1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// \brief Analyzes if a function potentially memory bound and if a kernel
11 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
13 //===----------------------------------------------------------------------===//
16 #include "AMDGPUPerfHintAnalysis.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Target/TargetMachine.h"
32 #define DEBUG_TYPE "amdgpu-perf-hint"
34 static cl::opt
<unsigned>
35 MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden
,
36 cl::desc("Function mem bound threshold in %"));
38 static cl::opt
<unsigned>
39 LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden
,
40 cl::desc("Kernel limit wave threshold in %"));
42 static cl::opt
<unsigned>
43 IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden
,
44 cl::desc("Indirect access memory instruction weight"));
46 static cl::opt
<unsigned>
47 LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden
,
48 cl::desc("Large stride memory access weight"));
50 static cl::opt
<unsigned>
51 LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden
,
52 cl::desc("Large stride memory access threshold"));
54 STATISTIC(NumMemBound
, "Number of functions marked as memory bound");
55 STATISTIC(NumLimitWave
, "Number of functions marked as needing limit wave");
57 char llvm::AMDGPUPerfHintAnalysis::ID
= 0;
58 char &llvm::AMDGPUPerfHintAnalysisID
= AMDGPUPerfHintAnalysis::ID
;
60 INITIALIZE_PASS(AMDGPUPerfHintAnalysis
, DEBUG_TYPE
,
61 "Analysis if a function is memory bound", true, true)
65 struct AMDGPUPerfHint
{
66 friend AMDGPUPerfHintAnalysis
;
69 AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap
&FIM_
,
70 const TargetLowering
*TLI_
)
71 : FIM(FIM_
), TLI(TLI_
) {}
73 bool runOnFunction(Function
&F
);
76 struct MemAccessInfo
{
77 const Value
*V
= nullptr;
78 const Value
*Base
= nullptr;
80 MemAccessInfo() = default;
81 bool isLargeStride(MemAccessInfo
&Reference
) const;
82 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
83 Printable
print() const {
84 return Printable([this](raw_ostream
&OS
) {
85 OS
<< "Value: " << *V
<< '\n'
86 << "Base: " << *Base
<< " Offset: " << Offset
<< '\n';
92 MemAccessInfo
makeMemAccessInfo(Instruction
*) const;
94 MemAccessInfo LastAccess
; // Last memory access info
96 AMDGPUPerfHintAnalysis::FuncInfoMap
&FIM
;
98 const DataLayout
*DL
= nullptr;
100 const TargetLowering
*TLI
;
102 AMDGPUPerfHintAnalysis::FuncInfo
*visit(const Function
&F
);
103 static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo
&F
);
104 static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo
&F
);
106 bool isIndirectAccess(const Instruction
*Inst
) const;
108 /// Check if the instruction is large stride.
109 /// The purpose is to identify memory access pattern like:
113 /// In the above example, the second and third memory access will be marked
114 /// large stride memory access.
115 bool isLargeStride(const Instruction
*Inst
);
117 bool isGlobalAddr(const Value
*V
) const;
118 bool isLocalAddr(const Value
*V
) const;
119 bool isGlobalLoadUsedInBB(const Instruction
&) const;
122 static std::pair
<const Value
*, const Type
*> getMemoryInstrPtrAndType(
123 const Instruction
*Inst
) {
124 if (auto LI
= dyn_cast
<LoadInst
>(Inst
))
125 return {LI
->getPointerOperand(), LI
->getType()};
126 if (auto SI
= dyn_cast
<StoreInst
>(Inst
))
127 return {SI
->getPointerOperand(), SI
->getValueOperand()->getType()};
128 if (auto AI
= dyn_cast
<AtomicCmpXchgInst
>(Inst
))
129 return {AI
->getPointerOperand(), AI
->getCompareOperand()->getType()};
130 if (auto AI
= dyn_cast
<AtomicRMWInst
>(Inst
))
131 return {AI
->getPointerOperand(), AI
->getValOperand()->getType()};
132 if (auto MI
= dyn_cast
<AnyMemIntrinsic
>(Inst
))
133 return {MI
->getRawDest(), Type::getInt8Ty(MI
->getContext())};
135 return {nullptr, nullptr};
138 bool AMDGPUPerfHint::isIndirectAccess(const Instruction
*Inst
) const {
139 LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst
<< '\n');
140 SmallSet
<const Value
*, 32> WorkSet
;
141 SmallSet
<const Value
*, 32> Visited
;
142 if (const Value
*MO
= getMemoryInstrPtrAndType(Inst
).first
) {
143 if (isGlobalAddr(MO
))
147 while (!WorkSet
.empty()) {
148 const Value
*V
= *WorkSet
.begin();
149 WorkSet
.erase(*WorkSet
.begin());
150 if (!Visited
.insert(V
).second
)
152 LLVM_DEBUG(dbgs() << " check: " << *V
<< '\n');
154 if (auto LD
= dyn_cast
<LoadInst
>(V
)) {
155 auto M
= LD
->getPointerOperand();
156 if (isGlobalAddr(M
)) {
157 LLVM_DEBUG(dbgs() << " is IA\n");
163 if (auto GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
164 auto P
= GEP
->getPointerOperand();
166 for (unsigned I
= 1, E
= GEP
->getNumIndices() + 1; I
!= E
; ++I
)
167 WorkSet
.insert(GEP
->getOperand(I
));
171 if (auto U
= dyn_cast
<UnaryInstruction
>(V
)) {
172 WorkSet
.insert(U
->getOperand(0));
176 if (auto BO
= dyn_cast
<BinaryOperator
>(V
)) {
177 WorkSet
.insert(BO
->getOperand(0));
178 WorkSet
.insert(BO
->getOperand(1));
182 if (auto S
= dyn_cast
<SelectInst
>(V
)) {
183 WorkSet
.insert(S
->getFalseValue());
184 WorkSet
.insert(S
->getTrueValue());
188 if (auto E
= dyn_cast
<ExtractElementInst
>(V
)) {
189 WorkSet
.insert(E
->getVectorOperand());
193 LLVM_DEBUG(dbgs() << " dropped\n");
196 LLVM_DEBUG(dbgs() << " is not IA\n");
200 // Returns true if the global load `I` is used in its own basic block.
201 bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction
&I
) const {
202 const auto *Ld
= dyn_cast
<LoadInst
>(&I
);
205 if (!isGlobalAddr(Ld
->getPointerOperand()))
208 for (const User
*Usr
: Ld
->users()) {
209 if (const Instruction
*UsrInst
= dyn_cast
<Instruction
>(Usr
)) {
210 if (UsrInst
->getParent() == I
.getParent())
218 AMDGPUPerfHintAnalysis::FuncInfo
*AMDGPUPerfHint::visit(const Function
&F
) {
219 AMDGPUPerfHintAnalysis::FuncInfo
&FI
= FIM
[&F
];
221 LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F
.getName() << '\n');
224 LastAccess
= MemAccessInfo();
225 unsigned UsedGlobalLoadsInBB
= 0;
227 if (const Type
*Ty
= getMemoryInstrPtrAndType(&I
).second
) {
228 unsigned Size
= divideCeil(Ty
->getPrimitiveSizeInBits(), 32);
229 // TODO: Check if the global load and its user are close to each other
230 // instead (Or do this analysis in GCNSchedStrategy?).
231 if (isGlobalLoadUsedInBB(I
))
232 UsedGlobalLoadsInBB
+= Size
;
233 if (isIndirectAccess(&I
))
234 FI
.IAMInstCost
+= Size
;
235 if (isLargeStride(&I
))
236 FI
.LSMInstCost
+= Size
;
237 FI
.MemInstCost
+= Size
;
241 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
242 Function
*Callee
= CB
->getCalledFunction();
243 if (!Callee
|| Callee
->isDeclaration()) {
247 if (&F
== Callee
) // Handle immediate recursion
250 auto Loc
= FIM
.find(Callee
);
251 if (Loc
== FIM
.end())
254 FI
.MemInstCost
+= Loc
->second
.MemInstCost
;
255 FI
.InstCost
+= Loc
->second
.InstCost
;
256 FI
.IAMInstCost
+= Loc
->second
.IAMInstCost
;
257 FI
.LSMInstCost
+= Loc
->second
.LSMInstCost
;
258 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
259 TargetLoweringBase::AddrMode AM
;
260 auto *Ptr
= GetPointerBaseWithConstantOffset(GEP
, AM
.BaseOffs
, *DL
);
261 AM
.BaseGV
= dyn_cast_or_null
<GlobalValue
>(const_cast<Value
*>(Ptr
));
262 AM
.HasBaseReg
= !AM
.BaseGV
;
263 if (TLI
->isLegalAddressingMode(*DL
, AM
, GEP
->getResultElementType(),
264 GEP
->getPointerAddressSpace()))
265 // Offset will likely be folded into load or store
273 if (!FI
.HasDenseGlobalMemAcc
) {
274 unsigned GlobalMemAccPercentage
= UsedGlobalLoadsInBB
* 100 / B
.size();
275 if (GlobalMemAccPercentage
> 50) {
276 LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since "
277 << B
.getName() << " has " << GlobalMemAccPercentage
278 << "% global memory access\n");
279 FI
.HasDenseGlobalMemAcc
= true;
287 bool AMDGPUPerfHint::runOnFunction(Function
&F
) {
288 const Module
&M
= *F
.getParent();
289 DL
= &M
.getDataLayout();
291 if (F
.hasFnAttribute("amdgpu-wave-limiter") &&
292 F
.hasFnAttribute("amdgpu-memory-bound"))
295 const AMDGPUPerfHintAnalysis::FuncInfo
*Info
= visit(F
);
297 LLVM_DEBUG(dbgs() << F
.getName() << " MemInst cost: " << Info
->MemInstCost
299 << " IAMInst cost: " << Info
->IAMInstCost
<< '\n'
300 << " LSMInst cost: " << Info
->LSMInstCost
<< '\n'
301 << " TotalInst cost: " << Info
->InstCost
<< '\n');
303 bool Changed
= false;
305 if (isMemBound(*Info
)) {
306 LLVM_DEBUG(dbgs() << F
.getName() << " is memory bound\n");
308 F
.addFnAttr("amdgpu-memory-bound", "true");
312 if (AMDGPU::isEntryFunctionCC(F
.getCallingConv()) && needLimitWave(*Info
)) {
313 LLVM_DEBUG(dbgs() << F
.getName() << " needs limit wave\n");
315 F
.addFnAttr("amdgpu-wave-limiter", "true");
322 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo
&FI
) {
323 // Reverting optimal scheduling in favour of occupancy with basic block(s)
324 // having dense global memory access can potentially hurt performance.
325 if (FI
.HasDenseGlobalMemAcc
)
328 return FI
.MemInstCost
* 100 / FI
.InstCost
> MemBoundThresh
;
331 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo
&FI
) {
332 return ((FI
.MemInstCost
+ FI
.IAMInstCost
* IAWeight
+
333 FI
.LSMInstCost
* LSWeight
) * 100 / FI
.InstCost
) > LimitWaveThresh
;
336 bool AMDGPUPerfHint::isGlobalAddr(const Value
*V
) const {
337 if (auto PT
= dyn_cast
<PointerType
>(V
->getType())) {
338 unsigned As
= PT
->getAddressSpace();
339 // Flat likely points to global too.
340 return As
== AMDGPUAS::GLOBAL_ADDRESS
|| As
== AMDGPUAS::FLAT_ADDRESS
;
345 bool AMDGPUPerfHint::isLocalAddr(const Value
*V
) const {
346 if (auto PT
= dyn_cast
<PointerType
>(V
->getType()))
347 return PT
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
;
351 bool AMDGPUPerfHint::isLargeStride(const Instruction
*Inst
) {
352 LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst
<< '\n');
354 MemAccessInfo MAI
= makeMemAccessInfo(const_cast<Instruction
*>(Inst
));
355 bool IsLargeStride
= MAI
.isLargeStride(LastAccess
);
357 LastAccess
= std::move(MAI
);
359 return IsLargeStride
;
362 AMDGPUPerfHint::MemAccessInfo
363 AMDGPUPerfHint::makeMemAccessInfo(Instruction
*Inst
) const {
365 const Value
*MO
= getMemoryInstrPtrAndType(Inst
).first
;
367 LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO
<< '\n');
368 // Do not treat local-addr memory access as large stride.
373 MAI
.Base
= GetPointerBaseWithConstantOffset(MO
, MAI
.Offset
, *DL
);
377 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
378 MemAccessInfo
&Reference
) const {
380 if (!Base
|| !Reference
.Base
|| Base
!= Reference
.Base
)
383 uint64_t Diff
= Offset
> Reference
.Offset
? Offset
- Reference
.Offset
384 : Reference
.Offset
- Offset
;
385 bool Result
= Diff
> LargeStrideThresh
;
386 LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
387 << print() << "<=>\n"
388 << Reference
.print() << "Result:" << Result
<< '\n');
393 bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC
&SCC
) {
394 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
398 const TargetMachine
&TM
= TPC
->getTM
<TargetMachine
>();
400 bool Changed
= false;
401 for (CallGraphNode
*I
: SCC
) {
402 Function
*F
= I
->getFunction();
403 if (!F
|| F
->isDeclaration())
406 const TargetSubtargetInfo
*ST
= TM
.getSubtargetImpl(*F
);
407 AMDGPUPerfHint
Analyzer(FIM
, ST
->getTargetLowering());
409 if (Analyzer
.runOnFunction(*F
))
416 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function
*F
) const {
417 auto FI
= FIM
.find(F
);
421 return AMDGPUPerfHint::isMemBound(FI
->second
);
424 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function
*F
) const {
425 auto FI
= FIM
.find(F
);
429 return AMDGPUPerfHint::needLimitWave(FI
->second
);