Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUPerfHintAnalysis.cpp
blob1213d5e0b41db147ead030b252d5d4c28d0c4f8d
1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// \brief Analyzes if a function potentially memory bound and if a kernel
11 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPU.h"
16 #include "AMDGPUPerfHintAnalysis.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Target/TargetMachine.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "amdgpu-perf-hint"
34 static cl::opt<unsigned>
35 MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
36 cl::desc("Function mem bound threshold in %"));
38 static cl::opt<unsigned>
39 LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
40 cl::desc("Kernel limit wave threshold in %"));
42 static cl::opt<unsigned>
43 IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
44 cl::desc("Indirect access memory instruction weight"));
46 static cl::opt<unsigned>
47 LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
48 cl::desc("Large stride memory access weight"));
50 static cl::opt<unsigned>
51 LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
52 cl::desc("Large stride memory access threshold"));
54 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
55 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
57 char llvm::AMDGPUPerfHintAnalysis::ID = 0;
58 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
60 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
61 "Analysis if a function is memory bound", true, true)
63 namespace {
65 struct AMDGPUPerfHint {
66 friend AMDGPUPerfHintAnalysis;
68 public:
69 AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
70 const TargetLowering *TLI_)
71 : FIM(FIM_), TLI(TLI_) {}
73 bool runOnFunction(Function &F);
75 private:
76 struct MemAccessInfo {
77 const Value *V = nullptr;
78 const Value *Base = nullptr;
79 int64_t Offset = 0;
80 MemAccessInfo() = default;
81 bool isLargeStride(MemAccessInfo &Reference) const;
82 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
83 Printable print() const {
84 return Printable([this](raw_ostream &OS) {
85 OS << "Value: " << *V << '\n'
86 << "Base: " << *Base << " Offset: " << Offset << '\n';
87 });
89 #endif
92 MemAccessInfo makeMemAccessInfo(Instruction *) const;
94 MemAccessInfo LastAccess; // Last memory access info
96 AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
98 const DataLayout *DL = nullptr;
100 const TargetLowering *TLI;
102 AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
103 static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
104 static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
106 bool isIndirectAccess(const Instruction *Inst) const;
108 /// Check if the instruction is large stride.
109 /// The purpose is to identify memory access pattern like:
110 /// x = a[i];
111 /// y = a[i+1000];
112 /// z = a[i+2000];
113 /// In the above example, the second and third memory access will be marked
114 /// large stride memory access.
115 bool isLargeStride(const Instruction *Inst);
117 bool isGlobalAddr(const Value *V) const;
118 bool isLocalAddr(const Value *V) const;
119 bool isGlobalLoadUsedInBB(const Instruction &) const;
122 static std::pair<const Value *, const Type *> getMemoryInstrPtrAndType(
123 const Instruction *Inst) {
124 if (auto LI = dyn_cast<LoadInst>(Inst))
125 return {LI->getPointerOperand(), LI->getType()};
126 if (auto SI = dyn_cast<StoreInst>(Inst))
127 return {SI->getPointerOperand(), SI->getValueOperand()->getType()};
128 if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst))
129 return {AI->getPointerOperand(), AI->getCompareOperand()->getType()};
130 if (auto AI = dyn_cast<AtomicRMWInst>(Inst))
131 return {AI->getPointerOperand(), AI->getValOperand()->getType()};
132 if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst))
133 return {MI->getRawDest(), Type::getInt8Ty(MI->getContext())};
135 return {nullptr, nullptr};
138 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
139 LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
140 SmallSet<const Value *, 32> WorkSet;
141 SmallSet<const Value *, 32> Visited;
142 if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) {
143 if (isGlobalAddr(MO))
144 WorkSet.insert(MO);
147 while (!WorkSet.empty()) {
148 const Value *V = *WorkSet.begin();
149 WorkSet.erase(*WorkSet.begin());
150 if (!Visited.insert(V).second)
151 continue;
152 LLVM_DEBUG(dbgs() << " check: " << *V << '\n');
154 if (auto LD = dyn_cast<LoadInst>(V)) {
155 auto M = LD->getPointerOperand();
156 if (isGlobalAddr(M)) {
157 LLVM_DEBUG(dbgs() << " is IA\n");
158 return true;
160 continue;
163 if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
164 auto P = GEP->getPointerOperand();
165 WorkSet.insert(P);
166 for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
167 WorkSet.insert(GEP->getOperand(I));
168 continue;
171 if (auto U = dyn_cast<UnaryInstruction>(V)) {
172 WorkSet.insert(U->getOperand(0));
173 continue;
176 if (auto BO = dyn_cast<BinaryOperator>(V)) {
177 WorkSet.insert(BO->getOperand(0));
178 WorkSet.insert(BO->getOperand(1));
179 continue;
182 if (auto S = dyn_cast<SelectInst>(V)) {
183 WorkSet.insert(S->getFalseValue());
184 WorkSet.insert(S->getTrueValue());
185 continue;
188 if (auto E = dyn_cast<ExtractElementInst>(V)) {
189 WorkSet.insert(E->getVectorOperand());
190 continue;
193 LLVM_DEBUG(dbgs() << " dropped\n");
196 LLVM_DEBUG(dbgs() << " is not IA\n");
197 return false;
200 // Returns true if the global load `I` is used in its own basic block.
201 bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const {
202 const auto *Ld = dyn_cast<LoadInst>(&I);
203 if (!Ld)
204 return false;
205 if (!isGlobalAddr(Ld->getPointerOperand()))
206 return false;
208 for (const User *Usr : Ld->users()) {
209 if (const Instruction *UsrInst = dyn_cast<Instruction>(Usr)) {
210 if (UsrInst->getParent() == I.getParent())
211 return true;
215 return false;
218 AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
219 AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];
221 LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
223 for (auto &B : F) {
224 LastAccess = MemAccessInfo();
225 unsigned UsedGlobalLoadsInBB = 0;
226 for (auto &I : B) {
227 if (const Type *Ty = getMemoryInstrPtrAndType(&I).second) {
228 unsigned Size = divideCeil(Ty->getPrimitiveSizeInBits(), 32);
229 // TODO: Check if the global load and its user are close to each other
230 // instead (Or do this analysis in GCNSchedStrategy?).
231 if (isGlobalLoadUsedInBB(I))
232 UsedGlobalLoadsInBB += Size;
233 if (isIndirectAccess(&I))
234 FI.IAMInstCost += Size;
235 if (isLargeStride(&I))
236 FI.LSMInstCost += Size;
237 FI.MemInstCost += Size;
238 FI.InstCost += Size;
239 continue;
241 if (auto *CB = dyn_cast<CallBase>(&I)) {
242 Function *Callee = CB->getCalledFunction();
243 if (!Callee || Callee->isDeclaration()) {
244 ++FI.InstCost;
245 continue;
247 if (&F == Callee) // Handle immediate recursion
248 continue;
250 auto Loc = FIM.find(Callee);
251 if (Loc == FIM.end())
252 continue;
254 FI.MemInstCost += Loc->second.MemInstCost;
255 FI.InstCost += Loc->second.InstCost;
256 FI.IAMInstCost += Loc->second.IAMInstCost;
257 FI.LSMInstCost += Loc->second.LSMInstCost;
258 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
259 TargetLoweringBase::AddrMode AM;
260 auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
261 AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
262 AM.HasBaseReg = !AM.BaseGV;
263 if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
264 GEP->getPointerAddressSpace()))
265 // Offset will likely be folded into load or store
266 continue;
267 ++FI.InstCost;
268 } else {
269 ++FI.InstCost;
273 if (!FI.HasDenseGlobalMemAcc) {
274 unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size();
275 if (GlobalMemAccPercentage > 50) {
276 LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since "
277 << B.getName() << " has " << GlobalMemAccPercentage
278 << "% global memory access\n");
279 FI.HasDenseGlobalMemAcc = true;
284 return &FI;
287 bool AMDGPUPerfHint::runOnFunction(Function &F) {
288 const Module &M = *F.getParent();
289 DL = &M.getDataLayout();
291 if (F.hasFnAttribute("amdgpu-wave-limiter") &&
292 F.hasFnAttribute("amdgpu-memory-bound"))
293 return false;
295 const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);
297 LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost
298 << '\n'
299 << " IAMInst cost: " << Info->IAMInstCost << '\n'
300 << " LSMInst cost: " << Info->LSMInstCost << '\n'
301 << " TotalInst cost: " << Info->InstCost << '\n');
303 bool Changed = false;
305 if (isMemBound(*Info)) {
306 LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
307 NumMemBound++;
308 F.addFnAttr("amdgpu-memory-bound", "true");
309 Changed = true;
312 if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
313 LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
314 NumLimitWave++;
315 F.addFnAttr("amdgpu-wave-limiter", "true");
316 Changed = true;
319 return Changed;
322 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
323 // Reverting optimal scheduling in favour of occupancy with basic block(s)
324 // having dense global memory access can potentially hurt performance.
325 if (FI.HasDenseGlobalMemAcc)
326 return true;
328 return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh;
331 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
332 return ((FI.MemInstCost + FI.IAMInstCost * IAWeight +
333 FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh;
336 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
337 if (auto PT = dyn_cast<PointerType>(V->getType())) {
338 unsigned As = PT->getAddressSpace();
339 // Flat likely points to global too.
340 return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
342 return false;
345 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
346 if (auto PT = dyn_cast<PointerType>(V->getType()))
347 return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
348 return false;
351 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
352 LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
354 MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
355 bool IsLargeStride = MAI.isLargeStride(LastAccess);
356 if (MAI.Base)
357 LastAccess = std::move(MAI);
359 return IsLargeStride;
362 AMDGPUPerfHint::MemAccessInfo
363 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
364 MemAccessInfo MAI;
365 const Value *MO = getMemoryInstrPtrAndType(Inst).first;
367 LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
368 // Do not treat local-addr memory access as large stride.
369 if (isLocalAddr(MO))
370 return MAI;
372 MAI.V = MO;
373 MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
374 return MAI;
377 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
378 MemAccessInfo &Reference) const {
380 if (!Base || !Reference.Base || Base != Reference.Base)
381 return false;
383 uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
384 : Reference.Offset - Offset;
385 bool Result = Diff > LargeStrideThresh;
386 LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
387 << print() << "<=>\n"
388 << Reference.print() << "Result:" << Result << '\n');
389 return Result;
391 } // namespace
393 bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) {
394 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
395 if (!TPC)
396 return false;
398 const TargetMachine &TM = TPC->getTM<TargetMachine>();
400 bool Changed = false;
401 for (CallGraphNode *I : SCC) {
402 Function *F = I->getFunction();
403 if (!F || F->isDeclaration())
404 continue;
406 const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F);
407 AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
409 if (Analyzer.runOnFunction(*F))
410 Changed = true;
413 return Changed;
416 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
417 auto FI = FIM.find(F);
418 if (FI == FIM.end())
419 return false;
421 return AMDGPUPerfHint::isMemBound(FI->second);
424 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
425 auto FI = FIM.find(F);
426 if (FI == FIM.end())
427 return false;
429 return AMDGPUPerfHint::needLimitWave(FI->second);