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2586 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2587 switch (IntrID) {
2588 case Intrinsic::amdgcn_ds_gws_init:
2589 return AMDGPU::DS_GWS_INIT;
2590 case Intrinsic::amdgcn_ds_gws_barrier:
2591 return AMDGPU::DS_GWS_BARRIER;
2592 case Intrinsic::amdgcn_ds_gws_sema_v:
2593 return AMDGPU::DS_GWS_SEMA_V;
2594 case Intrinsic::amdgcn_ds_gws_sema_br:
2595 return AMDGPU::DS_GWS_SEMA_BR;
2596 case Intrinsic::amdgcn_ds_gws_sema_p:
2597 return AMDGPU::DS_GWS_SEMA_P;
2598 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2599 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2600 default:
2601 llvm_unreachable("not a gws intrinsic");
2605 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2606 if (!Subtarget->hasGWS() ||
2607 (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2608 !Subtarget->hasGWSSemaReleaseAll())) {
2609 // Let this error.
2610 SelectCode(N);
2611 return;
2614 // Chain, intrinsic ID, vsrc, offset
2615 const bool HasVSrc = N->getNumOperands() == 4;
2616 assert(HasVSrc || N->getNumOperands() == 3);
2618 SDLoc SL(N);
2619 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2620 int ImmOffset = 0;
2621 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2622 MachineMemOperand *MMO = M->getMemOperand();
2624 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2625 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2627 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2628 // offset field) % 64. Some versions of the programming guide omit the m0
2629 // part, or claim it's from offset 0.
2630 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2631 // If we have a constant offset, try to use the 0 in m0 as the base.
2632 // TODO: Look into changing the default m0 initialization value. If the
2633 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2634 // the immediate offset.
2635 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2636 ImmOffset = ConstOffset->getZExtValue();
2637 } else {
2638 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2639 ImmOffset = BaseOffset.getConstantOperandVal(1);
2640 BaseOffset = BaseOffset.getOperand(0);
2643 // Prefer to do the shift in an SGPR since it should be possible to use m0
2644 // as the result directly. If it's already an SGPR, it will be eliminated
2645 // later.
2646 SDNode *SGPROffset
2647 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2648 BaseOffset);
2649 // Shift to offset in m0
2650 SDNode *M0Base
2651 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2652 SDValue(SGPROffset, 0),
2653 CurDAG->getTargetConstant(16, SL, MVT::i32));
2654 glueCopyToM0(N, SDValue(M0Base, 0));
2657 SDValue Chain = N->getOperand(0);
2658 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2660 const unsigned Opc = gwsIntrinToOpcode(IntrID);
2661 SmallVector<SDValue, 5> Ops;
2662 if (HasVSrc)
2663 Ops.push_back(N->getOperand(2));
2664 Ops.push_back(OffsetField);
2665 Ops.push_back(Chain);
2667 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2668 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2671 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2672 if (Subtarget->getLDSBankCount() != 16) {
2673 // This is a single instruction with a pattern.
2674 SelectCode(N);
2675 return;
2678 SDLoc DL(N);
2680 // This requires 2 instructions. It is possible to write a pattern to support
2681 // this, but the generated isel emitter doesn't correctly deal with multiple
2682 // output instructions using the same physical register input. The copy to m0
2683 // is incorrectly placed before the second instruction.
2685 // TODO: Match source modifiers.
2687 // def : Pat <
2688 // (int_amdgcn_interp_p1_f16
2689 // (VOP3Mods f32:$src0, i32:$src0_modifiers),
2690 // (i32 timm:$attrchan), (i32 timm:$attr),
2691 // (i1 timm:$high), M0),
2692 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2693 // timm:$attrchan, 0,
2694 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2695 // let Predicates = [has16BankLDS];
2696 // }
2698 // 16 bank LDS
2699 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2700 N->getOperand(5), SDValue());
2702 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2704 SDNode *InterpMov =
2705 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2706 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2707 N->getOperand(3), // Attr
2708 N->getOperand(2), // Attrchan
2709 ToM0.getValue(1) // In glue
2712 SDNode *InterpP1LV =
2713 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2714 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2715 N->getOperand(1), // Src0
2716 N->getOperand(3), // Attr
2717 N->getOperand(2), // Attrchan
2718 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2719 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2720 N->getOperand(4), // high
2721 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2722 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2723 SDValue(InterpMov, 1)
2726 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2729 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2730 unsigned IntrID = N->getConstantOperandVal(1);
2731 switch (IntrID) {
2732 case Intrinsic::amdgcn_ds_append:
2733 case Intrinsic::amdgcn_ds_consume: {
2734 if (N->getValueType(0) != MVT::i32)
2735 break;
2736 SelectDSAppendConsume(N, IntrID);
2737 return;
2739 case Intrinsic::amdgcn_ds_bvh_stack_rtn:
2740 SelectDSBvhStackIntrinsic(N);
2741 return;
2744 SelectCode(N);
2747 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2748 unsigned IntrID = N->getConstantOperandVal(0);
2749 unsigned Opcode = AMDGPU::INSTRUCTION_LIST_END;
2750 SDNode *ConvGlueNode = N->getGluedNode();
2751 if (ConvGlueNode) {
2752 // FIXME: Possibly iterate over multiple glue nodes?
2753 assert(ConvGlueNode->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
2754 ConvGlueNode = ConvGlueNode->getOperand(0).getNode();
2755 ConvGlueNode =
2756 CurDAG->getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, {},
2757 MVT::Glue, SDValue(ConvGlueNode, 0));
2758 } else {
2759 ConvGlueNode = nullptr;
2761 switch (IntrID) {
2762 case Intrinsic::amdgcn_wqm:
2763 Opcode = AMDGPU::WQM;
2764 break;
2765 case Intrinsic::amdgcn_softwqm:
2766 Opcode = AMDGPU::SOFT_WQM;
2767 break;
2768 case Intrinsic::amdgcn_wwm:
2769 case Intrinsic::amdgcn_strict_wwm:
2770 Opcode = AMDGPU::STRICT_WWM;
2771 break;
2772 case Intrinsic::amdgcn_strict_wqm:
2773 Opcode = AMDGPU::STRICT_WQM;
2774 break;
2775 case Intrinsic::amdgcn_interp_p1_f16:
2776 SelectInterpP1F16(N);
2777 return;
2778 default:
2779 SelectCode(N);
2780 break;
2783 if (Opcode != AMDGPU::INSTRUCTION_LIST_END) {
2784 SDValue Src = N->getOperand(1);
2785 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2788 if (ConvGlueNode) {
2789 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
2790 NewOps.push_back(SDValue(ConvGlueNode, 0));
2791 CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), NewOps);
2795 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2796 unsigned IntrID = N->getConstantOperandVal(1);
2797 switch (IntrID) {
2798 case Intrinsic::amdgcn_ds_gws_init:
2799 case Intrinsic::amdgcn_ds_gws_barrier:
2800 case Intrinsic::amdgcn_ds_gws_sema_v:
2801 case Intrinsic::amdgcn_ds_gws_sema_br:
2802 case Intrinsic::amdgcn_ds_gws_sema_p:
2803 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2804 SelectDS_GWS(N, IntrID);
2805 return;
2806 default:
2807 break;
2810 SelectCode(N);
2813 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) {
2814 SDValue Log2WaveSize =
2815 CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32);
2816 CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(),
2817 {N->getOperand(0), Log2WaveSize});
2820 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) {
2821 SDValue SrcVal = N->getOperand(1);
2822 if (SrcVal.getValueType() != MVT::i32) {
2823 SelectCode(N); // Emit default error
2824 return;
2827 SDValue CopyVal;
2828 Register SP = TLI->getStackPointerRegisterToSaveRestore();
2829 SDLoc SL(N);
2831 if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) {
2832 CopyVal = SrcVal.getOperand(0);
2833 } else {
2834 SDValue Log2WaveSize = CurDAG->getTargetConstant(
2835 Subtarget->getWavefrontSizeLog2(), SL, MVT::i32);
2837 if (N->isDivergent()) {
2838 SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL,
2839 MVT::i32, SrcVal),
2843 CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2844 {SrcVal, Log2WaveSize}),
2848 SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal);
2849 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP);
2852 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2853 unsigned &Mods,
2854 bool IsCanonicalizing,
2855 bool AllowAbs) const {
2856 Mods = SISrcMods::NONE;
2857 Src = In;
2859 if (Src.getOpcode() == ISD::FNEG) {
2860 Mods |= SISrcMods::NEG;
2861 Src = Src.getOperand(0);
2862 } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) {
2863 // Fold fsub [+-]0 into fneg. This may not have folded depending on the
2864 // denormal mode, but we're implicitly canonicalizing in a source operand.
2865 auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2866 if (LHS && LHS->isZero()) {
2867 Mods |= SISrcMods::NEG;
2868 Src = Src.getOperand(1);
2872 if (AllowAbs && Src.getOpcode() == ISD::FABS) {
2873 Mods |= SISrcMods::ABS;
2874 Src = Src.getOperand(0);
2877 return true;
2880 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2881 SDValue &SrcMods) const {
2882 unsigned Mods;
2883 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true,
2884 /*AllowAbs=*/true)) {
2885 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2886 return true;
2889 return false;
2892 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing(
2893 SDValue In, SDValue &Src, SDValue &SrcMods) const {
2894 unsigned Mods;
2895 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false,
2896 /*AllowAbs=*/true)) {
2897 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2898 return true;
2901 return false;
2904 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
2905 SDValue &SrcMods) const {
2906 unsigned Mods;
2907 if (SelectVOP3ModsImpl(In, Src, Mods,
2908 /*IsCanonicalizing=*/true,
2909 /*AllowAbs=*/false)) {
2910 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2911 return true;
2914 return false;
2917 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2918 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2919 return false;
2921 Src = In;
2922 return true;
2925 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src,
2926 SDValue &SrcMods,
2927 bool OpSel) const {
2928 unsigned Mods;
2929 if (SelectVOP3ModsImpl(In, Src, Mods,
2930 /*IsCanonicalizing=*/true,
2931 /*AllowAbs=*/false)) {
2932 if (OpSel)
2933 Mods |= SISrcMods::OP_SEL_0;
2934 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2935 return true;
2938 return false;
2941 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src,
2942 SDValue &SrcMods) const {
2943 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false);
2946 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src,
2947 SDValue &SrcMods) const {
2948 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true);
2951 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2952 SDValue &SrcMods, SDValue &Clamp,
2953 SDValue &Omod) const {
2954 SDLoc DL(In);
2955 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2956 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2958 return SelectVOP3Mods(In, Src, SrcMods);
2961 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
2962 SDValue &SrcMods, SDValue &Clamp,
2963 SDValue &Omod) const {
2964 SDLoc DL(In);
2965 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2966 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2968 return SelectVOP3BMods(In, Src, SrcMods);
2971 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2972 SDValue &Clamp, SDValue &Omod) const {
2973 Src = In;
2975 SDLoc DL(In);
2976 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2977 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2979 return true;
2982 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2983 SDValue &SrcMods, bool IsDOT) const {
2984 unsigned Mods = SISrcMods::NONE;
2985 Src = In;
2987 // TODO: Handle G_FSUB 0 as fneg
2988 if (Src.getOpcode() == ISD::FNEG) {
2989 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2990 Src = Src.getOperand(0);
2993 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 &&
2994 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) {
2995 unsigned VecMods = Mods;
2997 SDValue Lo = stripBitcast(Src.getOperand(0));
2998 SDValue Hi = stripBitcast(Src.getOperand(1));
3000 if (Lo.getOpcode() == ISD::FNEG) {
3001 Lo = stripBitcast(Lo.getOperand(0));
3002 Mods ^= SISrcMods::NEG;
3005 if (Hi.getOpcode() == ISD::FNEG) {
3006 Hi = stripBitcast(Hi.getOperand(0));
3007 Mods ^= SISrcMods::NEG_HI;
3010 if (isExtractHiElt(Lo, Lo))
3011 Mods |= SISrcMods::OP_SEL_0;
3013 if (isExtractHiElt(Hi, Hi))
3014 Mods |= SISrcMods::OP_SEL_1;
3016 unsigned VecSize = Src.getValueSizeInBits();
3017 Lo = stripExtractLoElt(Lo);
3018 Hi = stripExtractLoElt(Hi);
3020 if (Lo.getValueSizeInBits() > VecSize) {
3021 Lo = CurDAG->getTargetExtractSubreg(
3022 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
3023 MVT::getIntegerVT(VecSize), Lo);
3026 if (Hi.getValueSizeInBits() > VecSize) {
3027 Hi = CurDAG->getTargetExtractSubreg(
3028 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
3029 MVT::getIntegerVT(VecSize), Hi);
3032 assert(Lo.getValueSizeInBits() <= VecSize &&
3033 Hi.getValueSizeInBits() <= VecSize);
3035 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
3036 // Really a scalar input. Just select from the low half of the register to
3037 // avoid packing.
3039 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
3040 Src = Lo;
3041 } else {
3042 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
3044 SDLoc SL(In);
3045 SDValue Undef = SDValue(
3046 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
3047 Lo.getValueType()), 0);
3048 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
3049 : AMDGPU::SReg_64RegClassID;
3050 const SDValue Ops[] = {
3051 CurDAG->getTargetConstant(RC, SL, MVT::i32),
3052 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
3053 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
3055 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
3056 Src.getValueType(), Ops), 0);
3058 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3059 return true;
3062 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
3063 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
3064 .bitcastToAPInt().getZExtValue();
3065 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
3066 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);
3067 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3068 return true;
3072 Mods = VecMods;
3075 // Packed instructions do not have abs modifiers.
3076 Mods |= SISrcMods::OP_SEL_1;
3078 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3079 return true;
3082 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src,
3083 SDValue &SrcMods) const {
3084 return SelectVOP3PMods(In, Src, SrcMods, true);
3087 bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const {
3088 const ConstantSDNode *C = cast<ConstantSDNode>(In);
3089 // Literal i1 value set in intrinsic, represents SrcMods for the next operand.
3090 // 1 promotes packed values to signed, 0 treats them as unsigned.
3091 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
3093 unsigned Mods = SISrcMods::OP_SEL_1;
3094 unsigned SrcSign = C->getZExtValue();
3095 if (SrcSign == 1)
3096 Mods ^= SISrcMods::NEG;
3098 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3099 return true;
3102 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In,
3103 SDValue &Src) const {
3104 const ConstantSDNode *C = cast<ConstantSDNode>(In);
3105 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
3107 unsigned Mods = SISrcMods::OP_SEL_1;
3108 unsigned SrcVal = C->getZExtValue();
3109 if (SrcVal == 1)
3110 Mods |= SISrcMods::OP_SEL_0;
3112 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3113 return true;
3116 static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts,
3117 llvm::SelectionDAG *CurDAG,
3118 const SDLoc &DL) {
3119 unsigned DstRegClass;
3120 EVT DstTy;
3121 switch (Elts.size()) {
3122 case 8:
3123 DstRegClass = AMDGPU::VReg_256RegClassID;
3124 DstTy = MVT::v8i32;
3125 break;
3126 case 4:
3127 DstRegClass = AMDGPU::VReg_128RegClassID;
3128 DstTy = MVT::v4i32;
3129 break;
3130 case 2:
3131 DstRegClass = AMDGPU::VReg_64RegClassID;
3132 DstTy = MVT::v2i32;
3133 break;
3134 default:
3135 llvm_unreachable("unhandled Reg sequence size");
3138 SmallVector<SDValue, 17> Ops;
3139 Ops.push_back(CurDAG->getTargetConstant(DstRegClass, DL, MVT::i32));
3140 for (unsigned i = 0; i < Elts.size(); ++i) {
3141 Ops.push_back(Elts[i]);
3142 Ops.push_back(CurDAG->getTargetConstant(
3143 SIRegisterInfo::getSubRegFromChannel(i), DL, MVT::i32));
3145 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, DstTy, Ops);
3148 static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts,
3149 llvm::SelectionDAG *CurDAG,
3150 const SDLoc &DL) {
3151 SmallVector<SDValue, 8> PackedElts;
3152 assert("unhandled Reg sequence size" &&
3153 (Elts.size() == 8 || Elts.size() == 16));
3155 // Pack 16-bit elements in pairs into 32-bit register. If both elements are
3156 // unpacked from 32-bit source use it, otherwise pack them using v_perm.
3157 for (unsigned i = 0; i < Elts.size(); i += 2) {
3158 SDValue LoSrc = stripExtractLoElt(stripBitcast(Elts[i]));
3159 SDValue HiSrc;
3160 if (isExtractHiElt(Elts[i + 1], HiSrc) && LoSrc == HiSrc) {
3161 PackedElts.push_back(HiSrc);
3162 } else {
3163 SDValue PackLoLo = CurDAG->getTargetConstant(0x05040100, DL, MVT::i32);
3164 MachineSDNode *Packed =
3165 CurDAG->getMachineNode(AMDGPU::V_PERM_B32_e64, DL, MVT::i32,
3166 {Elts[i + 1], Elts[i], PackLoLo});
3167 PackedElts.push_back(SDValue(Packed, 0));
3171 return buildRegSequence32(PackedElts, CurDAG, DL);
3174 static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts,
3175 llvm::SelectionDAG *CurDAG,
3176 const SDLoc &DL, unsigned ElementSize) {
3177 if (ElementSize == 16)
3178 return buildRegSequence16(Elts, CurDAG, DL);
3179 if (ElementSize == 32)
3180 return buildRegSequence32(Elts, CurDAG, DL);
3181 llvm_unreachable("Unhandled element size");
3184 static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods,
3185 SmallVectorImpl<SDValue> &Elts, SDValue &Src,
3186 llvm::SelectionDAG *CurDAG, const SDLoc &DL,
3187 unsigned ElementSize) {
3188 if (ModOpcode == ISD::FNEG) {
3189 Mods |= SISrcMods::NEG;
3190 // Check if all elements also have abs modifier
3191 SmallVector<SDValue, 8> NegAbsElts;
3192 for (auto El : Elts) {
3193 if (El.getOpcode() != ISD::FABS)
3194 break;
3195 NegAbsElts.push_back(El->getOperand(0));
3197 if (Elts.size() != NegAbsElts.size()) {
3198 // Neg
3199 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0);
3200 } else {
3201 // Neg and Abs
3202 Mods |= SISrcMods::NEG_HI;
3203 Src = SDValue(buildRegSequence(NegAbsElts, CurDAG, DL, ElementSize), 0);
3205 } else {
3206 assert(ModOpcode == ISD::FABS);
3207 // Abs
3208 Mods |= SISrcMods::NEG_HI;
3209 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0);
3213 // Check all f16 elements for modifiers while looking through b32 and v2b16
3214 // build vector, stop if element does not satisfy ModifierCheck.
3215 static void
3216 checkWMMAElementsModifiersF16(BuildVectorSDNode *BV,
3217 std::function<bool(SDValue)> ModifierCheck) {
3218 for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3219 if (auto *F16Pair =
3220 dyn_cast<BuildVectorSDNode>(stripBitcast(BV->getOperand(i)))) {
3221 for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) {
3222 SDValue ElF16 = stripBitcast(F16Pair->getOperand(i));
3223 if (!ModifierCheck(ElF16))
3224 break;
3230 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src,
3231 SDValue &SrcMods) const {
3232 Src = In;
3233 unsigned Mods = SISrcMods::OP_SEL_1;
3235 // mods are on f16 elements
3236 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3237 SmallVector<SDValue, 8> EltsF16;
3239 checkWMMAElementsModifiersF16(BV, [&](SDValue Element) -> bool {
3240 if (Element.getOpcode() != ISD::FNEG)
3241 return false;
3242 EltsF16.push_back(Element.getOperand(0));
3243 return true;
3246 // All elements have neg modifier
3247 if (BV->getNumOperands() * 2 == EltsF16.size()) {
3248 Src = SDValue(buildRegSequence16(EltsF16, CurDAG, SDLoc(In)), 0);
3249 Mods |= SISrcMods::NEG;
3250 Mods |= SISrcMods::NEG_HI;
3254 // mods are on v2f16 elements
3255 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3256 SmallVector<SDValue, 8> EltsV2F16;
3257 for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3258 SDValue ElV2f16 = stripBitcast(BV->getOperand(i));
3259 // Based on first element decide which mod we match, neg or abs
3260 if (ElV2f16.getOpcode() != ISD::FNEG)
3261 break;
3262 EltsV2F16.push_back(ElV2f16.getOperand(0));
3265 // All pairs of elements have neg modifier
3266 if (BV->getNumOperands() == EltsV2F16.size()) {
3267 Src = SDValue(buildRegSequence32(EltsV2F16, CurDAG, SDLoc(In)), 0);
3268 Mods |= SISrcMods::NEG;
3269 Mods |= SISrcMods::NEG_HI;
3273 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3274 return true;
3277 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src,
3278 SDValue &SrcMods) const {
3279 Src = In;
3280 unsigned Mods = SISrcMods::OP_SEL_1;
3281 unsigned ModOpcode;
3283 // mods are on f16 elements
3284 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3285 SmallVector<SDValue, 8> EltsF16;
3286 checkWMMAElementsModifiersF16(BV, [&](SDValue ElF16) -> bool {
3287 // Based on first element decide which mod we match, neg or abs
3288 if (EltsF16.empty())
3289 ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3290 if (ElF16.getOpcode() != ModOpcode)
3291 return false;
3292 EltsF16.push_back(ElF16.getOperand(0));
3293 return true;
3296 // All elements have ModOpcode modifier
3297 if (BV->getNumOperands() * 2 == EltsF16.size())
3298 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF16, Src, CurDAG, SDLoc(In),
3299 16);
3302 // mods are on v2f16 elements
3303 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3304 SmallVector<SDValue, 8> EltsV2F16;
3306 for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3307 SDValue ElV2f16 = stripBitcast(BV->getOperand(i));
3308 // Based on first element decide which mod we match, neg or abs
3309 if (EltsV2F16.empty())
3310 ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3311 if (ElV2f16->getOpcode() != ModOpcode)
3312 break;
3313 EltsV2F16.push_back(ElV2f16->getOperand(0));
3316 // All elements have ModOpcode modifier
3317 if (BV->getNumOperands() == EltsV2F16.size())
3318 selectWMMAModsNegAbs(ModOpcode, Mods, EltsV2F16, Src, CurDAG, SDLoc(In),
3319 32);
3322 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3323 return true;
3326 bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src,
3327 SDValue &SrcMods) const {
3328 Src = In;
3329 unsigned Mods = SISrcMods::OP_SEL_1;
3330 SmallVector<SDValue, 8> EltsF32;
3332 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3333 assert(BV->getNumOperands() > 0);
3334 // Based on first element decide which mod we match, neg or abs
3335 SDValue ElF32 = stripBitcast(BV->getOperand(0));
3336 unsigned ModOpcode =
3337 (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3338 for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3339 SDValue ElF32 = stripBitcast(BV->getOperand(i));
3340 if (ElF32.getOpcode() != ModOpcode)
3341 break;
3342 EltsF32.push_back(ElF32.getOperand(0));
3345 // All elements had ModOpcode modifier
3346 if (BV->getNumOperands() == EltsF32.size())
3347 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF32, Src, CurDAG, SDLoc(In),
3348 32);
3351 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3352 return true;
3355 bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const {
3356 if (auto *BV = dyn_cast<BuildVectorSDNode>(In)) {
3357 BitVector UndefElements;
3358 if (SDValue Splat = BV->getSplatValue(&UndefElements))
3359 if (isInlineImmediate(Splat.getNode())) {
3360 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) {
3361 unsigned Imm = C->getAPIntValue().getSExtValue();
3362 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32);
3363 return true;
3365 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat)) {
3366 unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue();
3367 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32);
3368 return true;
3370 llvm_unreachable("unhandled Constant node");
3374 // 16 bit splat
3375 SDValue SplatSrc32 = stripBitcast(In);
3376 if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(SplatSrc32))
3377 if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) {
3378 SDValue SplatSrc16 = stripBitcast(Splat32);
3379 if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(SplatSrc16))
3380 if (SDValue Splat = SplatSrc16BV->getSplatValue()) {
3381 const SIInstrInfo *TII = Subtarget->getInstrInfo();
3382 std::optional<APInt> RawValue;
3383 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat))
3384 RawValue = C->getValueAPF().bitcastToAPInt();
3385 else if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat))
3386 RawValue = C->getAPIntValue();
3388 if (RawValue.has_value()) {
3389 EVT VT = In.getValueType().getScalarType();
3390 if (VT.getSimpleVT() == MVT::f16 || VT.getSimpleVT() == MVT::bf16) {
3391 APFloat FloatVal(VT.getSimpleVT() == MVT::f16
3392 ? APFloatBase::IEEEhalf()
3393 : APFloatBase::BFloat(),
3394 RawValue.value());
3395 if (TII->isInlineConstant(FloatVal)) {
3396 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In),
3397 MVT::i16);
3398 return true;
3400 } else if (VT.getSimpleVT() == MVT::i16) {
3401 if (TII->isInlineConstant(RawValue.value())) {
3402 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In),
3403 MVT::i16);
3404 return true;
3406 } else
3407 llvm_unreachable("unknown 16-bit type");
3412 return false;
3415 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src,
3416 SDValue &IndexKey) const {
3417 unsigned Key = 0;
3418 Src = In;
3420 if (In.getOpcode() == ISD::SRL) {
3421 const llvm::SDValue &ShiftSrc = In.getOperand(0);
3422 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
3423 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt &&
3424 ShiftAmt->getZExtValue() % 8 == 0) {
3425 Key = ShiftAmt->getZExtValue() / 8;
3426 Src = ShiftSrc;
3430 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32);
3431 return true;
3434 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src,
3435 SDValue &IndexKey) const {
3436 unsigned Key = 0;
3437 Src = In;
3439 if (In.getOpcode() == ISD::SRL) {
3440 const llvm::SDValue &ShiftSrc = In.getOperand(0);
3441 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
3442 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt &&
3443 ShiftAmt->getZExtValue() == 16) {
3444 Key = 1;
3445 Src = ShiftSrc;
3449 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32);
3450 return true;
3453 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
3454 SDValue &SrcMods) const {
3455 Src = In;
3456 // FIXME: Handle op_sel
3457 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
3458 return true;
3461 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
3462 SDValue &SrcMods) const {
3463 // FIXME: Handle op_sel
3464 return SelectVOP3Mods(In, Src, SrcMods);
3467 // The return value is not whether the match is possible (which it always is),
3468 // but whether or not it a conversion is really used.
3469 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
3470 unsigned &Mods) const {
3471 Mods = 0;
3472 SelectVOP3ModsImpl(In, Src, Mods);
3474 if (Src.getOpcode() == ISD::FP_EXTEND) {
3475 Src = Src.getOperand(0);
3476 assert(Src.getValueType() == MVT::f16);
3477 Src = stripBitcast(Src);
3479 // Be careful about folding modifiers if we already have an abs. fneg is
3480 // applied last, so we don't want to apply an earlier fneg.
3481 if ((Mods & SISrcMods::ABS) == 0) {
3482 unsigned ModsTmp;
3483 SelectVOP3ModsImpl(Src, Src, ModsTmp);
3485 if ((ModsTmp & SISrcMods::NEG) != 0)
3486 Mods ^= SISrcMods::NEG;
3488 if ((ModsTmp & SISrcMods::ABS) != 0)
3489 Mods |= SISrcMods::ABS;
3492 // op_sel/op_sel_hi decide the source type and source.
3493 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
3494 // If the sources's op_sel is set, it picks the high half of the source
3495 // register.
3497 Mods |= SISrcMods::OP_SEL_1;
3498 if (isExtractHiElt(Src, Src)) {
3499 Mods |= SISrcMods::OP_SEL_0;
3501 // TODO: Should we try to look for neg/abs here?
3504 return true;
3507 return false;
3510 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src,
3511 SDValue &SrcMods) const {
3512 unsigned Mods = 0;
3513 if (!SelectVOP3PMadMixModsImpl(In, Src, Mods))
3514 return false;
3515 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3516 return true;
3519 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
3520 SDValue &SrcMods) const {
3521 unsigned Mods = 0;
3522 SelectVOP3PMadMixModsImpl(In, Src, Mods);
3523 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3524 return true;
3527 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
3528 if (In.isUndef())
3529 return CurDAG->getUNDEF(MVT::i32);
3531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
3532 SDLoc SL(In);
3533 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
3536 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
3537 SDLoc SL(In);
3538 return CurDAG->getConstant(
3539 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
3542 SDValue Src;
3543 if (isExtractHiElt(In, Src))
3544 return Src;
3546 return SDValue();
3549 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
3550 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
3552 const SIRegisterInfo *SIRI =
3553 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
3554 const SIInstrInfo * SII =
3555 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
3557 unsigned Limit = 0;
3558 bool AllUsesAcceptSReg = true;
3559 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
3560 Limit < 10 && U != E; ++U, ++Limit) {
3561 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
3563 // If the register class is unknown, it could be an unknown
3564 // register class that needs to be an SGPR, e.g. an inline asm
3565 // constraint
3566 if (!RC || SIRI->isSGPRClass(RC))
3567 return false;
3569 if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) {
3570 AllUsesAcceptSReg = false;
3571 SDNode * User = *U;
3572 if (User->isMachineOpcode()) {
3573 unsigned Opc = User->getMachineOpcode();
3574 const MCInstrDesc &Desc = SII->get(Opc);
3575 if (Desc.isCommutable()) {
3576 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
3577 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
3578 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
3579 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
3580 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
3581 if (CommutedRC == &AMDGPU::VS_32RegClass ||
3582 CommutedRC == &AMDGPU::VS_64RegClass)
3583 AllUsesAcceptSReg = true;
3587 // If "AllUsesAcceptSReg == false" so far we haven't succeeded
3588 // commuting current user. This means have at least one use
3589 // that strictly require VGPR. Thus, we will not attempt to commute
3590 // other user instructions.
3591 if (!AllUsesAcceptSReg)
3592 break;
3595 return !AllUsesAcceptSReg && (Limit < 10);
3598 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const {
3599 auto Ld = cast<LoadSDNode>(N);
3601 const MachineMemOperand *MMO = Ld->getMemOperand();
3602 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(MMO))
3603 return false;
3605 return MMO->getSize().hasValue() &&
3606 Ld->getAlign() >=
3607 Align(std::min(MMO->getSize().getValue().getKnownMinValue(),
3608 uint64_t(4))) &&
3609 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
3610 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ||
3611 (Subtarget->getScalarizeGlobalBehavior() &&
3612 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
3613 Ld->isSimple() &&
3614 static_cast<const SITargetLowering *>(getTargetLowering())
3615 ->isMemOpHasNoClobberedMemOperand(N)));
3618 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
3619 const AMDGPUTargetLowering& Lowering =
3620 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
3621 bool IsModified = false;
3622 do {
3623 IsModified = false;
3625 // Go over all selected nodes and try to fold them a bit more
3626 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
3627 while (Position != CurDAG->allnodes_end()) {
3628 SDNode *Node = &*Position++;
3629 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
3630 if (!MachineNode)
3631 continue;
3633 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
3634 if (ResNode != Node) {
3635 if (ResNode)
3636 ReplaceUses(Node, ResNode);
3637 IsModified = true;
3640 CurDAG->RemoveDeadNodes();
3641 } while (IsModified);
3644 AMDGPUDAGToDAGISelLegacy::AMDGPUDAGToDAGISelLegacy(TargetMachine &TM,
3645 CodeGenOptLevel OptLevel)
3646 : SelectionDAGISelLegacy(
3647 ID, std::make_unique<AMDGPUDAGToDAGISel>(TM, OptLevel)) {}
3649 char AMDGPUDAGToDAGISelLegacy::ID = 0;