1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
12 #include "llvm/ADT/DenseSet.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineOperand.h"
28 class MachineRegisterInfo
;
29 class MachineBasicBlock
;
30 class MachineFunction
;
32 class TargetRegisterClass
;
33 class TargetRegisterInfo
;
41 struct MachineEvaluator
;
43 using BranchTargetList
= SetVector
<const MachineBasicBlock
*>;
44 using CellMapType
= std::map
<unsigned, RegisterCell
>;
46 BitTracker(const MachineEvaluator
&E
, MachineFunction
&F
);
50 void trace(bool On
= false) { Trace
= On
; }
51 bool has(unsigned Reg
) const;
52 const RegisterCell
&lookup(unsigned Reg
) const;
53 RegisterCell
get(RegisterRef RR
) const;
54 void put(RegisterRef RR
, const RegisterCell
&RC
);
55 void subst(RegisterRef OldRR
, RegisterRef NewRR
);
56 bool reached(const MachineBasicBlock
*B
) const;
57 void visit(const MachineInstr
&MI
);
59 void print_cells(raw_ostream
&OS
) const;
62 void visitPHI(const MachineInstr
&PI
);
63 void visitNonBranch(const MachineInstr
&MI
);
64 void visitBranchesFrom(const MachineInstr
&BI
);
65 void visitUsesOf(Register Reg
);
67 using CFGEdge
= std::pair
<int, int>;
68 using EdgeSetType
= std::set
<CFGEdge
>;
69 using InstrSetType
= std::set
<const MachineInstr
*>;
70 using EdgeQueueType
= std::queue
<CFGEdge
>;
72 // Priority queue of instructions using modified registers, ordered by
73 // their relative position in a basic block.
75 UseQueueType() : Uses(Dist
) {}
77 unsigned size() const {
83 MachineInstr
*front() const {
86 void push(MachineInstr
*MI
) {
87 if (Set
.insert(MI
).second
)
99 Cmp(DenseMap
<const MachineInstr
*,unsigned> &Map
) : Dist(Map
) {}
100 bool operator()(const MachineInstr
*MI
, const MachineInstr
*MJ
) const;
101 DenseMap
<const MachineInstr
*,unsigned> &Dist
;
103 std::priority_queue
<MachineInstr
*, std::vector
<MachineInstr
*>, Cmp
> Uses
;
104 DenseSet
<const MachineInstr
*> Set
; // Set to avoid adding duplicate entries.
105 DenseMap
<const MachineInstr
*,unsigned> Dist
;
109 void runEdgeQueue(BitVector
&BlockScanned
);
112 const MachineEvaluator
&ME
;
114 MachineRegisterInfo
&MRI
;
117 EdgeSetType EdgeExec
; // Executable flow graph edges.
118 InstrSetType InstrExec
; // Executable instructions.
119 UseQueueType UseQ
; // Work queue of register uses.
120 EdgeQueueType FlowQ
; // Work queue of CFG edges.
121 DenseSet
<unsigned> ReachedBB
; // Cache of reached blocks.
122 bool Trace
; // Enable tracing for debugging.
125 // Abstraction of a reference to bit at position Pos from a register Reg.
126 struct BitTracker::BitRef
{
127 BitRef(unsigned R
= 0, uint16_t P
= 0) : Reg(R
), Pos(P
) {}
129 bool operator== (const BitRef
&BR
) const {
130 // If Reg is 0, disregard Pos.
131 return Reg
== BR
.Reg
&& (Reg
== 0 || Pos
== BR
.Pos
);
138 // Abstraction of a register reference in MachineOperand. It contains the
139 // register number and the subregister index.
140 // FIXME: Consolidate duplicate definitions of RegisterRef
141 struct BitTracker::RegisterRef
{
142 RegisterRef(Register R
= 0, unsigned S
= 0) : Reg(R
), Sub(S
) {}
143 RegisterRef(const MachineOperand
&MO
)
144 : Reg(MO
.getReg()), Sub(MO
.getSubReg()) {}
150 // Value that a single bit can take. This is outside of the context of
151 // any register, it is more of an abstraction of the two-element set of
152 // possible bit values. One extension here is the "Ref" type, which
153 // indicates that this bit takes the same value as the bit described by
155 struct BitTracker::BitValue
{
157 Top
, // Bit not yet defined.
160 Ref
// Bit value same as the one described in RefI.
161 // Conceptually, there is no explicit "bottom" value: the lattice's
162 // bottom will be expressed as a "ref to itself", which, in the context
163 // of registers, could be read as "this value of this bit is defined by
167 // Self <= x, where "Self" is "ref to itself".
168 // This makes the value lattice different for each virtual register
169 // (even for each bit in the same virtual register), since the "bottom"
170 // for one register will be a simple "ref" for another register.
171 // Since we do not store the "Self" bit and register number, the meet
172 // operation will need to take it as a parameter.
174 // In practice there is a special case for values that are not associa-
175 // ted with any specific virtual register. An example would be a value
176 // corresponding to a bit of a physical register, or an intermediate
177 // value obtained in some computation (such as instruction evaluation).
178 // Such cases are identical to the usual Ref type, but the register
179 // number is 0. In such case the Pos field of the reference is ignored.
181 // What is worthy of notice is that in value V (that is a "ref"), as long
182 // as the RefI.Reg is not 0, it may actually be the same register as the
183 // one in which V will be contained. If the RefI.Pos refers to the posi-
184 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
185 // otherwise V is taken to be identical to the referenced bit of the
187 // If RefI.Reg is 0, however, such a reference to the same register is
188 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0
189 // is treated as "bottom".
194 BitValue(ValueType T
= Top
) : Type(T
) {}
195 BitValue(bool B
) : Type(B
? One
: Zero
) {}
196 BitValue(unsigned Reg
, uint16_t Pos
) : Type(Ref
), RefI(Reg
, Pos
) {}
198 bool operator== (const BitValue
&V
) const {
201 if (Type
== Ref
&& !(RefI
== V
.RefI
))
205 bool operator!= (const BitValue
&V
) const {
206 return !operator==(V
);
209 bool is(unsigned T
) const {
210 assert(T
== 0 || T
== 1);
211 return T
== 0 ? Type
== Zero
212 : (T
== 1 ? Type
== One
: false);
215 // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
218 // (3) x.(y.z) = (x.y).z
219 // (4) x.T = x (i.e. T = "top")
220 // (5) x.B = B (i.e. B = "bottom")
222 // This "meet" function will update the value of the "*this" object with
223 // the newly calculated one, and return "true" if the value of *this has
224 // changed, and "false" otherwise.
225 // To prove that it satisfies the conditions (1)-(5), it is sufficient
226 // to show that a relation
227 // x <= y <=> x.y = x
228 // defines a partial order (i.e. that "meet" is same as "infimum").
229 bool meet(const BitValue
&V
, const BitRef
&Self
) {
230 // First, check the cases where there is nothing to be done.
231 if (Type
== Ref
&& RefI
== Self
) // Bottom.meet(V) = Bottom (i.e. This)
233 if (V
.Type
== Top
) // This.meet(Top) = This
235 if (*this == V
) // This.meet(This) = This
238 // At this point, we know that the value of "this" will change.
239 // If it is Top, it will become the same as V, otherwise it will
240 // become "bottom" (i.e. Self).
243 RefI
= V
.RefI
; // This may be irrelevant, but copy anyway.
252 // Create a reference to the bit value V.
253 static BitValue
ref(const BitValue
&V
);
255 static BitValue
self(const BitRef
&Self
= BitRef());
258 return Type
== Zero
|| Type
== One
;
261 operator bool() const {
262 assert(Type
== Zero
|| Type
== One
);
266 friend raw_ostream
&operator<<(raw_ostream
&OS
, const BitValue
&BV
);
269 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
270 inline BitTracker::BitValue
271 BitTracker::BitValue::ref(const BitValue
&V
) {
273 return BitValue(V
.Type
);
275 return BitValue(V
.RefI
.Reg
, V
.RefI
.Pos
);
279 inline BitTracker::BitValue
280 BitTracker::BitValue::self(const BitRef
&Self
) {
281 return BitValue(Self
.Reg
, Self
.Pos
);
284 // A sequence of bits starting from index B up to and including index E.
285 // If E < B, the mask represents two sections: [0..E] and [B..W) where
286 // W is the width of the register.
287 struct BitTracker::BitMask
{
289 BitMask(uint16_t b
, uint16_t e
) : B(b
), E(e
) {}
291 uint16_t first() const { return B
; }
292 uint16_t last() const { return E
; }
299 // Representation of a register: a list of BitValues.
300 struct BitTracker::RegisterCell
{
301 RegisterCell(uint16_t Width
= DefaultBitN
) : Bits(Width
) {}
303 uint16_t width() const {
307 const BitValue
&operator[](uint16_t BitN
) const {
308 assert(BitN
< Bits
.size());
311 BitValue
&operator[](uint16_t BitN
) {
312 assert(BitN
< Bits
.size());
316 bool meet(const RegisterCell
&RC
, Register SelfR
);
317 RegisterCell
&insert(const RegisterCell
&RC
, const BitMask
&M
);
318 RegisterCell
extract(const BitMask
&M
) const; // Returns a new cell.
319 RegisterCell
&rol(uint16_t Sh
); // Rotate left.
320 RegisterCell
&fill(uint16_t B
, uint16_t E
, const BitValue
&V
);
321 RegisterCell
&cat(const RegisterCell
&RC
); // Concatenate.
322 uint16_t cl(bool B
) const;
323 uint16_t ct(bool B
) const;
325 bool operator== (const RegisterCell
&RC
) const;
326 bool operator!= (const RegisterCell
&RC
) const {
327 return !operator==(RC
);
330 // Replace the ref-to-reg-0 bit values with the given register.
331 RegisterCell
®ify(unsigned R
);
333 // Generate a "ref" cell for the corresponding register. In the resulting
334 // cell each bit will be described as being the same as the corresponding
335 // bit in register Reg (i.e. the cell is "defined" by register Reg).
336 static RegisterCell
self(unsigned Reg
, uint16_t Width
);
337 // Generate a "top" cell of given size.
338 static RegisterCell
top(uint16_t Width
);
339 // Generate a cell that is a "ref" to another cell.
340 static RegisterCell
ref(const RegisterCell
&C
);
343 // The DefaultBitN is here only to avoid frequent reallocation of the
344 // memory in the vector.
345 static const unsigned DefaultBitN
= 32;
346 using BitValueList
= SmallVector
<BitValue
, DefaultBitN
>;
349 friend raw_ostream
&operator<<(raw_ostream
&OS
, const RegisterCell
&RC
);
352 inline bool BitTracker::has(unsigned Reg
) const {
353 return Map
.find(Reg
) != Map
.end();
356 inline const BitTracker::RegisterCell
&
357 BitTracker::lookup(unsigned Reg
) const {
358 CellMapType::const_iterator F
= Map
.find(Reg
);
359 assert(F
!= Map
.end());
363 inline BitTracker::RegisterCell
364 BitTracker::RegisterCell::self(unsigned Reg
, uint16_t Width
) {
365 RegisterCell
RC(Width
);
366 for (uint16_t i
= 0; i
< Width
; ++i
)
367 RC
.Bits
[i
] = BitValue::self(BitRef(Reg
, i
));
371 inline BitTracker::RegisterCell
372 BitTracker::RegisterCell::top(uint16_t Width
) {
373 RegisterCell
RC(Width
);
374 for (uint16_t i
= 0; i
< Width
; ++i
)
375 RC
.Bits
[i
] = BitValue(BitValue::Top
);
379 inline BitTracker::RegisterCell
380 BitTracker::RegisterCell::ref(const RegisterCell
&C
) {
381 uint16_t W
= C
.width();
383 for (unsigned i
= 0; i
< W
; ++i
)
384 RC
[i
] = BitValue::ref(C
[i
]);
388 // A class to evaluate target's instructions and update the cell maps.
389 // This is used internally by the bit tracker. A target that wants to
390 // utilize this should implement the evaluation functions (noted below)
391 // in a subclass of this class.
392 struct BitTracker::MachineEvaluator
{
393 MachineEvaluator(const TargetRegisterInfo
&T
, MachineRegisterInfo
&M
)
395 virtual ~MachineEvaluator() = default;
397 uint16_t getRegBitWidth(const RegisterRef
&RR
) const;
399 RegisterCell
getCell(const RegisterRef
&RR
, const CellMapType
&M
) const;
400 void putCell(const RegisterRef
&RR
, RegisterCell RC
, CellMapType
&M
) const;
402 // A result of any operation should use refs to the source cells, not
403 // the cells directly. This function is a convenience wrapper to quickly
404 // generate a ref for a cell corresponding to a register reference.
405 RegisterCell
getRef(const RegisterRef
&RR
, const CellMapType
&M
) const {
406 RegisterCell RC
= getCell(RR
, M
);
407 return RegisterCell::ref(RC
);
411 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
412 bool isInt(const RegisterCell
&A
) const;
413 // Convert cell to an immediate value.
414 uint64_t toInt(const RegisterCell
&A
) const;
416 // Generate cell from an immediate value.
417 RegisterCell
eIMM(int64_t V
, uint16_t W
) const;
418 RegisterCell
eIMM(const ConstantInt
*CI
) const;
421 RegisterCell
eADD(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
422 RegisterCell
eSUB(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
423 RegisterCell
eMLS(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
424 RegisterCell
eMLU(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
427 RegisterCell
eASL(const RegisterCell
&A1
, uint16_t Sh
) const;
428 RegisterCell
eLSR(const RegisterCell
&A1
, uint16_t Sh
) const;
429 RegisterCell
eASR(const RegisterCell
&A1
, uint16_t Sh
) const;
432 RegisterCell
eAND(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
433 RegisterCell
eORL(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
434 RegisterCell
eXOR(const RegisterCell
&A1
, const RegisterCell
&A2
) const;
435 RegisterCell
eNOT(const RegisterCell
&A1
) const;
437 // Set bit, clear bit.
438 RegisterCell
eSET(const RegisterCell
&A1
, uint16_t BitN
) const;
439 RegisterCell
eCLR(const RegisterCell
&A1
, uint16_t BitN
) const;
441 // Count leading/trailing bits (zeros/ones).
442 RegisterCell
eCLB(const RegisterCell
&A1
, bool B
, uint16_t W
) const;
443 RegisterCell
eCTB(const RegisterCell
&A1
, bool B
, uint16_t W
) const;
445 // Sign/zero extension.
446 RegisterCell
eSXT(const RegisterCell
&A1
, uint16_t FromN
) const;
447 RegisterCell
eZXT(const RegisterCell
&A1
, uint16_t FromN
) const;
450 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
451 // INS R,S,b: take R and replace bits starting from b with S.
452 RegisterCell
eXTR(const RegisterCell
&A1
, uint16_t B
, uint16_t E
) const;
453 RegisterCell
eINS(const RegisterCell
&A1
, const RegisterCell
&A2
,
456 // User-provided functions for individual targets:
458 // Return a sub-register mask that indicates which bits in Reg belong
459 // to the subregister Sub. These bits are assumed to be contiguous in
460 // the super-register, and have the same ordering in the sub-register
461 // as in the super-register. It is valid to call this function with
462 // Sub == 0, in this case, the function should return a mask that spans
463 // the entire register Reg (which is what the default implementation
465 virtual BitMask
mask(Register Reg
, unsigned Sub
) const;
466 // Indicate whether a given register class should be tracked.
467 virtual bool track(const TargetRegisterClass
*RC
) const { return true; }
468 // Evaluate a non-branching machine instruction, given the cell map with
469 // the input values. Place the results in the Outputs map. Return "true"
470 // if evaluation succeeded, "false" otherwise.
471 virtual bool evaluate(const MachineInstr
&MI
, const CellMapType
&Inputs
,
472 CellMapType
&Outputs
) const;
473 // Evaluate a branch, given the cell map with the input values. Fill out
474 // a list of all possible branch targets and indicate (through a flag)
475 // whether the branch could fall-through. Return "true" if this information
476 // has been successfully computed, "false" otherwise.
477 virtual bool evaluate(const MachineInstr
&BI
, const CellMapType
&Inputs
,
478 BranchTargetList
&Targets
, bool &FallsThru
) const = 0;
479 // Given a register class RC, return a register class that should be assumed
480 // when a register from class RC is used with a subregister of index Idx.
481 virtual const TargetRegisterClass
&
482 composeWithSubRegIndex(const TargetRegisterClass
&RC
, unsigned Idx
) const {
485 llvm_unreachable("Unimplemented composeWithSubRegIndex");
487 // Return the size in bits of the physical register Reg.
488 virtual uint16_t getPhysRegBitWidth(MCRegister Reg
) const;
490 const TargetRegisterInfo
&TRI
;
491 MachineRegisterInfo
&MRI
;
494 } // end namespace llvm
496 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H