Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / Hexagon / BitTracker.h
blob08c0359a4b7f06aa5f3e42319ff5afff923ca6f3
1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
12 #include "llvm/ADT/DenseSet.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include <cassert>
18 #include <cstdint>
19 #include <map>
20 #include <queue>
21 #include <set>
22 #include <utility>
24 namespace llvm {
26 class BitVector;
27 class ConstantInt;
28 class MachineRegisterInfo;
29 class MachineBasicBlock;
30 class MachineFunction;
31 class raw_ostream;
32 class TargetRegisterClass;
33 class TargetRegisterInfo;
35 struct BitTracker {
36 struct BitRef;
37 struct RegisterRef;
38 struct BitValue;
39 struct BitMask;
40 struct RegisterCell;
41 struct MachineEvaluator;
43 using BranchTargetList = SetVector<const MachineBasicBlock *>;
44 using CellMapType = std::map<unsigned, RegisterCell>;
46 BitTracker(const MachineEvaluator &E, MachineFunction &F);
47 ~BitTracker();
49 void run();
50 void trace(bool On = false) { Trace = On; }
51 bool has(unsigned Reg) const;
52 const RegisterCell &lookup(unsigned Reg) const;
53 RegisterCell get(RegisterRef RR) const;
54 void put(RegisterRef RR, const RegisterCell &RC);
55 void subst(RegisterRef OldRR, RegisterRef NewRR);
56 bool reached(const MachineBasicBlock *B) const;
57 void visit(const MachineInstr &MI);
59 void print_cells(raw_ostream &OS) const;
61 private:
62 void visitPHI(const MachineInstr &PI);
63 void visitNonBranch(const MachineInstr &MI);
64 void visitBranchesFrom(const MachineInstr &BI);
65 void visitUsesOf(Register Reg);
67 using CFGEdge = std::pair<int, int>;
68 using EdgeSetType = std::set<CFGEdge>;
69 using InstrSetType = std::set<const MachineInstr *>;
70 using EdgeQueueType = std::queue<CFGEdge>;
72 // Priority queue of instructions using modified registers, ordered by
73 // their relative position in a basic block.
74 struct UseQueueType {
75 UseQueueType() : Uses(Dist) {}
77 unsigned size() const {
78 return Uses.size();
80 bool empty() const {
81 return size() == 0;
83 MachineInstr *front() const {
84 return Uses.top();
86 void push(MachineInstr *MI) {
87 if (Set.insert(MI).second)
88 Uses.push(MI);
90 void pop() {
91 Set.erase(front());
92 Uses.pop();
94 void reset() {
95 Dist.clear();
97 private:
98 struct Cmp {
99 Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
100 bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
101 DenseMap<const MachineInstr*,unsigned> &Dist;
103 std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
104 DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
105 DenseMap<const MachineInstr*,unsigned> Dist;
108 void reset();
109 void runEdgeQueue(BitVector &BlockScanned);
110 void runUseQueue();
112 const MachineEvaluator &ME;
113 MachineFunction &MF;
114 MachineRegisterInfo &MRI;
115 CellMapType &Map;
117 EdgeSetType EdgeExec; // Executable flow graph edges.
118 InstrSetType InstrExec; // Executable instructions.
119 UseQueueType UseQ; // Work queue of register uses.
120 EdgeQueueType FlowQ; // Work queue of CFG edges.
121 DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
122 bool Trace; // Enable tracing for debugging.
125 // Abstraction of a reference to bit at position Pos from a register Reg.
126 struct BitTracker::BitRef {
127 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
129 bool operator== (const BitRef &BR) const {
130 // If Reg is 0, disregard Pos.
131 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
134 Register Reg;
135 uint16_t Pos;
138 // Abstraction of a register reference in MachineOperand. It contains the
139 // register number and the subregister index.
140 // FIXME: Consolidate duplicate definitions of RegisterRef
141 struct BitTracker::RegisterRef {
142 RegisterRef(Register R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
143 RegisterRef(const MachineOperand &MO)
144 : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
146 Register Reg;
147 unsigned Sub;
150 // Value that a single bit can take. This is outside of the context of
151 // any register, it is more of an abstraction of the two-element set of
152 // possible bit values. One extension here is the "Ref" type, which
153 // indicates that this bit takes the same value as the bit described by
154 // RefInfo.
155 struct BitTracker::BitValue {
156 enum ValueType {
157 Top, // Bit not yet defined.
158 Zero, // Bit = 0.
159 One, // Bit = 1.
160 Ref // Bit value same as the one described in RefI.
161 // Conceptually, there is no explicit "bottom" value: the lattice's
162 // bottom will be expressed as a "ref to itself", which, in the context
163 // of registers, could be read as "this value of this bit is defined by
164 // this bit".
165 // The ordering is:
166 // x <= Top,
167 // Self <= x, where "Self" is "ref to itself".
168 // This makes the value lattice different for each virtual register
169 // (even for each bit in the same virtual register), since the "bottom"
170 // for one register will be a simple "ref" for another register.
171 // Since we do not store the "Self" bit and register number, the meet
172 // operation will need to take it as a parameter.
174 // In practice there is a special case for values that are not associa-
175 // ted with any specific virtual register. An example would be a value
176 // corresponding to a bit of a physical register, or an intermediate
177 // value obtained in some computation (such as instruction evaluation).
178 // Such cases are identical to the usual Ref type, but the register
179 // number is 0. In such case the Pos field of the reference is ignored.
181 // What is worthy of notice is that in value V (that is a "ref"), as long
182 // as the RefI.Reg is not 0, it may actually be the same register as the
183 // one in which V will be contained. If the RefI.Pos refers to the posi-
184 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
185 // otherwise V is taken to be identical to the referenced bit of the
186 // same register.
187 // If RefI.Reg is 0, however, such a reference to the same register is
188 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0
189 // is treated as "bottom".
191 ValueType Type;
192 BitRef RefI;
194 BitValue(ValueType T = Top) : Type(T) {}
195 BitValue(bool B) : Type(B ? One : Zero) {}
196 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
198 bool operator== (const BitValue &V) const {
199 if (Type != V.Type)
200 return false;
201 if (Type == Ref && !(RefI == V.RefI))
202 return false;
203 return true;
205 bool operator!= (const BitValue &V) const {
206 return !operator==(V);
209 bool is(unsigned T) const {
210 assert(T == 0 || T == 1);
211 return T == 0 ? Type == Zero
212 : (T == 1 ? Type == One : false);
215 // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
216 // (1) x.x = x
217 // (2) x.y = y.x
218 // (3) x.(y.z) = (x.y).z
219 // (4) x.T = x (i.e. T = "top")
220 // (5) x.B = B (i.e. B = "bottom")
222 // This "meet" function will update the value of the "*this" object with
223 // the newly calculated one, and return "true" if the value of *this has
224 // changed, and "false" otherwise.
225 // To prove that it satisfies the conditions (1)-(5), it is sufficient
226 // to show that a relation
227 // x <= y <=> x.y = x
228 // defines a partial order (i.e. that "meet" is same as "infimum").
229 bool meet(const BitValue &V, const BitRef &Self) {
230 // First, check the cases where there is nothing to be done.
231 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
232 return false;
233 if (V.Type == Top) // This.meet(Top) = This
234 return false;
235 if (*this == V) // This.meet(This) = This
236 return false;
238 // At this point, we know that the value of "this" will change.
239 // If it is Top, it will become the same as V, otherwise it will
240 // become "bottom" (i.e. Self).
241 if (Type == Top) {
242 Type = V.Type;
243 RefI = V.RefI; // This may be irrelevant, but copy anyway.
244 return true;
246 // Become "bottom".
247 Type = Ref;
248 RefI = Self;
249 return true;
252 // Create a reference to the bit value V.
253 static BitValue ref(const BitValue &V);
254 // Create a "self".
255 static BitValue self(const BitRef &Self = BitRef());
257 bool num() const {
258 return Type == Zero || Type == One;
261 operator bool() const {
262 assert(Type == Zero || Type == One);
263 return Type == One;
266 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
269 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
270 inline BitTracker::BitValue
271 BitTracker::BitValue::ref(const BitValue &V) {
272 if (V.Type != Ref)
273 return BitValue(V.Type);
274 if (V.RefI.Reg != 0)
275 return BitValue(V.RefI.Reg, V.RefI.Pos);
276 return self();
279 inline BitTracker::BitValue
280 BitTracker::BitValue::self(const BitRef &Self) {
281 return BitValue(Self.Reg, Self.Pos);
284 // A sequence of bits starting from index B up to and including index E.
285 // If E < B, the mask represents two sections: [0..E] and [B..W) where
286 // W is the width of the register.
287 struct BitTracker::BitMask {
288 BitMask() = default;
289 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
291 uint16_t first() const { return B; }
292 uint16_t last() const { return E; }
294 private:
295 uint16_t B = 0;
296 uint16_t E = 0;
299 // Representation of a register: a list of BitValues.
300 struct BitTracker::RegisterCell {
301 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
303 uint16_t width() const {
304 return Bits.size();
307 const BitValue &operator[](uint16_t BitN) const {
308 assert(BitN < Bits.size());
309 return Bits[BitN];
311 BitValue &operator[](uint16_t BitN) {
312 assert(BitN < Bits.size());
313 return Bits[BitN];
316 bool meet(const RegisterCell &RC, Register SelfR);
317 RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
318 RegisterCell extract(const BitMask &M) const; // Returns a new cell.
319 RegisterCell &rol(uint16_t Sh); // Rotate left.
320 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
321 RegisterCell &cat(const RegisterCell &RC); // Concatenate.
322 uint16_t cl(bool B) const;
323 uint16_t ct(bool B) const;
325 bool operator== (const RegisterCell &RC) const;
326 bool operator!= (const RegisterCell &RC) const {
327 return !operator==(RC);
330 // Replace the ref-to-reg-0 bit values with the given register.
331 RegisterCell &regify(unsigned R);
333 // Generate a "ref" cell for the corresponding register. In the resulting
334 // cell each bit will be described as being the same as the corresponding
335 // bit in register Reg (i.e. the cell is "defined" by register Reg).
336 static RegisterCell self(unsigned Reg, uint16_t Width);
337 // Generate a "top" cell of given size.
338 static RegisterCell top(uint16_t Width);
339 // Generate a cell that is a "ref" to another cell.
340 static RegisterCell ref(const RegisterCell &C);
342 private:
343 // The DefaultBitN is here only to avoid frequent reallocation of the
344 // memory in the vector.
345 static const unsigned DefaultBitN = 32;
346 using BitValueList = SmallVector<BitValue, DefaultBitN>;
347 BitValueList Bits;
349 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
352 inline bool BitTracker::has(unsigned Reg) const {
353 return Map.find(Reg) != Map.end();
356 inline const BitTracker::RegisterCell&
357 BitTracker::lookup(unsigned Reg) const {
358 CellMapType::const_iterator F = Map.find(Reg);
359 assert(F != Map.end());
360 return F->second;
363 inline BitTracker::RegisterCell
364 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
365 RegisterCell RC(Width);
366 for (uint16_t i = 0; i < Width; ++i)
367 RC.Bits[i] = BitValue::self(BitRef(Reg, i));
368 return RC;
371 inline BitTracker::RegisterCell
372 BitTracker::RegisterCell::top(uint16_t Width) {
373 RegisterCell RC(Width);
374 for (uint16_t i = 0; i < Width; ++i)
375 RC.Bits[i] = BitValue(BitValue::Top);
376 return RC;
379 inline BitTracker::RegisterCell
380 BitTracker::RegisterCell::ref(const RegisterCell &C) {
381 uint16_t W = C.width();
382 RegisterCell RC(W);
383 for (unsigned i = 0; i < W; ++i)
384 RC[i] = BitValue::ref(C[i]);
385 return RC;
388 // A class to evaluate target's instructions and update the cell maps.
389 // This is used internally by the bit tracker. A target that wants to
390 // utilize this should implement the evaluation functions (noted below)
391 // in a subclass of this class.
392 struct BitTracker::MachineEvaluator {
393 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
394 : TRI(T), MRI(M) {}
395 virtual ~MachineEvaluator() = default;
397 uint16_t getRegBitWidth(const RegisterRef &RR) const;
399 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
400 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
402 // A result of any operation should use refs to the source cells, not
403 // the cells directly. This function is a convenience wrapper to quickly
404 // generate a ref for a cell corresponding to a register reference.
405 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
406 RegisterCell RC = getCell(RR, M);
407 return RegisterCell::ref(RC);
410 // Helper functions.
411 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
412 bool isInt(const RegisterCell &A) const;
413 // Convert cell to an immediate value.
414 uint64_t toInt(const RegisterCell &A) const;
416 // Generate cell from an immediate value.
417 RegisterCell eIMM(int64_t V, uint16_t W) const;
418 RegisterCell eIMM(const ConstantInt *CI) const;
420 // Arithmetic.
421 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
422 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
423 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
424 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
426 // Shifts.
427 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
428 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
429 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
431 // Logical.
432 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
433 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
434 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
435 RegisterCell eNOT(const RegisterCell &A1) const;
437 // Set bit, clear bit.
438 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
439 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
441 // Count leading/trailing bits (zeros/ones).
442 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
443 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
445 // Sign/zero extension.
446 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
447 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
449 // Extract/insert
450 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
451 // INS R,S,b: take R and replace bits starting from b with S.
452 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
453 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
454 uint16_t AtN) const;
456 // User-provided functions for individual targets:
458 // Return a sub-register mask that indicates which bits in Reg belong
459 // to the subregister Sub. These bits are assumed to be contiguous in
460 // the super-register, and have the same ordering in the sub-register
461 // as in the super-register. It is valid to call this function with
462 // Sub == 0, in this case, the function should return a mask that spans
463 // the entire register Reg (which is what the default implementation
464 // does).
465 virtual BitMask mask(Register Reg, unsigned Sub) const;
466 // Indicate whether a given register class should be tracked.
467 virtual bool track(const TargetRegisterClass *RC) const { return true; }
468 // Evaluate a non-branching machine instruction, given the cell map with
469 // the input values. Place the results in the Outputs map. Return "true"
470 // if evaluation succeeded, "false" otherwise.
471 virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
472 CellMapType &Outputs) const;
473 // Evaluate a branch, given the cell map with the input values. Fill out
474 // a list of all possible branch targets and indicate (through a flag)
475 // whether the branch could fall-through. Return "true" if this information
476 // has been successfully computed, "false" otherwise.
477 virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
478 BranchTargetList &Targets, bool &FallsThru) const = 0;
479 // Given a register class RC, return a register class that should be assumed
480 // when a register from class RC is used with a subregister of index Idx.
481 virtual const TargetRegisterClass&
482 composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
483 if (Idx == 0)
484 return RC;
485 llvm_unreachable("Unimplemented composeWithSubRegIndex");
487 // Return the size in bits of the physical register Reg.
488 virtual uint16_t getPhysRegBitWidth(MCRegister Reg) const;
490 const TargetRegisterInfo &TRI;
491 MachineRegisterInfo &MRI;
494 } // end namespace llvm
496 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H