Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / AMDGPU / R600ISelLowering.cpp
blob7e0d96622f3c5dabe96b89069158565599134fb4
1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
12 //===----------------------------------------------------------------------===//
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "R600TargetMachine.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
26 using namespace llvm;
28 #include "R600GenCallingConv.inc"
30 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
31 const R600Subtarget &STI)
32 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
33 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
34 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
35 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
36 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
37 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
38 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
40 setBooleanContents(ZeroOrNegativeOneBooleanContent);
41 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
43 computeRegisterProperties(Subtarget->getRegisterInfo());
45 // Legalize loads and stores to the private address space.
46 setOperationAction(ISD::LOAD, {MVT::i32, MVT::v2i32, MVT::v4i32}, Custom);
48 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49 // spaces, so it is custom lowered to handle those where it isn't.
50 for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD})
51 for (MVT VT : MVT::integer_valuetypes()) {
52 setLoadExtAction(Op, VT, MVT::i1, Promote);
53 setLoadExtAction(Op, VT, MVT::i8, Custom);
54 setLoadExtAction(Op, VT, MVT::i16, Custom);
57 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
58 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i32,
59 MVT::v2i1, Expand);
61 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v4i32,
62 MVT::v4i1, Expand);
64 setOperationAction(ISD::STORE, {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32},
65 Custom);
67 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
68 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
69 // We need to include these since trunc STORES to PRIVATE need
70 // special handling to accommodate RMW
71 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
72 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
73 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
74 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
75 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
76 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
77 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
78 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
79 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
80 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
82 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
83 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
84 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
86 // Set condition code actions
87 setCondCodeAction({ISD::SETO, ISD::SETUO, ISD::SETLT, ISD::SETLE, ISD::SETOLT,
88 ISD::SETOLE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGE,
89 ISD::SETUGT, ISD::SETULT, ISD::SETULE},
90 MVT::f32, Expand);
92 setCondCodeAction({ISD::SETLE, ISD::SETLT, ISD::SETULE, ISD::SETULT},
93 MVT::i32, Expand);
95 setOperationAction({ISD::FCOS, ISD::FSIN}, MVT::f32, Custom);
97 setOperationAction(ISD::SETCC, {MVT::v4i32, MVT::v2i32}, Expand);
99 setOperationAction(ISD::BR_CC, {MVT::i32, MVT::f32}, Expand);
100 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
102 setOperationAction(ISD::FSUB, MVT::f32, Expand);
104 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
105 MVT::f64, Custom);
107 setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32}, Custom);
109 setOperationAction(ISD::SETCC, {MVT::i32, MVT::f32}, Expand);
110 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT}, {MVT::i1, MVT::i64},
111 Custom);
113 setOperationAction(ISD::SELECT, {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32},
114 Expand);
116 // ADD, SUB overflow.
117 // TODO: turn these into Legal?
118 if (Subtarget->hasCARRY())
119 setOperationAction(ISD::UADDO, MVT::i32, Custom);
121 if (Subtarget->hasBORROW())
122 setOperationAction(ISD::USUBO, MVT::i32, Custom);
124 // Expand sign extension of vectors
125 if (!Subtarget->hasBFE())
126 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
128 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1}, Expand);
130 if (!Subtarget->hasBFE())
131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i8, MVT::v4i8}, Expand);
134 if (!Subtarget->hasBFE())
135 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v4i16}, Expand);
138 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
139 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i32, MVT::v4i32}, Expand);
141 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
143 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
145 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
146 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
148 setOperationAction(ISD::INSERT_VECTOR_ELT,
149 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
151 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
152 // to be Legal/Custom in order to avoid library calls.
153 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, MVT::i32,
154 Custom);
156 if (!Subtarget->hasFMA())
157 setOperationAction(ISD::FMA, {MVT::f32, MVT::f64}, Expand);
159 // FIXME: May need no denormals check
160 setOperationAction(ISD::FMAD, MVT::f32, Legal);
162 if (!Subtarget->hasBFI())
163 // fcopysign can be done in a single instruction with BFI.
164 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
166 if (!Subtarget->hasBCNT(32))
167 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
169 if (!Subtarget->hasBCNT(64))
170 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
172 if (Subtarget->hasFFBH())
173 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
175 if (Subtarget->hasFFBL())
176 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
178 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
179 // need it for R600.
180 if (Subtarget->hasBFE())
181 setHasExtractBitsInsn(true);
183 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
184 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
186 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
187 for (MVT VT : ScalarIntVTs)
188 setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT,
189 Expand);
191 // LLVM will expand these to atomic_cmp_swap(0)
192 // and atomic_swap, respectively.
193 setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Expand);
195 // We need to custom lower some of the intrinsics
196 setOperationAction({ISD::INTRINSIC_VOID, ISD::INTRINSIC_WO_CHAIN}, MVT::Other,
197 Custom);
199 setSchedulingPreference(Sched::Source);
201 setTargetDAGCombine({ISD::FP_ROUND, ISD::FP_TO_SINT, ISD::EXTRACT_VECTOR_ELT,
202 ISD::SELECT_CC, ISD::INSERT_VECTOR_ELT, ISD::LOAD});
205 static inline bool isEOP(MachineBasicBlock::iterator I) {
206 if (std::next(I) == I->getParent()->end())
207 return false;
208 return std::next(I)->getOpcode() == R600::RETURN;
211 MachineBasicBlock *
212 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
213 MachineBasicBlock *BB) const {
214 MachineFunction *MF = BB->getParent();
215 MachineRegisterInfo &MRI = MF->getRegInfo();
216 MachineBasicBlock::iterator I = MI;
217 const R600InstrInfo *TII = Subtarget->getInstrInfo();
219 switch (MI.getOpcode()) {
220 default:
221 // Replace LDS_*_RET instruction that don't have any uses with the
222 // equivalent LDS_*_NORET instruction.
223 if (TII->isLDSRetInstr(MI.getOpcode())) {
224 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
225 assert(DstIdx != -1);
226 MachineInstrBuilder NewMI;
227 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
228 // LDS_1A2D support and remove this special case.
229 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
230 MI.getOpcode() == R600::LDS_CMPST_RET)
231 return BB;
233 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
234 TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
235 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
236 NewMI.add(MO);
237 } else {
238 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
240 break;
242 case R600::FABS_R600: {
243 MachineInstr *NewMI = TII->buildDefaultInstruction(
244 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
245 MI.getOperand(1).getReg());
246 TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
247 break;
250 case R600::FNEG_R600: {
251 MachineInstr *NewMI = TII->buildDefaultInstruction(
252 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
253 MI.getOperand(1).getReg());
254 TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
255 break;
258 case R600::MASK_WRITE: {
259 Register maskedRegister = MI.getOperand(0).getReg();
260 assert(maskedRegister.isVirtual());
261 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
262 TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
263 break;
266 case R600::MOV_IMM_F32:
267 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
268 .getFPImm()
269 ->getValueAPF()
270 .bitcastToAPInt()
271 .getZExtValue());
272 break;
274 case R600::MOV_IMM_I32:
275 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
276 MI.getOperand(1).getImm());
277 break;
279 case R600::MOV_IMM_GLOBAL_ADDR: {
280 //TODO: Perhaps combine this instruction with the next if possible
281 auto MIB = TII->buildDefaultInstruction(
282 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
283 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
284 //TODO: Ugh this is rather ugly
285 const MachineOperand &MO = MI.getOperand(1);
286 MIB->getOperand(Idx).ChangeToGA(MO.getGlobal(), MO.getOffset(),
287 MO.getTargetFlags());
288 break;
291 case R600::CONST_COPY: {
292 MachineInstr *NewMI = TII->buildDefaultInstruction(
293 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
294 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
295 MI.getOperand(1).getImm());
296 break;
299 case R600::RAT_WRITE_CACHELESS_32_eg:
300 case R600::RAT_WRITE_CACHELESS_64_eg:
301 case R600::RAT_WRITE_CACHELESS_128_eg:
302 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
303 .add(MI.getOperand(0))
304 .add(MI.getOperand(1))
305 .addImm(isEOP(I)); // Set End of program bit
306 break;
308 case R600::RAT_STORE_TYPED_eg:
309 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
310 .add(MI.getOperand(0))
311 .add(MI.getOperand(1))
312 .add(MI.getOperand(2))
313 .addImm(isEOP(I)); // Set End of program bit
314 break;
316 case R600::BRANCH:
317 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
318 .add(MI.getOperand(0));
319 break;
321 case R600::BRANCH_COND_f32: {
322 MachineInstr *NewMI =
323 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
324 R600::PREDICATE_BIT)
325 .add(MI.getOperand(1))
326 .addImm(R600::PRED_SETNE)
327 .addImm(0); // Flags
328 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
329 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
330 .add(MI.getOperand(0))
331 .addReg(R600::PREDICATE_BIT, RegState::Kill);
332 break;
335 case R600::BRANCH_COND_i32: {
336 MachineInstr *NewMI =
337 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
338 R600::PREDICATE_BIT)
339 .add(MI.getOperand(1))
340 .addImm(R600::PRED_SETNE_INT)
341 .addImm(0); // Flags
342 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
343 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
344 .add(MI.getOperand(0))
345 .addReg(R600::PREDICATE_BIT, RegState::Kill);
346 break;
349 case R600::EG_ExportSwz:
350 case R600::R600_ExportSwz: {
351 // Instruction is left unmodified if its not the last one of its type
352 bool isLastInstructionOfItsType = true;
353 unsigned InstExportType = MI.getOperand(1).getImm();
354 for (MachineBasicBlock::iterator NextExportInst = std::next(I),
355 EndBlock = BB->end(); NextExportInst != EndBlock;
356 NextExportInst = std::next(NextExportInst)) {
357 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
358 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
359 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
360 .getImm();
361 if (CurrentInstExportType == InstExportType) {
362 isLastInstructionOfItsType = false;
363 break;
367 bool EOP = isEOP(I);
368 if (!EOP && !isLastInstructionOfItsType)
369 return BB;
370 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
371 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
372 .add(MI.getOperand(0))
373 .add(MI.getOperand(1))
374 .add(MI.getOperand(2))
375 .add(MI.getOperand(3))
376 .add(MI.getOperand(4))
377 .add(MI.getOperand(5))
378 .add(MI.getOperand(6))
379 .addImm(CfInst)
380 .addImm(EOP);
381 break;
383 case R600::RETURN: {
384 return BB;
388 MI.eraseFromParent();
389 return BB;
392 //===----------------------------------------------------------------------===//
393 // Custom DAG Lowering Operations
394 //===----------------------------------------------------------------------===//
396 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
397 MachineFunction &MF = DAG.getMachineFunction();
398 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
399 switch (Op.getOpcode()) {
400 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
401 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
402 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
403 case ISD::SHL_PARTS:
404 case ISD::SRA_PARTS:
405 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
406 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
407 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
408 case ISD::FCOS:
409 case ISD::FSIN: return LowerTrig(Op, DAG);
410 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
411 case ISD::STORE: return LowerSTORE(Op, DAG);
412 case ISD::LOAD: {
413 SDValue Result = LowerLOAD(Op, DAG);
414 assert((!Result.getNode() ||
415 Result.getNode()->getNumValues() == 2) &&
416 "Load should return a value and a chain");
417 return Result;
420 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
421 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
422 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
423 case ISD::ADDRSPACECAST:
424 return lowerADDRSPACECAST(Op, DAG);
425 case ISD::INTRINSIC_VOID: {
426 SDValue Chain = Op.getOperand(0);
427 unsigned IntrinsicID = Op.getConstantOperandVal(1);
428 switch (IntrinsicID) {
429 case Intrinsic::r600_store_swizzle: {
430 SDLoc DL(Op);
431 const SDValue Args[8] = {
432 Chain,
433 Op.getOperand(2), // Export Value
434 Op.getOperand(3), // ArrayBase
435 Op.getOperand(4), // Type
436 DAG.getConstant(0, DL, MVT::i32), // SWZ_X
437 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
438 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
439 DAG.getConstant(3, DL, MVT::i32) // SWZ_W
441 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
444 // default for switch(IntrinsicID)
445 default: break;
447 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
448 break;
450 case ISD::INTRINSIC_WO_CHAIN: {
451 unsigned IntrinsicID = Op.getConstantOperandVal(0);
452 EVT VT = Op.getValueType();
453 SDLoc DL(Op);
454 switch (IntrinsicID) {
455 case Intrinsic::r600_tex:
456 case Intrinsic::r600_texc: {
457 unsigned TextureOp;
458 switch (IntrinsicID) {
459 case Intrinsic::r600_tex:
460 TextureOp = 0;
461 break;
462 case Intrinsic::r600_texc:
463 TextureOp = 1;
464 break;
465 default:
466 llvm_unreachable("unhandled texture operation");
469 SDValue TexArgs[19] = {
470 DAG.getConstant(TextureOp, DL, MVT::i32),
471 Op.getOperand(1),
472 DAG.getConstant(0, DL, MVT::i32),
473 DAG.getConstant(1, DL, MVT::i32),
474 DAG.getConstant(2, DL, MVT::i32),
475 DAG.getConstant(3, DL, MVT::i32),
476 Op.getOperand(2),
477 Op.getOperand(3),
478 Op.getOperand(4),
479 DAG.getConstant(0, DL, MVT::i32),
480 DAG.getConstant(1, DL, MVT::i32),
481 DAG.getConstant(2, DL, MVT::i32),
482 DAG.getConstant(3, DL, MVT::i32),
483 Op.getOperand(5),
484 Op.getOperand(6),
485 Op.getOperand(7),
486 Op.getOperand(8),
487 Op.getOperand(9),
488 Op.getOperand(10)
490 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
492 case Intrinsic::r600_dot4: {
493 SDValue Args[8] = {
494 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
495 DAG.getConstant(0, DL, MVT::i32)),
496 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
497 DAG.getConstant(0, DL, MVT::i32)),
498 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
499 DAG.getConstant(1, DL, MVT::i32)),
500 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
501 DAG.getConstant(1, DL, MVT::i32)),
502 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
503 DAG.getConstant(2, DL, MVT::i32)),
504 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
505 DAG.getConstant(2, DL, MVT::i32)),
506 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
507 DAG.getConstant(3, DL, MVT::i32)),
508 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
509 DAG.getConstant(3, DL, MVT::i32))
511 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
514 case Intrinsic::r600_implicitarg_ptr: {
515 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
516 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
517 return DAG.getConstant(ByteOffset, DL, PtrVT);
519 case Intrinsic::r600_read_ngroups_x:
520 return LowerImplicitParameter(DAG, VT, DL, 0);
521 case Intrinsic::r600_read_ngroups_y:
522 return LowerImplicitParameter(DAG, VT, DL, 1);
523 case Intrinsic::r600_read_ngroups_z:
524 return LowerImplicitParameter(DAG, VT, DL, 2);
525 case Intrinsic::r600_read_global_size_x:
526 return LowerImplicitParameter(DAG, VT, DL, 3);
527 case Intrinsic::r600_read_global_size_y:
528 return LowerImplicitParameter(DAG, VT, DL, 4);
529 case Intrinsic::r600_read_global_size_z:
530 return LowerImplicitParameter(DAG, VT, DL, 5);
531 case Intrinsic::r600_read_local_size_x:
532 return LowerImplicitParameter(DAG, VT, DL, 6);
533 case Intrinsic::r600_read_local_size_y:
534 return LowerImplicitParameter(DAG, VT, DL, 7);
535 case Intrinsic::r600_read_local_size_z:
536 return LowerImplicitParameter(DAG, VT, DL, 8);
538 case Intrinsic::r600_read_tgid_x:
539 case Intrinsic::amdgcn_workgroup_id_x:
540 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
541 R600::T1_X, VT);
542 case Intrinsic::r600_read_tgid_y:
543 case Intrinsic::amdgcn_workgroup_id_y:
544 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
545 R600::T1_Y, VT);
546 case Intrinsic::r600_read_tgid_z:
547 case Intrinsic::amdgcn_workgroup_id_z:
548 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
549 R600::T1_Z, VT);
550 case Intrinsic::r600_read_tidig_x:
551 case Intrinsic::amdgcn_workitem_id_x:
552 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
553 R600::T0_X, VT);
554 case Intrinsic::r600_read_tidig_y:
555 case Intrinsic::amdgcn_workitem_id_y:
556 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
557 R600::T0_Y, VT);
558 case Intrinsic::r600_read_tidig_z:
559 case Intrinsic::amdgcn_workitem_id_z:
560 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
561 R600::T0_Z, VT);
563 case Intrinsic::r600_recipsqrt_ieee:
564 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
566 case Intrinsic::r600_recipsqrt_clamped:
567 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
568 default:
569 return Op;
572 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
573 break;
575 } // end switch(Op.getOpcode())
576 return SDValue();
579 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
580 SmallVectorImpl<SDValue> &Results,
581 SelectionDAG &DAG) const {
582 switch (N->getOpcode()) {
583 default:
584 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
585 return;
586 case ISD::FP_TO_UINT:
587 if (N->getValueType(0) == MVT::i1) {
588 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
589 return;
591 // Since we don't care about out of bounds values we can use FP_TO_SINT for
592 // uints too. The DAGLegalizer code for uint considers some extra cases
593 // which are not necessary here.
594 [[fallthrough]];
595 case ISD::FP_TO_SINT: {
596 if (N->getValueType(0) == MVT::i1) {
597 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
598 return;
601 SDValue Result;
602 if (expandFP_TO_SINT(N, Result, DAG))
603 Results.push_back(Result);
604 return;
606 case ISD::SDIVREM: {
607 SDValue Op = SDValue(N, 1);
608 SDValue RES = LowerSDIVREM(Op, DAG);
609 Results.push_back(RES);
610 Results.push_back(RES.getValue(1));
611 break;
613 case ISD::UDIVREM: {
614 SDValue Op = SDValue(N, 0);
615 LowerUDIVREM64(Op, DAG, Results);
616 break;
621 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
622 SDValue Vector) const {
623 SDLoc DL(Vector);
624 EVT VecVT = Vector.getValueType();
625 EVT EltVT = VecVT.getVectorElementType();
626 SmallVector<SDValue, 8> Args;
628 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
629 Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
630 DAG.getVectorIdxConstant(i, DL)));
633 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
636 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
637 SelectionDAG &DAG) const {
638 SDLoc DL(Op);
639 SDValue Vector = Op.getOperand(0);
640 SDValue Index = Op.getOperand(1);
642 if (isa<ConstantSDNode>(Index) ||
643 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
644 return Op;
646 Vector = vectorToVerticalVector(DAG, Vector);
647 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
648 Vector, Index);
651 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
652 SelectionDAG &DAG) const {
653 SDLoc DL(Op);
654 SDValue Vector = Op.getOperand(0);
655 SDValue Value = Op.getOperand(1);
656 SDValue Index = Op.getOperand(2);
658 if (isa<ConstantSDNode>(Index) ||
659 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
660 return Op;
662 Vector = vectorToVerticalVector(DAG, Vector);
663 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
664 Vector, Value, Index);
665 return vectorToVerticalVector(DAG, Insert);
668 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
669 SDValue Op,
670 SelectionDAG &DAG) const {
671 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
672 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
673 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
675 const DataLayout &DL = DAG.getDataLayout();
676 const GlobalValue *GV = GSD->getGlobal();
677 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
679 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
680 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
683 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
684 // On hw >= R700, COS/SIN input must be between -1. and 1.
685 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
686 EVT VT = Op.getValueType();
687 SDValue Arg = Op.getOperand(0);
688 SDLoc DL(Op);
690 // TODO: Should this propagate fast-math-flags?
691 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
692 DAG.getNode(ISD::FADD, DL, VT,
693 DAG.getNode(ISD::FMUL, DL, VT, Arg,
694 DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
695 DAG.getConstantFP(0.5, DL, MVT::f32)));
696 unsigned TrigNode;
697 switch (Op.getOpcode()) {
698 case ISD::FCOS:
699 TrigNode = AMDGPUISD::COS_HW;
700 break;
701 case ISD::FSIN:
702 TrigNode = AMDGPUISD::SIN_HW;
703 break;
704 default:
705 llvm_unreachable("Wrong trig opcode");
707 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
708 DAG.getNode(ISD::FADD, DL, VT, FractPart,
709 DAG.getConstantFP(-0.5, DL, MVT::f32)));
710 if (Gen >= AMDGPUSubtarget::R700)
711 return TrigVal;
712 // On R600 hw, COS/SIN input must be between -Pi and Pi.
713 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
714 DAG.getConstantFP(numbers::pif, DL, MVT::f32));
717 SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
718 SelectionDAG &DAG) const {
719 SDValue Lo, Hi;
720 expandShiftParts(Op.getNode(), Lo, Hi, DAG);
721 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
724 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
725 unsigned mainop, unsigned ovf) const {
726 SDLoc DL(Op);
727 EVT VT = Op.getValueType();
729 SDValue Lo = Op.getOperand(0);
730 SDValue Hi = Op.getOperand(1);
732 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
733 // Extend sign.
734 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
735 DAG.getValueType(MVT::i1));
737 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
739 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
742 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
743 SDLoc DL(Op);
744 return DAG.getNode(
745 ISD::SETCC,
747 MVT::i1,
748 Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
749 DAG.getCondCode(ISD::SETEQ));
752 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
753 SDLoc DL(Op);
754 return DAG.getNode(
755 ISD::SETCC,
757 MVT::i1,
758 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
759 DAG.getCondCode(ISD::SETEQ));
762 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
763 const SDLoc &DL,
764 unsigned DwordOffset) const {
765 unsigned ByteOffset = DwordOffset * 4;
766 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
767 AMDGPUAS::PARAM_I_ADDRESS);
769 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
770 assert(isInt<16>(ByteOffset));
772 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
773 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
774 MachinePointerInfo(ConstantPointerNull::get(PtrType)));
777 bool R600TargetLowering::isZero(SDValue Op) const {
778 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op))
779 return Cst->isZero();
780 if (ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op))
781 return CstFP->isZero();
782 return false;
785 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
786 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
787 return CFP->isExactlyValue(1.0);
789 return isAllOnesConstant(Op);
792 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
793 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
794 return CFP->getValueAPF().isZero();
796 return isNullConstant(Op);
799 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
800 SDLoc DL(Op);
801 EVT VT = Op.getValueType();
803 SDValue LHS = Op.getOperand(0);
804 SDValue RHS = Op.getOperand(1);
805 SDValue True = Op.getOperand(2);
806 SDValue False = Op.getOperand(3);
807 SDValue CC = Op.getOperand(4);
808 SDValue Temp;
810 if (VT == MVT::f32) {
811 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
812 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
813 if (MinMax)
814 return MinMax;
817 // LHS and RHS are guaranteed to be the same value type
818 EVT CompareVT = LHS.getValueType();
820 // Check if we can lower this to a native operation.
822 // Try to lower to a SET* instruction:
824 // SET* can match the following patterns:
826 // select_cc f32, f32, -1, 0, cc_supported
827 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
828 // select_cc i32, i32, -1, 0, cc_supported
831 // Move hardware True/False values to the correct operand.
832 if (isHWTrueValue(False) && isHWFalseValue(True)) {
833 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
834 ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
835 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
836 std::swap(False, True);
837 CC = DAG.getCondCode(InverseCC);
838 } else {
839 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
840 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
841 std::swap(False, True);
842 std::swap(LHS, RHS);
843 CC = DAG.getCondCode(SwapInvCC);
848 if (isHWTrueValue(True) && isHWFalseValue(False) &&
849 (CompareVT == VT || VT == MVT::i32)) {
850 // This can be matched by a SET* instruction.
851 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
854 // Try to lower to a CND* instruction:
856 // CND* can match the following patterns:
858 // select_cc f32, 0.0, f32, f32, cc_supported
859 // select_cc f32, 0.0, i32, i32, cc_supported
860 // select_cc i32, 0, f32, f32, cc_supported
861 // select_cc i32, 0, i32, i32, cc_supported
864 // Try to move the zero value to the RHS
865 if (isZero(LHS)) {
866 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
867 // Try swapping the operands
868 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
869 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
870 std::swap(LHS, RHS);
871 CC = DAG.getCondCode(CCSwapped);
872 } else {
873 // Try inverting the condition and then swapping the operands
874 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
875 CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
876 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
877 std::swap(True, False);
878 std::swap(LHS, RHS);
879 CC = DAG.getCondCode(CCSwapped);
883 if (isZero(RHS)) {
884 SDValue Cond = LHS;
885 SDValue Zero = RHS;
886 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
887 if (CompareVT != VT) {
888 // Bitcast True / False to the correct types. This will end up being
889 // a nop, but it allows us to define only a single pattern in the
890 // .TD files for each CND* instruction rather than having to have
891 // one pattern for integer True/False and one for fp True/False
892 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
893 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
896 switch (CCOpcode) {
897 case ISD::SETONE:
898 case ISD::SETUNE:
899 case ISD::SETNE:
900 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
901 Temp = True;
902 True = False;
903 False = Temp;
904 break;
905 default:
906 break;
908 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
909 Cond, Zero,
910 True, False,
911 DAG.getCondCode(CCOpcode));
912 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
915 // If we make it this for it means we have no native instructions to handle
916 // this SELECT_CC, so we must lower it.
917 SDValue HWTrue, HWFalse;
919 if (CompareVT == MVT::f32) {
920 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
921 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
922 } else if (CompareVT == MVT::i32) {
923 HWTrue = DAG.getConstant(-1, DL, CompareVT);
924 HWFalse = DAG.getConstant(0, DL, CompareVT);
926 else {
927 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
930 // Lower this unsupported SELECT_CC into a combination of two supported
931 // SELECT_CC operations.
932 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
934 return DAG.getNode(ISD::SELECT_CC, DL, VT,
935 Cond, HWFalse,
936 True, False,
937 DAG.getCondCode(ISD::SETNE));
940 SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op,
941 SelectionDAG &DAG) const {
942 SDLoc SL(Op);
943 EVT VT = Op.getValueType();
945 const R600TargetMachine &TM =
946 static_cast<const R600TargetMachine &>(getTargetMachine());
948 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
949 unsigned SrcAS = ASC->getSrcAddressSpace();
950 unsigned DestAS = ASC->getDestAddressSpace();
952 if (isNullConstant(Op.getOperand(0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS)
953 return DAG.getConstant(TM.getNullPointerValue(DestAS), SL, VT);
955 return Op;
958 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
959 /// convert these pointers to a register index. Each register holds
960 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
961 /// \p StackWidth, which tells us how many of the 4 sub-registers will be used
962 /// for indirect addressing.
963 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
964 unsigned StackWidth,
965 SelectionDAG &DAG) const {
966 unsigned SRLPad;
967 switch(StackWidth) {
968 case 1:
969 SRLPad = 2;
970 break;
971 case 2:
972 SRLPad = 3;
973 break;
974 case 4:
975 SRLPad = 4;
976 break;
977 default: llvm_unreachable("Invalid stack width");
980 SDLoc DL(Ptr);
981 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
982 DAG.getConstant(SRLPad, DL, MVT::i32));
985 void R600TargetLowering::getStackAddress(unsigned StackWidth,
986 unsigned ElemIdx,
987 unsigned &Channel,
988 unsigned &PtrIncr) const {
989 switch (StackWidth) {
990 default:
991 case 1:
992 Channel = 0;
993 if (ElemIdx > 0) {
994 PtrIncr = 1;
995 } else {
996 PtrIncr = 0;
998 break;
999 case 2:
1000 Channel = ElemIdx % 2;
1001 if (ElemIdx == 2) {
1002 PtrIncr = 1;
1003 } else {
1004 PtrIncr = 0;
1006 break;
1007 case 4:
1008 Channel = ElemIdx;
1009 PtrIncr = 0;
1010 break;
1014 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1015 SelectionDAG &DAG) const {
1016 SDLoc DL(Store);
1017 //TODO: Who creates the i8 stores?
1018 assert(Store->isTruncatingStore()
1019 || Store->getValue().getValueType() == MVT::i8);
1020 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1022 SDValue Mask;
1023 if (Store->getMemoryVT() == MVT::i8) {
1024 assert(Store->getAlign() >= 1);
1025 Mask = DAG.getConstant(0xff, DL, MVT::i32);
1026 } else if (Store->getMemoryVT() == MVT::i16) {
1027 assert(Store->getAlign() >= 2);
1028 Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1029 } else {
1030 llvm_unreachable("Unsupported private trunc store");
1033 SDValue OldChain = Store->getChain();
1034 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1035 // Skip dummy
1036 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1037 SDValue BasePtr = Store->getBasePtr();
1038 SDValue Offset = Store->getOffset();
1039 EVT MemVT = Store->getMemoryVT();
1041 SDValue LoadPtr = BasePtr;
1042 if (!Offset.isUndef()) {
1043 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1046 // Get dword location
1047 // TODO: this should be eliminated by the future SHR ptr, 2
1048 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1049 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1051 // Load dword
1052 // TODO: can we be smarter about machine pointer info?
1053 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1054 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1056 Chain = Dst.getValue(1);
1058 // Get offset in dword
1059 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1060 DAG.getConstant(0x3, DL, MVT::i32));
1062 // Convert byte offset to bit shift
1063 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1064 DAG.getConstant(3, DL, MVT::i32));
1066 // TODO: Contrary to the name of the function,
1067 // it also handles sub i32 non-truncating stores (like i1)
1068 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1069 Store->getValue());
1071 // Mask the value to the right type
1072 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1074 // Shift the value in place
1075 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1076 MaskedValue, ShiftAmt);
1078 // Shift the mask in place
1079 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1081 // Invert the mask. NOTE: if we had native ROL instructions we could
1082 // use inverted mask
1083 DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1085 // Cleanup the target bits
1086 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1088 // Add the new bits
1089 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1091 // Store dword
1092 // TODO: Can we be smarter about MachinePointerInfo?
1093 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1095 // If we are part of expanded vector, make our neighbors depend on this store
1096 if (VectorTrunc) {
1097 // Make all other vector elements depend on this store
1098 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1099 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1101 return NewStore;
1104 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1105 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1106 unsigned AS = StoreNode->getAddressSpace();
1108 SDValue Chain = StoreNode->getChain();
1109 SDValue Ptr = StoreNode->getBasePtr();
1110 SDValue Value = StoreNode->getValue();
1112 EVT VT = Value.getValueType();
1113 EVT MemVT = StoreNode->getMemoryVT();
1114 EVT PtrVT = Ptr.getValueType();
1116 SDLoc DL(Op);
1118 const bool TruncatingStore = StoreNode->isTruncatingStore();
1120 // Neither LOCAL nor PRIVATE can do vectors at the moment
1121 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1122 TruncatingStore) &&
1123 VT.isVector()) {
1124 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1125 // Add an extra level of chain to isolate this vector
1126 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1127 // TODO: can the chain be replaced without creating a new store?
1128 SDValue NewStore = DAG.getTruncStore(
1129 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), MemVT,
1130 StoreNode->getAlign(), StoreNode->getMemOperand()->getFlags(),
1131 StoreNode->getAAInfo());
1132 StoreNode = cast<StoreSDNode>(NewStore);
1135 return scalarizeVectorStore(StoreNode, DAG);
1138 Align Alignment = StoreNode->getAlign();
1139 if (Alignment < MemVT.getStoreSize() &&
1140 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1141 StoreNode->getMemOperand()->getFlags(),
1142 nullptr)) {
1143 return expandUnalignedStore(StoreNode, DAG);
1146 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1147 DAG.getConstant(2, DL, PtrVT));
1149 if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1150 // It is beneficial to create MSKOR here instead of combiner to avoid
1151 // artificial dependencies introduced by RMW
1152 if (TruncatingStore) {
1153 assert(VT.bitsLE(MVT::i32));
1154 SDValue MaskConstant;
1155 if (MemVT == MVT::i8) {
1156 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1157 } else {
1158 assert(MemVT == MVT::i16);
1159 assert(StoreNode->getAlign() >= 2);
1160 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1163 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1164 DAG.getConstant(0x00000003, DL, PtrVT));
1165 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1166 DAG.getConstant(3, DL, VT));
1168 // Put the mask in correct place
1169 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1171 // Put the value bits in correct place
1172 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1173 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1175 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1176 // vector instead.
1177 SDValue Src[4] = {
1178 ShiftedValue,
1179 DAG.getConstant(0, DL, MVT::i32),
1180 DAG.getConstant(0, DL, MVT::i32),
1181 Mask
1183 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1184 SDValue Args[3] = { Chain, Input, DWordAddr };
1185 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1186 Op->getVTList(), Args, MemVT,
1187 StoreNode->getMemOperand());
1189 if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1190 // Convert pointer from byte address to dword address.
1191 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1193 if (StoreNode->isIndexed()) {
1194 llvm_unreachable("Indexed stores not supported yet");
1195 } else {
1196 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1198 return Chain;
1202 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1203 if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1204 return SDValue();
1206 if (MemVT.bitsLT(MVT::i32))
1207 return lowerPrivateTruncStore(StoreNode, DAG);
1209 // Standard i32+ store, tag it with DWORDADDR to note that the address
1210 // has been shifted
1211 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1212 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1213 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1216 // Tagged i32+ stores will be matched by patterns
1217 return SDValue();
1220 // return (512 + (kc_bank << 12)
1221 static int
1222 ConstantAddressBlock(unsigned AddressSpace) {
1223 switch (AddressSpace) {
1224 case AMDGPUAS::CONSTANT_BUFFER_0:
1225 return 512;
1226 case AMDGPUAS::CONSTANT_BUFFER_1:
1227 return 512 + 4096;
1228 case AMDGPUAS::CONSTANT_BUFFER_2:
1229 return 512 + 4096 * 2;
1230 case AMDGPUAS::CONSTANT_BUFFER_3:
1231 return 512 + 4096 * 3;
1232 case AMDGPUAS::CONSTANT_BUFFER_4:
1233 return 512 + 4096 * 4;
1234 case AMDGPUAS::CONSTANT_BUFFER_5:
1235 return 512 + 4096 * 5;
1236 case AMDGPUAS::CONSTANT_BUFFER_6:
1237 return 512 + 4096 * 6;
1238 case AMDGPUAS::CONSTANT_BUFFER_7:
1239 return 512 + 4096 * 7;
1240 case AMDGPUAS::CONSTANT_BUFFER_8:
1241 return 512 + 4096 * 8;
1242 case AMDGPUAS::CONSTANT_BUFFER_9:
1243 return 512 + 4096 * 9;
1244 case AMDGPUAS::CONSTANT_BUFFER_10:
1245 return 512 + 4096 * 10;
1246 case AMDGPUAS::CONSTANT_BUFFER_11:
1247 return 512 + 4096 * 11;
1248 case AMDGPUAS::CONSTANT_BUFFER_12:
1249 return 512 + 4096 * 12;
1250 case AMDGPUAS::CONSTANT_BUFFER_13:
1251 return 512 + 4096 * 13;
1252 case AMDGPUAS::CONSTANT_BUFFER_14:
1253 return 512 + 4096 * 14;
1254 case AMDGPUAS::CONSTANT_BUFFER_15:
1255 return 512 + 4096 * 15;
1256 default:
1257 return -1;
1261 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1262 SelectionDAG &DAG) const {
1263 SDLoc DL(Op);
1264 LoadSDNode *Load = cast<LoadSDNode>(Op);
1265 ISD::LoadExtType ExtType = Load->getExtensionType();
1266 EVT MemVT = Load->getMemoryVT();
1267 assert(Load->getAlign() >= MemVT.getStoreSize());
1269 SDValue BasePtr = Load->getBasePtr();
1270 SDValue Chain = Load->getChain();
1271 SDValue Offset = Load->getOffset();
1273 SDValue LoadPtr = BasePtr;
1274 if (!Offset.isUndef()) {
1275 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1278 // Get dword location
1279 // NOTE: this should be eliminated by the future SHR ptr, 2
1280 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1281 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1283 // Load dword
1284 // TODO: can we be smarter about machine pointer info?
1285 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1286 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1288 // Get offset within the register.
1289 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1290 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1292 // Bit offset of target byte (byteIdx * 8).
1293 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1294 DAG.getConstant(3, DL, MVT::i32));
1296 // Shift to the right.
1297 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1299 // Eliminate the upper bits by setting them to ...
1300 EVT MemEltVT = MemVT.getScalarType();
1302 if (ExtType == ISD::SEXTLOAD) { // ... ones.
1303 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1304 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1305 } else { // ... or zeros.
1306 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1309 SDValue Ops[] = {
1310 Ret,
1311 Read.getValue(1) // This should be our output chain
1314 return DAG.getMergeValues(Ops, DL);
1317 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1318 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1319 unsigned AS = LoadNode->getAddressSpace();
1320 EVT MemVT = LoadNode->getMemoryVT();
1321 ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1323 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1324 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1325 return lowerPrivateExtLoad(Op, DAG);
1328 SDLoc DL(Op);
1329 EVT VT = Op.getValueType();
1330 SDValue Chain = LoadNode->getChain();
1331 SDValue Ptr = LoadNode->getBasePtr();
1333 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1334 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1335 VT.isVector()) {
1336 SDValue Ops[2];
1337 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1338 return DAG.getMergeValues(Ops, DL);
1341 // This is still used for explicit load from addrspace(8)
1342 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1343 if (ConstantBlock > -1 &&
1344 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1345 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1346 SDValue Result;
1347 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1348 isa<ConstantSDNode>(Ptr)) {
1349 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1351 // TODO: Does this even work?
1352 // non-constant ptr can't be folded, keeps it as a v4f32 load
1353 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1354 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1355 DAG.getConstant(4, DL, MVT::i32)),
1356 DAG.getConstant(LoadNode->getAddressSpace() -
1357 AMDGPUAS::CONSTANT_BUFFER_0,
1358 DL, MVT::i32));
1360 if (!VT.isVector()) {
1361 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1362 DAG.getConstant(0, DL, MVT::i32));
1365 SDValue MergedValues[2] = {
1366 Result,
1367 Chain
1369 return DAG.getMergeValues(MergedValues, DL);
1372 // For most operations returning SDValue() will result in the node being
1373 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1374 // need to manually expand loads that may be legal in some address spaces and
1375 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1376 // compute shaders, since the data is sign extended when it is uploaded to the
1377 // buffer. However SEXT loads from other address spaces are not supported, so
1378 // we need to expand them here.
1379 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1380 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1381 SDValue NewLoad = DAG.getExtLoad(
1382 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1383 LoadNode->getAlign(), LoadNode->getMemOperand()->getFlags());
1384 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1385 DAG.getValueType(MemVT));
1387 SDValue MergedValues[2] = { Res, Chain };
1388 return DAG.getMergeValues(MergedValues, DL);
1391 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1392 return SDValue();
1395 // DWORDADDR ISD marks already shifted address
1396 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1397 assert(VT == MVT::i32);
1398 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1399 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1400 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1402 return SDValue();
1405 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1406 SDValue Chain = Op.getOperand(0);
1407 SDValue Cond = Op.getOperand(1);
1408 SDValue Jump = Op.getOperand(2);
1410 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1411 Chain, Jump, Cond);
1414 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1415 SelectionDAG &DAG) const {
1416 MachineFunction &MF = DAG.getMachineFunction();
1417 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1419 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1421 unsigned FrameIndex = FIN->getIndex();
1422 Register IgnoredFrameReg;
1423 StackOffset Offset =
1424 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1425 return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1426 SDLoc(Op), Op.getValueType());
1429 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1430 bool IsVarArg) const {
1431 switch (CC) {
1432 case CallingConv::AMDGPU_KERNEL:
1433 case CallingConv::SPIR_KERNEL:
1434 case CallingConv::C:
1435 case CallingConv::Fast:
1436 case CallingConv::Cold:
1437 llvm_unreachable("kernels should not be handled here");
1438 case CallingConv::AMDGPU_VS:
1439 case CallingConv::AMDGPU_GS:
1440 case CallingConv::AMDGPU_PS:
1441 case CallingConv::AMDGPU_CS:
1442 case CallingConv::AMDGPU_HS:
1443 case CallingConv::AMDGPU_ES:
1444 case CallingConv::AMDGPU_LS:
1445 return CC_R600;
1446 default:
1447 report_fatal_error("Unsupported calling convention.");
1451 /// XXX Only kernel functions are supported, so we can assume for now that
1452 /// every function is a kernel function, but in the future we should use
1453 /// separate calling conventions for kernel and non-kernel functions.
1454 SDValue R600TargetLowering::LowerFormalArguments(
1455 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1456 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1457 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1458 SmallVector<CCValAssign, 16> ArgLocs;
1459 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1460 *DAG.getContext());
1461 MachineFunction &MF = DAG.getMachineFunction();
1462 SmallVector<ISD::InputArg, 8> LocalIns;
1464 if (AMDGPU::isShader(CallConv)) {
1465 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1466 } else {
1467 analyzeFormalArgumentsCompute(CCInfo, Ins);
1470 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1471 CCValAssign &VA = ArgLocs[i];
1472 const ISD::InputArg &In = Ins[i];
1473 EVT VT = In.VT;
1474 EVT MemVT = VA.getLocVT();
1475 if (!VT.isVector() && MemVT.isVector()) {
1476 // Get load source type if scalarized.
1477 MemVT = MemVT.getVectorElementType();
1480 if (AMDGPU::isShader(CallConv)) {
1481 Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1482 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1483 InVals.push_back(Register);
1484 continue;
1487 // i64 isn't a legal type, so the register type used ends up as i32, which
1488 // isn't expected here. It attempts to create this sextload, but it ends up
1489 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1490 // for <1 x i64>.
1492 // The first 36 bytes of the input buffer contains information about
1493 // thread group and global sizes.
1494 ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1495 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1496 // FIXME: This should really check the extload type, but the handling of
1497 // extload vector parameters seems to be broken.
1499 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1500 Ext = ISD::SEXTLOAD;
1503 // Compute the offset from the value.
1504 // XXX - I think PartOffset should give you this, but it seems to give the
1505 // size of the register which isn't useful.
1507 unsigned PartOffset = VA.getLocMemOffset();
1508 Align Alignment = commonAlignment(Align(VT.getStoreSize()), PartOffset);
1510 MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1511 SDValue Arg = DAG.getLoad(
1512 ISD::UNINDEXED, Ext, VT, DL, Chain,
1513 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1514 PtrInfo,
1515 MemVT, Alignment, MachineMemOperand::MONonTemporal |
1516 MachineMemOperand::MODereferenceable |
1517 MachineMemOperand::MOInvariant);
1519 InVals.push_back(Arg);
1521 return Chain;
1524 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1525 EVT VT) const {
1526 if (!VT.isVector())
1527 return MVT::i32;
1528 return VT.changeVectorElementTypeToInteger();
1531 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1532 const MachineFunction &MF) const {
1533 // Local and Private addresses do not handle vectors. Limit to i32
1534 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1535 return (MemVT.getSizeInBits() <= 32);
1537 return true;
1540 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1541 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1542 unsigned *IsFast) const {
1543 if (IsFast)
1544 *IsFast = 0;
1546 if (!VT.isSimple() || VT == MVT::Other)
1547 return false;
1549 if (VT.bitsLT(MVT::i32))
1550 return false;
1552 // TODO: This is a rough estimate.
1553 if (IsFast)
1554 *IsFast = 1;
1556 return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1559 static SDValue CompactSwizzlableVector(
1560 SelectionDAG &DAG, SDValue VectorEntry,
1561 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1562 assert(RemapSwizzle.empty());
1564 SDLoc DL(VectorEntry);
1565 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1567 SDValue NewBldVec[4];
1568 for (unsigned i = 0; i < 4; i++)
1569 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1570 DAG.getIntPtrConstant(i, DL));
1572 for (unsigned i = 0; i < 4; i++) {
1573 if (NewBldVec[i].isUndef())
1574 // We mask write here to teach later passes that the ith element of this
1575 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1576 // break false dependencies and additionally make assembly easier to read.
1577 RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1578 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1579 if (C->isZero()) {
1580 RemapSwizzle[i] = 4; // SEL_0
1581 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1582 } else if (C->isExactlyValue(1.0)) {
1583 RemapSwizzle[i] = 5; // SEL_1
1584 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1588 if (NewBldVec[i].isUndef())
1589 continue;
1591 for (unsigned j = 0; j < i; j++) {
1592 if (NewBldVec[i] == NewBldVec[j]) {
1593 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1594 RemapSwizzle[i] = j;
1595 break;
1600 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1601 NewBldVec);
1604 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1605 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1606 assert(RemapSwizzle.empty());
1608 SDLoc DL(VectorEntry);
1609 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1611 SDValue NewBldVec[4];
1612 bool isUnmovable[4] = {false, false, false, false};
1613 for (unsigned i = 0; i < 4; i++)
1614 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1615 DAG.getIntPtrConstant(i, DL));
1617 for (unsigned i = 0; i < 4; i++) {
1618 RemapSwizzle[i] = i;
1619 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1620 unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1621 if (i == Idx)
1622 isUnmovable[Idx] = true;
1626 for (unsigned i = 0; i < 4; i++) {
1627 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1628 unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1629 if (isUnmovable[Idx])
1630 continue;
1631 // Swap i and Idx
1632 std::swap(NewBldVec[Idx], NewBldVec[i]);
1633 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1634 break;
1638 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1639 NewBldVec);
1642 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[],
1643 SelectionDAG &DAG,
1644 const SDLoc &DL) const {
1645 // Old -> New swizzle values
1646 DenseMap<unsigned, unsigned> SwizzleRemap;
1648 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1649 for (unsigned i = 0; i < 4; i++) {
1650 unsigned Idx = Swz[i]->getAsZExtVal();
1651 if (SwizzleRemap.contains(Idx))
1652 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1655 SwizzleRemap.clear();
1656 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1657 for (unsigned i = 0; i < 4; i++) {
1658 unsigned Idx = Swz[i]->getAsZExtVal();
1659 if (SwizzleRemap.contains(Idx))
1660 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1663 return BuildVector;
1666 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1667 SelectionDAG &DAG) const {
1668 SDLoc DL(LoadNode);
1669 EVT VT = LoadNode->getValueType(0);
1670 SDValue Chain = LoadNode->getChain();
1671 SDValue Ptr = LoadNode->getBasePtr();
1672 assert (isa<ConstantSDNode>(Ptr));
1674 //TODO: Support smaller loads
1675 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1676 return SDValue();
1678 if (LoadNode->getAlign() < Align(4))
1679 return SDValue();
1681 int ConstantBlock = ConstantAddressBlock(Block);
1683 SDValue Slots[4];
1684 for (unsigned i = 0; i < 4; i++) {
1685 // We want Const position encoded with the following formula :
1686 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1687 // const_index is Ptr computed by llvm using an alignment of 16.
1688 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1689 // then div by 4 at the ISel step
1690 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1691 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1692 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1694 EVT NewVT = MVT::v4i32;
1695 unsigned NumElements = 4;
1696 if (VT.isVector()) {
1697 NewVT = VT;
1698 NumElements = VT.getVectorNumElements();
1700 SDValue Result = DAG.getBuildVector(NewVT, DL, ArrayRef(Slots, NumElements));
1701 if (!VT.isVector()) {
1702 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1703 DAG.getConstant(0, DL, MVT::i32));
1705 SDValue MergedValues[2] = {
1706 Result,
1707 Chain
1709 return DAG.getMergeValues(MergedValues, DL);
1712 //===----------------------------------------------------------------------===//
1713 // Custom DAG Optimizations
1714 //===----------------------------------------------------------------------===//
1716 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1717 DAGCombinerInfo &DCI) const {
1718 SelectionDAG &DAG = DCI.DAG;
1719 SDLoc DL(N);
1721 switch (N->getOpcode()) {
1722 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1723 case ISD::FP_ROUND: {
1724 SDValue Arg = N->getOperand(0);
1725 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1726 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1727 Arg.getOperand(0));
1729 break;
1732 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1733 // (i32 select_cc f32, f32, -1, 0 cc)
1735 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1736 // this to one of the SET*_DX10 instructions.
1737 case ISD::FP_TO_SINT: {
1738 SDValue FNeg = N->getOperand(0);
1739 if (FNeg.getOpcode() != ISD::FNEG) {
1740 return SDValue();
1742 SDValue SelectCC = FNeg.getOperand(0);
1743 if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1744 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1745 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1746 !isHWTrueValue(SelectCC.getOperand(2)) ||
1747 !isHWFalseValue(SelectCC.getOperand(3))) {
1748 return SDValue();
1751 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1752 SelectCC.getOperand(0), // LHS
1753 SelectCC.getOperand(1), // RHS
1754 DAG.getConstant(-1, DL, MVT::i32), // True
1755 DAG.getConstant(0, DL, MVT::i32), // False
1756 SelectCC.getOperand(4)); // CC
1759 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1760 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1761 case ISD::INSERT_VECTOR_ELT: {
1762 SDValue InVec = N->getOperand(0);
1763 SDValue InVal = N->getOperand(1);
1764 SDValue EltNo = N->getOperand(2);
1766 // If the inserted element is an UNDEF, just use the input vector.
1767 if (InVal.isUndef())
1768 return InVec;
1770 EVT VT = InVec.getValueType();
1772 // If we can't generate a legal BUILD_VECTOR, exit
1773 if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1774 return SDValue();
1776 // Check that we know which element is being inserted
1777 if (!isa<ConstantSDNode>(EltNo))
1778 return SDValue();
1779 unsigned Elt = EltNo->getAsZExtVal();
1781 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1782 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1783 // vector elements.
1784 SmallVector<SDValue, 8> Ops;
1785 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1786 Ops.append(InVec.getNode()->op_begin(),
1787 InVec.getNode()->op_end());
1788 } else if (InVec.isUndef()) {
1789 unsigned NElts = VT.getVectorNumElements();
1790 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1791 } else {
1792 return SDValue();
1795 // Insert the element
1796 if (Elt < Ops.size()) {
1797 // All the operands of BUILD_VECTOR must have the same type;
1798 // we enforce that here.
1799 EVT OpVT = Ops[0].getValueType();
1800 if (InVal.getValueType() != OpVT)
1801 InVal = OpVT.bitsGT(InVal.getValueType()) ?
1802 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1803 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1804 Ops[Elt] = InVal;
1807 // Return the new vector
1808 return DAG.getBuildVector(VT, DL, Ops);
1811 // Extract_vec (Build_vector) generated by custom lowering
1812 // also needs to be customly combined
1813 case ISD::EXTRACT_VECTOR_ELT: {
1814 SDValue Arg = N->getOperand(0);
1815 if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1816 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1817 unsigned Element = Const->getZExtValue();
1818 return Arg->getOperand(Element);
1821 if (Arg.getOpcode() == ISD::BITCAST &&
1822 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1823 (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1824 Arg.getValueType().getVectorNumElements())) {
1825 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1826 unsigned Element = Const->getZExtValue();
1827 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1828 Arg->getOperand(0).getOperand(Element));
1831 break;
1834 case ISD::SELECT_CC: {
1835 // Try common optimizations
1836 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1837 return Ret;
1839 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1840 // selectcc x, y, a, b, inv(cc)
1842 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1843 // selectcc x, y, a, b, cc
1844 SDValue LHS = N->getOperand(0);
1845 if (LHS.getOpcode() != ISD::SELECT_CC) {
1846 return SDValue();
1849 SDValue RHS = N->getOperand(1);
1850 SDValue True = N->getOperand(2);
1851 SDValue False = N->getOperand(3);
1852 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1854 if (LHS.getOperand(2).getNode() != True.getNode() ||
1855 LHS.getOperand(3).getNode() != False.getNode() ||
1856 RHS.getNode() != False.getNode()) {
1857 return SDValue();
1860 switch (NCC) {
1861 default: return SDValue();
1862 case ISD::SETNE: return LHS;
1863 case ISD::SETEQ: {
1864 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1865 LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1866 if (DCI.isBeforeLegalizeOps() ||
1867 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1868 return DAG.getSelectCC(DL,
1869 LHS.getOperand(0),
1870 LHS.getOperand(1),
1871 LHS.getOperand(2),
1872 LHS.getOperand(3),
1873 LHSCC);
1874 break;
1877 return SDValue();
1880 case AMDGPUISD::R600_EXPORT: {
1881 SDValue Arg = N->getOperand(1);
1882 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1883 break;
1885 SDValue NewArgs[8] = {
1886 N->getOperand(0), // Chain
1887 SDValue(),
1888 N->getOperand(2), // ArrayBase
1889 N->getOperand(3), // Type
1890 N->getOperand(4), // SWZ_X
1891 N->getOperand(5), // SWZ_Y
1892 N->getOperand(6), // SWZ_Z
1893 N->getOperand(7) // SWZ_W
1895 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1896 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1898 case AMDGPUISD::TEXTURE_FETCH: {
1899 SDValue Arg = N->getOperand(1);
1900 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1901 break;
1903 SDValue NewArgs[19] = {
1904 N->getOperand(0),
1905 N->getOperand(1),
1906 N->getOperand(2),
1907 N->getOperand(3),
1908 N->getOperand(4),
1909 N->getOperand(5),
1910 N->getOperand(6),
1911 N->getOperand(7),
1912 N->getOperand(8),
1913 N->getOperand(9),
1914 N->getOperand(10),
1915 N->getOperand(11),
1916 N->getOperand(12),
1917 N->getOperand(13),
1918 N->getOperand(14),
1919 N->getOperand(15),
1920 N->getOperand(16),
1921 N->getOperand(17),
1922 N->getOperand(18),
1924 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1925 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1928 case ISD::LOAD: {
1929 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1930 SDValue Ptr = LoadNode->getBasePtr();
1931 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1932 isa<ConstantSDNode>(Ptr))
1933 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1934 break;
1937 default: break;
1940 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1943 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1944 SDValue &Src, SDValue &Neg, SDValue &Abs,
1945 SDValue &Sel, SDValue &Imm,
1946 SelectionDAG &DAG) const {
1947 const R600InstrInfo *TII = Subtarget->getInstrInfo();
1948 if (!Src.isMachineOpcode())
1949 return false;
1951 switch (Src.getMachineOpcode()) {
1952 case R600::FNEG_R600:
1953 if (!Neg.getNode())
1954 return false;
1955 Src = Src.getOperand(0);
1956 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1957 return true;
1958 case R600::FABS_R600:
1959 if (!Abs.getNode())
1960 return false;
1961 Src = Src.getOperand(0);
1962 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1963 return true;
1964 case R600::CONST_COPY: {
1965 unsigned Opcode = ParentNode->getMachineOpcode();
1966 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1968 if (!Sel.getNode())
1969 return false;
1971 SDValue CstOffset = Src.getOperand(0);
1972 if (ParentNode->getValueType(0).isVector())
1973 return false;
1975 // Gather constants values
1976 int SrcIndices[] = {
1977 TII->getOperandIdx(Opcode, R600::OpName::src0),
1978 TII->getOperandIdx(Opcode, R600::OpName::src1),
1979 TII->getOperandIdx(Opcode, R600::OpName::src2),
1980 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1981 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1982 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1983 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1984 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1985 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1986 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1987 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1989 std::vector<unsigned> Consts;
1990 for (int OtherSrcIdx : SrcIndices) {
1991 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
1992 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
1993 continue;
1994 if (HasDst) {
1995 OtherSrcIdx--;
1996 OtherSelIdx--;
1998 if (RegisterSDNode *Reg =
1999 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2000 if (Reg->getReg() == R600::ALU_CONST) {
2001 Consts.push_back(ParentNode->getConstantOperandVal(OtherSelIdx));
2006 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2007 Consts.push_back(Cst->getZExtValue());
2008 if (!TII->fitsConstReadLimitations(Consts)) {
2009 return false;
2012 Sel = CstOffset;
2013 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2014 return true;
2016 case R600::MOV_IMM_GLOBAL_ADDR:
2017 // Check if the Imm slot is used. Taken from below.
2018 if (Imm->getAsZExtVal())
2019 return false;
2020 Imm = Src.getOperand(0);
2021 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2022 return true;
2023 case R600::MOV_IMM_I32:
2024 case R600::MOV_IMM_F32: {
2025 unsigned ImmReg = R600::ALU_LITERAL_X;
2026 uint64_t ImmValue = 0;
2028 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2029 ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2030 float FloatValue = FPC->getValueAPF().convertToFloat();
2031 if (FloatValue == 0.0) {
2032 ImmReg = R600::ZERO;
2033 } else if (FloatValue == 0.5) {
2034 ImmReg = R600::HALF;
2035 } else if (FloatValue == 1.0) {
2036 ImmReg = R600::ONE;
2037 } else {
2038 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2040 } else {
2041 uint64_t Value = Src.getConstantOperandVal(0);
2042 if (Value == 0) {
2043 ImmReg = R600::ZERO;
2044 } else if (Value == 1) {
2045 ImmReg = R600::ONE_INT;
2046 } else {
2047 ImmValue = Value;
2051 // Check that we aren't already using an immediate.
2052 // XXX: It's possible for an instruction to have more than one
2053 // immediate operand, but this is not supported yet.
2054 if (ImmReg == R600::ALU_LITERAL_X) {
2055 if (!Imm.getNode())
2056 return false;
2057 ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2058 if (C->getZExtValue())
2059 return false;
2060 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2062 Src = DAG.getRegister(ImmReg, MVT::i32);
2063 return true;
2065 default:
2066 return false;
2070 /// Fold the instructions after selecting them
2071 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2072 SelectionDAG &DAG) const {
2073 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2074 if (!Node->isMachineOpcode())
2075 return Node;
2077 unsigned Opcode = Node->getMachineOpcode();
2078 SDValue FakeOp;
2080 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2082 if (Opcode == R600::DOT_4) {
2083 int OperandIdx[] = {
2084 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2085 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2086 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2087 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2088 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2089 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2090 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2091 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2093 int NegIdx[] = {
2094 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2095 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2096 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2097 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2098 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2099 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2100 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2101 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2103 int AbsIdx[] = {
2104 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2105 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2106 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2107 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2108 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2109 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2110 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2111 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2113 for (unsigned i = 0; i < 8; i++) {
2114 if (OperandIdx[i] < 0)
2115 return Node;
2116 SDValue &Src = Ops[OperandIdx[i] - 1];
2117 SDValue &Neg = Ops[NegIdx[i] - 1];
2118 SDValue &Abs = Ops[AbsIdx[i] - 1];
2119 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2120 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2121 if (HasDst)
2122 SelIdx--;
2123 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2124 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2125 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2127 } else if (Opcode == R600::REG_SEQUENCE) {
2128 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2129 SDValue &Src = Ops[i];
2130 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2131 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2133 } else {
2134 if (!TII->hasInstrModifiers(Opcode))
2135 return Node;
2136 int OperandIdx[] = {
2137 TII->getOperandIdx(Opcode, R600::OpName::src0),
2138 TII->getOperandIdx(Opcode, R600::OpName::src1),
2139 TII->getOperandIdx(Opcode, R600::OpName::src2)
2141 int NegIdx[] = {
2142 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2143 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2144 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2146 int AbsIdx[] = {
2147 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2148 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2151 for (unsigned i = 0; i < 3; i++) {
2152 if (OperandIdx[i] < 0)
2153 return Node;
2154 SDValue &Src = Ops[OperandIdx[i] - 1];
2155 SDValue &Neg = Ops[NegIdx[i] - 1];
2156 SDValue FakeAbs;
2157 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2158 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2159 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2160 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2161 if (HasDst) {
2162 SelIdx--;
2163 ImmIdx--;
2165 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2166 SDValue &Imm = Ops[ImmIdx];
2167 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2168 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2172 return Node;
2175 TargetLowering::AtomicExpansionKind
2176 R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2177 switch (RMW->getOperation()) {
2178 case AtomicRMWInst::UIncWrap:
2179 case AtomicRMWInst::UDecWrap:
2180 // FIXME: Cayman at least appears to have instructions for this, but the
2181 // instruction defintions appear to be missing.
2182 return AtomicExpansionKind::CmpXChg;
2183 default:
2184 break;
2187 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);