Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / Lanai / LanaiISelLowering.cpp
blobf6763a35cc0d5086ab161c900ba7af9d0c44abbb
1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LanaiTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "LanaiISelLowering.h"
14 #include "Lanai.h"
15 #include "LanaiCondCode.h"
16 #include "LanaiMachineFunctionInfo.h"
17 #include "LanaiSubtarget.h"
18 #include "LanaiTargetObjectFile.h"
19 #include "MCTargetDesc/LanaiBaseInfo.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetCallingConv.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/CodeGenTypes/MachineValueType.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cmath>
51 #include <cstdint>
52 #include <cstdlib>
53 #include <utility>
55 #define DEBUG_TYPE "lanai-lower"
57 using namespace llvm;
59 // Limit on number of instructions the lowered multiplication may have before a
60 // call to the library function should be generated instead. The threshold is
61 // currently set to 14 as this was the smallest threshold that resulted in all
62 // constant multiplications being lowered. A threshold of 5 covered all cases
63 // except for one multiplication which required 14. mulsi3 requires 16
64 // instructions (including the prologue and epilogue but excluding instructions
65 // at call site). Until we can inline mulsi3, generating at most 14 instructions
66 // will be faster than invoking mulsi3.
67 static cl::opt<int> LanaiLowerConstantMulThreshold(
68 "lanai-constant-mul-threshold", cl::Hidden,
69 cl::desc("Maximum number of instruction to generate when lowering constant "
70 "multiplication instead of calling library function [default=14]"),
71 cl::init(14));
73 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74 const LanaiSubtarget &STI)
75 : TargetLowering(TM) {
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
79 // Compute derived properties from the register classes
80 TRI = STI.getRegisterInfo();
81 computeRegisterProperties(TRI);
83 setStackPointerRegisterToSaveRestore(Lanai::SP);
85 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88 setOperationAction(ISD::SETCC, MVT::i32, Custom);
89 setOperationAction(ISD::SELECT, MVT::i32, Expand);
90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
92 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
97 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
101 setOperationAction(ISD::VASTART, MVT::Other, Custom);
102 setOperationAction(ISD::VAARG, MVT::Other, Expand);
103 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104 setOperationAction(ISD::VAEND, MVT::Other, Expand);
106 setOperationAction(ISD::SDIV, MVT::i32, Expand);
107 setOperationAction(ISD::UDIV, MVT::i32, Expand);
108 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110 setOperationAction(ISD::SREM, MVT::i32, Expand);
111 setOperationAction(ISD::UREM, MVT::i32, Expand);
113 setOperationAction(ISD::MUL, MVT::i32, Custom);
114 setOperationAction(ISD::MULHU, MVT::i32, Expand);
115 setOperationAction(ISD::MULHS, MVT::i32, Expand);
116 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
119 setOperationAction(ISD::ROTR, MVT::i32, Expand);
120 setOperationAction(ISD::ROTL, MVT::i32, Expand);
121 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
125 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127 setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128 setOperationAction(ISD::CTTZ, MVT::i32, Legal);
130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
134 // Extended load operations for i1 types must be promoted
135 for (MVT VT : MVT::integer_valuetypes()) {
136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141 setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR});
143 // Function alignments
144 setMinFunctionAlignment(Align(4));
145 setPrefFunctionAlignment(Align(4));
147 setJumpIsExpensive(true);
149 // TODO: Setting the minimum jump table entries needed before a
150 // switch is transformed to a jump table to 100 to avoid creating jump tables
151 // as this was causing bad performance compared to a large group of if
152 // statements. Re-evaluate this on new benchmarks.
153 setMinimumJumpTableEntries(100);
155 // Use fast calling convention for library functions.
156 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
157 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
160 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
161 MaxStoresPerMemsetOptSize = 8;
162 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
163 MaxStoresPerMemcpyOptSize = 8;
164 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
165 MaxStoresPerMemmoveOptSize = 8;
167 // Booleans always contain 0 or 1.
168 setBooleanContents(ZeroOrOneBooleanContent);
170 setMaxAtomicSizeInBitsSupported(0);
173 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
174 SelectionDAG &DAG) const {
175 switch (Op.getOpcode()) {
176 case ISD::MUL:
177 return LowerMUL(Op, DAG);
178 case ISD::BR_CC:
179 return LowerBR_CC(Op, DAG);
180 case ISD::ConstantPool:
181 return LowerConstantPool(Op, DAG);
182 case ISD::GlobalAddress:
183 return LowerGlobalAddress(Op, DAG);
184 case ISD::BlockAddress:
185 return LowerBlockAddress(Op, DAG);
186 case ISD::JumpTable:
187 return LowerJumpTable(Op, DAG);
188 case ISD::SELECT_CC:
189 return LowerSELECT_CC(Op, DAG);
190 case ISD::SETCC:
191 return LowerSETCC(Op, DAG);
192 case ISD::SHL_PARTS:
193 return LowerSHL_PARTS(Op, DAG);
194 case ISD::SRL_PARTS:
195 return LowerSRL_PARTS(Op, DAG);
196 case ISD::VASTART:
197 return LowerVASTART(Op, DAG);
198 case ISD::DYNAMIC_STACKALLOC:
199 return LowerDYNAMIC_STACKALLOC(Op, DAG);
200 case ISD::RETURNADDR:
201 return LowerRETURNADDR(Op, DAG);
202 case ISD::FRAMEADDR:
203 return LowerFRAMEADDR(Op, DAG);
204 default:
205 llvm_unreachable("unimplemented operand");
209 //===----------------------------------------------------------------------===//
210 // Lanai Inline Assembly Support
211 //===----------------------------------------------------------------------===//
213 Register LanaiTargetLowering::getRegisterByName(
214 const char *RegName, LLT /*VT*/,
215 const MachineFunction & /*MF*/) const {
216 // Only unallocatable registers should be matched here.
217 Register Reg = StringSwitch<unsigned>(RegName)
218 .Case("pc", Lanai::PC)
219 .Case("sp", Lanai::SP)
220 .Case("fp", Lanai::FP)
221 .Case("rr1", Lanai::RR1)
222 .Case("r10", Lanai::R10)
223 .Case("rr2", Lanai::RR2)
224 .Case("r11", Lanai::R11)
225 .Case("rca", Lanai::RCA)
226 .Default(0);
228 if (Reg)
229 return Reg;
230 report_fatal_error("Invalid register name global variable");
233 std::pair<unsigned, const TargetRegisterClass *>
234 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
235 StringRef Constraint,
236 MVT VT) const {
237 if (Constraint.size() == 1)
238 // GCC Constraint Letters
239 switch (Constraint[0]) {
240 case 'r': // GENERAL_REGS
241 return std::make_pair(0U, &Lanai::GPRRegClass);
242 default:
243 break;
246 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
249 // Examine constraint type and operand type and determine a weight value.
250 // This object must already have been set up with the operand type
251 // and the current alternative constraint selected.
252 TargetLowering::ConstraintWeight
253 LanaiTargetLowering::getSingleConstraintMatchWeight(
254 AsmOperandInfo &Info, const char *Constraint) const {
255 ConstraintWeight Weight = CW_Invalid;
256 Value *CallOperandVal = Info.CallOperandVal;
257 // If we don't have a value, we can't do a match,
258 // but allow it at the lowest weight.
259 if (CallOperandVal == nullptr)
260 return CW_Default;
261 // Look at the constraint type.
262 switch (*Constraint) {
263 case 'I': // signed 16 bit immediate
264 case 'J': // integer zero
265 case 'K': // unsigned 16 bit immediate
266 case 'L': // immediate in the range 0 to 31
267 case 'M': // signed 32 bit immediate where lower 16 bits are 0
268 case 'N': // signed 26 bit immediate
269 case 'O': // integer zero
270 if (isa<ConstantInt>(CallOperandVal))
271 Weight = CW_Constant;
272 break;
273 default:
274 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
275 break;
277 return Weight;
280 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
281 // vector. If it is invalid, don't add anything to Ops.
282 void LanaiTargetLowering::LowerAsmOperandForConstraint(
283 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
284 SelectionDAG &DAG) const {
285 SDValue Result;
287 // Only support length 1 constraints for now.
288 if (Constraint.size() > 1)
289 return;
291 char ConstraintLetter = Constraint[0];
292 switch (ConstraintLetter) {
293 case 'I': // Signed 16 bit constant
294 // If this fails, the parent routine will give an error
295 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
296 if (isInt<16>(C->getSExtValue())) {
297 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
298 Op.getValueType());
299 break;
302 return;
303 case 'J': // integer zero
304 case 'O':
305 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
306 if (C->getZExtValue() == 0) {
307 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
308 break;
311 return;
312 case 'K': // unsigned 16 bit immediate
313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
314 if (isUInt<16>(C->getZExtValue())) {
315 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
316 Op.getValueType());
317 break;
320 return;
321 case 'L': // immediate in the range 0 to 31
322 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
323 if (C->getZExtValue() <= 31) {
324 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
325 Op.getValueType());
326 break;
329 return;
330 case 'M': // signed 32 bit immediate where lower 16 bits are 0
331 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
332 int64_t Val = C->getSExtValue();
333 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
334 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
335 break;
338 return;
339 case 'N': // signed 26 bit immediate
340 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
341 int64_t Val = C->getSExtValue();
342 if ((Val >= -33554432) && (Val <= 33554431)) {
343 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
344 break;
347 return;
348 default:
349 break; // This will fall through to the generic implementation
352 if (Result.getNode()) {
353 Ops.push_back(Result);
354 return;
357 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
360 //===----------------------------------------------------------------------===//
361 // Calling Convention Implementation
362 //===----------------------------------------------------------------------===//
364 #include "LanaiGenCallingConv.inc"
366 static unsigned NumFixedArgs;
367 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
368 CCValAssign::LocInfo LocInfo,
369 ISD::ArgFlagsTy ArgFlags, CCState &State) {
370 // Handle fixed arguments with default CC.
371 // Note: Both the default and fast CC handle VarArg the same and hence the
372 // calling convention of the function is not considered here.
373 if (ValNo < NumFixedArgs) {
374 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
377 // Promote i8/i16 args to i32
378 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
379 LocVT = MVT::i32;
380 if (ArgFlags.isSExt())
381 LocInfo = CCValAssign::SExt;
382 else if (ArgFlags.isZExt())
383 LocInfo = CCValAssign::ZExt;
384 else
385 LocInfo = CCValAssign::AExt;
388 // VarArgs get passed on stack
389 unsigned Offset = State.AllocateStack(4, Align(4));
390 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
391 return false;
394 SDValue LanaiTargetLowering::LowerFormalArguments(
395 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
396 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
397 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
398 switch (CallConv) {
399 case CallingConv::C:
400 case CallingConv::Fast:
401 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
402 default:
403 report_fatal_error("Unsupported calling convention");
407 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
408 SmallVectorImpl<SDValue> &InVals) const {
409 SelectionDAG &DAG = CLI.DAG;
410 SDLoc &DL = CLI.DL;
411 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
412 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
413 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
414 SDValue Chain = CLI.Chain;
415 SDValue Callee = CLI.Callee;
416 bool &IsTailCall = CLI.IsTailCall;
417 CallingConv::ID CallConv = CLI.CallConv;
418 bool IsVarArg = CLI.IsVarArg;
420 // Lanai target does not yet support tail call optimization.
421 IsTailCall = false;
423 switch (CallConv) {
424 case CallingConv::Fast:
425 case CallingConv::C:
426 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
427 OutVals, Ins, DL, DAG, InVals);
428 default:
429 report_fatal_error("Unsupported calling convention");
433 // LowerCCCArguments - transform physical registers into virtual registers and
434 // generate load operations for arguments places on the stack.
435 SDValue LanaiTargetLowering::LowerCCCArguments(
436 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
437 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
438 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
439 MachineFunction &MF = DAG.getMachineFunction();
440 MachineFrameInfo &MFI = MF.getFrameInfo();
441 MachineRegisterInfo &RegInfo = MF.getRegInfo();
442 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
444 // Assign locations to all of the incoming arguments.
445 SmallVector<CCValAssign, 16> ArgLocs;
446 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
447 *DAG.getContext());
448 if (CallConv == CallingConv::Fast) {
449 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
450 } else {
451 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
454 for (const CCValAssign &VA : ArgLocs) {
455 if (VA.isRegLoc()) {
456 // Arguments passed in registers
457 EVT RegVT = VA.getLocVT();
458 switch (RegVT.getSimpleVT().SimpleTy) {
459 case MVT::i32: {
460 Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
461 RegInfo.addLiveIn(VA.getLocReg(), VReg);
462 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
464 // If this is an 8/16-bit value, it is really passed promoted to 32
465 // bits. Insert an assert[sz]ext to capture this, then truncate to the
466 // right size.
467 if (VA.getLocInfo() == CCValAssign::SExt)
468 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
469 DAG.getValueType(VA.getValVT()));
470 else if (VA.getLocInfo() == CCValAssign::ZExt)
471 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
472 DAG.getValueType(VA.getValVT()));
474 if (VA.getLocInfo() != CCValAssign::Full)
475 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
477 InVals.push_back(ArgValue);
478 break;
480 default:
481 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
482 << RegVT << "\n");
483 llvm_unreachable("unhandled argument type");
485 } else {
486 // Only arguments passed on the stack should make it here.
487 assert(VA.isMemLoc());
488 // Load the argument to a virtual register
489 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
490 // Check that the argument fits in stack slot
491 if (ObjSize > 4) {
492 errs() << "LowerFormalArguments Unhandled argument type: "
493 << VA.getLocVT() << "\n";
495 // Create the frame index object for this incoming parameter...
496 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
498 // Create the SelectionDAG nodes corresponding to a load
499 // from this parameter
500 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
501 InVals.push_back(DAG.getLoad(
502 VA.getLocVT(), DL, Chain, FIN,
503 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
507 // The Lanai ABI for returning structs by value requires that we copy
508 // the sret argument into rv for the return. Save the argument into
509 // a virtual register so that we can access it from the return points.
510 if (MF.getFunction().hasStructRetAttr()) {
511 Register Reg = LanaiMFI->getSRetReturnReg();
512 if (!Reg) {
513 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
514 LanaiMFI->setSRetReturnReg(Reg);
516 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
517 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
520 if (IsVarArg) {
521 // Record the frame index of the first variable argument
522 // which is a value necessary to VASTART.
523 int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true);
524 LanaiMFI->setVarArgsFrameIndex(FI);
527 return Chain;
530 bool LanaiTargetLowering::CanLowerReturn(
531 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
532 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
533 SmallVector<CCValAssign, 16> RVLocs;
534 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
536 return CCInfo.CheckReturn(Outs, RetCC_Lanai32);
539 SDValue
540 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
541 bool IsVarArg,
542 const SmallVectorImpl<ISD::OutputArg> &Outs,
543 const SmallVectorImpl<SDValue> &OutVals,
544 const SDLoc &DL, SelectionDAG &DAG) const {
545 // CCValAssign - represent the assignment of the return value to a location
546 SmallVector<CCValAssign, 16> RVLocs;
548 // CCState - Info about the registers and stack slot.
549 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
550 *DAG.getContext());
552 // Analize return values.
553 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
555 SDValue Glue;
556 SmallVector<SDValue, 4> RetOps(1, Chain);
558 // Copy the result values into the output registers.
559 for (unsigned i = 0; i != RVLocs.size(); ++i) {
560 CCValAssign &VA = RVLocs[i];
561 assert(VA.isRegLoc() && "Can only return in registers!");
563 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue);
565 // Guarantee that all emitted copies are stuck together with flags.
566 Glue = Chain.getValue(1);
567 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
570 // The Lanai ABI for returning structs by value requires that we copy
571 // the sret argument into rv for the return. We saved the argument into
572 // a virtual register in the entry block, so now we copy the value out
573 // and into rv.
574 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
575 MachineFunction &MF = DAG.getMachineFunction();
576 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
577 Register Reg = LanaiMFI->getSRetReturnReg();
578 assert(Reg &&
579 "SRetReturnReg should have been set in LowerFormalArguments().");
580 SDValue Val =
581 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
583 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue);
584 Glue = Chain.getValue(1);
585 RetOps.push_back(
586 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
589 RetOps[0] = Chain; // Update chain
591 unsigned Opc = LanaiISD::RET_GLUE;
592 if (Glue.getNode())
593 RetOps.push_back(Glue);
595 // Return Void
596 return DAG.getNode(Opc, DL, MVT::Other,
597 ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
600 // LowerCCCCallTo - functions arguments are copied from virtual regs to
601 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
602 SDValue LanaiTargetLowering::LowerCCCCallTo(
603 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
604 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
605 const SmallVectorImpl<SDValue> &OutVals,
606 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
607 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
608 // Analyze operands of the call, assigning locations to each operand.
609 SmallVector<CCValAssign, 16> ArgLocs;
610 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
611 *DAG.getContext());
612 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
613 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
615 NumFixedArgs = 0;
616 if (IsVarArg && G) {
617 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
618 if (CalleeFn)
619 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
621 if (NumFixedArgs)
622 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
623 else {
624 if (CallConv == CallingConv::Fast)
625 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
626 else
627 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
630 // Get a count of how many bytes are to be pushed on the stack.
631 unsigned NumBytes = CCInfo.getStackSize();
633 // Create local copies for byval args.
634 SmallVector<SDValue, 8> ByValArgs;
635 for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
636 ISD::ArgFlagsTy Flags = Outs[I].Flags;
637 if (!Flags.isByVal())
638 continue;
640 SDValue Arg = OutVals[I];
641 unsigned Size = Flags.getByValSize();
642 Align Alignment = Flags.getNonZeroByValAlign();
644 int FI = MFI.CreateStackObject(Size, Alignment, false);
645 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
646 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
648 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
649 /*IsVolatile=*/false,
650 /*AlwaysInline=*/false,
651 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
652 MachinePointerInfo());
653 ByValArgs.push_back(FIPtr);
656 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
658 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
659 SmallVector<SDValue, 12> MemOpChains;
660 SDValue StackPtr;
662 // Walk the register/memloc assignments, inserting copies/loads.
663 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
664 CCValAssign &VA = ArgLocs[I];
665 SDValue Arg = OutVals[I];
666 ISD::ArgFlagsTy Flags = Outs[I].Flags;
668 // Promote the value if needed.
669 switch (VA.getLocInfo()) {
670 case CCValAssign::Full:
671 break;
672 case CCValAssign::SExt:
673 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
674 break;
675 case CCValAssign::ZExt:
676 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
677 break;
678 case CCValAssign::AExt:
679 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
680 break;
681 default:
682 llvm_unreachable("Unknown loc info!");
685 // Use local copy if it is a byval arg.
686 if (Flags.isByVal())
687 Arg = ByValArgs[J++];
689 // Arguments that can be passed on register must be kept at RegsToPass
690 // vector
691 if (VA.isRegLoc()) {
692 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
693 } else {
694 assert(VA.isMemLoc());
696 if (StackPtr.getNode() == nullptr)
697 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
698 getPointerTy(DAG.getDataLayout()));
700 SDValue PtrOff =
701 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
702 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
704 MemOpChains.push_back(
705 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
709 // Transform all store nodes into one single node because all store nodes are
710 // independent of each other.
711 if (!MemOpChains.empty())
712 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
713 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
715 SDValue InGlue;
717 // Build a sequence of copy-to-reg nodes chained together with token chain and
718 // flag operands which copy the outgoing args into registers. The InGlue in
719 // necessary since all emitted instructions must be stuck together.
720 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
721 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
722 RegsToPass[I].second, InGlue);
723 InGlue = Chain.getValue(1);
726 // If the callee is a GlobalAddress node (quite common, every direct call is)
727 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
728 // Likewise ExternalSymbol -> TargetExternalSymbol.
729 uint8_t OpFlag = LanaiII::MO_NO_FLAG;
730 if (G) {
731 Callee = DAG.getTargetGlobalAddress(
732 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
733 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
734 Callee = DAG.getTargetExternalSymbol(
735 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
738 // Returns a chain & a flag for retval copy to use.
739 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
740 SmallVector<SDValue, 8> Ops;
741 Ops.push_back(Chain);
742 Ops.push_back(Callee);
744 // Add a register mask operand representing the call-preserved registers.
745 // TODO: Should return-twice functions be handled?
746 const uint32_t *Mask =
747 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
748 assert(Mask && "Missing call preserved mask for calling convention");
749 Ops.push_back(DAG.getRegisterMask(Mask));
751 // Add argument registers to the end of the list so that they are
752 // known live into the call.
753 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
754 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
755 RegsToPass[I].second.getValueType()));
757 if (InGlue.getNode())
758 Ops.push_back(InGlue);
760 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
761 ArrayRef<SDValue>(&Ops[0], Ops.size()));
762 InGlue = Chain.getValue(1);
764 // Create the CALLSEQ_END node.
765 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
766 InGlue = Chain.getValue(1);
768 // Handle result values, copying them out of physregs into vregs that we
769 // return.
770 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
771 InVals);
774 // LowerCallResult - Lower the result values of a call into the
775 // appropriate copies out of appropriate physical registers.
776 SDValue LanaiTargetLowering::LowerCallResult(
777 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
778 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
779 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
780 // Assign locations to each value returned by this call.
781 SmallVector<CCValAssign, 16> RVLocs;
782 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
783 *DAG.getContext());
785 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
787 // Copy all of the result registers out of their specified physreg.
788 for (unsigned I = 0; I != RVLocs.size(); ++I) {
789 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
790 RVLocs[I].getValVT(), InGlue)
791 .getValue(1);
792 InGlue = Chain.getValue(2);
793 InVals.push_back(Chain.getValue(0));
796 return Chain;
799 //===----------------------------------------------------------------------===//
800 // Custom Lowerings
801 //===----------------------------------------------------------------------===//
803 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
804 SDValue &RHS, SelectionDAG &DAG) {
805 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
807 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
808 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
809 // and Lanai only supports integer comparisons, so only provide definitions
810 // for them.
811 switch (SetCCOpcode) {
812 case ISD::SETEQ:
813 return LPCC::ICC_EQ;
814 case ISD::SETGT:
815 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
816 if (RHSC->getZExtValue() == 0xFFFFFFFF) {
817 // X > -1 -> X >= 0 -> is_plus(X)
818 RHS = DAG.getConstant(0, DL, RHS.getValueType());
819 return LPCC::ICC_PL;
821 return LPCC::ICC_GT;
822 case ISD::SETUGT:
823 return LPCC::ICC_UGT;
824 case ISD::SETLT:
825 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
826 if (RHSC->getZExtValue() == 0)
827 // X < 0 -> is_minus(X)
828 return LPCC::ICC_MI;
829 return LPCC::ICC_LT;
830 case ISD::SETULT:
831 return LPCC::ICC_ULT;
832 case ISD::SETLE:
833 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
834 if (RHSC->getZExtValue() == 0xFFFFFFFF) {
835 // X <= -1 -> X < 0 -> is_minus(X)
836 RHS = DAG.getConstant(0, DL, RHS.getValueType());
837 return LPCC::ICC_MI;
839 return LPCC::ICC_LE;
840 case ISD::SETULE:
841 return LPCC::ICC_ULE;
842 case ISD::SETGE:
843 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
844 if (RHSC->getZExtValue() == 0)
845 // X >= 0 -> is_plus(X)
846 return LPCC::ICC_PL;
847 return LPCC::ICC_GE;
848 case ISD::SETUGE:
849 return LPCC::ICC_UGE;
850 case ISD::SETNE:
851 return LPCC::ICC_NE;
852 case ISD::SETONE:
853 case ISD::SETUNE:
854 case ISD::SETOGE:
855 case ISD::SETOLE:
856 case ISD::SETOLT:
857 case ISD::SETOGT:
858 case ISD::SETOEQ:
859 case ISD::SETUEQ:
860 case ISD::SETO:
861 case ISD::SETUO:
862 llvm_unreachable("Unsupported comparison.");
863 default:
864 llvm_unreachable("Unknown integer condition code!");
868 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
869 SDValue Chain = Op.getOperand(0);
870 SDValue Cond = Op.getOperand(1);
871 SDValue LHS = Op.getOperand(2);
872 SDValue RHS = Op.getOperand(3);
873 SDValue Dest = Op.getOperand(4);
874 SDLoc DL(Op);
876 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
877 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
878 SDValue Glue =
879 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
881 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
882 TargetCC, Glue);
885 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
886 EVT VT = Op->getValueType(0);
887 if (VT != MVT::i32)
888 return SDValue();
890 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
891 if (!C)
892 return SDValue();
894 int64_t MulAmt = C->getSExtValue();
895 int32_t HighestOne = -1;
896 uint32_t NonzeroEntries = 0;
897 int SignedDigit[32] = {0};
899 // Convert to non-adjacent form (NAF) signed-digit representation.
900 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
901 // minimal Hamming weight representation of a number (on average 1/3 of the
902 // digits will be non-zero vs 1/2 for regular binary representation). And as
903 // the non-zero digits will be the only digits contributing to the instruction
904 // count, this is desirable. The next loop converts it to NAF (following the
905 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
906 // choosing the non-zero coefficients such that the resulting quotient is
907 // divisible by 2 which will cause the next coefficient to be zero.
908 int64_t E = std::abs(MulAmt);
909 int S = (MulAmt < 0 ? -1 : 1);
910 int I = 0;
911 while (E > 0) {
912 int ZI = 0;
913 if (E % 2 == 1) {
914 ZI = 2 - (E % 4);
915 if (ZI != 0)
916 ++NonzeroEntries;
918 SignedDigit[I] = S * ZI;
919 if (SignedDigit[I] == 1)
920 HighestOne = I;
921 E = (E - ZI) / 2;
922 ++I;
925 // Compute number of instructions required. Due to differences in lowering
926 // between the different processors this count is not exact.
927 // Start by assuming a shift and a add/sub for every non-zero entry (hence
928 // every non-zero entry requires 1 shift and 1 add/sub except for the first
929 // entry).
930 int32_t InstrRequired = 2 * NonzeroEntries - 1;
931 // Correct possible over-adding due to shift by 0 (which is not emitted).
932 if (std::abs(MulAmt) % 2 == 1)
933 --InstrRequired;
934 // Return if the form generated would exceed the instruction threshold.
935 if (InstrRequired > LanaiLowerConstantMulThreshold)
936 return SDValue();
938 SDValue Res;
939 SDLoc DL(Op);
940 SDValue V = Op->getOperand(0);
942 // Initialize the running sum. Set the running sum to the maximal shifted
943 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
944 // term NAF).
945 if (HighestOne == -1)
946 Res = DAG.getConstant(0, DL, MVT::i32);
947 else {
948 Res = DAG.getNode(ISD::SHL, DL, VT, V,
949 DAG.getConstant(HighestOne, DL, MVT::i32));
950 SignedDigit[HighestOne] = 0;
953 // Assemble multiplication from shift, add, sub using NAF form and running
954 // sum.
955 for (unsigned int I = 0; I < std::size(SignedDigit); ++I) {
956 if (SignedDigit[I] == 0)
957 continue;
959 // Shifted multiplicand (v<<i).
960 SDValue Op =
961 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
962 if (SignedDigit[I] == 1)
963 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
964 else if (SignedDigit[I] == -1)
965 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
967 return Res;
970 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
971 SDValue LHS = Op.getOperand(0);
972 SDValue RHS = Op.getOperand(1);
973 SDValue Cond = Op.getOperand(2);
974 SDLoc DL(Op);
976 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
977 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
978 SDValue Glue =
979 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
981 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue);
984 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
985 SelectionDAG &DAG) const {
986 SDValue LHS = Op.getOperand(0);
987 SDValue RHS = Op.getOperand(1);
988 SDValue TrueV = Op.getOperand(2);
989 SDValue FalseV = Op.getOperand(3);
990 SDValue Cond = Op.getOperand(4);
991 SDLoc DL(Op);
993 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
994 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
995 SDValue Glue =
996 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
998 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
999 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1000 Glue);
1003 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1004 MachineFunction &MF = DAG.getMachineFunction();
1005 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1007 SDLoc DL(Op);
1008 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1009 getPointerTy(DAG.getDataLayout()));
1011 // vastart just stores the address of the VarArgsFrameIndex slot into the
1012 // memory location argument.
1013 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1014 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1015 MachinePointerInfo(SV));
1018 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1019 SelectionDAG &DAG) const {
1020 SDValue Chain = Op.getOperand(0);
1021 SDValue Size = Op.getOperand(1);
1022 SDLoc DL(Op);
1024 Register SPReg = getStackPointerRegisterToSaveRestore();
1026 // Get a reference to the stack pointer.
1027 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1029 // Subtract the dynamic size from the actual stack size to
1030 // obtain the new stack size.
1031 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1033 // For Lanai, the outgoing memory arguments area should be on top of the
1034 // alloca area on the stack i.e., the outgoing memory arguments should be
1035 // at a lower address than the alloca area. Move the alloca area down the
1036 // stack by adding back the space reserved for outgoing arguments to SP
1037 // here.
1039 // We do not know what the size of the outgoing args is at this point.
1040 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1041 // stack pointer. We replace this instruction with on that has the correct,
1042 // known offset in emitPrologue().
1043 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1045 // The Sub result contains the new stack start address, so it
1046 // must be placed in the stack pointer register.
1047 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1049 SDValue Ops[2] = {ArgAdjust, CopyChain};
1050 return DAG.getMergeValues(Ops, DL);
1053 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1054 SelectionDAG &DAG) const {
1055 MachineFunction &MF = DAG.getMachineFunction();
1056 MachineFrameInfo &MFI = MF.getFrameInfo();
1057 MFI.setReturnAddressIsTaken(true);
1059 EVT VT = Op.getValueType();
1060 SDLoc DL(Op);
1061 unsigned Depth = Op.getConstantOperandVal(0);
1062 if (Depth) {
1063 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1064 const unsigned Offset = -4;
1065 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1066 DAG.getIntPtrConstant(Offset, DL));
1067 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1070 // Return the link register, which contains the return address.
1071 // Mark it an implicit live-in.
1072 Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1073 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1076 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1077 SelectionDAG &DAG) const {
1078 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1079 MFI.setFrameAddressIsTaken(true);
1081 EVT VT = Op.getValueType();
1082 SDLoc DL(Op);
1083 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1084 unsigned Depth = Op.getConstantOperandVal(0);
1085 while (Depth--) {
1086 const unsigned Offset = -8;
1087 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1088 DAG.getIntPtrConstant(Offset, DL));
1089 FrameAddr =
1090 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1092 return FrameAddr;
1095 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1096 switch (Opcode) {
1097 case LanaiISD::ADJDYNALLOC:
1098 return "LanaiISD::ADJDYNALLOC";
1099 case LanaiISD::RET_GLUE:
1100 return "LanaiISD::RET_GLUE";
1101 case LanaiISD::CALL:
1102 return "LanaiISD::CALL";
1103 case LanaiISD::SELECT_CC:
1104 return "LanaiISD::SELECT_CC";
1105 case LanaiISD::SETCC:
1106 return "LanaiISD::SETCC";
1107 case LanaiISD::SUBBF:
1108 return "LanaiISD::SUBBF";
1109 case LanaiISD::SET_FLAG:
1110 return "LanaiISD::SET_FLAG";
1111 case LanaiISD::BR_CC:
1112 return "LanaiISD::BR_CC";
1113 case LanaiISD::Wrapper:
1114 return "LanaiISD::Wrapper";
1115 case LanaiISD::HI:
1116 return "LanaiISD::HI";
1117 case LanaiISD::LO:
1118 return "LanaiISD::LO";
1119 case LanaiISD::SMALL:
1120 return "LanaiISD::SMALL";
1121 default:
1122 return nullptr;
1126 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1127 SelectionDAG &DAG) const {
1128 SDLoc DL(Op);
1129 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1130 const Constant *C = N->getConstVal();
1131 const LanaiTargetObjectFile *TLOF =
1132 static_cast<const LanaiTargetObjectFile *>(
1133 getTargetMachine().getObjFileLowering());
1135 // If the code model is small or constant will be placed in the small section,
1136 // then assume address will fit in 21-bits.
1137 if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1138 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1139 SDValue Small = DAG.getTargetConstantPool(
1140 C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG);
1141 return DAG.getNode(ISD::OR, DL, MVT::i32,
1142 DAG.getRegister(Lanai::R0, MVT::i32),
1143 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1144 } else {
1145 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1146 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1148 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1149 N->getOffset(), OpFlagHi);
1150 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1151 N->getOffset(), OpFlagLo);
1152 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1153 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1154 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1155 return Result;
1159 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1160 SelectionDAG &DAG) const {
1161 SDLoc DL(Op);
1162 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1163 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1165 const LanaiTargetObjectFile *TLOF =
1166 static_cast<const LanaiTargetObjectFile *>(
1167 getTargetMachine().getObjFileLowering());
1169 // If the code model is small or global variable will be placed in the small
1170 // section, then assume address will fit in 21-bits.
1171 const GlobalObject *GO = GV->getAliaseeObject();
1172 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1173 SDValue Small = DAG.getTargetGlobalAddress(
1174 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1175 return DAG.getNode(ISD::OR, DL, MVT::i32,
1176 DAG.getRegister(Lanai::R0, MVT::i32),
1177 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1178 } else {
1179 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1180 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1182 // Create the TargetGlobalAddress node, folding in the constant offset.
1183 SDValue Hi = DAG.getTargetGlobalAddress(
1184 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1185 SDValue Lo = DAG.getTargetGlobalAddress(
1186 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1187 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1188 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1189 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1193 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1194 SelectionDAG &DAG) const {
1195 SDLoc DL(Op);
1196 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1198 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1199 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1201 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1202 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1203 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1204 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1205 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1206 return Result;
1209 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1210 SelectionDAG &DAG) const {
1211 SDLoc DL(Op);
1212 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1214 // If the code model is small assume address will fit in 21-bits.
1215 if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1216 SDValue Small = DAG.getTargetJumpTable(
1217 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1218 return DAG.getNode(ISD::OR, DL, MVT::i32,
1219 DAG.getRegister(Lanai::R0, MVT::i32),
1220 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1221 } else {
1222 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1223 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1225 SDValue Hi = DAG.getTargetJumpTable(
1226 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1227 SDValue Lo = DAG.getTargetJumpTable(
1228 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1229 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1230 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1231 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1232 return Result;
1236 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1237 SelectionDAG &DAG) const {
1238 EVT VT = Op.getValueType();
1239 unsigned VTBits = VT.getSizeInBits();
1240 SDLoc dl(Op);
1241 assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1242 SDValue ShOpLo = Op.getOperand(0);
1243 SDValue ShOpHi = Op.getOperand(1);
1244 SDValue ShAmt = Op.getOperand(2);
1246 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1247 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1248 // HiBitsForHi = ShOpHi << ShAmt
1249 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1250 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1251 // return (Hi << 32) | Lo;
1253 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1254 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1255 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1257 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1258 // wanted 0, so CSEL it directly.
1259 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1260 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1261 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1263 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1264 DAG.getConstant(VTBits, dl, MVT::i32));
1265 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1266 SDValue HiForNormalShift =
1267 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1269 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1271 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1272 SDValue Hi =
1273 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1275 // Lanai shifts of larger than register sizes are wrapped rather than
1276 // clamped, so we can't just emit "lo << b" if b is too big.
1277 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1278 SDValue Lo = DAG.getSelect(
1279 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1281 SDValue Ops[2] = {Lo, Hi};
1282 return DAG.getMergeValues(Ops, dl);
1285 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1286 SelectionDAG &DAG) const {
1287 MVT VT = Op.getSimpleValueType();
1288 unsigned VTBits = VT.getSizeInBits();
1289 SDLoc dl(Op);
1290 SDValue ShOpLo = Op.getOperand(0);
1291 SDValue ShOpHi = Op.getOperand(1);
1292 SDValue ShAmt = Op.getOperand(2);
1294 // Performs the following for a >> b:
1295 // unsigned r_high = a_high >> b;
1296 // r_high = (32 - b <= 0) ? 0 : r_high;
1298 // unsigned r_low = a_low >> b;
1299 // r_low = (32 - b <= 0) ? r_high : r_low;
1300 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1301 // return (unsigned long long)r_high << 32 | r_low;
1302 // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1303 // mask the shift amount.
1305 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1306 SDValue NegatedPlus32 = DAG.getNode(
1307 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1308 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1310 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1311 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1313 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1314 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1315 SDValue CarryBits =
1316 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1317 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1318 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1319 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1321 SDValue Ops[2] = {Lo, Hi};
1322 return DAG.getMergeValues(Ops, dl);
1325 // Helper function that checks if N is a null or all ones constant.
1326 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1327 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1330 // Return true if N is conditionally 0 or all ones.
1331 // Detects these expressions where cc is an i1 value:
1333 // (select cc 0, y) [AllOnes=0]
1334 // (select cc y, 0) [AllOnes=0]
1335 // (zext cc) [AllOnes=0]
1336 // (sext cc) [AllOnes=0/1]
1337 // (select cc -1, y) [AllOnes=1]
1338 // (select cc y, -1) [AllOnes=1]
1340 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1341 // all ones operand (AllOnes true).
1342 // * Invert is set when N is the all zero/ones constant when CC is false.
1343 // * OtherOp is set to the alternative value of N.
1345 // For example, for (select cc X, Y) and AllOnes = 0 if:
1346 // * X = 0, Invert = False and OtherOp = Y
1347 // * Y = 0, Invert = True and OtherOp = X
1348 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1349 bool &Invert, SDValue &OtherOp,
1350 SelectionDAG &DAG) {
1351 switch (N->getOpcode()) {
1352 default:
1353 return false;
1354 case ISD::SELECT: {
1355 CC = N->getOperand(0);
1356 SDValue N1 = N->getOperand(1);
1357 SDValue N2 = N->getOperand(2);
1358 if (isZeroOrAllOnes(N1, AllOnes)) {
1359 Invert = false;
1360 OtherOp = N2;
1361 return true;
1363 if (isZeroOrAllOnes(N2, AllOnes)) {
1364 Invert = true;
1365 OtherOp = N1;
1366 return true;
1368 return false;
1370 case ISD::ZERO_EXTEND: {
1371 // (zext cc) can never be the all ones value.
1372 if (AllOnes)
1373 return false;
1374 CC = N->getOperand(0);
1375 if (CC.getValueType() != MVT::i1)
1376 return false;
1377 SDLoc dl(N);
1378 EVT VT = N->getValueType(0);
1379 OtherOp = DAG.getConstant(1, dl, VT);
1380 Invert = true;
1381 return true;
1383 case ISD::SIGN_EXTEND: {
1384 CC = N->getOperand(0);
1385 if (CC.getValueType() != MVT::i1)
1386 return false;
1387 SDLoc dl(N);
1388 EVT VT = N->getValueType(0);
1389 Invert = !AllOnes;
1390 if (AllOnes)
1391 // When looking for an AllOnes constant, N is an sext, and the 'other'
1392 // value is 0.
1393 OtherOp = DAG.getConstant(0, dl, VT);
1394 else
1395 OtherOp = DAG.getAllOnesConstant(dl, VT);
1396 return true;
1401 // Combine a constant select operand into its use:
1403 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1404 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1405 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
1406 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
1407 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
1409 // The transform is rejected if the select doesn't have a constant operand that
1410 // is null, or all ones when AllOnes is set.
1412 // Also recognize sext/zext from i1:
1414 // (add (zext cc), x) -> (select cc (add x, 1), x)
1415 // (add (sext cc), x) -> (select cc (add x, -1), x)
1417 // These transformations eventually create predicated instructions.
1418 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1419 TargetLowering::DAGCombinerInfo &DCI,
1420 bool AllOnes) {
1421 SelectionDAG &DAG = DCI.DAG;
1422 EVT VT = N->getValueType(0);
1423 SDValue NonConstantVal;
1424 SDValue CCOp;
1425 bool SwapSelectOps;
1426 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1427 NonConstantVal, DAG))
1428 return SDValue();
1430 // Slct is now know to be the desired identity constant when CC is true.
1431 SDValue TrueVal = OtherOp;
1432 SDValue FalseVal =
1433 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1434 // Unless SwapSelectOps says CC should be false.
1435 if (SwapSelectOps)
1436 std::swap(TrueVal, FalseVal);
1438 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1441 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1442 static SDValue
1443 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1444 bool AllOnes) {
1445 SDValue N0 = N->getOperand(0);
1446 SDValue N1 = N->getOperand(1);
1447 if (N0.getNode()->hasOneUse())
1448 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1449 return Result;
1450 if (N1.getNode()->hasOneUse())
1451 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1452 return Result;
1453 return SDValue();
1456 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1457 static SDValue PerformSUBCombine(SDNode *N,
1458 TargetLowering::DAGCombinerInfo &DCI) {
1459 SDValue N0 = N->getOperand(0);
1460 SDValue N1 = N->getOperand(1);
1462 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1463 if (N1.getNode()->hasOneUse())
1464 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1465 return Result;
1467 return SDValue();
1470 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1471 DAGCombinerInfo &DCI) const {
1472 switch (N->getOpcode()) {
1473 default:
1474 break;
1475 case ISD::ADD:
1476 case ISD::OR:
1477 case ISD::XOR:
1478 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1479 case ISD::AND:
1480 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1481 case ISD::SUB:
1482 return PerformSUBCombine(N, DCI);
1485 return SDValue();
1488 void LanaiTargetLowering::computeKnownBitsForTargetNode(
1489 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1490 const SelectionDAG &DAG, unsigned Depth) const {
1491 unsigned BitWidth = Known.getBitWidth();
1492 switch (Op.getOpcode()) {
1493 default:
1494 break;
1495 case LanaiISD::SETCC:
1496 Known = KnownBits(BitWidth);
1497 Known.Zero.setBits(1, BitWidth);
1498 break;
1499 case LanaiISD::SELECT_CC:
1500 KnownBits Known2;
1501 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1502 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1503 Known = Known.intersectWith(Known2);
1504 break;