1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Custom DAG lowering for R600
12 //===----------------------------------------------------------------------===//
14 #include "R600ISelLowering.h"
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "R600TargetMachine.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
28 #include "R600GenCallingConv.inc"
30 R600TargetLowering::R600TargetLowering(const TargetMachine
&TM
,
31 const R600Subtarget
&STI
)
32 : AMDGPUTargetLowering(TM
, STI
), Subtarget(&STI
), Gen(STI
.getGeneration()) {
33 addRegisterClass(MVT::f32
, &R600::R600_Reg32RegClass
);
34 addRegisterClass(MVT::i32
, &R600::R600_Reg32RegClass
);
35 addRegisterClass(MVT::v2f32
, &R600::R600_Reg64RegClass
);
36 addRegisterClass(MVT::v2i32
, &R600::R600_Reg64RegClass
);
37 addRegisterClass(MVT::v4f32
, &R600::R600_Reg128RegClass
);
38 addRegisterClass(MVT::v4i32
, &R600::R600_Reg128RegClass
);
40 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
41 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
43 computeRegisterProperties(Subtarget
->getRegisterInfo());
45 // Legalize loads and stores to the private address space.
46 setOperationAction(ISD::LOAD
, {MVT::i32
, MVT::v2i32
, MVT::v4i32
}, Custom
);
48 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49 // spaces, so it is custom lowered to handle those where it isn't.
50 for (auto Op
: {ISD::SEXTLOAD
, ISD::ZEXTLOAD
, ISD::EXTLOAD
})
51 for (MVT VT
: MVT::integer_valuetypes()) {
52 setLoadExtAction(Op
, VT
, MVT::i1
, Promote
);
53 setLoadExtAction(Op
, VT
, MVT::i8
, Custom
);
54 setLoadExtAction(Op
, VT
, MVT::i16
, Custom
);
57 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
58 setLoadExtAction({ISD::EXTLOAD
, ISD::SEXTLOAD
, ISD::ZEXTLOAD
}, MVT::v2i32
,
61 setLoadExtAction({ISD::EXTLOAD
, ISD::SEXTLOAD
, ISD::ZEXTLOAD
}, MVT::v4i32
,
64 setOperationAction(ISD::STORE
, {MVT::i8
, MVT::i32
, MVT::v2i32
, MVT::v4i32
},
67 setTruncStoreAction(MVT::i32
, MVT::i8
, Custom
);
68 setTruncStoreAction(MVT::i32
, MVT::i16
, Custom
);
69 // We need to include these since trunc STORES to PRIVATE need
70 // special handling to accommodate RMW
71 setTruncStoreAction(MVT::v2i32
, MVT::v2i16
, Custom
);
72 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Custom
);
73 setTruncStoreAction(MVT::v8i32
, MVT::v8i16
, Custom
);
74 setTruncStoreAction(MVT::v16i32
, MVT::v16i16
, Custom
);
75 setTruncStoreAction(MVT::v32i32
, MVT::v32i16
, Custom
);
76 setTruncStoreAction(MVT::v2i32
, MVT::v2i8
, Custom
);
77 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Custom
);
78 setTruncStoreAction(MVT::v8i32
, MVT::v8i8
, Custom
);
79 setTruncStoreAction(MVT::v16i32
, MVT::v16i8
, Custom
);
80 setTruncStoreAction(MVT::v32i32
, MVT::v32i8
, Custom
);
82 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
83 setTruncStoreAction(MVT::v2i32
, MVT::v2i1
, Expand
);
84 setTruncStoreAction(MVT::v4i32
, MVT::v4i1
, Expand
);
86 // Set condition code actions
87 setCondCodeAction({ISD::SETO
, ISD::SETUO
, ISD::SETLT
, ISD::SETLE
, ISD::SETOLT
,
88 ISD::SETOLE
, ISD::SETONE
, ISD::SETUEQ
, ISD::SETUGE
,
89 ISD::SETUGT
, ISD::SETULT
, ISD::SETULE
},
92 setCondCodeAction({ISD::SETLE
, ISD::SETLT
, ISD::SETULE
, ISD::SETULT
},
95 setOperationAction({ISD::FCOS
, ISD::FSIN
}, MVT::f32
, Custom
);
97 setOperationAction(ISD::SETCC
, {MVT::v4i32
, MVT::v2i32
}, Expand
);
99 setOperationAction(ISD::BR_CC
, {MVT::i32
, MVT::f32
}, Expand
);
100 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
102 setOperationAction(ISD::FSUB
, MVT::f32
, Expand
);
104 setOperationAction({ISD::FCEIL
, ISD::FTRUNC
, ISD::FROUNDEVEN
, ISD::FFLOOR
},
107 setOperationAction(ISD::SELECT_CC
, {MVT::f32
, MVT::i32
}, Custom
);
109 setOperationAction(ISD::SETCC
, {MVT::i32
, MVT::f32
}, Expand
);
110 setOperationAction({ISD::FP_TO_UINT
, ISD::FP_TO_SINT
}, {MVT::i1
, MVT::i64
},
113 setOperationAction(ISD::SELECT
, {MVT::i32
, MVT::f32
, MVT::v2i32
, MVT::v4i32
},
116 // ADD, SUB overflow.
117 // TODO: turn these into Legal?
118 if (Subtarget
->hasCARRY())
119 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
121 if (Subtarget
->hasBORROW())
122 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
124 // Expand sign extension of vectors
125 if (!Subtarget
->hasBFE())
126 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
128 setOperationAction(ISD::SIGN_EXTEND_INREG
, {MVT::v2i1
, MVT::v4i1
}, Expand
);
130 if (!Subtarget
->hasBFE())
131 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
132 setOperationAction(ISD::SIGN_EXTEND_INREG
, {MVT::v2i8
, MVT::v4i8
}, Expand
);
134 if (!Subtarget
->hasBFE())
135 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
136 setOperationAction(ISD::SIGN_EXTEND_INREG
, {MVT::v2i16
, MVT::v4i16
}, Expand
);
138 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
139 setOperationAction(ISD::SIGN_EXTEND_INREG
, {MVT::v2i32
, MVT::v4i32
}, Expand
);
141 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::Other
, Expand
);
143 setOperationAction(ISD::FrameIndex
, MVT::i32
, Custom
);
145 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,
146 {MVT::v2i32
, MVT::v2f32
, MVT::v4i32
, MVT::v4f32
}, Custom
);
148 setOperationAction(ISD::INSERT_VECTOR_ELT
,
149 {MVT::v2i32
, MVT::v2f32
, MVT::v4i32
, MVT::v4f32
}, Custom
);
151 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
152 // to be Legal/Custom in order to avoid library calls.
153 setOperationAction({ISD::SHL_PARTS
, ISD::SRL_PARTS
, ISD::SRA_PARTS
}, MVT::i32
,
156 if (!Subtarget
->hasFMA())
157 setOperationAction(ISD::FMA
, {MVT::f32
, MVT::f64
}, Expand
);
159 // FIXME: May need no denormals check
160 setOperationAction(ISD::FMAD
, MVT::f32
, Legal
);
162 if (!Subtarget
->hasBFI())
163 // fcopysign can be done in a single instruction with BFI.
164 setOperationAction(ISD::FCOPYSIGN
, {MVT::f32
, MVT::f64
}, Expand
);
166 if (!Subtarget
->hasBCNT(32))
167 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
169 if (!Subtarget
->hasBCNT(64))
170 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
172 if (Subtarget
->hasFFBH())
173 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, Custom
);
175 if (Subtarget
->hasFFBL())
176 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i32
, Custom
);
178 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
180 if (Subtarget
->hasBFE())
181 setHasExtractBitsInsn(true);
183 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
184 setOperationAction(ISD::ADDRSPACECAST
, MVT::i32
, Custom
);
186 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
187 for (MVT VT
: ScalarIntVTs
)
188 setOperationAction({ISD::ADDC
, ISD::SUBC
, ISD::ADDE
, ISD::SUBE
}, VT
,
191 // LLVM will expand these to atomic_cmp_swap(0)
192 // and atomic_swap, respectively.
193 setOperationAction({ISD::ATOMIC_LOAD
, ISD::ATOMIC_STORE
}, MVT::i32
, Expand
);
195 // We need to custom lower some of the intrinsics
196 setOperationAction({ISD::INTRINSIC_VOID
, ISD::INTRINSIC_WO_CHAIN
}, MVT::Other
,
199 setSchedulingPreference(Sched::Source
);
201 setTargetDAGCombine({ISD::FP_ROUND
, ISD::FP_TO_SINT
, ISD::EXTRACT_VECTOR_ELT
,
202 ISD::SELECT_CC
, ISD::INSERT_VECTOR_ELT
, ISD::LOAD
});
205 static inline bool isEOP(MachineBasicBlock::iterator I
) {
206 if (std::next(I
) == I
->getParent()->end())
208 return std::next(I
)->getOpcode() == R600::RETURN
;
212 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
213 MachineBasicBlock
*BB
) const {
214 MachineFunction
*MF
= BB
->getParent();
215 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
216 MachineBasicBlock::iterator I
= MI
;
217 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
219 switch (MI
.getOpcode()) {
221 // Replace LDS_*_RET instruction that don't have any uses with the
222 // equivalent LDS_*_NORET instruction.
223 if (TII
->isLDSRetInstr(MI
.getOpcode())) {
224 int DstIdx
= TII
->getOperandIdx(MI
.getOpcode(), R600::OpName::dst
);
225 assert(DstIdx
!= -1);
226 MachineInstrBuilder NewMI
;
227 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
228 // LDS_1A2D support and remove this special case.
229 if (!MRI
.use_empty(MI
.getOperand(DstIdx
).getReg()) ||
230 MI
.getOpcode() == R600::LDS_CMPST_RET
)
233 NewMI
= BuildMI(*BB
, I
, BB
->findDebugLoc(I
),
234 TII
->get(R600::getLDSNoRetOp(MI
.getOpcode())));
235 for (const MachineOperand
&MO
: llvm::drop_begin(MI
.operands()))
238 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI
, BB
);
242 case R600::FABS_R600
: {
243 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
244 *BB
, I
, R600::MOV
, MI
.getOperand(0).getReg(),
245 MI
.getOperand(1).getReg());
246 TII
->addFlag(*NewMI
, 0, MO_FLAG_ABS
);
250 case R600::FNEG_R600
: {
251 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
252 *BB
, I
, R600::MOV
, MI
.getOperand(0).getReg(),
253 MI
.getOperand(1).getReg());
254 TII
->addFlag(*NewMI
, 0, MO_FLAG_NEG
);
258 case R600::MASK_WRITE
: {
259 Register maskedRegister
= MI
.getOperand(0).getReg();
260 assert(maskedRegister
.isVirtual());
261 MachineInstr
* defInstr
= MRI
.getVRegDef(maskedRegister
);
262 TII
->addFlag(*defInstr
, 0, MO_FLAG_MASK
);
266 case R600::MOV_IMM_F32
:
267 TII
->buildMovImm(*BB
, I
, MI
.getOperand(0).getReg(), MI
.getOperand(1)
274 case R600::MOV_IMM_I32
:
275 TII
->buildMovImm(*BB
, I
, MI
.getOperand(0).getReg(),
276 MI
.getOperand(1).getImm());
279 case R600::MOV_IMM_GLOBAL_ADDR
: {
280 //TODO: Perhaps combine this instruction with the next if possible
281 auto MIB
= TII
->buildDefaultInstruction(
282 *BB
, MI
, R600::MOV
, MI
.getOperand(0).getReg(), R600::ALU_LITERAL_X
);
283 int Idx
= TII
->getOperandIdx(*MIB
, R600::OpName::literal
);
284 //TODO: Ugh this is rather ugly
285 const MachineOperand
&MO
= MI
.getOperand(1);
286 MIB
->getOperand(Idx
).ChangeToGA(MO
.getGlobal(), MO
.getOffset(),
287 MO
.getTargetFlags());
291 case R600::CONST_COPY
: {
292 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
293 *BB
, MI
, R600::MOV
, MI
.getOperand(0).getReg(), R600::ALU_CONST
);
294 TII
->setImmOperand(*NewMI
, R600::OpName::src0_sel
,
295 MI
.getOperand(1).getImm());
299 case R600::RAT_WRITE_CACHELESS_32_eg
:
300 case R600::RAT_WRITE_CACHELESS_64_eg
:
301 case R600::RAT_WRITE_CACHELESS_128_eg
:
302 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
303 .add(MI
.getOperand(0))
304 .add(MI
.getOperand(1))
305 .addImm(isEOP(I
)); // Set End of program bit
308 case R600::RAT_STORE_TYPED_eg
:
309 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
310 .add(MI
.getOperand(0))
311 .add(MI
.getOperand(1))
312 .add(MI
.getOperand(2))
313 .addImm(isEOP(I
)); // Set End of program bit
317 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP
))
318 .add(MI
.getOperand(0));
321 case R600::BRANCH_COND_f32
: {
322 MachineInstr
*NewMI
=
323 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::PRED_X
),
325 .add(MI
.getOperand(1))
326 .addImm(R600::PRED_SETNE
)
328 TII
->addFlag(*NewMI
, 0, MO_FLAG_PUSH
);
329 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP_COND
))
330 .add(MI
.getOperand(0))
331 .addReg(R600::PREDICATE_BIT
, RegState::Kill
);
335 case R600::BRANCH_COND_i32
: {
336 MachineInstr
*NewMI
=
337 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::PRED_X
),
339 .add(MI
.getOperand(1))
340 .addImm(R600::PRED_SETNE_INT
)
342 TII
->addFlag(*NewMI
, 0, MO_FLAG_PUSH
);
343 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP_COND
))
344 .add(MI
.getOperand(0))
345 .addReg(R600::PREDICATE_BIT
, RegState::Kill
);
349 case R600::EG_ExportSwz
:
350 case R600::R600_ExportSwz
: {
351 // Instruction is left unmodified if its not the last one of its type
352 bool isLastInstructionOfItsType
= true;
353 unsigned InstExportType
= MI
.getOperand(1).getImm();
354 for (MachineBasicBlock::iterator NextExportInst
= std::next(I
),
355 EndBlock
= BB
->end(); NextExportInst
!= EndBlock
;
356 NextExportInst
= std::next(NextExportInst
)) {
357 if (NextExportInst
->getOpcode() == R600::EG_ExportSwz
||
358 NextExportInst
->getOpcode() == R600::R600_ExportSwz
) {
359 unsigned CurrentInstExportType
= NextExportInst
->getOperand(1)
361 if (CurrentInstExportType
== InstExportType
) {
362 isLastInstructionOfItsType
= false;
368 if (!EOP
&& !isLastInstructionOfItsType
)
370 unsigned CfInst
= (MI
.getOpcode() == R600::EG_ExportSwz
) ? 84 : 40;
371 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
372 .add(MI
.getOperand(0))
373 .add(MI
.getOperand(1))
374 .add(MI
.getOperand(2))
375 .add(MI
.getOperand(3))
376 .add(MI
.getOperand(4))
377 .add(MI
.getOperand(5))
378 .add(MI
.getOperand(6))
388 MI
.eraseFromParent();
392 //===----------------------------------------------------------------------===//
393 // Custom DAG Lowering Operations
394 //===----------------------------------------------------------------------===//
396 SDValue
R600TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
397 MachineFunction
&MF
= DAG
.getMachineFunction();
398 R600MachineFunctionInfo
*MFI
= MF
.getInfo
<R600MachineFunctionInfo
>();
399 switch (Op
.getOpcode()) {
400 default: return AMDGPUTargetLowering::LowerOperation(Op
, DAG
);
401 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
402 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
405 case ISD::SRL_PARTS
: return LowerShiftParts(Op
, DAG
);
406 case ISD::UADDO
: return LowerUADDSUBO(Op
, DAG
, ISD::ADD
, AMDGPUISD::CARRY
);
407 case ISD::USUBO
: return LowerUADDSUBO(Op
, DAG
, ISD::SUB
, AMDGPUISD::BORROW
);
409 case ISD::FSIN
: return LowerTrig(Op
, DAG
);
410 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
411 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
413 SDValue Result
= LowerLOAD(Op
, DAG
);
414 assert((!Result
.getNode() ||
415 Result
.getNode()->getNumValues() == 2) &&
416 "Load should return a value and a chain");
420 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
421 case ISD::GlobalAddress
: return LowerGlobalAddress(MFI
, Op
, DAG
);
422 case ISD::FrameIndex
: return lowerFrameIndex(Op
, DAG
);
423 case ISD::ADDRSPACECAST
:
424 return lowerADDRSPACECAST(Op
, DAG
);
425 case ISD::INTRINSIC_VOID
: {
426 SDValue Chain
= Op
.getOperand(0);
427 unsigned IntrinsicID
= Op
.getConstantOperandVal(1);
428 switch (IntrinsicID
) {
429 case Intrinsic::r600_store_swizzle
: {
431 const SDValue Args
[8] = {
433 Op
.getOperand(2), // Export Value
434 Op
.getOperand(3), // ArrayBase
435 Op
.getOperand(4), // Type
436 DAG
.getConstant(0, DL
, MVT::i32
), // SWZ_X
437 DAG
.getConstant(1, DL
, MVT::i32
), // SWZ_Y
438 DAG
.getConstant(2, DL
, MVT::i32
), // SWZ_Z
439 DAG
.getConstant(3, DL
, MVT::i32
) // SWZ_W
441 return DAG
.getNode(AMDGPUISD::R600_EXPORT
, DL
, Op
.getValueType(), Args
);
444 // default for switch(IntrinsicID)
447 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
450 case ISD::INTRINSIC_WO_CHAIN
: {
451 unsigned IntrinsicID
= Op
.getConstantOperandVal(0);
452 EVT VT
= Op
.getValueType();
454 switch (IntrinsicID
) {
455 case Intrinsic::r600_tex
:
456 case Intrinsic::r600_texc
: {
458 switch (IntrinsicID
) {
459 case Intrinsic::r600_tex
:
462 case Intrinsic::r600_texc
:
466 llvm_unreachable("unhandled texture operation");
469 SDValue TexArgs
[19] = {
470 DAG
.getConstant(TextureOp
, DL
, MVT::i32
),
472 DAG
.getConstant(0, DL
, MVT::i32
),
473 DAG
.getConstant(1, DL
, MVT::i32
),
474 DAG
.getConstant(2, DL
, MVT::i32
),
475 DAG
.getConstant(3, DL
, MVT::i32
),
479 DAG
.getConstant(0, DL
, MVT::i32
),
480 DAG
.getConstant(1, DL
, MVT::i32
),
481 DAG
.getConstant(2, DL
, MVT::i32
),
482 DAG
.getConstant(3, DL
, MVT::i32
),
490 return DAG
.getNode(AMDGPUISD::TEXTURE_FETCH
, DL
, MVT::v4f32
, TexArgs
);
492 case Intrinsic::r600_dot4
: {
494 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
495 DAG
.getConstant(0, DL
, MVT::i32
)),
496 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
497 DAG
.getConstant(0, DL
, MVT::i32
)),
498 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
499 DAG
.getConstant(1, DL
, MVT::i32
)),
500 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
501 DAG
.getConstant(1, DL
, MVT::i32
)),
502 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
503 DAG
.getConstant(2, DL
, MVT::i32
)),
504 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
505 DAG
.getConstant(2, DL
, MVT::i32
)),
506 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
507 DAG
.getConstant(3, DL
, MVT::i32
)),
508 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
509 DAG
.getConstant(3, DL
, MVT::i32
))
511 return DAG
.getNode(AMDGPUISD::DOT4
, DL
, MVT::f32
, Args
);
514 case Intrinsic::r600_implicitarg_ptr
: {
515 MVT PtrVT
= getPointerTy(DAG
.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS
);
516 uint32_t ByteOffset
= getImplicitParameterOffset(MF
, FIRST_IMPLICIT
);
517 return DAG
.getConstant(ByteOffset
, DL
, PtrVT
);
519 case Intrinsic::r600_read_ngroups_x
:
520 return LowerImplicitParameter(DAG
, VT
, DL
, 0);
521 case Intrinsic::r600_read_ngroups_y
:
522 return LowerImplicitParameter(DAG
, VT
, DL
, 1);
523 case Intrinsic::r600_read_ngroups_z
:
524 return LowerImplicitParameter(DAG
, VT
, DL
, 2);
525 case Intrinsic::r600_read_global_size_x
:
526 return LowerImplicitParameter(DAG
, VT
, DL
, 3);
527 case Intrinsic::r600_read_global_size_y
:
528 return LowerImplicitParameter(DAG
, VT
, DL
, 4);
529 case Intrinsic::r600_read_global_size_z
:
530 return LowerImplicitParameter(DAG
, VT
, DL
, 5);
531 case Intrinsic::r600_read_local_size_x
:
532 return LowerImplicitParameter(DAG
, VT
, DL
, 6);
533 case Intrinsic::r600_read_local_size_y
:
534 return LowerImplicitParameter(DAG
, VT
, DL
, 7);
535 case Intrinsic::r600_read_local_size_z
:
536 return LowerImplicitParameter(DAG
, VT
, DL
, 8);
538 case Intrinsic::r600_read_tgid_x
:
539 case Intrinsic::amdgcn_workgroup_id_x
:
540 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
542 case Intrinsic::r600_read_tgid_y
:
543 case Intrinsic::amdgcn_workgroup_id_y
:
544 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
546 case Intrinsic::r600_read_tgid_z
:
547 case Intrinsic::amdgcn_workgroup_id_z
:
548 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
550 case Intrinsic::r600_read_tidig_x
:
551 case Intrinsic::amdgcn_workitem_id_x
:
552 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
554 case Intrinsic::r600_read_tidig_y
:
555 case Intrinsic::amdgcn_workitem_id_y
:
556 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
558 case Intrinsic::r600_read_tidig_z
:
559 case Intrinsic::amdgcn_workitem_id_z
:
560 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
563 case Intrinsic::r600_recipsqrt_ieee
:
564 return DAG
.getNode(AMDGPUISD::RSQ
, DL
, VT
, Op
.getOperand(1));
566 case Intrinsic::r600_recipsqrt_clamped
:
567 return DAG
.getNode(AMDGPUISD::RSQ_CLAMP
, DL
, VT
, Op
.getOperand(1));
572 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
575 } // end switch(Op.getOpcode())
579 void R600TargetLowering::ReplaceNodeResults(SDNode
*N
,
580 SmallVectorImpl
<SDValue
> &Results
,
581 SelectionDAG
&DAG
) const {
582 switch (N
->getOpcode()) {
584 AMDGPUTargetLowering::ReplaceNodeResults(N
, Results
, DAG
);
586 case ISD::FP_TO_UINT
:
587 if (N
->getValueType(0) == MVT::i1
) {
588 Results
.push_back(lowerFP_TO_UINT(N
->getOperand(0), DAG
));
591 // Since we don't care about out of bounds values we can use FP_TO_SINT for
592 // uints too. The DAGLegalizer code for uint considers some extra cases
593 // which are not necessary here.
595 case ISD::FP_TO_SINT
: {
596 if (N
->getValueType(0) == MVT::i1
) {
597 Results
.push_back(lowerFP_TO_SINT(N
->getOperand(0), DAG
));
602 if (expandFP_TO_SINT(N
, Result
, DAG
))
603 Results
.push_back(Result
);
607 SDValue Op
= SDValue(N
, 1);
608 SDValue RES
= LowerSDIVREM(Op
, DAG
);
609 Results
.push_back(RES
);
610 Results
.push_back(RES
.getValue(1));
614 SDValue Op
= SDValue(N
, 0);
615 LowerUDIVREM64(Op
, DAG
, Results
);
621 SDValue
R600TargetLowering::vectorToVerticalVector(SelectionDAG
&DAG
,
622 SDValue Vector
) const {
624 EVT VecVT
= Vector
.getValueType();
625 EVT EltVT
= VecVT
.getVectorElementType();
626 SmallVector
<SDValue
, 8> Args
;
628 for (unsigned i
= 0, e
= VecVT
.getVectorNumElements(); i
!= e
; ++i
) {
629 Args
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Vector
,
630 DAG
.getVectorIdxConstant(i
, DL
)));
633 return DAG
.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR
, DL
, VecVT
, Args
);
636 SDValue
R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
637 SelectionDAG
&DAG
) const {
639 SDValue Vector
= Op
.getOperand(0);
640 SDValue Index
= Op
.getOperand(1);
642 if (isa
<ConstantSDNode
>(Index
) ||
643 Vector
.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR
)
646 Vector
= vectorToVerticalVector(DAG
, Vector
);
647 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, Op
.getValueType(),
651 SDValue
R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
652 SelectionDAG
&DAG
) const {
654 SDValue Vector
= Op
.getOperand(0);
655 SDValue Value
= Op
.getOperand(1);
656 SDValue Index
= Op
.getOperand(2);
658 if (isa
<ConstantSDNode
>(Index
) ||
659 Vector
.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR
)
662 Vector
= vectorToVerticalVector(DAG
, Vector
);
663 SDValue Insert
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, Op
.getValueType(),
664 Vector
, Value
, Index
);
665 return vectorToVerticalVector(DAG
, Insert
);
668 SDValue
R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
*MFI
,
670 SelectionDAG
&DAG
) const {
671 GlobalAddressSDNode
*GSD
= cast
<GlobalAddressSDNode
>(Op
);
672 if (GSD
->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS
)
673 return AMDGPUTargetLowering::LowerGlobalAddress(MFI
, Op
, DAG
);
675 const DataLayout
&DL
= DAG
.getDataLayout();
676 const GlobalValue
*GV
= GSD
->getGlobal();
677 MVT ConstPtrVT
= getPointerTy(DL
, AMDGPUAS::CONSTANT_ADDRESS
);
679 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, SDLoc(GSD
), ConstPtrVT
);
680 return DAG
.getNode(AMDGPUISD::CONST_DATA_PTR
, SDLoc(GSD
), ConstPtrVT
, GA
);
683 SDValue
R600TargetLowering::LowerTrig(SDValue Op
, SelectionDAG
&DAG
) const {
684 // On hw >= R700, COS/SIN input must be between -1. and 1.
685 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
686 EVT VT
= Op
.getValueType();
687 SDValue Arg
= Op
.getOperand(0);
690 // TODO: Should this propagate fast-math-flags?
691 SDValue FractPart
= DAG
.getNode(AMDGPUISD::FRACT
, DL
, VT
,
692 DAG
.getNode(ISD::FADD
, DL
, VT
,
693 DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
,
694 DAG
.getConstantFP(0.15915494309, DL
, MVT::f32
)),
695 DAG
.getConstantFP(0.5, DL
, MVT::f32
)));
697 switch (Op
.getOpcode()) {
699 TrigNode
= AMDGPUISD::COS_HW
;
702 TrigNode
= AMDGPUISD::SIN_HW
;
705 llvm_unreachable("Wrong trig opcode");
707 SDValue TrigVal
= DAG
.getNode(TrigNode
, DL
, VT
,
708 DAG
.getNode(ISD::FADD
, DL
, VT
, FractPart
,
709 DAG
.getConstantFP(-0.5, DL
, MVT::f32
)));
710 if (Gen
>= AMDGPUSubtarget::R700
)
712 // On R600 hw, COS/SIN input must be between -Pi and Pi.
713 return DAG
.getNode(ISD::FMUL
, DL
, VT
, TrigVal
,
714 DAG
.getConstantFP(numbers::pif
, DL
, MVT::f32
));
717 SDValue
R600TargetLowering::LowerShiftParts(SDValue Op
,
718 SelectionDAG
&DAG
) const {
720 expandShiftParts(Op
.getNode(), Lo
, Hi
, DAG
);
721 return DAG
.getMergeValues({Lo
, Hi
}, SDLoc(Op
));
724 SDValue
R600TargetLowering::LowerUADDSUBO(SDValue Op
, SelectionDAG
&DAG
,
725 unsigned mainop
, unsigned ovf
) const {
727 EVT VT
= Op
.getValueType();
729 SDValue Lo
= Op
.getOperand(0);
730 SDValue Hi
= Op
.getOperand(1);
732 SDValue OVF
= DAG
.getNode(ovf
, DL
, VT
, Lo
, Hi
);
734 OVF
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, OVF
,
735 DAG
.getValueType(MVT::i1
));
737 SDValue Res
= DAG
.getNode(mainop
, DL
, VT
, Lo
, Hi
);
739 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, DAG
.getVTList(VT
, VT
), Res
, OVF
);
742 SDValue
R600TargetLowering::lowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) const {
748 Op
, DAG
.getConstantFP(1.0f
, DL
, MVT::f32
),
749 DAG
.getCondCode(ISD::SETEQ
));
752 SDValue
R600TargetLowering::lowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) const {
758 Op
, DAG
.getConstantFP(-1.0f
, DL
, MVT::f32
),
759 DAG
.getCondCode(ISD::SETEQ
));
762 SDValue
R600TargetLowering::LowerImplicitParameter(SelectionDAG
&DAG
, EVT VT
,
764 unsigned DwordOffset
) const {
765 unsigned ByteOffset
= DwordOffset
* 4;
766 PointerType
* PtrType
= PointerType::get(VT
.getTypeForEVT(*DAG
.getContext()),
767 AMDGPUAS::PARAM_I_ADDRESS
);
769 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
770 assert(isInt
<16>(ByteOffset
));
772 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
773 DAG
.getConstant(ByteOffset
, DL
, MVT::i32
), // PTR
774 MachinePointerInfo(ConstantPointerNull::get(PtrType
)));
777 bool R600TargetLowering::isZero(SDValue Op
) const {
778 if (ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Op
))
779 return Cst
->isZero();
780 if (ConstantFPSDNode
*CstFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
781 return CstFP
->isZero();
785 bool R600TargetLowering::isHWTrueValue(SDValue Op
) const {
786 if (ConstantFPSDNode
* CFP
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
787 return CFP
->isExactlyValue(1.0);
789 return isAllOnesConstant(Op
);
792 bool R600TargetLowering::isHWFalseValue(SDValue Op
) const {
793 if (ConstantFPSDNode
* CFP
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
794 return CFP
->getValueAPF().isZero();
796 return isNullConstant(Op
);
799 SDValue
R600TargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
801 EVT VT
= Op
.getValueType();
803 SDValue LHS
= Op
.getOperand(0);
804 SDValue RHS
= Op
.getOperand(1);
805 SDValue True
= Op
.getOperand(2);
806 SDValue False
= Op
.getOperand(3);
807 SDValue CC
= Op
.getOperand(4);
810 if (VT
== MVT::f32
) {
811 DAGCombinerInfo
DCI(DAG
, AfterLegalizeVectorOps
, true, nullptr);
812 SDValue MinMax
= combineFMinMaxLegacy(DL
, VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
817 // LHS and RHS are guaranteed to be the same value type
818 EVT CompareVT
= LHS
.getValueType();
820 // Check if we can lower this to a native operation.
822 // Try to lower to a SET* instruction:
824 // SET* can match the following patterns:
826 // select_cc f32, f32, -1, 0, cc_supported
827 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
828 // select_cc i32, i32, -1, 0, cc_supported
831 // Move hardware True/False values to the correct operand.
832 if (isHWTrueValue(False
) && isHWFalseValue(True
)) {
833 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
834 ISD::CondCode InverseCC
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
835 if (isCondCodeLegal(InverseCC
, CompareVT
.getSimpleVT())) {
836 std::swap(False
, True
);
837 CC
= DAG
.getCondCode(InverseCC
);
839 ISD::CondCode SwapInvCC
= ISD::getSetCCSwappedOperands(InverseCC
);
840 if (isCondCodeLegal(SwapInvCC
, CompareVT
.getSimpleVT())) {
841 std::swap(False
, True
);
843 CC
= DAG
.getCondCode(SwapInvCC
);
848 if (isHWTrueValue(True
) && isHWFalseValue(False
) &&
849 (CompareVT
== VT
|| VT
== MVT::i32
)) {
850 // This can be matched by a SET* instruction.
851 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, LHS
, RHS
, True
, False
, CC
);
854 // Try to lower to a CND* instruction:
856 // CND* can match the following patterns:
858 // select_cc f32, 0.0, f32, f32, cc_supported
859 // select_cc f32, 0.0, i32, i32, cc_supported
860 // select_cc i32, 0, f32, f32, cc_supported
861 // select_cc i32, 0, i32, i32, cc_supported
864 // Try to move the zero value to the RHS
866 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
867 // Try swapping the operands
868 ISD::CondCode CCSwapped
= ISD::getSetCCSwappedOperands(CCOpcode
);
869 if (isCondCodeLegal(CCSwapped
, CompareVT
.getSimpleVT())) {
871 CC
= DAG
.getCondCode(CCSwapped
);
873 // Try inverting the condition and then swapping the operands
874 ISD::CondCode CCInv
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
875 CCSwapped
= ISD::getSetCCSwappedOperands(CCInv
);
876 if (isCondCodeLegal(CCSwapped
, CompareVT
.getSimpleVT())) {
877 std::swap(True
, False
);
879 CC
= DAG
.getCondCode(CCSwapped
);
886 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
887 if (CompareVT
!= VT
) {
888 // Bitcast True / False to the correct types. This will end up being
889 // a nop, but it allows us to define only a single pattern in the
890 // .TD files for each CND* instruction rather than having to have
891 // one pattern for integer True/False and one for fp True/False
892 True
= DAG
.getNode(ISD::BITCAST
, DL
, CompareVT
, True
);
893 False
= DAG
.getNode(ISD::BITCAST
, DL
, CompareVT
, False
);
900 CCOpcode
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
908 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, CompareVT
,
911 DAG
.getCondCode(CCOpcode
));
912 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, SelectNode
);
915 // If we make it this for it means we have no native instructions to handle
916 // this SELECT_CC, so we must lower it.
917 SDValue HWTrue
, HWFalse
;
919 if (CompareVT
== MVT::f32
) {
920 HWTrue
= DAG
.getConstantFP(1.0f
, DL
, CompareVT
);
921 HWFalse
= DAG
.getConstantFP(0.0f
, DL
, CompareVT
);
922 } else if (CompareVT
== MVT::i32
) {
923 HWTrue
= DAG
.getConstant(-1, DL
, CompareVT
);
924 HWFalse
= DAG
.getConstant(0, DL
, CompareVT
);
927 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
930 // Lower this unsupported SELECT_CC into a combination of two supported
931 // SELECT_CC operations.
932 SDValue Cond
= DAG
.getNode(ISD::SELECT_CC
, DL
, CompareVT
, LHS
, RHS
, HWTrue
, HWFalse
, CC
);
934 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
,
937 DAG
.getCondCode(ISD::SETNE
));
940 SDValue
R600TargetLowering::lowerADDRSPACECAST(SDValue Op
,
941 SelectionDAG
&DAG
) const {
943 EVT VT
= Op
.getValueType();
945 const R600TargetMachine
&TM
=
946 static_cast<const R600TargetMachine
&>(getTargetMachine());
948 const AddrSpaceCastSDNode
*ASC
= cast
<AddrSpaceCastSDNode
>(Op
);
949 unsigned SrcAS
= ASC
->getSrcAddressSpace();
950 unsigned DestAS
= ASC
->getDestAddressSpace();
952 if (isNullConstant(Op
.getOperand(0)) && SrcAS
== AMDGPUAS::FLAT_ADDRESS
)
953 return DAG
.getConstant(TM
.getNullPointerValue(DestAS
), SL
, VT
);
958 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
959 /// convert these pointers to a register index. Each register holds
960 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
961 /// \p StackWidth, which tells us how many of the 4 sub-registers will be used
962 /// for indirect addressing.
963 SDValue
R600TargetLowering::stackPtrToRegIndex(SDValue Ptr
,
965 SelectionDAG
&DAG
) const {
977 default: llvm_unreachable("Invalid stack width");
981 return DAG
.getNode(ISD::SRL
, DL
, Ptr
.getValueType(), Ptr
,
982 DAG
.getConstant(SRLPad
, DL
, MVT::i32
));
985 void R600TargetLowering::getStackAddress(unsigned StackWidth
,
988 unsigned &PtrIncr
) const {
989 switch (StackWidth
) {
1000 Channel
= ElemIdx
% 2;
1014 SDValue
R600TargetLowering::lowerPrivateTruncStore(StoreSDNode
*Store
,
1015 SelectionDAG
&DAG
) const {
1017 //TODO: Who creates the i8 stores?
1018 assert(Store
->isTruncatingStore()
1019 || Store
->getValue().getValueType() == MVT::i8
);
1020 assert(Store
->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
);
1023 if (Store
->getMemoryVT() == MVT::i8
) {
1024 assert(Store
->getAlign() >= 1);
1025 Mask
= DAG
.getConstant(0xff, DL
, MVT::i32
);
1026 } else if (Store
->getMemoryVT() == MVT::i16
) {
1027 assert(Store
->getAlign() >= 2);
1028 Mask
= DAG
.getConstant(0xffff, DL
, MVT::i32
);
1030 llvm_unreachable("Unsupported private trunc store");
1033 SDValue OldChain
= Store
->getChain();
1034 bool VectorTrunc
= (OldChain
.getOpcode() == AMDGPUISD::DUMMY_CHAIN
);
1036 SDValue Chain
= VectorTrunc
? OldChain
->getOperand(0) : OldChain
;
1037 SDValue BasePtr
= Store
->getBasePtr();
1038 SDValue Offset
= Store
->getOffset();
1039 EVT MemVT
= Store
->getMemoryVT();
1041 SDValue LoadPtr
= BasePtr
;
1042 if (!Offset
.isUndef()) {
1043 LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
, Offset
);
1046 // Get dword location
1047 // TODO: this should be eliminated by the future SHR ptr, 2
1048 SDValue Ptr
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1049 DAG
.getConstant(0xfffffffc, DL
, MVT::i32
));
1052 // TODO: can we be smarter about machine pointer info?
1053 MachinePointerInfo
PtrInfo(AMDGPUAS::PRIVATE_ADDRESS
);
1054 SDValue Dst
= DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, PtrInfo
);
1056 Chain
= Dst
.getValue(1);
1058 // Get offset in dword
1059 SDValue ByteIdx
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1060 DAG
.getConstant(0x3, DL
, MVT::i32
));
1062 // Convert byte offset to bit shift
1063 SDValue ShiftAmt
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, ByteIdx
,
1064 DAG
.getConstant(3, DL
, MVT::i32
));
1066 // TODO: Contrary to the name of the function,
1067 // it also handles sub i32 non-truncating stores (like i1)
1068 SDValue SExtValue
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i32
,
1071 // Mask the value to the right type
1072 SDValue MaskedValue
= DAG
.getZeroExtendInReg(SExtValue
, DL
, MemVT
);
1074 // Shift the value in place
1075 SDValue ShiftedValue
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
,
1076 MaskedValue
, ShiftAmt
);
1078 // Shift the mask in place
1079 SDValue DstMask
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, Mask
, ShiftAmt
);
1081 // Invert the mask. NOTE: if we had native ROL instructions we could
1082 // use inverted mask
1083 DstMask
= DAG
.getNOT(DL
, DstMask
, MVT::i32
);
1085 // Cleanup the target bits
1086 Dst
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Dst
, DstMask
);
1089 SDValue Value
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Dst
, ShiftedValue
);
1092 // TODO: Can we be smarter about MachinePointerInfo?
1093 SDValue NewStore
= DAG
.getStore(Chain
, DL
, Value
, Ptr
, PtrInfo
);
1095 // If we are part of expanded vector, make our neighbors depend on this store
1097 // Make all other vector elements depend on this store
1098 Chain
= DAG
.getNode(AMDGPUISD::DUMMY_CHAIN
, DL
, MVT::Other
, NewStore
);
1099 DAG
.ReplaceAllUsesOfValueWith(OldChain
, Chain
);
1104 SDValue
R600TargetLowering::LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
1105 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Op
);
1106 unsigned AS
= StoreNode
->getAddressSpace();
1108 SDValue Chain
= StoreNode
->getChain();
1109 SDValue Ptr
= StoreNode
->getBasePtr();
1110 SDValue Value
= StoreNode
->getValue();
1112 EVT VT
= Value
.getValueType();
1113 EVT MemVT
= StoreNode
->getMemoryVT();
1114 EVT PtrVT
= Ptr
.getValueType();
1118 const bool TruncatingStore
= StoreNode
->isTruncatingStore();
1120 // Neither LOCAL nor PRIVATE can do vectors at the moment
1121 if ((AS
== AMDGPUAS::LOCAL_ADDRESS
|| AS
== AMDGPUAS::PRIVATE_ADDRESS
||
1124 if ((AS
== AMDGPUAS::PRIVATE_ADDRESS
) && TruncatingStore
) {
1125 // Add an extra level of chain to isolate this vector
1126 SDValue NewChain
= DAG
.getNode(AMDGPUISD::DUMMY_CHAIN
, DL
, MVT::Other
, Chain
);
1127 // TODO: can the chain be replaced without creating a new store?
1128 SDValue NewStore
= DAG
.getTruncStore(
1129 NewChain
, DL
, Value
, Ptr
, StoreNode
->getPointerInfo(), MemVT
,
1130 StoreNode
->getAlign(), StoreNode
->getMemOperand()->getFlags(),
1131 StoreNode
->getAAInfo());
1132 StoreNode
= cast
<StoreSDNode
>(NewStore
);
1135 return scalarizeVectorStore(StoreNode
, DAG
);
1138 Align Alignment
= StoreNode
->getAlign();
1139 if (Alignment
< MemVT
.getStoreSize() &&
1140 !allowsMisalignedMemoryAccesses(MemVT
, AS
, Alignment
,
1141 StoreNode
->getMemOperand()->getFlags(),
1143 return expandUnalignedStore(StoreNode
, DAG
);
1146 SDValue DWordAddr
= DAG
.getNode(ISD::SRL
, DL
, PtrVT
, Ptr
,
1147 DAG
.getConstant(2, DL
, PtrVT
));
1149 if (AS
== AMDGPUAS::GLOBAL_ADDRESS
) {
1150 // It is beneficial to create MSKOR here instead of combiner to avoid
1151 // artificial dependencies introduced by RMW
1152 if (TruncatingStore
) {
1153 assert(VT
.bitsLE(MVT::i32
));
1154 SDValue MaskConstant
;
1155 if (MemVT
== MVT::i8
) {
1156 MaskConstant
= DAG
.getConstant(0xFF, DL
, MVT::i32
);
1158 assert(MemVT
== MVT::i16
);
1159 assert(StoreNode
->getAlign() >= 2);
1160 MaskConstant
= DAG
.getConstant(0xFFFF, DL
, MVT::i32
);
1163 SDValue ByteIndex
= DAG
.getNode(ISD::AND
, DL
, PtrVT
, Ptr
,
1164 DAG
.getConstant(0x00000003, DL
, PtrVT
));
1165 SDValue BitShift
= DAG
.getNode(ISD::SHL
, DL
, VT
, ByteIndex
,
1166 DAG
.getConstant(3, DL
, VT
));
1168 // Put the mask in correct place
1169 SDValue Mask
= DAG
.getNode(ISD::SHL
, DL
, VT
, MaskConstant
, BitShift
);
1171 // Put the value bits in correct place
1172 SDValue TruncValue
= DAG
.getNode(ISD::AND
, DL
, VT
, Value
, MaskConstant
);
1173 SDValue ShiftedValue
= DAG
.getNode(ISD::SHL
, DL
, VT
, TruncValue
, BitShift
);
1175 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1179 DAG
.getConstant(0, DL
, MVT::i32
),
1180 DAG
.getConstant(0, DL
, MVT::i32
),
1183 SDValue Input
= DAG
.getBuildVector(MVT::v4i32
, DL
, Src
);
1184 SDValue Args
[3] = { Chain
, Input
, DWordAddr
};
1185 return DAG
.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR
, DL
,
1186 Op
->getVTList(), Args
, MemVT
,
1187 StoreNode
->getMemOperand());
1189 if (Ptr
->getOpcode() != AMDGPUISD::DWORDADDR
&& VT
.bitsGE(MVT::i32
)) {
1190 // Convert pointer from byte address to dword address.
1191 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, PtrVT
, DWordAddr
);
1193 if (StoreNode
->isIndexed()) {
1194 llvm_unreachable("Indexed stores not supported yet");
1196 Chain
= DAG
.getStore(Chain
, DL
, Value
, Ptr
, StoreNode
->getMemOperand());
1202 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1203 if (AS
!= AMDGPUAS::PRIVATE_ADDRESS
)
1206 if (MemVT
.bitsLT(MVT::i32
))
1207 return lowerPrivateTruncStore(StoreNode
, DAG
);
1209 // Standard i32+ store, tag it with DWORDADDR to note that the address
1211 if (Ptr
.getOpcode() != AMDGPUISD::DWORDADDR
) {
1212 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, PtrVT
, DWordAddr
);
1213 return DAG
.getStore(Chain
, DL
, Value
, Ptr
, StoreNode
->getMemOperand());
1216 // Tagged i32+ stores will be matched by patterns
1220 // return (512 + (kc_bank << 12)
1222 ConstantAddressBlock(unsigned AddressSpace
) {
1223 switch (AddressSpace
) {
1224 case AMDGPUAS::CONSTANT_BUFFER_0
:
1226 case AMDGPUAS::CONSTANT_BUFFER_1
:
1228 case AMDGPUAS::CONSTANT_BUFFER_2
:
1229 return 512 + 4096 * 2;
1230 case AMDGPUAS::CONSTANT_BUFFER_3
:
1231 return 512 + 4096 * 3;
1232 case AMDGPUAS::CONSTANT_BUFFER_4
:
1233 return 512 + 4096 * 4;
1234 case AMDGPUAS::CONSTANT_BUFFER_5
:
1235 return 512 + 4096 * 5;
1236 case AMDGPUAS::CONSTANT_BUFFER_6
:
1237 return 512 + 4096 * 6;
1238 case AMDGPUAS::CONSTANT_BUFFER_7
:
1239 return 512 + 4096 * 7;
1240 case AMDGPUAS::CONSTANT_BUFFER_8
:
1241 return 512 + 4096 * 8;
1242 case AMDGPUAS::CONSTANT_BUFFER_9
:
1243 return 512 + 4096 * 9;
1244 case AMDGPUAS::CONSTANT_BUFFER_10
:
1245 return 512 + 4096 * 10;
1246 case AMDGPUAS::CONSTANT_BUFFER_11
:
1247 return 512 + 4096 * 11;
1248 case AMDGPUAS::CONSTANT_BUFFER_12
:
1249 return 512 + 4096 * 12;
1250 case AMDGPUAS::CONSTANT_BUFFER_13
:
1251 return 512 + 4096 * 13;
1252 case AMDGPUAS::CONSTANT_BUFFER_14
:
1253 return 512 + 4096 * 14;
1254 case AMDGPUAS::CONSTANT_BUFFER_15
:
1255 return 512 + 4096 * 15;
1261 SDValue
R600TargetLowering::lowerPrivateExtLoad(SDValue Op
,
1262 SelectionDAG
&DAG
) const {
1264 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1265 ISD::LoadExtType ExtType
= Load
->getExtensionType();
1266 EVT MemVT
= Load
->getMemoryVT();
1267 assert(Load
->getAlign() >= MemVT
.getStoreSize());
1269 SDValue BasePtr
= Load
->getBasePtr();
1270 SDValue Chain
= Load
->getChain();
1271 SDValue Offset
= Load
->getOffset();
1273 SDValue LoadPtr
= BasePtr
;
1274 if (!Offset
.isUndef()) {
1275 LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
, Offset
);
1278 // Get dword location
1279 // NOTE: this should be eliminated by the future SHR ptr, 2
1280 SDValue Ptr
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1281 DAG
.getConstant(0xfffffffc, DL
, MVT::i32
));
1284 // TODO: can we be smarter about machine pointer info?
1285 MachinePointerInfo
PtrInfo(AMDGPUAS::PRIVATE_ADDRESS
);
1286 SDValue Read
= DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, PtrInfo
);
1288 // Get offset within the register.
1289 SDValue ByteIdx
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
,
1290 LoadPtr
, DAG
.getConstant(0x3, DL
, MVT::i32
));
1292 // Bit offset of target byte (byteIdx * 8).
1293 SDValue ShiftAmt
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, ByteIdx
,
1294 DAG
.getConstant(3, DL
, MVT::i32
));
1296 // Shift to the right.
1297 SDValue Ret
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Read
, ShiftAmt
);
1299 // Eliminate the upper bits by setting them to ...
1300 EVT MemEltVT
= MemVT
.getScalarType();
1302 if (ExtType
== ISD::SEXTLOAD
) { // ... ones.
1303 SDValue MemEltVTNode
= DAG
.getValueType(MemEltVT
);
1304 Ret
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, Ret
, MemEltVTNode
);
1305 } else { // ... or zeros.
1306 Ret
= DAG
.getZeroExtendInReg(Ret
, DL
, MemEltVT
);
1311 Read
.getValue(1) // This should be our output chain
1314 return DAG
.getMergeValues(Ops
, DL
);
1317 SDValue
R600TargetLowering::LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
1318 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(Op
);
1319 unsigned AS
= LoadNode
->getAddressSpace();
1320 EVT MemVT
= LoadNode
->getMemoryVT();
1321 ISD::LoadExtType ExtType
= LoadNode
->getExtensionType();
1323 if (AS
== AMDGPUAS::PRIVATE_ADDRESS
&&
1324 ExtType
!= ISD::NON_EXTLOAD
&& MemVT
.bitsLT(MVT::i32
)) {
1325 return lowerPrivateExtLoad(Op
, DAG
);
1329 EVT VT
= Op
.getValueType();
1330 SDValue Chain
= LoadNode
->getChain();
1331 SDValue Ptr
= LoadNode
->getBasePtr();
1333 if ((LoadNode
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1334 LoadNode
->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
) &&
1337 std::tie(Ops
[0], Ops
[1]) = scalarizeVectorLoad(LoadNode
, DAG
);
1338 return DAG
.getMergeValues(Ops
, DL
);
1341 // This is still used for explicit load from addrspace(8)
1342 int ConstantBlock
= ConstantAddressBlock(LoadNode
->getAddressSpace());
1343 if (ConstantBlock
> -1 &&
1344 ((LoadNode
->getExtensionType() == ISD::NON_EXTLOAD
) ||
1345 (LoadNode
->getExtensionType() == ISD::ZEXTLOAD
))) {
1347 if (isa
<Constant
>(LoadNode
->getMemOperand()->getValue()) ||
1348 isa
<ConstantSDNode
>(Ptr
)) {
1349 return constBufferLoad(LoadNode
, LoadNode
->getAddressSpace(), DAG
);
1351 // TODO: Does this even work?
1352 // non-constant ptr can't be folded, keeps it as a v4f32 load
1353 Result
= DAG
.getNode(AMDGPUISD::CONST_ADDRESS
, DL
, MVT::v4i32
,
1354 DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Ptr
,
1355 DAG
.getConstant(4, DL
, MVT::i32
)),
1356 DAG
.getConstant(LoadNode
->getAddressSpace() -
1357 AMDGPUAS::CONSTANT_BUFFER_0
,
1360 if (!VT
.isVector()) {
1361 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
, Result
,
1362 DAG
.getConstant(0, DL
, MVT::i32
));
1365 SDValue MergedValues
[2] = {
1369 return DAG
.getMergeValues(MergedValues
, DL
);
1372 // For most operations returning SDValue() will result in the node being
1373 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1374 // need to manually expand loads that may be legal in some address spaces and
1375 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1376 // compute shaders, since the data is sign extended when it is uploaded to the
1377 // buffer. However SEXT loads from other address spaces are not supported, so
1378 // we need to expand them here.
1379 if (LoadNode
->getExtensionType() == ISD::SEXTLOAD
) {
1380 assert(!MemVT
.isVector() && (MemVT
== MVT::i16
|| MemVT
== MVT::i8
));
1381 SDValue NewLoad
= DAG
.getExtLoad(
1382 ISD::EXTLOAD
, DL
, VT
, Chain
, Ptr
, LoadNode
->getPointerInfo(), MemVT
,
1383 LoadNode
->getAlign(), LoadNode
->getMemOperand()->getFlags());
1384 SDValue Res
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, NewLoad
,
1385 DAG
.getValueType(MemVT
));
1387 SDValue MergedValues
[2] = { Res
, Chain
};
1388 return DAG
.getMergeValues(MergedValues
, DL
);
1391 if (LoadNode
->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS
) {
1395 // DWORDADDR ISD marks already shifted address
1396 if (Ptr
.getOpcode() != AMDGPUISD::DWORDADDR
) {
1397 assert(VT
== MVT::i32
);
1398 Ptr
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Ptr
, DAG
.getConstant(2, DL
, MVT::i32
));
1399 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, MVT::i32
, Ptr
);
1400 return DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, LoadNode
->getMemOperand());
1405 SDValue
R600TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1406 SDValue Chain
= Op
.getOperand(0);
1407 SDValue Cond
= Op
.getOperand(1);
1408 SDValue Jump
= Op
.getOperand(2);
1410 return DAG
.getNode(AMDGPUISD::BRANCH_COND
, SDLoc(Op
), Op
.getValueType(),
1414 SDValue
R600TargetLowering::lowerFrameIndex(SDValue Op
,
1415 SelectionDAG
&DAG
) const {
1416 MachineFunction
&MF
= DAG
.getMachineFunction();
1417 const R600FrameLowering
*TFL
= Subtarget
->getFrameLowering();
1419 FrameIndexSDNode
*FIN
= cast
<FrameIndexSDNode
>(Op
);
1421 unsigned FrameIndex
= FIN
->getIndex();
1422 Register IgnoredFrameReg
;
1423 StackOffset Offset
=
1424 TFL
->getFrameIndexReference(MF
, FrameIndex
, IgnoredFrameReg
);
1425 return DAG
.getConstant(Offset
.getFixed() * 4 * TFL
->getStackWidth(MF
),
1426 SDLoc(Op
), Op
.getValueType());
1429 CCAssignFn
*R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1430 bool IsVarArg
) const {
1432 case CallingConv::AMDGPU_KERNEL
:
1433 case CallingConv::SPIR_KERNEL
:
1434 case CallingConv::C
:
1435 case CallingConv::Fast
:
1436 case CallingConv::Cold
:
1437 llvm_unreachable("kernels should not be handled here");
1438 case CallingConv::AMDGPU_VS
:
1439 case CallingConv::AMDGPU_GS
:
1440 case CallingConv::AMDGPU_PS
:
1441 case CallingConv::AMDGPU_CS
:
1442 case CallingConv::AMDGPU_HS
:
1443 case CallingConv::AMDGPU_ES
:
1444 case CallingConv::AMDGPU_LS
:
1447 report_fatal_error("Unsupported calling convention.");
1451 /// XXX Only kernel functions are supported, so we can assume for now that
1452 /// every function is a kernel function, but in the future we should use
1453 /// separate calling conventions for kernel and non-kernel functions.
1454 SDValue
R600TargetLowering::LowerFormalArguments(
1455 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1456 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
1457 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1458 SmallVector
<CCValAssign
, 16> ArgLocs
;
1459 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1461 MachineFunction
&MF
= DAG
.getMachineFunction();
1462 SmallVector
<ISD::InputArg
, 8> LocalIns
;
1464 if (AMDGPU::isShader(CallConv
)) {
1465 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
1467 analyzeFormalArgumentsCompute(CCInfo
, Ins
);
1470 for (unsigned i
= 0, e
= Ins
.size(); i
< e
; ++i
) {
1471 CCValAssign
&VA
= ArgLocs
[i
];
1472 const ISD::InputArg
&In
= Ins
[i
];
1474 EVT MemVT
= VA
.getLocVT();
1475 if (!VT
.isVector() && MemVT
.isVector()) {
1476 // Get load source type if scalarized.
1477 MemVT
= MemVT
.getVectorElementType();
1480 if (AMDGPU::isShader(CallConv
)) {
1481 Register Reg
= MF
.addLiveIn(VA
.getLocReg(), &R600::R600_Reg128RegClass
);
1482 SDValue Register
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, VT
);
1483 InVals
.push_back(Register
);
1487 // i64 isn't a legal type, so the register type used ends up as i32, which
1488 // isn't expected here. It attempts to create this sextload, but it ends up
1489 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1492 // The first 36 bytes of the input buffer contains information about
1493 // thread group and global sizes.
1494 ISD::LoadExtType Ext
= ISD::NON_EXTLOAD
;
1495 if (MemVT
.getScalarSizeInBits() != VT
.getScalarSizeInBits()) {
1496 // FIXME: This should really check the extload type, but the handling of
1497 // extload vector parameters seems to be broken.
1499 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1500 Ext
= ISD::SEXTLOAD
;
1503 // Compute the offset from the value.
1504 // XXX - I think PartOffset should give you this, but it seems to give the
1505 // size of the register which isn't useful.
1507 unsigned PartOffset
= VA
.getLocMemOffset();
1508 Align Alignment
= commonAlignment(Align(VT
.getStoreSize()), PartOffset
);
1510 MachinePointerInfo
PtrInfo(AMDGPUAS::PARAM_I_ADDRESS
);
1511 SDValue Arg
= DAG
.getLoad(
1512 ISD::UNINDEXED
, Ext
, VT
, DL
, Chain
,
1513 DAG
.getConstant(PartOffset
, DL
, MVT::i32
), DAG
.getUNDEF(MVT::i32
),
1515 MemVT
, Alignment
, MachineMemOperand::MONonTemporal
|
1516 MachineMemOperand::MODereferenceable
|
1517 MachineMemOperand::MOInvariant
);
1519 InVals
.push_back(Arg
);
1524 EVT
R600TargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1528 return VT
.changeVectorElementTypeToInteger();
1531 bool R600TargetLowering::canMergeStoresTo(unsigned AS
, EVT MemVT
,
1532 const MachineFunction
&MF
) const {
1533 // Local and Private addresses do not handle vectors. Limit to i32
1534 if ((AS
== AMDGPUAS::LOCAL_ADDRESS
|| AS
== AMDGPUAS::PRIVATE_ADDRESS
)) {
1535 return (MemVT
.getSizeInBits() <= 32);
1540 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1541 EVT VT
, unsigned AddrSpace
, Align Alignment
, MachineMemOperand::Flags Flags
,
1542 unsigned *IsFast
) const {
1546 if (!VT
.isSimple() || VT
== MVT::Other
)
1549 if (VT
.bitsLT(MVT::i32
))
1552 // TODO: This is a rough estimate.
1556 return VT
.bitsGT(MVT::i32
) && Alignment
>= Align(4);
1559 static SDValue
CompactSwizzlableVector(
1560 SelectionDAG
&DAG
, SDValue VectorEntry
,
1561 DenseMap
<unsigned, unsigned> &RemapSwizzle
) {
1562 assert(RemapSwizzle
.empty());
1564 SDLoc
DL(VectorEntry
);
1565 EVT EltTy
= VectorEntry
.getValueType().getVectorElementType();
1567 SDValue NewBldVec
[4];
1568 for (unsigned i
= 0; i
< 4; i
++)
1569 NewBldVec
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltTy
, VectorEntry
,
1570 DAG
.getIntPtrConstant(i
, DL
));
1572 for (unsigned i
= 0; i
< 4; i
++) {
1573 if (NewBldVec
[i
].isUndef())
1574 // We mask write here to teach later passes that the ith element of this
1575 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1576 // break false dependencies and additionally make assembly easier to read.
1577 RemapSwizzle
[i
] = 7; // SEL_MASK_WRITE
1578 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(NewBldVec
[i
])) {
1580 RemapSwizzle
[i
] = 4; // SEL_0
1581 NewBldVec
[i
] = DAG
.getUNDEF(MVT::f32
);
1582 } else if (C
->isExactlyValue(1.0)) {
1583 RemapSwizzle
[i
] = 5; // SEL_1
1584 NewBldVec
[i
] = DAG
.getUNDEF(MVT::f32
);
1588 if (NewBldVec
[i
].isUndef())
1591 for (unsigned j
= 0; j
< i
; j
++) {
1592 if (NewBldVec
[i
] == NewBldVec
[j
]) {
1593 NewBldVec
[i
] = DAG
.getUNDEF(NewBldVec
[i
].getValueType());
1594 RemapSwizzle
[i
] = j
;
1600 return DAG
.getBuildVector(VectorEntry
.getValueType(), SDLoc(VectorEntry
),
1604 static SDValue
ReorganizeVector(SelectionDAG
&DAG
, SDValue VectorEntry
,
1605 DenseMap
<unsigned, unsigned> &RemapSwizzle
) {
1606 assert(RemapSwizzle
.empty());
1608 SDLoc
DL(VectorEntry
);
1609 EVT EltTy
= VectorEntry
.getValueType().getVectorElementType();
1611 SDValue NewBldVec
[4];
1612 bool isUnmovable
[4] = {false, false, false, false};
1613 for (unsigned i
= 0; i
< 4; i
++)
1614 NewBldVec
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltTy
, VectorEntry
,
1615 DAG
.getIntPtrConstant(i
, DL
));
1617 for (unsigned i
= 0; i
< 4; i
++) {
1618 RemapSwizzle
[i
] = i
;
1619 if (NewBldVec
[i
].getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
1620 unsigned Idx
= NewBldVec
[i
].getConstantOperandVal(1);
1622 isUnmovable
[Idx
] = true;
1626 for (unsigned i
= 0; i
< 4; i
++) {
1627 if (NewBldVec
[i
].getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
1628 unsigned Idx
= NewBldVec
[i
].getConstantOperandVal(1);
1629 if (isUnmovable
[Idx
])
1632 std::swap(NewBldVec
[Idx
], NewBldVec
[i
]);
1633 std::swap(RemapSwizzle
[i
], RemapSwizzle
[Idx
]);
1638 return DAG
.getBuildVector(VectorEntry
.getValueType(), SDLoc(VectorEntry
),
1642 SDValue
R600TargetLowering::OptimizeSwizzle(SDValue BuildVector
, SDValue Swz
[],
1644 const SDLoc
&DL
) const {
1645 // Old -> New swizzle values
1646 DenseMap
<unsigned, unsigned> SwizzleRemap
;
1648 BuildVector
= CompactSwizzlableVector(DAG
, BuildVector
, SwizzleRemap
);
1649 for (unsigned i
= 0; i
< 4; i
++) {
1650 unsigned Idx
= Swz
[i
]->getAsZExtVal();
1651 if (SwizzleRemap
.contains(Idx
))
1652 Swz
[i
] = DAG
.getConstant(SwizzleRemap
[Idx
], DL
, MVT::i32
);
1655 SwizzleRemap
.clear();
1656 BuildVector
= ReorganizeVector(DAG
, BuildVector
, SwizzleRemap
);
1657 for (unsigned i
= 0; i
< 4; i
++) {
1658 unsigned Idx
= Swz
[i
]->getAsZExtVal();
1659 if (SwizzleRemap
.contains(Idx
))
1660 Swz
[i
] = DAG
.getConstant(SwizzleRemap
[Idx
], DL
, MVT::i32
);
1666 SDValue
R600TargetLowering::constBufferLoad(LoadSDNode
*LoadNode
, int Block
,
1667 SelectionDAG
&DAG
) const {
1669 EVT VT
= LoadNode
->getValueType(0);
1670 SDValue Chain
= LoadNode
->getChain();
1671 SDValue Ptr
= LoadNode
->getBasePtr();
1672 assert (isa
<ConstantSDNode
>(Ptr
));
1674 //TODO: Support smaller loads
1675 if (LoadNode
->getMemoryVT().getScalarType() != MVT::i32
|| !ISD::isNON_EXTLoad(LoadNode
))
1678 if (LoadNode
->getAlign() < Align(4))
1681 int ConstantBlock
= ConstantAddressBlock(Block
);
1684 for (unsigned i
= 0; i
< 4; i
++) {
1685 // We want Const position encoded with the following formula :
1686 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1687 // const_index is Ptr computed by llvm using an alignment of 16.
1688 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1689 // then div by 4 at the ISel step
1690 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
1691 DAG
.getConstant(4 * i
+ ConstantBlock
* 16, DL
, MVT::i32
));
1692 Slots
[i
] = DAG
.getNode(AMDGPUISD::CONST_ADDRESS
, DL
, MVT::i32
, NewPtr
);
1694 EVT NewVT
= MVT::v4i32
;
1695 unsigned NumElements
= 4;
1696 if (VT
.isVector()) {
1698 NumElements
= VT
.getVectorNumElements();
1700 SDValue Result
= DAG
.getBuildVector(NewVT
, DL
, ArrayRef(Slots
, NumElements
));
1701 if (!VT
.isVector()) {
1702 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
, Result
,
1703 DAG
.getConstant(0, DL
, MVT::i32
));
1705 SDValue MergedValues
[2] = {
1709 return DAG
.getMergeValues(MergedValues
, DL
);
1712 //===----------------------------------------------------------------------===//
1713 // Custom DAG Optimizations
1714 //===----------------------------------------------------------------------===//
1716 SDValue
R600TargetLowering::PerformDAGCombine(SDNode
*N
,
1717 DAGCombinerInfo
&DCI
) const {
1718 SelectionDAG
&DAG
= DCI
.DAG
;
1721 switch (N
->getOpcode()) {
1722 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1723 case ISD::FP_ROUND
: {
1724 SDValue Arg
= N
->getOperand(0);
1725 if (Arg
.getOpcode() == ISD::UINT_TO_FP
&& Arg
.getValueType() == MVT::f64
) {
1726 return DAG
.getNode(ISD::UINT_TO_FP
, DL
, N
->getValueType(0),
1732 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1733 // (i32 select_cc f32, f32, -1, 0 cc)
1735 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1736 // this to one of the SET*_DX10 instructions.
1737 case ISD::FP_TO_SINT
: {
1738 SDValue FNeg
= N
->getOperand(0);
1739 if (FNeg
.getOpcode() != ISD::FNEG
) {
1742 SDValue SelectCC
= FNeg
.getOperand(0);
1743 if (SelectCC
.getOpcode() != ISD::SELECT_CC
||
1744 SelectCC
.getOperand(0).getValueType() != MVT::f32
|| // LHS
1745 SelectCC
.getOperand(2).getValueType() != MVT::f32
|| // True
1746 !isHWTrueValue(SelectCC
.getOperand(2)) ||
1747 !isHWFalseValue(SelectCC
.getOperand(3))) {
1751 return DAG
.getNode(ISD::SELECT_CC
, DL
, N
->getValueType(0),
1752 SelectCC
.getOperand(0), // LHS
1753 SelectCC
.getOperand(1), // RHS
1754 DAG
.getConstant(-1, DL
, MVT::i32
), // True
1755 DAG
.getConstant(0, DL
, MVT::i32
), // False
1756 SelectCC
.getOperand(4)); // CC
1759 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1760 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1761 case ISD::INSERT_VECTOR_ELT
: {
1762 SDValue InVec
= N
->getOperand(0);
1763 SDValue InVal
= N
->getOperand(1);
1764 SDValue EltNo
= N
->getOperand(2);
1766 // If the inserted element is an UNDEF, just use the input vector.
1767 if (InVal
.isUndef())
1770 EVT VT
= InVec
.getValueType();
1772 // If we can't generate a legal BUILD_VECTOR, exit
1773 if (!isOperationLegal(ISD::BUILD_VECTOR
, VT
))
1776 // Check that we know which element is being inserted
1777 if (!isa
<ConstantSDNode
>(EltNo
))
1779 unsigned Elt
= EltNo
->getAsZExtVal();
1781 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1782 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1784 SmallVector
<SDValue
, 8> Ops
;
1785 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
) {
1786 Ops
.append(InVec
.getNode()->op_begin(),
1787 InVec
.getNode()->op_end());
1788 } else if (InVec
.isUndef()) {
1789 unsigned NElts
= VT
.getVectorNumElements();
1790 Ops
.append(NElts
, DAG
.getUNDEF(InVal
.getValueType()));
1795 // Insert the element
1796 if (Elt
< Ops
.size()) {
1797 // All the operands of BUILD_VECTOR must have the same type;
1798 // we enforce that here.
1799 EVT OpVT
= Ops
[0].getValueType();
1800 if (InVal
.getValueType() != OpVT
)
1801 InVal
= OpVT
.bitsGT(InVal
.getValueType()) ?
1802 DAG
.getNode(ISD::ANY_EXTEND
, DL
, OpVT
, InVal
) :
1803 DAG
.getNode(ISD::TRUNCATE
, DL
, OpVT
, InVal
);
1807 // Return the new vector
1808 return DAG
.getBuildVector(VT
, DL
, Ops
);
1811 // Extract_vec (Build_vector) generated by custom lowering
1812 // also needs to be customly combined
1813 case ISD::EXTRACT_VECTOR_ELT
: {
1814 SDValue Arg
= N
->getOperand(0);
1815 if (Arg
.getOpcode() == ISD::BUILD_VECTOR
) {
1816 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
1817 unsigned Element
= Const
->getZExtValue();
1818 return Arg
->getOperand(Element
);
1821 if (Arg
.getOpcode() == ISD::BITCAST
&&
1822 Arg
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
1823 (Arg
.getOperand(0).getValueType().getVectorNumElements() ==
1824 Arg
.getValueType().getVectorNumElements())) {
1825 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
1826 unsigned Element
= Const
->getZExtValue();
1827 return DAG
.getNode(ISD::BITCAST
, DL
, N
->getVTList(),
1828 Arg
->getOperand(0).getOperand(Element
));
1834 case ISD::SELECT_CC
: {
1835 // Try common optimizations
1836 if (SDValue Ret
= AMDGPUTargetLowering::PerformDAGCombine(N
, DCI
))
1839 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1840 // selectcc x, y, a, b, inv(cc)
1842 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1843 // selectcc x, y, a, b, cc
1844 SDValue LHS
= N
->getOperand(0);
1845 if (LHS
.getOpcode() != ISD::SELECT_CC
) {
1849 SDValue RHS
= N
->getOperand(1);
1850 SDValue True
= N
->getOperand(2);
1851 SDValue False
= N
->getOperand(3);
1852 ISD::CondCode NCC
= cast
<CondCodeSDNode
>(N
->getOperand(4))->get();
1854 if (LHS
.getOperand(2).getNode() != True
.getNode() ||
1855 LHS
.getOperand(3).getNode() != False
.getNode() ||
1856 RHS
.getNode() != False
.getNode()) {
1861 default: return SDValue();
1862 case ISD::SETNE
: return LHS
;
1864 ISD::CondCode LHSCC
= cast
<CondCodeSDNode
>(LHS
.getOperand(4))->get();
1865 LHSCC
= ISD::getSetCCInverse(LHSCC
, LHS
.getOperand(0).getValueType());
1866 if (DCI
.isBeforeLegalizeOps() ||
1867 isCondCodeLegal(LHSCC
, LHS
.getOperand(0).getSimpleValueType()))
1868 return DAG
.getSelectCC(DL
,
1880 case AMDGPUISD::R600_EXPORT
: {
1881 SDValue Arg
= N
->getOperand(1);
1882 if (Arg
.getOpcode() != ISD::BUILD_VECTOR
)
1885 SDValue NewArgs
[8] = {
1886 N
->getOperand(0), // Chain
1888 N
->getOperand(2), // ArrayBase
1889 N
->getOperand(3), // Type
1890 N
->getOperand(4), // SWZ_X
1891 N
->getOperand(5), // SWZ_Y
1892 N
->getOperand(6), // SWZ_Z
1893 N
->getOperand(7) // SWZ_W
1895 NewArgs
[1] = OptimizeSwizzle(N
->getOperand(1), &NewArgs
[4], DAG
, DL
);
1896 return DAG
.getNode(AMDGPUISD::R600_EXPORT
, DL
, N
->getVTList(), NewArgs
);
1898 case AMDGPUISD::TEXTURE_FETCH
: {
1899 SDValue Arg
= N
->getOperand(1);
1900 if (Arg
.getOpcode() != ISD::BUILD_VECTOR
)
1903 SDValue NewArgs
[19] = {
1924 NewArgs
[1] = OptimizeSwizzle(N
->getOperand(1), &NewArgs
[2], DAG
, DL
);
1925 return DAG
.getNode(AMDGPUISD::TEXTURE_FETCH
, DL
, N
->getVTList(), NewArgs
);
1929 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(N
);
1930 SDValue Ptr
= LoadNode
->getBasePtr();
1931 if (LoadNode
->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS
&&
1932 isa
<ConstantSDNode
>(Ptr
))
1933 return constBufferLoad(LoadNode
, AMDGPUAS::CONSTANT_BUFFER_0
, DAG
);
1940 return AMDGPUTargetLowering::PerformDAGCombine(N
, DCI
);
1943 bool R600TargetLowering::FoldOperand(SDNode
*ParentNode
, unsigned SrcIdx
,
1944 SDValue
&Src
, SDValue
&Neg
, SDValue
&Abs
,
1945 SDValue
&Sel
, SDValue
&Imm
,
1946 SelectionDAG
&DAG
) const {
1947 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
1948 if (!Src
.isMachineOpcode())
1951 switch (Src
.getMachineOpcode()) {
1952 case R600::FNEG_R600
:
1955 Src
= Src
.getOperand(0);
1956 Neg
= DAG
.getTargetConstant(1, SDLoc(ParentNode
), MVT::i32
);
1958 case R600::FABS_R600
:
1961 Src
= Src
.getOperand(0);
1962 Abs
= DAG
.getTargetConstant(1, SDLoc(ParentNode
), MVT::i32
);
1964 case R600::CONST_COPY
: {
1965 unsigned Opcode
= ParentNode
->getMachineOpcode();
1966 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
1971 SDValue CstOffset
= Src
.getOperand(0);
1972 if (ParentNode
->getValueType(0).isVector())
1975 // Gather constants values
1976 int SrcIndices
[] = {
1977 TII
->getOperandIdx(Opcode
, R600::OpName::src0
),
1978 TII
->getOperandIdx(Opcode
, R600::OpName::src1
),
1979 TII
->getOperandIdx(Opcode
, R600::OpName::src2
),
1980 TII
->getOperandIdx(Opcode
, R600::OpName::src0_X
),
1981 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Y
),
1982 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Z
),
1983 TII
->getOperandIdx(Opcode
, R600::OpName::src0_W
),
1984 TII
->getOperandIdx(Opcode
, R600::OpName::src1_X
),
1985 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Y
),
1986 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Z
),
1987 TII
->getOperandIdx(Opcode
, R600::OpName::src1_W
)
1989 std::vector
<unsigned> Consts
;
1990 for (int OtherSrcIdx
: SrcIndices
) {
1991 int OtherSelIdx
= TII
->getSelIdx(Opcode
, OtherSrcIdx
);
1992 if (OtherSrcIdx
< 0 || OtherSelIdx
< 0)
1998 if (RegisterSDNode
*Reg
=
1999 dyn_cast
<RegisterSDNode
>(ParentNode
->getOperand(OtherSrcIdx
))) {
2000 if (Reg
->getReg() == R600::ALU_CONST
) {
2001 Consts
.push_back(ParentNode
->getConstantOperandVal(OtherSelIdx
));
2006 ConstantSDNode
*Cst
= cast
<ConstantSDNode
>(CstOffset
);
2007 Consts
.push_back(Cst
->getZExtValue());
2008 if (!TII
->fitsConstReadLimitations(Consts
)) {
2013 Src
= DAG
.getRegister(R600::ALU_CONST
, MVT::f32
);
2016 case R600::MOV_IMM_GLOBAL_ADDR
:
2017 // Check if the Imm slot is used. Taken from below.
2018 if (Imm
->getAsZExtVal())
2020 Imm
= Src
.getOperand(0);
2021 Src
= DAG
.getRegister(R600::ALU_LITERAL_X
, MVT::i32
);
2023 case R600::MOV_IMM_I32
:
2024 case R600::MOV_IMM_F32
: {
2025 unsigned ImmReg
= R600::ALU_LITERAL_X
;
2026 uint64_t ImmValue
= 0;
2028 if (Src
.getMachineOpcode() == R600::MOV_IMM_F32
) {
2029 ConstantFPSDNode
*FPC
= cast
<ConstantFPSDNode
>(Src
.getOperand(0));
2030 float FloatValue
= FPC
->getValueAPF().convertToFloat();
2031 if (FloatValue
== 0.0) {
2032 ImmReg
= R600::ZERO
;
2033 } else if (FloatValue
== 0.5) {
2034 ImmReg
= R600::HALF
;
2035 } else if (FloatValue
== 1.0) {
2038 ImmValue
= FPC
->getValueAPF().bitcastToAPInt().getZExtValue();
2041 uint64_t Value
= Src
.getConstantOperandVal(0);
2043 ImmReg
= R600::ZERO
;
2044 } else if (Value
== 1) {
2045 ImmReg
= R600::ONE_INT
;
2051 // Check that we aren't already using an immediate.
2052 // XXX: It's possible for an instruction to have more than one
2053 // immediate operand, but this is not supported yet.
2054 if (ImmReg
== R600::ALU_LITERAL_X
) {
2057 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Imm
);
2058 if (C
->getZExtValue())
2060 Imm
= DAG
.getTargetConstant(ImmValue
, SDLoc(ParentNode
), MVT::i32
);
2062 Src
= DAG
.getRegister(ImmReg
, MVT::i32
);
2070 /// Fold the instructions after selecting them
2071 SDNode
*R600TargetLowering::PostISelFolding(MachineSDNode
*Node
,
2072 SelectionDAG
&DAG
) const {
2073 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
2074 if (!Node
->isMachineOpcode())
2077 unsigned Opcode
= Node
->getMachineOpcode();
2080 std::vector
<SDValue
> Ops(Node
->op_begin(), Node
->op_end());
2082 if (Opcode
== R600::DOT_4
) {
2083 int OperandIdx
[] = {
2084 TII
->getOperandIdx(Opcode
, R600::OpName::src0_X
),
2085 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Y
),
2086 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Z
),
2087 TII
->getOperandIdx(Opcode
, R600::OpName::src0_W
),
2088 TII
->getOperandIdx(Opcode
, R600::OpName::src1_X
),
2089 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Y
),
2090 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Z
),
2091 TII
->getOperandIdx(Opcode
, R600::OpName::src1_W
)
2094 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_X
),
2095 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_Y
),
2096 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_Z
),
2097 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_W
),
2098 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_X
),
2099 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_Y
),
2100 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_Z
),
2101 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_W
)
2104 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_X
),
2105 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_Y
),
2106 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_Z
),
2107 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_W
),
2108 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_X
),
2109 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_Y
),
2110 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_Z
),
2111 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_W
)
2113 for (unsigned i
= 0; i
< 8; i
++) {
2114 if (OperandIdx
[i
] < 0)
2116 SDValue
&Src
= Ops
[OperandIdx
[i
] - 1];
2117 SDValue
&Neg
= Ops
[NegIdx
[i
] - 1];
2118 SDValue
&Abs
= Ops
[AbsIdx
[i
] - 1];
2119 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
2120 int SelIdx
= TII
->getSelIdx(Opcode
, OperandIdx
[i
]);
2123 SDValue
&Sel
= (SelIdx
> -1) ? Ops
[SelIdx
] : FakeOp
;
2124 if (FoldOperand(Node
, i
, Src
, Neg
, Abs
, Sel
, FakeOp
, DAG
))
2125 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);
2127 } else if (Opcode
== R600::REG_SEQUENCE
) {
2128 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
< e
; i
+= 2) {
2129 SDValue
&Src
= Ops
[i
];
2130 if (FoldOperand(Node
, i
, Src
, FakeOp
, FakeOp
, FakeOp
, FakeOp
, DAG
))
2131 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);
2134 if (!TII
->hasInstrModifiers(Opcode
))
2136 int OperandIdx
[] = {
2137 TII
->getOperandIdx(Opcode
, R600::OpName::src0
),
2138 TII
->getOperandIdx(Opcode
, R600::OpName::src1
),
2139 TII
->getOperandIdx(Opcode
, R600::OpName::src2
)
2142 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg
),
2143 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg
),
2144 TII
->getOperandIdx(Opcode
, R600::OpName::src2_neg
)
2147 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs
),
2148 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs
),
2151 for (unsigned i
= 0; i
< 3; i
++) {
2152 if (OperandIdx
[i
] < 0)
2154 SDValue
&Src
= Ops
[OperandIdx
[i
] - 1];
2155 SDValue
&Neg
= Ops
[NegIdx
[i
] - 1];
2157 SDValue
&Abs
= (AbsIdx
[i
] > -1) ? Ops
[AbsIdx
[i
] - 1] : FakeAbs
;
2158 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
2159 int SelIdx
= TII
->getSelIdx(Opcode
, OperandIdx
[i
]);
2160 int ImmIdx
= TII
->getOperandIdx(Opcode
, R600::OpName::literal
);
2165 SDValue
&Sel
= (SelIdx
> -1) ? Ops
[SelIdx
] : FakeOp
;
2166 SDValue
&Imm
= Ops
[ImmIdx
];
2167 if (FoldOperand(Node
, i
, Src
, Neg
, Abs
, Sel
, Imm
, DAG
))
2168 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);
2175 TargetLowering::AtomicExpansionKind
2176 R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
2177 switch (RMW
->getOperation()) {
2178 case AtomicRMWInst::UIncWrap
:
2179 case AtomicRMWInst::UDecWrap
:
2180 // FIXME: Cayman at least appears to have instructions for this, but the
2181 // instruction defintions appear to be missing.
2182 return AtomicExpansionKind::CmpXChg
;
2187 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW
);