1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass eliminates local data store, LDS, uses from non-kernel functions.
10 // LDS is contiguous memory allocated per kernel execution.
14 // The programming model is global variables, or equivalently function local
15 // static variables, accessible from kernels or other functions. For uses from
16 // kernels this is straightforward - assign an integer to the kernel for the
17 // memory required by all the variables combined, allocate them within that.
18 // For uses from functions there are performance tradeoffs to choose between.
20 // This model means the GPU runtime can specify the amount of memory allocated.
21 // If this is more than the kernel assumed, the excess can be made available
22 // using a language specific feature, which IR represents as a variable with
23 // no initializer. This feature is referred to here as "Dynamic LDS" and is
24 // lowered slightly differently to the normal case.
26 // Consequences of this GPU feature:
27 // - memory is limited and exceeding it halts compilation
28 // - a global accessed by one kernel exists independent of other kernels
29 // - a global exists independent of simultaneous execution of the same kernel
30 // - the address of the global may be different from different kernels as they
31 // do not alias, which permits only allocating variables they use
32 // - if the address is allowed to differ, functions need help to find it
34 // Uses from kernels are implemented here by grouping them in a per-kernel
35 // struct instance. This duplicates the variables, accurately modelling their
36 // aliasing properties relative to a single global representation. It also
37 // permits control over alignment via padding.
39 // Uses from functions are more complicated and the primary purpose of this
40 // IR pass. Several different lowering are chosen between to meet requirements
41 // to avoid allocating any LDS where it is not necessary, as that impacts
42 // occupancy and may fail the compilation, while not imposing overhead on a
43 // feature whose primary advantage over global memory is performance. The basic
44 // design goal is to avoid one kernel imposing overhead on another.
48 // LDS variables with constant annotation or non-undef initializer are passed
49 // through unchanged for simplification or error diagnostics in later passes.
50 // Non-undef initializers are not yet implemented for LDS.
52 // LDS variables that are always allocated at the same address can be found
53 // by lookup at that address. Otherwise runtime information/cost is required.
55 // The simplest strategy possible is to group all LDS variables in a single
56 // struct and allocate that struct in every kernel such that the original
57 // variables are always at the same address. LDS is however a limited resource
58 // so this strategy is unusable in practice. It is not implemented here.
60 // Strategy | Precise allocation | Zero runtime cost | General purpose |
61 // --------+--------------------+-------------------+-----------------+
62 // Module | No | Yes | Yes |
63 // Table | Yes | No | Yes |
64 // Kernel | Yes | Yes | No |
65 // Hybrid | Yes | Partial | Yes |
67 // "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68 // memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69 // for variables that are known reachable from a single kernel. "Hybrid" picks
70 // between all three. When forced to choose between LDS and cycles we minimise
73 // The "module" lowering implemented here finds LDS variables which are used by
74 // non-kernel functions and creates a new struct with a field for each of those
75 // LDS variables. Variables that are only used from kernels are excluded.
77 // The "table" lowering implemented here has three components.
78 // First kernels are assigned a unique integer identifier which is available in
79 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80 // is passed through a specific SGPR, thus works with indirect calls.
81 // Second, each kernel allocates LDS variables independent of other kernels and
82 // writes the addresses it chose for each variable into an array in consistent
83 // order. If the kernel does not allocate a given variable, it writes undef to
84 // the corresponding array location. These arrays are written to a constant
85 // table in the order matching the kernel unique integer identifier.
86 // Third, uses from non-kernel functions are replaced with a table lookup using
87 // the intrinsic function to find the address of the variable.
89 // "Kernel" lowering is only applicable for variables that are unambiguously
90 // reachable from exactly one kernel. For those cases, accesses to the variable
91 // can be lowered to ConstantExpr address of a struct instance specific to that
92 // one kernel. This is zero cost in space and in compute. It will raise a fatal
93 // error on any variable that might be reachable from multiple kernels and is
94 // thus most easily used as part of the hybrid lowering strategy.
96 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97 // lowering where it can. It lowers the variable accessed by the greatest
98 // number of kernels using the module strategy as that is free for the first
99 // variable. Any futher variables that can be lowered with the module strategy
100 // without incurring LDS memory overhead are. The remaining ones are lowered
104 // - No heuristics or user controlled magic numbers, hybrid is the right choice
105 // - Kernels that don't use functions (or have had them all inlined) are not
106 // affected by any lowering for kernels that do.
107 // - Kernels that don't make indirect function calls are not affected by those
109 // - Variables which are used by lots of kernels, e.g. those injected by a
110 // language runtime in most kernels, are expected to have no overhead
111 // - Implementations that instantiate templates per-kernel where those templates
112 // use LDS are expected to hit the "Kernel" lowering strategy
113 // - The runtime properties impose a cost in compiler implementation complexity
115 // Dynamic LDS implementation
116 // Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117 // same intrinsic to identify which kernel is at the root of the dynamic call
118 // graph. This relies on the specified behaviour that all dynamic LDS variables
119 // alias one another, i.e. are at the same address, with respect to a given
120 // kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121 // that allocates any dynamic LDS and builds a table of addresses out of those.
122 // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123 // The corresponding optimisation for "kernel" lowering where the table lookup
124 // is elided is not implemented.
127 // Implementation notes / limitations
128 // A single LDS global variable represents an instance per kernel that can reach
129 // said variables. This pass essentially specialises said variables per kernel.
130 // Handling ConstantExpr during the pass complicated this significantly so now
131 // all ConstantExpr uses of LDS variables are expanded to instructions. This
132 // may need amending when implementing non-undef initialisers.
134 // Lowering is split between this IR pass and the back end. This pass chooses
135 // where given variables should be allocated and marks them with metadata,
136 // MD_absolute_symbol. The backend places the variables in coincidentally the
137 // same location and raises a fatal error if something has gone awry. This works
138 // in practice because the only pass between this one and the backend that
139 // changes LDS is PromoteAlloca and the changes it makes do not conflict.
141 // Addresses are written to constant global arrays based on the same metadata.
143 // The backend lowers LDS variables in the order of traversal of the function.
144 // This is at odds with the deterministic layout required. The workaround is to
145 // allocate the fixed-address variables immediately upon starting the function
146 // where they can be placed as intended. This requires a means of mapping from
147 // the function to the variables that it allocates. For the module scope lds,
148 // this is via metadata indicating whether the variable is not required. If a
149 // pass deletes that metadata, a fatal error on disagreement with the absolute
150 // symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151 // correspondence between the function and the variable. It requires the
152 // kernel to have a name (which is only a limitation for tests in practice) and
153 // for nothing to rename the corresponding symbols. This is a hazard if the pass
154 // is run multiple times during debugging. Alternative schemes considered all
155 // involve bespoke metadata.
157 // If the name correspondence can be replaced, multiple distinct kernels that
158 // have the same memory layout can map to the same kernel id (as the address
159 // itself is handled by the absolute symbol metadata) and that will allow more
160 // uses of the "kernel" style faster lowering and reduce the size of the lookup
163 // There is a test that checks this does not fire for a graphics shader. This
164 // lowering is expected to work for graphics if the isKernel test is changed.
166 // The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167 // before codegen. Replacing this with an equivalent intrinsic which lasts until
168 // shortly after the machine function lowering of LDS would help break the name
169 // mapping. The other part needed is probably to amend PromoteAlloca to embed
170 // the LDS variables it creates in the same struct created here. That avoids the
171 // current hazard where a PromoteAlloca LDS variable might be allocated before
172 // the kernel scope (and thus error on the address check). Given a new invariant
173 // that no LDS variables exist outside of the structs managed here, and an
174 // intrinsic that lasts until after the LDS frame lowering, it should be
175 // possible to drop the name mapping and fold equivalent memory layouts.
177 //===----------------------------------------------------------------------===//
180 #include "AMDGPUTargetMachine.h"
181 #include "Utils/AMDGPUBaseInfo.h"
182 #include "Utils/AMDGPUMemoryUtils.h"
183 #include "llvm/ADT/BitVector.h"
184 #include "llvm/ADT/DenseMap.h"
185 #include "llvm/ADT/DenseSet.h"
186 #include "llvm/ADT/STLExtras.h"
187 #include "llvm/ADT/SetOperations.h"
188 #include "llvm/Analysis/CallGraph.h"
189 #include "llvm/CodeGen/TargetPassConfig.h"
190 #include "llvm/IR/Constants.h"
191 #include "llvm/IR/DerivedTypes.h"
192 #include "llvm/IR/IRBuilder.h"
193 #include "llvm/IR/InlineAsm.h"
194 #include "llvm/IR/Instructions.h"
195 #include "llvm/IR/IntrinsicsAMDGPU.h"
196 #include "llvm/IR/MDBuilder.h"
197 #include "llvm/IR/ReplaceConstant.h"
198 #include "llvm/InitializePasses.h"
199 #include "llvm/Pass.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Support/Debug.h"
202 #include "llvm/Support/Format.h"
203 #include "llvm/Support/OptimizedStructLayout.h"
204 #include "llvm/Support/raw_ostream.h"
205 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
206 #include "llvm/Transforms/Utils/ModuleUtils.h"
212 #define DEBUG_TYPE "amdgpu-lower-module-lds"
214 using namespace llvm
;
215 using namespace AMDGPU
;
219 cl::opt
<bool> SuperAlignLDSGlobals(
220 "amdgpu-super-align-lds-globals",
221 cl::desc("Increase alignment of LDS if it is not on align boundary"),
222 cl::init(true), cl::Hidden
);
224 enum class LoweringKind
{ module
, table
, kernel
, hybrid
};
225 cl::opt
<LoweringKind
> LoweringKindLoc(
226 "amdgpu-lower-module-lds-strategy",
227 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden
,
228 cl::init(LoweringKind::hybrid
),
230 clEnumValN(LoweringKind::table
, "table", "Lower via table lookup"),
231 clEnumValN(LoweringKind::module
, "module", "Lower via module struct"),
233 LoweringKind::kernel
, "kernel",
234 "Lower variables reachable from one kernel, otherwise abort"),
235 clEnumValN(LoweringKind::hybrid
, "hybrid",
236 "Lower via mixture of above strategies")));
238 template <typename T
> std::vector
<T
> sortByName(std::vector
<T
> &&V
) {
239 llvm::sort(V
.begin(), V
.end(), [](const auto *L
, const auto *R
) {
240 return L
->getName() < R
->getName();
242 return {std::move(V
)};
245 class AMDGPULowerModuleLDS
{
246 const AMDGPUTargetMachine
&TM
;
249 removeLocalVarsFromUsedLists(Module
&M
,
250 const DenseSet
<GlobalVariable
*> &LocalVars
) {
251 // The verifier rejects used lists containing an inttoptr of a constant
252 // so remove the variables from these lists before replaceAllUsesWith
253 SmallPtrSet
<Constant
*, 8> LocalVarsSet
;
254 for (GlobalVariable
*LocalVar
: LocalVars
)
255 LocalVarsSet
.insert(cast
<Constant
>(LocalVar
->stripPointerCasts()));
258 M
, [&LocalVarsSet
](Constant
*C
) { return LocalVarsSet
.count(C
); });
260 for (GlobalVariable
*LocalVar
: LocalVars
)
261 LocalVar
->removeDeadConstantUsers();
264 static void markUsedByKernel(Function
*Func
, GlobalVariable
*SGV
) {
265 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
266 // that might call a function which accesses a field within it. This is
267 // presently approximated to 'all kernels' if there are any such functions
268 // in the module. This implicit use is redefined as an explicit use here so
269 // that later passes, specifically PromoteAlloca, account for the required
270 // memory without any knowledge of this transform.
272 // An operand bundle on llvm.donothing works because the call instruction
273 // survives until after the last pass that needs to account for LDS. It is
274 // better than inline asm as the latter survives until the end of codegen. A
275 // totally robust solution would be a function with the same semantics as
276 // llvm.donothing that takes a pointer to the instance and is lowered to a
277 // no-op after LDS is allocated, but that is not presently necessary.
279 // This intrinsic is eliminated shortly before instruction selection. It
280 // does not suffice to indicate to ISel that a given global which is not
281 // immediately used by the kernel must still be allocated by it. An
282 // equivalent target specific intrinsic which lasts until immediately after
283 // codegen would suffice for that, but one would still need to ensure that
284 // the variables are allocated in the anticipated order.
285 BasicBlock
*Entry
= &Func
->getEntryBlock();
286 IRBuilder
<> Builder(Entry
, Entry
->getFirstNonPHIIt());
289 Intrinsic::getDeclaration(Func
->getParent(), Intrinsic::donothing
, {});
291 Value
*UseInstance
[1] = {
292 Builder
.CreateConstInBoundsGEP1_32(SGV
->getValueType(), SGV
, 0)};
295 Decl
, {}, {OperandBundleDefT
<Value
*>("ExplicitUse", UseInstance
)});
299 AMDGPULowerModuleLDS(const AMDGPUTargetMachine
&TM_
) : TM(TM_
) {}
301 struct LDSVariableReplacement
{
302 GlobalVariable
*SGV
= nullptr;
303 DenseMap
<GlobalVariable
*, Constant
*> LDSVarsToConstantGEP
;
306 // remap from lds global to a constantexpr gep to where it has been moved to
308 // an array with an element for each kernel containing where the corresponding
309 // variable was remapped to
311 static Constant
*getAddressesOfVariablesInKernel(
312 LLVMContext
&Ctx
, ArrayRef
<GlobalVariable
*> Variables
,
313 const DenseMap
<GlobalVariable
*, Constant
*> &LDSVarsToConstantGEP
) {
314 // Create a ConstantArray containing the address of each Variable within the
315 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
316 // does not allocate it
317 // TODO: Drop the ptrtoint conversion
319 Type
*I32
= Type::getInt32Ty(Ctx
);
321 ArrayType
*KernelOffsetsType
= ArrayType::get(I32
, Variables
.size());
323 SmallVector
<Constant
*> Elements
;
324 for (GlobalVariable
*GV
: Variables
) {
325 auto ConstantGepIt
= LDSVarsToConstantGEP
.find(GV
);
326 if (ConstantGepIt
!= LDSVarsToConstantGEP
.end()) {
327 auto elt
= ConstantExpr::getPtrToInt(ConstantGepIt
->second
, I32
);
328 Elements
.push_back(elt
);
330 Elements
.push_back(PoisonValue::get(I32
));
333 return ConstantArray::get(KernelOffsetsType
, Elements
);
336 static GlobalVariable
*buildLookupTable(
337 Module
&M
, ArrayRef
<GlobalVariable
*> Variables
,
338 ArrayRef
<Function
*> kernels
,
339 DenseMap
<Function
*, LDSVariableReplacement
> &KernelToReplacement
) {
340 if (Variables
.empty()) {
343 LLVMContext
&Ctx
= M
.getContext();
345 const size_t NumberVariables
= Variables
.size();
346 const size_t NumberKernels
= kernels
.size();
348 ArrayType
*KernelOffsetsType
=
349 ArrayType::get(Type::getInt32Ty(Ctx
), NumberVariables
);
351 ArrayType
*AllKernelsOffsetsType
=
352 ArrayType::get(KernelOffsetsType
, NumberKernels
);
354 Constant
*Missing
= PoisonValue::get(KernelOffsetsType
);
355 std::vector
<Constant
*> overallConstantExprElts(NumberKernels
);
356 for (size_t i
= 0; i
< NumberKernels
; i
++) {
357 auto Replacement
= KernelToReplacement
.find(kernels
[i
]);
358 overallConstantExprElts
[i
] =
359 (Replacement
== KernelToReplacement
.end())
361 : getAddressesOfVariablesInKernel(
362 Ctx
, Variables
, Replacement
->second
.LDSVarsToConstantGEP
);
366 ConstantArray::get(AllKernelsOffsetsType
, overallConstantExprElts
);
368 return new GlobalVariable(
369 M
, AllKernelsOffsetsType
, true, GlobalValue::InternalLinkage
, init
,
370 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal
,
371 AMDGPUAS::CONSTANT_ADDRESS
);
374 void replaceUseWithTableLookup(Module
&M
, IRBuilder
<> &Builder
,
375 GlobalVariable
*LookupTable
,
376 GlobalVariable
*GV
, Use
&U
,
377 Value
*OptionalIndex
) {
378 // Table is a constant array of the same length as OrderedKernels
379 LLVMContext
&Ctx
= M
.getContext();
380 Type
*I32
= Type::getInt32Ty(Ctx
);
381 auto *I
= cast
<Instruction
>(U
.getUser());
383 Value
*tableKernelIndex
= getTableLookupKernelIndex(M
, I
->getFunction());
385 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
386 BasicBlock
*BB
= Phi
->getIncomingBlock(U
);
387 Builder
.SetInsertPoint(&(*(BB
->getFirstInsertionPt())));
389 Builder
.SetInsertPoint(I
);
392 SmallVector
<Value
*, 3> GEPIdx
= {
393 ConstantInt::get(I32
, 0),
397 GEPIdx
.push_back(OptionalIndex
);
399 Value
*Address
= Builder
.CreateInBoundsGEP(
400 LookupTable
->getValueType(), LookupTable
, GEPIdx
, GV
->getName());
402 Value
*loaded
= Builder
.CreateLoad(I32
, Address
);
405 Builder
.CreateIntToPtr(loaded
, GV
->getType(), GV
->getName());
410 void replaceUsesInInstructionsWithTableLookup(
411 Module
&M
, ArrayRef
<GlobalVariable
*> ModuleScopeVariables
,
412 GlobalVariable
*LookupTable
) {
414 LLVMContext
&Ctx
= M
.getContext();
415 IRBuilder
<> Builder(Ctx
);
416 Type
*I32
= Type::getInt32Ty(Ctx
);
418 for (size_t Index
= 0; Index
< ModuleScopeVariables
.size(); Index
++) {
419 auto *GV
= ModuleScopeVariables
[Index
];
421 for (Use
&U
: make_early_inc_range(GV
->uses())) {
422 auto *I
= dyn_cast
<Instruction
>(U
.getUser());
426 replaceUseWithTableLookup(M
, Builder
, LookupTable
, GV
, U
,
427 ConstantInt::get(I32
, Index
));
432 static DenseSet
<Function
*> kernelsThatIndirectlyAccessAnyOfPassedVariables(
433 Module
&M
, LDSUsesInfoTy
&LDSUsesInfo
,
434 DenseSet
<GlobalVariable
*> const &VariableSet
) {
436 DenseSet
<Function
*> KernelSet
;
438 if (VariableSet
.empty())
441 for (Function
&Func
: M
.functions()) {
442 if (Func
.isDeclaration() || !isKernelLDS(&Func
))
444 for (GlobalVariable
*GV
: LDSUsesInfo
.indirect_access
[&Func
]) {
445 if (VariableSet
.contains(GV
)) {
446 KernelSet
.insert(&Func
);
455 static GlobalVariable
*
456 chooseBestVariableForModuleStrategy(const DataLayout
&DL
,
457 VariableFunctionMap
&LDSVars
) {
458 // Find the global variable with the most indirect uses from kernels
461 GlobalVariable
*GV
= nullptr;
462 size_t UserCount
= 0;
465 CandidateTy() = default;
467 CandidateTy(GlobalVariable
*GV
, uint64_t UserCount
, uint64_t AllocSize
)
468 : GV(GV
), UserCount(UserCount
), Size(AllocSize
) {}
470 bool operator<(const CandidateTy
&Other
) const {
471 // Fewer users makes module scope variable less attractive
472 if (UserCount
< Other
.UserCount
) {
475 if (UserCount
> Other
.UserCount
) {
479 // Bigger makes module scope variable less attractive
480 if (Size
< Other
.Size
) {
484 if (Size
> Other
.Size
) {
488 // Arbitrary but consistent
489 return GV
->getName() < Other
.GV
->getName();
493 CandidateTy MostUsed
;
495 for (auto &K
: LDSVars
) {
496 GlobalVariable
*GV
= K
.first
;
497 if (K
.second
.size() <= 1) {
498 // A variable reachable by only one kernel is best lowered with kernel
502 CandidateTy
Candidate(
504 DL
.getTypeAllocSize(GV
->getValueType()).getFixedValue());
505 if (MostUsed
< Candidate
)
506 MostUsed
= Candidate
;
512 static void recordLDSAbsoluteAddress(Module
*M
, GlobalVariable
*GV
,
514 // Write the specified address into metadata where it can be retrieved by
515 // the assembler. Format is a half open range, [Address Address+1)
516 LLVMContext
&Ctx
= M
->getContext();
518 M
->getDataLayout().getIntPtrType(Ctx
, AMDGPUAS::LOCAL_ADDRESS
);
519 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntTy
, Address
));
520 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntTy
, Address
+ 1));
521 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
522 MDNode::get(Ctx
, {MinC
, MaxC
}));
525 DenseMap
<Function
*, Value
*> tableKernelIndexCache
;
526 Value
*getTableLookupKernelIndex(Module
&M
, Function
*F
) {
527 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
528 // lowers to a read from a live in register. Emit it once in the entry
529 // block to spare deduplicating it later.
530 auto [It
, Inserted
] = tableKernelIndexCache
.try_emplace(F
);
533 Intrinsic::getDeclaration(&M
, Intrinsic::amdgcn_lds_kernel_id
, {});
535 auto InsertAt
= F
->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
536 IRBuilder
<> Builder(&*InsertAt
);
538 It
->second
= Builder
.CreateCall(Decl
, {});
544 static std::vector
<Function
*> assignLDSKernelIDToEachKernel(
545 Module
*M
, DenseSet
<Function
*> const &KernelsThatAllocateTableLDS
,
546 DenseSet
<Function
*> const &KernelsThatIndirectlyAllocateDynamicLDS
) {
547 // Associate kernels in the set with an arbitrary but reproducible order and
548 // annotate them with that order in metadata. This metadata is recognised by
549 // the backend and lowered to a SGPR which can be read from using
550 // amdgcn_lds_kernel_id.
552 std::vector
<Function
*> OrderedKernels
;
553 if (!KernelsThatAllocateTableLDS
.empty() ||
554 !KernelsThatIndirectlyAllocateDynamicLDS
.empty()) {
556 for (Function
&Func
: M
->functions()) {
557 if (Func
.isDeclaration())
559 if (!isKernelLDS(&Func
))
562 if (KernelsThatAllocateTableLDS
.contains(&Func
) ||
563 KernelsThatIndirectlyAllocateDynamicLDS
.contains(&Func
)) {
564 assert(Func
.hasName()); // else fatal error earlier
565 OrderedKernels
.push_back(&Func
);
569 // Put them in an arbitrary but reproducible order
570 OrderedKernels
= sortByName(std::move(OrderedKernels
));
572 // Annotate the kernels with their order in this vector
573 LLVMContext
&Ctx
= M
->getContext();
574 IRBuilder
<> Builder(Ctx
);
576 if (OrderedKernels
.size() > UINT32_MAX
) {
577 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
578 report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
581 for (size_t i
= 0; i
< OrderedKernels
.size(); i
++) {
582 Metadata
*AttrMDArgs
[1] = {
583 ConstantAsMetadata::get(Builder
.getInt32(i
)),
585 OrderedKernels
[i
]->setMetadata("llvm.amdgcn.lds.kernel.id",
586 MDNode::get(Ctx
, AttrMDArgs
));
589 return OrderedKernels
;
592 static void partitionVariablesIntoIndirectStrategies(
593 Module
&M
, LDSUsesInfoTy
const &LDSUsesInfo
,
594 VariableFunctionMap
&LDSToKernelsThatNeedToAccessItIndirectly
,
595 DenseSet
<GlobalVariable
*> &ModuleScopeVariables
,
596 DenseSet
<GlobalVariable
*> &TableLookupVariables
,
597 DenseSet
<GlobalVariable
*> &KernelAccessVariables
,
598 DenseSet
<GlobalVariable
*> &DynamicVariables
) {
600 GlobalVariable
*HybridModuleRoot
=
601 LoweringKindLoc
!= LoweringKind::hybrid
603 : chooseBestVariableForModuleStrategy(
604 M
.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly
);
606 DenseSet
<Function
*> const EmptySet
;
607 DenseSet
<Function
*> const &HybridModuleRootKernels
=
609 ? LDSToKernelsThatNeedToAccessItIndirectly
[HybridModuleRoot
]
612 for (auto &K
: LDSToKernelsThatNeedToAccessItIndirectly
) {
613 // Each iteration of this loop assigns exactly one global variable to
614 // exactly one of the implementation strategies.
616 GlobalVariable
*GV
= K
.first
;
617 assert(AMDGPU::isLDSVariableToLower(*GV
));
618 assert(K
.second
.size() != 0);
620 if (AMDGPU::isDynamicLDS(*GV
)) {
621 DynamicVariables
.insert(GV
);
625 switch (LoweringKindLoc
) {
626 case LoweringKind::module
:
627 ModuleScopeVariables
.insert(GV
);
630 case LoweringKind::table
:
631 TableLookupVariables
.insert(GV
);
634 case LoweringKind::kernel
:
635 if (K
.second
.size() == 1) {
636 KernelAccessVariables
.insert(GV
);
639 "cannot lower LDS '" + GV
->getName() +
640 "' to kernel access as it is reachable from multiple kernels");
644 case LoweringKind::hybrid
: {
645 if (GV
== HybridModuleRoot
) {
646 assert(K
.second
.size() != 1);
647 ModuleScopeVariables
.insert(GV
);
648 } else if (K
.second
.size() == 1) {
649 KernelAccessVariables
.insert(GV
);
650 } else if (set_is_subset(K
.second
, HybridModuleRootKernels
)) {
651 ModuleScopeVariables
.insert(GV
);
653 TableLookupVariables
.insert(GV
);
660 // All LDS variables accessed indirectly have now been partitioned into
661 // the distinct lowering strategies.
662 assert(ModuleScopeVariables
.size() + TableLookupVariables
.size() +
663 KernelAccessVariables
.size() + DynamicVariables
.size() ==
664 LDSToKernelsThatNeedToAccessItIndirectly
.size());
667 static GlobalVariable
*lowerModuleScopeStructVariables(
668 Module
&M
, DenseSet
<GlobalVariable
*> const &ModuleScopeVariables
,
669 DenseSet
<Function
*> const &KernelsThatAllocateModuleLDS
) {
670 // Create a struct to hold the ModuleScopeVariables
671 // Replace all uses of those variables from non-kernel functions with the
672 // new struct instance Replace only the uses from kernel functions that will
673 // allocate this instance. That is a space optimisation - kernels that use a
674 // subset of the module scope struct and do not need to allocate it for
675 // indirect calls will only allocate the subset they use (they do so as part
676 // of the per-kernel lowering).
677 if (ModuleScopeVariables
.empty()) {
681 LLVMContext
&Ctx
= M
.getContext();
683 LDSVariableReplacement ModuleScopeReplacement
=
684 createLDSVariableReplacement(M
, "llvm.amdgcn.module.lds",
685 ModuleScopeVariables
);
687 appendToCompilerUsed(M
, {static_cast<GlobalValue
*>(
688 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
689 cast
<Constant
>(ModuleScopeReplacement
.SGV
),
690 PointerType::getUnqual(Ctx
)))});
692 // module.lds will be allocated at zero in any kernel that allocates it
693 recordLDSAbsoluteAddress(&M
, ModuleScopeReplacement
.SGV
, 0);
696 removeLocalVarsFromUsedLists(M
, ModuleScopeVariables
);
698 // Replace all uses of module scope variable from non-kernel functions
699 replaceLDSVariablesWithStruct(
700 M
, ModuleScopeVariables
, ModuleScopeReplacement
, [&](Use
&U
) {
701 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
705 Function
*F
= I
->getFunction();
706 return !isKernelLDS(F
);
709 // Replace uses of module scope variable from kernel functions that
710 // allocate the module scope variable, otherwise leave them unchanged
711 // Record on each kernel whether the module scope global is used by it
713 for (Function
&Func
: M
.functions()) {
714 if (Func
.isDeclaration() || !isKernelLDS(&Func
))
717 if (KernelsThatAllocateModuleLDS
.contains(&Func
)) {
718 replaceLDSVariablesWithStruct(
719 M
, ModuleScopeVariables
, ModuleScopeReplacement
, [&](Use
&U
) {
720 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
724 Function
*F
= I
->getFunction();
728 markUsedByKernel(&Func
, ModuleScopeReplacement
.SGV
);
732 return ModuleScopeReplacement
.SGV
;
735 static DenseMap
<Function
*, LDSVariableReplacement
>
736 lowerKernelScopeStructVariables(
737 Module
&M
, LDSUsesInfoTy
&LDSUsesInfo
,
738 DenseSet
<GlobalVariable
*> const &ModuleScopeVariables
,
739 DenseSet
<Function
*> const &KernelsThatAllocateModuleLDS
,
740 GlobalVariable
*MaybeModuleScopeStruct
) {
742 // Create a struct for each kernel for the non-module-scope variables.
744 DenseMap
<Function
*, LDSVariableReplacement
> KernelToReplacement
;
745 for (Function
&Func
: M
.functions()) {
746 if (Func
.isDeclaration() || !isKernelLDS(&Func
))
749 DenseSet
<GlobalVariable
*> KernelUsedVariables
;
750 // Allocating variables that are used directly in this struct to get
751 // alignment aware allocation and predictable frame size.
752 for (auto &v
: LDSUsesInfo
.direct_access
[&Func
]) {
753 if (!AMDGPU::isDynamicLDS(*v
)) {
754 KernelUsedVariables
.insert(v
);
758 // Allocating variables that are accessed indirectly so that a lookup of
759 // this struct instance can find them from nested functions.
760 for (auto &v
: LDSUsesInfo
.indirect_access
[&Func
]) {
761 if (!AMDGPU::isDynamicLDS(*v
)) {
762 KernelUsedVariables
.insert(v
);
766 // Variables allocated in module lds must all resolve to that struct,
767 // not to the per-kernel instance.
768 if (KernelsThatAllocateModuleLDS
.contains(&Func
)) {
769 for (GlobalVariable
*v
: ModuleScopeVariables
) {
770 KernelUsedVariables
.erase(v
);
774 if (KernelUsedVariables
.empty()) {
775 // Either used no LDS, or the LDS it used was all in the module struct
776 // or dynamically sized
780 // The association between kernel function and LDS struct is done by
781 // symbol name, which only works if the function in question has a
782 // name This is not expected to be a problem in practice as kernels
783 // are called by name making anonymous ones (which are named by the
784 // backend) difficult to use. This does mean that llvm test cases need
785 // to name the kernels.
786 if (!Func
.hasName()) {
787 report_fatal_error("Anonymous kernels cannot use LDS variables");
790 std::string VarName
=
791 (Twine("llvm.amdgcn.kernel.") + Func
.getName() + ".lds").str();
794 createLDSVariableReplacement(M
, VarName
, KernelUsedVariables
);
796 // If any indirect uses, create a direct use to ensure allocation
797 // TODO: Simpler to unconditionally mark used but that regresses
798 // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
799 auto Accesses
= LDSUsesInfo
.indirect_access
.find(&Func
);
800 if ((Accesses
!= LDSUsesInfo
.indirect_access
.end()) &&
801 !Accesses
->second
.empty())
802 markUsedByKernel(&Func
, Replacement
.SGV
);
804 // remove preserves existing codegen
805 removeLocalVarsFromUsedLists(M
, KernelUsedVariables
);
806 KernelToReplacement
[&Func
] = Replacement
;
808 // Rewrite uses within kernel to the new struct
809 replaceLDSVariablesWithStruct(
810 M
, KernelUsedVariables
, Replacement
, [&Func
](Use
&U
) {
811 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
812 return I
&& I
->getFunction() == &Func
;
815 return KernelToReplacement
;
818 static GlobalVariable
*
819 buildRepresentativeDynamicLDSInstance(Module
&M
, LDSUsesInfoTy
&LDSUsesInfo
,
821 // Create a dynamic lds variable with a name associated with the passed
822 // function that has the maximum alignment of any dynamic lds variable
823 // reachable from this kernel. Dynamic LDS is allocated after the static LDS
824 // allocation, possibly after alignment padding. The representative variable
825 // created here has the maximum alignment of any other dynamic variable
826 // reachable by that kernel. All dynamic LDS variables are allocated at the
827 // same address in each kernel in order to provide the documented aliasing
828 // semantics. Setting the alignment here allows this IR pass to accurately
829 // predict the exact constant at which it will be allocated.
831 assert(isKernelLDS(func
));
833 LLVMContext
&Ctx
= M
.getContext();
834 const DataLayout
&DL
= M
.getDataLayout();
835 Align
MaxDynamicAlignment(1);
837 auto UpdateMaxAlignment
= [&MaxDynamicAlignment
, &DL
](GlobalVariable
*GV
) {
838 if (AMDGPU::isDynamicLDS(*GV
)) {
839 MaxDynamicAlignment
=
840 std::max(MaxDynamicAlignment
, AMDGPU::getAlign(DL
, GV
));
844 for (GlobalVariable
*GV
: LDSUsesInfo
.indirect_access
[func
]) {
845 UpdateMaxAlignment(GV
);
848 for (GlobalVariable
*GV
: LDSUsesInfo
.direct_access
[func
]) {
849 UpdateMaxAlignment(GV
);
852 assert(func
->hasName()); // Checked by caller
853 auto emptyCharArray
= ArrayType::get(Type::getInt8Ty(Ctx
), 0);
854 GlobalVariable
*N
= new GlobalVariable(
855 M
, emptyCharArray
, false, GlobalValue::ExternalLinkage
, nullptr,
856 Twine("llvm.amdgcn." + func
->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal
, AMDGPUAS::LOCAL_ADDRESS
,
858 N
->setAlignment(MaxDynamicAlignment
);
860 assert(AMDGPU::isDynamicLDS(*N
));
864 DenseMap
<Function
*, GlobalVariable
*> lowerDynamicLDSVariables(
865 Module
&M
, LDSUsesInfoTy
&LDSUsesInfo
,
866 DenseSet
<Function
*> const &KernelsThatIndirectlyAllocateDynamicLDS
,
867 DenseSet
<GlobalVariable
*> const &DynamicVariables
,
868 std::vector
<Function
*> const &OrderedKernels
) {
869 DenseMap
<Function
*, GlobalVariable
*> KernelToCreatedDynamicLDS
;
870 if (!KernelsThatIndirectlyAllocateDynamicLDS
.empty()) {
871 LLVMContext
&Ctx
= M
.getContext();
872 IRBuilder
<> Builder(Ctx
);
873 Type
*I32
= Type::getInt32Ty(Ctx
);
875 std::vector
<Constant
*> newDynamicLDS
;
877 // Table is built in the same order as OrderedKernels
878 for (auto &func
: OrderedKernels
) {
880 if (KernelsThatIndirectlyAllocateDynamicLDS
.contains(func
)) {
881 assert(isKernelLDS(func
));
882 if (!func
->hasName()) {
883 report_fatal_error("Anonymous kernels cannot use LDS variables");
887 buildRepresentativeDynamicLDSInstance(M
, LDSUsesInfo
, func
);
889 KernelToCreatedDynamicLDS
[func
] = N
;
891 markUsedByKernel(func
, N
);
893 auto emptyCharArray
= ArrayType::get(Type::getInt8Ty(Ctx
), 0);
894 auto GEP
= ConstantExpr::getGetElementPtr(
895 emptyCharArray
, N
, ConstantInt::get(I32
, 0), true);
896 newDynamicLDS
.push_back(ConstantExpr::getPtrToInt(GEP
, I32
));
898 newDynamicLDS
.push_back(PoisonValue::get(I32
));
901 assert(OrderedKernels
.size() == newDynamicLDS
.size());
903 ArrayType
*t
= ArrayType::get(I32
, newDynamicLDS
.size());
904 Constant
*init
= ConstantArray::get(t
, newDynamicLDS
);
905 GlobalVariable
*table
= new GlobalVariable(
906 M
, t
, true, GlobalValue::InternalLinkage
, init
,
907 "llvm.amdgcn.dynlds.offset.table", nullptr,
908 GlobalValue::NotThreadLocal
, AMDGPUAS::CONSTANT_ADDRESS
);
910 for (GlobalVariable
*GV
: DynamicVariables
) {
911 for (Use
&U
: make_early_inc_range(GV
->uses())) {
912 auto *I
= dyn_cast
<Instruction
>(U
.getUser());
915 if (isKernelLDS(I
->getFunction()))
918 replaceUseWithTableLookup(M
, Builder
, table
, GV
, U
, nullptr);
922 return KernelToCreatedDynamicLDS
;
925 bool runOnModule(Module
&M
) {
926 CallGraph CG
= CallGraph(M
);
927 bool Changed
= superAlignLDSGlobals(M
);
929 Changed
|= eliminateConstantExprUsesOfLDSFromAllInstructions(M
);
931 Changed
= true; // todo: narrow this down
933 // For each kernel, what variables does it access directly or through
935 LDSUsesInfoTy LDSUsesInfo
= getTransitiveUsesOfLDS(CG
, M
);
937 // For each variable accessed through callees, which kernels access it
938 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly
;
939 for (auto &K
: LDSUsesInfo
.indirect_access
) {
940 Function
*F
= K
.first
;
941 assert(isKernelLDS(F
));
942 for (GlobalVariable
*GV
: K
.second
) {
943 LDSToKernelsThatNeedToAccessItIndirectly
[GV
].insert(F
);
947 // Partition variables accessed indirectly into the different strategies
948 DenseSet
<GlobalVariable
*> ModuleScopeVariables
;
949 DenseSet
<GlobalVariable
*> TableLookupVariables
;
950 DenseSet
<GlobalVariable
*> KernelAccessVariables
;
951 DenseSet
<GlobalVariable
*> DynamicVariables
;
952 partitionVariablesIntoIndirectStrategies(
953 M
, LDSUsesInfo
, LDSToKernelsThatNeedToAccessItIndirectly
,
954 ModuleScopeVariables
, TableLookupVariables
, KernelAccessVariables
,
957 // If the kernel accesses a variable that is going to be stored in the
958 // module instance through a call then that kernel needs to allocate the
960 const DenseSet
<Function
*> KernelsThatAllocateModuleLDS
=
961 kernelsThatIndirectlyAccessAnyOfPassedVariables(M
, LDSUsesInfo
,
962 ModuleScopeVariables
);
963 const DenseSet
<Function
*> KernelsThatAllocateTableLDS
=
964 kernelsThatIndirectlyAccessAnyOfPassedVariables(M
, LDSUsesInfo
,
965 TableLookupVariables
);
967 const DenseSet
<Function
*> KernelsThatIndirectlyAllocateDynamicLDS
=
968 kernelsThatIndirectlyAccessAnyOfPassedVariables(M
, LDSUsesInfo
,
971 GlobalVariable
*MaybeModuleScopeStruct
= lowerModuleScopeStructVariables(
972 M
, ModuleScopeVariables
, KernelsThatAllocateModuleLDS
);
974 DenseMap
<Function
*, LDSVariableReplacement
> KernelToReplacement
=
975 lowerKernelScopeStructVariables(M
, LDSUsesInfo
, ModuleScopeVariables
,
976 KernelsThatAllocateModuleLDS
,
977 MaybeModuleScopeStruct
);
979 // Lower zero cost accesses to the kernel instances just created
980 for (auto &GV
: KernelAccessVariables
) {
981 auto &funcs
= LDSToKernelsThatNeedToAccessItIndirectly
[GV
];
982 assert(funcs
.size() == 1); // Only one kernel can access it
983 LDSVariableReplacement Replacement
=
984 KernelToReplacement
[*(funcs
.begin())];
986 DenseSet
<GlobalVariable
*> Vec
;
989 replaceLDSVariablesWithStruct(M
, Vec
, Replacement
, [](Use
&U
) {
990 return isa
<Instruction
>(U
.getUser());
994 // The ith element of this vector is kernel id i
995 std::vector
<Function
*> OrderedKernels
=
996 assignLDSKernelIDToEachKernel(&M
, KernelsThatAllocateTableLDS
,
997 KernelsThatIndirectlyAllocateDynamicLDS
);
999 if (!KernelsThatAllocateTableLDS
.empty()) {
1000 LLVMContext
&Ctx
= M
.getContext();
1001 IRBuilder
<> Builder(Ctx
);
1003 // The order must be consistent between lookup table and accesses to
1005 auto TableLookupVariablesOrdered
=
1006 sortByName(std::vector
<GlobalVariable
*>(TableLookupVariables
.begin(),
1007 TableLookupVariables
.end()));
1009 GlobalVariable
*LookupTable
= buildLookupTable(
1010 M
, TableLookupVariablesOrdered
, OrderedKernels
, KernelToReplacement
);
1011 replaceUsesInInstructionsWithTableLookup(M
, TableLookupVariablesOrdered
,
1014 // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1015 // kernel. We may have inferred this wasn't used prior to the pass.
1017 // TODO: We could filter out subgraphs that do not access LDS globals.
1018 for (Function
*F
: KernelsThatAllocateTableLDS
)
1019 removeFnAttrFromReachable(CG
, F
, {"amdgpu-no-lds-kernel-id"});
1022 DenseMap
<Function
*, GlobalVariable
*> KernelToCreatedDynamicLDS
=
1023 lowerDynamicLDSVariables(M
, LDSUsesInfo
,
1024 KernelsThatIndirectlyAllocateDynamicLDS
,
1025 DynamicVariables
, OrderedKernels
);
1027 // All kernel frames have been allocated. Calculate and record the
1030 const DataLayout
&DL
= M
.getDataLayout();
1032 for (Function
&Func
: M
.functions()) {
1033 if (Func
.isDeclaration() || !isKernelLDS(&Func
))
1036 // All three of these are optional. The first variable is allocated at
1037 // zero. They are allocated by AMDGPUMachineFunction as one block.
1041 // alignment padding
1043 // alignment padding
1044 // dynamic lds variables
1047 const bool AllocateModuleScopeStruct
=
1048 MaybeModuleScopeStruct
&&
1049 KernelsThatAllocateModuleLDS
.contains(&Func
);
1051 auto Replacement
= KernelToReplacement
.find(&Func
);
1052 const bool AllocateKernelScopeStruct
=
1053 Replacement
!= KernelToReplacement
.end();
1055 const bool AllocateDynamicVariable
=
1056 KernelToCreatedDynamicLDS
.contains(&Func
);
1058 uint32_t Offset
= 0;
1060 if (AllocateModuleScopeStruct
) {
1061 // Allocated at zero, recorded once on construction, not once per
1063 Offset
+= DL
.getTypeAllocSize(MaybeModuleScopeStruct
->getValueType());
1066 if (AllocateKernelScopeStruct
) {
1067 GlobalVariable
*KernelStruct
= Replacement
->second
.SGV
;
1068 Offset
= alignTo(Offset
, AMDGPU::getAlign(DL
, KernelStruct
));
1069 recordLDSAbsoluteAddress(&M
, KernelStruct
, Offset
);
1070 Offset
+= DL
.getTypeAllocSize(KernelStruct
->getValueType());
1073 // If there is dynamic allocation, the alignment needed is included in
1074 // the static frame size. There may be no reference to the dynamic
1075 // variable in the kernel itself, so without including it here, that
1076 // alignment padding could be missed.
1077 if (AllocateDynamicVariable
) {
1078 GlobalVariable
*DynamicVariable
= KernelToCreatedDynamicLDS
[&Func
];
1079 Offset
= alignTo(Offset
, AMDGPU::getAlign(DL
, DynamicVariable
));
1080 recordLDSAbsoluteAddress(&M
, DynamicVariable
, Offset
);
1084 (void)TM
; // TODO: Account for target maximum LDS
1086 raw_string_ostream SS
{Buffer
};
1087 SS
<< format("%u", Offset
);
1089 // Instead of explicitly marking kernels that access dynamic variables
1090 // using special case metadata, annotate with min-lds == max-lds, i.e.
1091 // that there is no more space available for allocating more static
1092 // LDS variables. That is the right condition to prevent allocating
1093 // more variables which would collide with the addresses assigned to
1094 // dynamic variables.
1095 if (AllocateDynamicVariable
)
1096 SS
<< format(",%u", Offset
);
1098 Func
.addFnAttr("amdgpu-lds-size", Buffer
);
1103 for (auto &GV
: make_early_inc_range(M
.globals()))
1104 if (AMDGPU::isLDSVariableToLower(GV
)) {
1105 // probably want to remove from used lists
1106 GV
.removeDeadConstantUsers();
1108 GV
.eraseFromParent();
1115 // Increase the alignment of LDS globals if necessary to maximise the chance
1116 // that we can use aligned LDS instructions to access them.
1117 static bool superAlignLDSGlobals(Module
&M
) {
1118 const DataLayout
&DL
= M
.getDataLayout();
1119 bool Changed
= false;
1120 if (!SuperAlignLDSGlobals
) {
1124 for (auto &GV
: M
.globals()) {
1125 if (GV
.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS
) {
1126 // Only changing alignment of LDS variables
1129 if (!GV
.hasInitializer()) {
1130 // cuda/hip extern __shared__ variable, leave alignment alone
1134 Align Alignment
= AMDGPU::getAlign(DL
, &GV
);
1135 TypeSize GVSize
= DL
.getTypeAllocSize(GV
.getValueType());
1138 // We might want to use a b96 or b128 load/store
1139 Alignment
= std::max(Alignment
, Align(16));
1140 } else if (GVSize
> 4) {
1141 // We might want to use a b64 load/store
1142 Alignment
= std::max(Alignment
, Align(8));
1143 } else if (GVSize
> 2) {
1144 // We might want to use a b32 load/store
1145 Alignment
= std::max(Alignment
, Align(4));
1146 } else if (GVSize
> 1) {
1147 // We might want to use a b16 load/store
1148 Alignment
= std::max(Alignment
, Align(2));
1151 if (Alignment
!= AMDGPU::getAlign(DL
, &GV
)) {
1153 GV
.setAlignment(Alignment
);
1159 static LDSVariableReplacement
createLDSVariableReplacement(
1160 Module
&M
, std::string VarName
,
1161 DenseSet
<GlobalVariable
*> const &LDSVarsToTransform
) {
1162 // Create a struct instance containing LDSVarsToTransform and map from those
1163 // variables to ConstantExprGEP
1164 // Variables may be introduced to meet alignment requirements. No aliasing
1165 // metadata is useful for these as they have no uses. Erased before return.
1167 LLVMContext
&Ctx
= M
.getContext();
1168 const DataLayout
&DL
= M
.getDataLayout();
1169 assert(!LDSVarsToTransform
.empty());
1171 SmallVector
<OptimizedStructLayoutField
, 8> LayoutFields
;
1172 LayoutFields
.reserve(LDSVarsToTransform
.size());
1174 // The order of fields in this struct depends on the order of
1175 // variables in the argument which varies when changing how they
1176 // are identified, leading to spurious test breakage.
1177 auto Sorted
= sortByName(std::vector
<GlobalVariable
*>(
1178 LDSVarsToTransform
.begin(), LDSVarsToTransform
.end()));
1180 for (GlobalVariable
*GV
: Sorted
) {
1181 OptimizedStructLayoutField
F(GV
,
1182 DL
.getTypeAllocSize(GV
->getValueType()),
1183 AMDGPU::getAlign(DL
, GV
));
1184 LayoutFields
.emplace_back(F
);
1188 performOptimizedStructLayout(LayoutFields
);
1190 std::vector
<GlobalVariable
*> LocalVars
;
1191 BitVector IsPaddingField
;
1192 LocalVars
.reserve(LDSVarsToTransform
.size()); // will be at least this large
1193 IsPaddingField
.reserve(LDSVarsToTransform
.size());
1195 uint64_t CurrentOffset
= 0;
1196 for (auto &F
: LayoutFields
) {
1197 GlobalVariable
*FGV
=
1198 static_cast<GlobalVariable
*>(const_cast<void *>(F
.Id
));
1199 Align DataAlign
= F
.Alignment
;
1201 uint64_t DataAlignV
= DataAlign
.value();
1202 if (uint64_t Rem
= CurrentOffset
% DataAlignV
) {
1203 uint64_t Padding
= DataAlignV
- Rem
;
1205 // Append an array of padding bytes to meet alignment requested
1206 // Note (o + (a - (o % a)) ) % a == 0
1207 // (offset + Padding ) % align == 0
1209 Type
*ATy
= ArrayType::get(Type::getInt8Ty(Ctx
), Padding
);
1210 LocalVars
.push_back(new GlobalVariable(
1211 M
, ATy
, false, GlobalValue::InternalLinkage
,
1212 PoisonValue::get(ATy
), "", nullptr, GlobalValue::NotThreadLocal
,
1213 AMDGPUAS::LOCAL_ADDRESS
, false));
1214 IsPaddingField
.push_back(true);
1215 CurrentOffset
+= Padding
;
1218 LocalVars
.push_back(FGV
);
1219 IsPaddingField
.push_back(false);
1220 CurrentOffset
+= F
.Size
;
1224 std::vector
<Type
*> LocalVarTypes
;
1225 LocalVarTypes
.reserve(LocalVars
.size());
1227 LocalVars
.cbegin(), LocalVars
.cend(), std::back_inserter(LocalVarTypes
),
1228 [](const GlobalVariable
*V
) -> Type
* { return V
->getValueType(); });
1230 StructType
*LDSTy
= StructType::create(Ctx
, LocalVarTypes
, VarName
+ ".t");
1232 Align StructAlign
= AMDGPU::getAlign(DL
, LocalVars
[0]);
1234 GlobalVariable
*SGV
= new GlobalVariable(
1235 M
, LDSTy
, false, GlobalValue::InternalLinkage
, PoisonValue::get(LDSTy
),
1236 VarName
, nullptr, GlobalValue::NotThreadLocal
, AMDGPUAS::LOCAL_ADDRESS
,
1238 SGV
->setAlignment(StructAlign
);
1240 DenseMap
<GlobalVariable
*, Constant
*> Map
;
1241 Type
*I32
= Type::getInt32Ty(Ctx
);
1242 for (size_t I
= 0; I
< LocalVars
.size(); I
++) {
1243 GlobalVariable
*GV
= LocalVars
[I
];
1244 Constant
*GEPIdx
[] = {ConstantInt::get(I32
, 0), ConstantInt::get(I32
, I
)};
1245 Constant
*GEP
= ConstantExpr::getGetElementPtr(LDSTy
, SGV
, GEPIdx
, true);
1246 if (IsPaddingField
[I
]) {
1247 assert(GV
->use_empty());
1248 GV
->eraseFromParent();
1253 assert(Map
.size() == LDSVarsToTransform
.size());
1254 return {SGV
, std::move(Map
)};
1257 template <typename PredicateTy
>
1258 static void replaceLDSVariablesWithStruct(
1259 Module
&M
, DenseSet
<GlobalVariable
*> const &LDSVarsToTransformArg
,
1260 const LDSVariableReplacement
&Replacement
, PredicateTy Predicate
) {
1261 LLVMContext
&Ctx
= M
.getContext();
1262 const DataLayout
&DL
= M
.getDataLayout();
1264 // A hack... we need to insert the aliasing info in a predictable order for
1265 // lit tests. Would like to have them in a stable order already, ideally the
1266 // same order they get allocated, which might mean an ordered set container
1267 auto LDSVarsToTransform
= sortByName(std::vector
<GlobalVariable
*>(
1268 LDSVarsToTransformArg
.begin(), LDSVarsToTransformArg
.end()));
1270 // Create alias.scope and their lists. Each field in the new structure
1271 // does not alias with all other fields.
1272 SmallVector
<MDNode
*> AliasScopes
;
1273 SmallVector
<Metadata
*> NoAliasList
;
1274 const size_t NumberVars
= LDSVarsToTransform
.size();
1275 if (NumberVars
> 1) {
1277 AliasScopes
.reserve(NumberVars
);
1278 MDNode
*Domain
= MDB
.createAnonymousAliasScopeDomain();
1279 for (size_t I
= 0; I
< NumberVars
; I
++) {
1280 MDNode
*Scope
= MDB
.createAnonymousAliasScope(Domain
);
1281 AliasScopes
.push_back(Scope
);
1283 NoAliasList
.append(&AliasScopes
[1], AliasScopes
.end());
1286 // Replace uses of ith variable with a constantexpr to the corresponding
1287 // field of the instance that will be allocated by AMDGPUMachineFunction
1288 for (size_t I
= 0; I
< NumberVars
; I
++) {
1289 GlobalVariable
*GV
= LDSVarsToTransform
[I
];
1290 Constant
*GEP
= Replacement
.LDSVarsToConstantGEP
.at(GV
);
1292 GV
->replaceUsesWithIf(GEP
, Predicate
);
1294 APInt
APOff(DL
.getIndexTypeSizeInBits(GEP
->getType()), 0);
1295 GEP
->stripAndAccumulateInBoundsConstantOffsets(DL
, APOff
);
1296 uint64_t Offset
= APOff
.getZExtValue();
1299 commonAlignment(Replacement
.SGV
->getAlign().valueOrOne(), Offset
);
1302 NoAliasList
[I
- 1] = AliasScopes
[I
- 1];
1304 NoAliasList
.empty() ? nullptr : MDNode::get(Ctx
, NoAliasList
);
1305 MDNode
*AliasScope
=
1306 AliasScopes
.empty() ? nullptr : MDNode::get(Ctx
, {AliasScopes
[I
]});
1308 refineUsesAlignmentAndAA(GEP
, A
, DL
, AliasScope
, NoAlias
);
1312 static void refineUsesAlignmentAndAA(Value
*Ptr
, Align A
,
1313 const DataLayout
&DL
, MDNode
*AliasScope
,
1314 MDNode
*NoAlias
, unsigned MaxDepth
= 5) {
1315 if (!MaxDepth
|| (A
== 1 && !AliasScope
))
1318 for (User
*U
: Ptr
->users()) {
1319 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
1320 if (AliasScope
&& I
->mayReadOrWriteMemory()) {
1321 MDNode
*AS
= I
->getMetadata(LLVMContext::MD_alias_scope
);
1322 AS
= (AS
? MDNode::getMostGenericAliasScope(AS
, AliasScope
)
1324 I
->setMetadata(LLVMContext::MD_alias_scope
, AS
);
1326 MDNode
*NA
= I
->getMetadata(LLVMContext::MD_noalias
);
1327 NA
= (NA
? MDNode::intersect(NA
, NoAlias
) : NoAlias
);
1328 I
->setMetadata(LLVMContext::MD_noalias
, NA
);
1332 if (auto *LI
= dyn_cast
<LoadInst
>(U
)) {
1333 LI
->setAlignment(std::max(A
, LI
->getAlign()));
1336 if (auto *SI
= dyn_cast
<StoreInst
>(U
)) {
1337 if (SI
->getPointerOperand() == Ptr
)
1338 SI
->setAlignment(std::max(A
, SI
->getAlign()));
1341 if (auto *AI
= dyn_cast
<AtomicRMWInst
>(U
)) {
1342 // None of atomicrmw operations can work on pointers, but let's
1343 // check it anyway in case it will or we will process ConstantExpr.
1344 if (AI
->getPointerOperand() == Ptr
)
1345 AI
->setAlignment(std::max(A
, AI
->getAlign()));
1348 if (auto *AI
= dyn_cast
<AtomicCmpXchgInst
>(U
)) {
1349 if (AI
->getPointerOperand() == Ptr
)
1350 AI
->setAlignment(std::max(A
, AI
->getAlign()));
1353 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
1354 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
1355 APInt
Off(BitWidth
, 0);
1356 if (GEP
->getPointerOperand() == Ptr
) {
1358 if (GEP
->accumulateConstantOffset(DL
, Off
))
1359 GA
= commonAlignment(A
, Off
.getLimitedValue());
1360 refineUsesAlignmentAndAA(GEP
, GA
, DL
, AliasScope
, NoAlias
,
1365 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
1366 if (I
->getOpcode() == Instruction::BitCast
||
1367 I
->getOpcode() == Instruction::AddrSpaceCast
)
1368 refineUsesAlignmentAndAA(I
, A
, DL
, AliasScope
, NoAlias
, MaxDepth
- 1);
1374 class AMDGPULowerModuleLDSLegacy
: public ModulePass
{
1376 const AMDGPUTargetMachine
*TM
;
1379 AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine
*TM_
= nullptr)
1380 : ModulePass(ID
), TM(TM_
) {
1381 initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry());
1384 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1386 AU
.addRequired
<TargetPassConfig
>();
1389 bool runOnModule(Module
&M
) override
{
1391 auto &TPC
= getAnalysis
<TargetPassConfig
>();
1392 TM
= &TPC
.getTM
<AMDGPUTargetMachine
>();
1395 return AMDGPULowerModuleLDS(*TM
).runOnModule(M
);
1400 char AMDGPULowerModuleLDSLegacy::ID
= 0;
1402 char &llvm::AMDGPULowerModuleLDSLegacyPassID
= AMDGPULowerModuleLDSLegacy::ID
;
1404 INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy
, DEBUG_TYPE
,
1405 "Lower uses of LDS variables from non-kernel functions",
1407 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
1408 INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy
, DEBUG_TYPE
,
1409 "Lower uses of LDS variables from non-kernel functions",
1413 llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine
*TM
) {
1414 return new AMDGPULowerModuleLDSLegacy(TM
);
1417 PreservedAnalyses
AMDGPULowerModuleLDSPass::run(Module
&M
,
1418 ModuleAnalysisManager
&) {
1419 return AMDGPULowerModuleLDS(TM
).runOnModule(M
) ? PreservedAnalyses::none()
1420 : PreservedAnalyses::all();