1 //===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes Mips16 instructions.
11 //===----------------------------------------------------------------------===//
16 def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
17 def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
21 def mem16 : Operand<i32> {
22 let PrintMethod = "printMemOperand";
23 let MIOperandInfo = (ops CPU16Regs, simm16);
24 let EncoderMethod = "getMemEncoding";
27 def mem16sp : Operand<i32> {
28 let PrintMethod = "printMemOperand";
29 // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
30 // keeping the sp-relative load and the other varieties separate at the
31 // moment. This lie fixes the problem sufficiently well to fix the errors
32 // emitted by -verify-machineinstrs and the output ends up correct as long
33 // as we use an external assembler (which is already a requirement for MIPS16
34 // for several other reasons).
35 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
36 let EncoderMethod = "getMemEncoding";
39 def mem16_ea : Operand<i32> {
40 let PrintMethod = "printMemOperandEA";
41 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
42 let EncoderMethod = "getMemEncoding";
45 def pcrel16 : Operand<i32>;
48 // I-type instruction format
50 // this is only used by bimm. the actual assembly value is a 12 bit signed
53 class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
54 FI16<op, (outs), (ins brtarget:$imm11),
55 !strconcat(asmstr, "\t$imm11 # 16 bit inst"), [], itin>;
59 // I8 instruction format
62 class FI816_ins_base<bits<3> _func, string asmstr,
63 string asmstr2, InstrItinClass itin>:
64 FI816<_func, (outs), (ins simm16:$imm8), !strconcat(asmstr, asmstr2),
67 class FI816_ins<bits<3> _func, string asmstr,
69 FI816_ins_base<_func, asmstr, "\t$imm8 # 16 bit inst", itin>;
71 class FI816_SP_ins<bits<3> _func, string asmstr,
73 FI816_ins_base<_func, asmstr, "\t$$sp, $imm8 # 16 bit inst", itin>;
76 // RI instruction format
80 class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
82 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm8),
83 !strconcat(asmstr, asmstr2), [], itin>;
85 class FRI16_ins<bits<5> op, string asmstr,
87 FRI16_ins_base<op, asmstr, "\t$rx, $imm8 \t# 16 bit inst", itin>;
89 class FRI16_TCP_ins<bits<5> _op, string asmstr,
91 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm8, i32imm:$size),
92 !strconcat(asmstr, "\t$rx, $imm8\t# 16 bit inst"), [], itin>;
94 class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
96 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm8),
97 !strconcat(asmstr, asmstr2), [], itin>;
99 class FRI16R_ins<bits<5> op, string asmstr,
100 InstrItinClass itin>:
101 FRI16R_ins_base<op, asmstr, "\t$rx, $imm8 \t# 16 bit inst", itin>;
103 class F2RI16_ins<bits<5> _op, string asmstr,
104 InstrItinClass itin>:
105 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm8),
106 !strconcat(asmstr, "\t$rx, $imm8\t# 16 bit inst"), [], itin> {
107 let Constraints = "$rx_ = $rx";
110 class FRI16_B_ins<bits<5> _op, string asmstr,
111 InstrItinClass itin>:
112 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm8),
113 !strconcat(asmstr, "\t$rx, $imm8 # 16 bit inst"), [], itin>;
115 // Compare a register and immediate and place result in CC
116 // Implicit use of T8
118 // EXT-CCRR Instruction format
120 class FEXT_CCRXI16_ins<string asmstr>:
121 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
122 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
124 let usesCustomInserter = 1;
127 // JAL and JALX instruction format
129 class FJAL16_ins<bits<1> _X, string asmstr,
130 InstrItinClass itin>:
131 FJAL16<_X, (outs), (ins uimm26:$imm26),
132 !strconcat(asmstr, "\t$imm26\n\tnop"),[],
138 class FJALB16_ins<bits<1> _X, string asmstr,
139 InstrItinClass itin>:
140 FJAL16<_X, (outs), (ins uimm26:$imm26),
141 !strconcat(asmstr, "\t$imm26\t# branch\n\tnop"),[],
148 // EXT-I instruction format
150 class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
151 FEXT_I16<eop, (outs), (ins brtarget:$imm16),
152 !strconcat(asmstr, "\t$imm16"),[], itin>;
155 // EXT-I8 instruction format
158 class FEXT_I816_ins_base<bits<3> _func, string asmstr,
159 string asmstr2, InstrItinClass itin>:
160 FEXT_I816<_func, (outs), (ins simm16:$imm16), !strconcat(asmstr, asmstr2),
163 class FEXT_I816_ins<bits<3> _func, string asmstr,
164 InstrItinClass itin>:
165 FEXT_I816_ins_base<_func, asmstr, "\t$imm16", itin>;
167 class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
168 InstrItinClass itin>:
169 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm16", itin>;
172 // Assembler formats in alphabetical order.
173 // Natural and pseudos are mixed together.
175 // Compare two registers and place result in CC
176 // Implicit use of T8
178 // CC-RR Instruction format
180 class FCCRR16_ins<string asmstr> :
181 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
182 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
184 let usesCustomInserter = 1;
188 // EXT-RI instruction format
191 class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
192 InstrItinClass itin>:
193 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm16),
194 !strconcat(asmstr, asmstr2), [], itin>;
196 class FEXT_RI16_ins<bits<5> _op, string asmstr,
197 InstrItinClass itin>:
198 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm16", itin>;
200 class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
201 InstrItinClass itin>:
202 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm16),
203 !strconcat(asmstr, asmstr2), [], itin>;
205 class FEXT_RI16R_ins<bits<5> _op, string asmstr,
206 InstrItinClass itin>:
207 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm16", itin>;
209 class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
210 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm16", itin>;
212 class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
213 InstrItinClass itin>:
214 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm16),
215 !strconcat(asmstr, "\t$rx, $imm16"), [], itin>;
217 class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
218 InstrItinClass itin>:
219 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm16, i32imm:$size),
220 !strconcat(asmstr, "\t$rx, $imm16"), [], itin>;
222 class FEXT_2RI16_ins<bits<5> _op, string asmstr,
223 InstrItinClass itin>:
224 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm16),
225 !strconcat(asmstr, "\t$rx, $imm16"), [], itin> {
226 let Constraints = "$rx_ = $rx";
230 // EXT-RRI instruction format
233 class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
234 InstrItinClass itin>:
235 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins (MemOpnd $rx, $imm16):$addr),
236 !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
238 class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
239 InstrItinClass itin>:
240 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, (MemOpnd $rx, $imm16):$addr),
241 !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
245 // EXT-RRI-A instruction format
248 class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
249 InstrItinClass itin>:
250 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins (MemOpnd $rx, $imm15):$addr),
251 !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
254 // EXT-SHIFT instruction format
256 class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
257 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa6),
258 !strconcat(asmstr, "\t$rx, $ry, $sa6"), [], itin>;
263 class FEXT_T8I816_ins<string asmstr, string asmstr2>:
265 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
266 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
267 !strconcat(asmstr, "\t$imm"))),[]> {
269 let usesCustomInserter = 1;
275 class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
277 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
278 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
279 !strconcat(asmstr, "\t$targ"))), []> {
281 let usesCustomInserter = 1;
287 // I8_MOVR32 instruction format (used only by the MOVR32 instructio
289 class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
290 FI8_MOVR3216<(outs CPU16Regs:$ry), (ins GPR32:$r32),
291 !strconcat(asmstr, "\t$ry, $r32"), [], itin>;
294 // I8_MOV32R instruction format (used only by MOV32R instruction)
297 class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
298 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
299 !strconcat(asmstr, "\t$r32, $rz"), [], itin>;
302 // This are pseudo formats for multiply
303 // This first one can be changed to non-pseudo now.
307 class FMULT16_ins<string asmstr> :
308 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
309 !strconcat(asmstr, "\t$rx, $ry"), []>;
314 class FMULT16_LO_ins<string asmstr> :
315 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
316 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
321 // RR-type instruction format
324 class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
325 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
326 !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
329 class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
330 FRRBreak16<(outs), (ins), asmstr, [], itin> {
334 class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
335 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
336 !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
339 class FRRTR16_ins<string asmstr> :
340 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
341 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
344 // maybe refactor but need a $zero as a dummy first parameter
346 class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
347 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
348 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
350 class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
351 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
352 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
355 class FRR16_M_ins<bits<5> f, string asmstr,
356 InstrItinClass itin> :
357 FRR16<f, (outs CPU16Regs:$rx), (ins),
358 !strconcat(asmstr, "\t$rx"), [], itin>;
360 class FRxRxRy16_ins<bits<5> f, string asmstr,
361 InstrItinClass itin> :
362 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
363 !strconcat(asmstr, "\t$rz, $ry"),
365 let Constraints = "$rx = $rz";
369 class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
370 string asmstr, InstrItinClass itin>:
371 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"),
375 class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
376 string asmstr, InstrItinClass itin>:
377 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rs),
378 !strconcat(asmstr, "\t$rs"), [], itin> ;
381 <bits<5> _funct, bits<3> _subfunc,
382 string asmstr, InstrItinClass itin>:
383 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
384 !strconcat(asmstr, "\t $rx"),
386 let Constraints = "$rx_ = $rx";
389 // RRR-type instruction format
392 class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> :
393 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
394 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
397 // These Sel patterns support the generation of conditional move
398 // pseudo instructions.
400 // The nomenclature uses the components making up the pseudo and may
401 // be a bit counter intuitive when compared with the end result we seek.
402 // For example using a bqez in the example directly below results in the
403 // conditional move being done if the tested register is not zero.
404 // I considered in easier to check by keeping the pseudo consistent with
405 // it's components but it could have been done differently.
407 // The simplest case is when can test and operand directly and do the
408 // conditional move based on a simple mips16 conditional
409 // branch instruction.
411 // if $op == beqz or bnez:
416 // if $op == beqz, then if $rt != 0, then the conditional assignment
417 // $rd = $rs is done.
419 // if $op == bnez, then if $rt == 0, then the conditional assignment
420 // $rd = $rs is done.
422 // So this pseudo class only has one operand, i.e. op
424 class Sel<string op>:
425 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
427 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
428 //let isCodeGenOnly=1;
429 let Constraints = "$rd = $rd_";
430 let usesCustomInserter = 1;
434 // The next two instruction classes allow for an operand which tests
435 // two operands and returns a value in register T8 and
436 //then does a conditional branch based on the value of T8
439 // op2 can be cmpi or slti/sltiu
440 // op1 can bteqz or btnez
441 // the operands for op2 are a register and a signed constant
443 // $op2 $t, $imm ;test register t and branch conditionally
444 // $op1 .+4 ;op1 is a conditional branch
448 class SeliT<string op1, string op2>:
449 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
450 CPU16Regs:$rl, simm16:$imm),
452 !strconcat("\t$rl, $imm\n\t",
453 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
455 let Constraints = "$rd = $rd_";
456 let usesCustomInserter = 1;
460 // op2 can be cmp or slt/sltu
461 // op1 can be bteqz or btnez
462 // the operands for op2 are two registers
463 // op1 is a conditional branch
466 // $op2 $rl, $rr ;test registers rl,rr
467 // $op1 .+4 ;op2 is a conditional branch
471 class SelT<string op1, string op2>:
472 MipsPseudo16<(outs CPU16Regs:$rd_),
473 (ins CPU16Regs:$rd, CPU16Regs:$rs,
474 CPU16Regs:$rl, CPU16Regs:$rr),
476 !strconcat("\t$rl, $rr\n\t",
477 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
479 let Constraints = "$rd = $rd_";
480 let usesCustomInserter = 1;
486 def Constant32 : MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
489 MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
490 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
493 // Some general instruction class info
497 class ArithLogic16Defs<bit isCom=0> {
499 bit isCommutable = isCom;
500 bit isReMaterializable = 1;
501 bit hasSideEffects = 0;
506 bit isTerminator = 1;
512 bit isTerminator = 1;
525 // Format: ADDIU rx, immediate MIPS16e
526 // Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
527 // To add a constant to a 32-bit integer.
529 def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
531 def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
532 ArithLogic16Defs<0> {
533 let AddedComplexity = 5;
535 def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
536 ArithLogic16Defs<0> {
537 let isCodeGenOnly = 1;
540 let DecoderMethod = "DecodeFIXMEInstruction" in
541 def AddiuRxRyOffMemX16:
542 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
546 // Format: ADDIU rx, pc, immediate MIPS16e
547 // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
548 // To add a constant to the program counter.
550 def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
553 // Format: ADDIU sp, immediate MIPS16e
554 // Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
555 // To add a constant to the stack pointer.
558 : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
561 let AddedComplexity = 5;
565 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
571 // Format: ADDU rz, rx, ry MIPS16e
572 // Purpose: Add Unsigned Word (3-Operand)
573 // To add 32-bit integers.
576 def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
579 // Format: AND rx, ry MIPS16e
581 // To do a bitwise logical AND.
583 def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
587 // Format: BEQZ rx, offset MIPS16e
588 // Purpose: Branch on Equal to Zero
589 // To test a GPR then do a PC-relative conditional branch.
591 def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
595 // Format: BEQZ rx, offset MIPS16e
596 // Purpose: Branch on Equal to Zero (Extended)
597 // To test a GPR then do a PC-relative conditional branch.
599 def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
602 // Format: B offset MIPS16e
603 // Purpose: Unconditional Branch (Extended)
604 // To do an unconditional PC-relative branch.
607 def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
609 // Format: B offset MIPS16e
610 // Purpose: Unconditional Branch
611 // To do an unconditional PC-relative branch.
613 def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
616 // Format: BNEZ rx, offset MIPS16e
617 // Purpose: Branch on Not Equal to Zero
618 // To test a GPR then do a PC-relative conditional branch.
620 def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
623 // Format: BNEZ rx, offset MIPS16e
624 // Purpose: Branch on Not Equal to Zero (Extended)
625 // To test a GPR then do a PC-relative conditional branch.
627 def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
631 //Format: BREAK immediate
632 // Purpose: Breakpoint
633 // To cause a Breakpoint exception.
635 def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
637 // Format: BTEQZ offset MIPS16e
638 // Purpose: Branch on T Equal to Zero (Extended)
639 // To test special register T then do a PC-relative conditional branch.
641 def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
645 def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
649 def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
651 def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
654 def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
656 def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
658 def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
660 def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
664 // Format: BTNEZ offset MIPS16e
665 // Purpose: Branch on T Not Equal to Zero (Extended)
666 // To test special register T then do a PC-relative conditional branch.
669 def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
673 def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
677 def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
679 def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
681 def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
683 def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
685 def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
687 def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
691 // Format: CMP rx, ry MIPS16e
693 // To compare the contents of two GPRs.
695 def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
700 // Format: CMPI rx, immediate MIPS16e
701 // Purpose: Compare Immediate
702 // To compare a constant with the contents of a GPR.
704 def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
709 // Format: CMPI rx, immediate MIPS16e
710 // Purpose: Compare Immediate (Extended)
711 // To compare a constant with the contents of a GPR.
713 def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
719 // Format: DIV rx, ry MIPS16e
720 // Purpose: Divide Word
721 // To divide 32-bit signed integers.
723 def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
724 let Defs = [HI0, LO0];
728 // Format: DIVU rx, ry MIPS16e
729 // Purpose: Divide Unsigned Word
730 // To divide 32-bit unsigned integers.
732 def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
733 let Defs = [HI0, LO0];
736 // Format: JAL target MIPS16e
737 // Purpose: Jump and Link
738 // To execute a procedure call within the current 256 MB-aligned
739 // region and preserve the current ISA.
742 def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
743 let hasDelaySlot = 0; // not true, but we add the nop for now
748 def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
749 let hasDelaySlot = 0; // not true, but we add the nop for now
755 // Format: JR ra MIPS16e
756 // Purpose: Jump Register Through Register ra
757 // To execute a branch to the instruction address in the return
761 def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
763 let isIndirectBranch = 1;
764 let hasDelaySlot = 1;
770 def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
772 let isIndirectBranch = 1;
778 def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
781 let isIndirectBranch = 1;
786 // Format: LB ry, offset(rx) MIPS16e
787 // Purpose: Load Byte (Extended)
788 // To load a byte from memory as a signed value.
790 def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
791 let isCodeGenOnly = 1;
795 // Format: LBU ry, offset(rx) MIPS16e
796 // Purpose: Load Byte Unsigned (Extended)
797 // To load a byte from memory as a unsigned value.
799 def LbuRxRyOffMemX16:
800 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
801 let isCodeGenOnly = 1;
805 // Format: LH ry, offset(rx) MIPS16e
806 // Purpose: Load Halfword signed (Extended)
807 // To load a halfword from memory as a signed value.
809 def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
810 let isCodeGenOnly = 1;
814 // Format: LHU ry, offset(rx) MIPS16e
815 // Purpose: Load Halfword unsigned (Extended)
816 // To load a halfword from memory as an unsigned value.
818 def LhuRxRyOffMemX16:
819 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
820 let isCodeGenOnly = 1;
824 // Format: LI rx, immediate MIPS16e
825 // Purpose: Load Immediate
826 // To load a constant into a GPR.
828 def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
831 // Format: LI rx, immediate MIPS16e
832 // Purpose: Load Immediate (Extended)
833 // To load a constant into a GPR.
835 def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
837 def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
838 let isCodeGenOnly = 1;
842 // Format: LW ry, offset(rx) MIPS16e
843 // Purpose: Load Word (Extended)
844 // To load a word from memory as a signed value.
846 def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
847 let isCodeGenOnly = 1;
850 // Format: LW rx, offset(sp) MIPS16e
851 // Purpose: Load Word (SP-Relative, Extended)
852 // To load an SP-relative word from memory as a signed value.
854 let DecoderMethod = "DecodeFIXMEInstruction" in
855 def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
857 def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
859 def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
861 // Format: MOVE r32, rz MIPS16e
863 // To move the contents of a GPR to a GPR.
865 def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
868 // Format: MOVE ry, r32 MIPS16e
870 // To move the contents of a GPR to a GPR.
872 def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> {
877 // Format: MFHI rx MIPS16e
878 // Purpose: Move From HI Register
879 // To copy the special purpose HI register to a GPR.
881 def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
882 let ry = 0b000; // no 'ry' field
884 let hasSideEffects = 0;
889 // Format: MFLO rx MIPS16e
890 // Purpose: Move From LO Register
891 // To copy the special purpose LO register to a GPR.
893 def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
894 let ry = 0b000; // no 'ry' field
896 let hasSideEffects = 0;
901 // Pseudo Instruction for mult
903 def MultRxRy16: FMULT16_ins<"mult"> {
904 let isCommutable = 1;
905 let hasSideEffects = 0;
906 let Defs = [HI0, LO0];
909 def MultuRxRy16: FMULT16_ins<"multu"> {
910 let isCommutable = 1;
911 let hasSideEffects = 0;
912 let Defs = [HI0, LO0];
916 // Format: MULT rx, ry MIPS16e
917 // Purpose: Multiply Word
918 // To multiply 32-bit signed integers.
920 def MultRxRyRz16: FMULT16_LO_ins<"mult"> {
921 let isCommutable = 1;
922 let hasSideEffects = 0;
923 let Defs = [HI0, LO0];
927 // Format: MULTU rx, ry MIPS16e
928 // Purpose: Multiply Unsigned Word
929 // To multiply 32-bit unsigned integers.
931 def MultuRxRyRz16: FMULT16_LO_ins<"multu"> {
932 let isCommutable = 1;
933 let hasSideEffects = 0;
934 let Defs = [HI0, LO0];
938 // Format: NEG rx, ry MIPS16e
940 // To negate an integer value.
942 def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
945 // Format: NOT rx, ry MIPS16e
947 // To complement an integer value
949 def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
952 // Format: OR rx, ry MIPS16e
954 // To do a bitwise logical OR.
956 def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
959 // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
960 // (All args are optional) MIPS16e
961 // Purpose: Restore Registers and Deallocate Stack Frame
962 // To deallocate a stack frame before exit from a subroutine,
963 // restoring return address and static registers, and adjusting
968 FI8_SVRS16<0b1, (outs), (ins variable_ops),
969 "", [], II_RESTORE >, MayLoad {
970 let isCodeGenOnly = 1;
977 FI8_SVRS16<0b1, (outs), (ins variable_ops),
978 "", [], II_RESTORE >, MayLoad {
979 let isCodeGenOnly = 1;
985 // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
987 // Purpose: Save Registers and Set Up Stack Frame
988 // To set up a stack frame on entry to a subroutine,
989 // saving return address and static registers, and adjusting stack
992 FI8_SVRS16<0b1, (outs), (ins variable_ops),
993 "", [], II_SAVE >, MayStore {
994 let isCodeGenOnly = 1;
1000 FI8_SVRS16<0b1, (outs), (ins variable_ops),
1001 "", [], II_SAVE >, MayStore {
1002 let isCodeGenOnly = 1;
1007 // Format: SB ry, offset(rx) MIPS16e
1008 // Purpose: Store Byte (Extended)
1009 // To store a byte to memory.
1011 let DecoderMethod = "DecodeFIXMEInstruction" in
1012 def SbRxRyOffMemX16:
1013 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
1016 // Format: SEB rx MIPS16e
1017 // Purpose: Sign-Extend Byte
1018 // Sign-extend least significant byte in register rx.
1021 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
1024 // Format: SEH rx MIPS16e
1025 // Purpose: Sign-Extend Halfword
1026 // Sign-extend least significant word in register rx.
1029 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
1032 // The Sel(T) instructions are pseudos
1033 // T means that they use T8 implicitly.
1036 // Format: SelBeqZ rd, rs, rt
1037 // Purpose: if rt==0, do nothing
1040 def SelBeqZ: Sel<"beqz">;
1043 // Format: SelTBteqZCmp rd, rs, rl, rr
1044 // Purpose: b = Cmp rl, rr.
1045 // If b==0 then do nothing.
1046 // if b!=0 then rd = rs
1048 def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1051 // Format: SelTBteqZCmpi rd, rs, rl, rr
1052 // Purpose: b = Cmpi rl, imm.
1053 // If b==0 then do nothing.
1054 // if b!=0 then rd = rs
1056 def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1059 // Format: SelTBteqZSlt rd, rs, rl, rr
1060 // Purpose: b = Slt rl, rr.
1061 // If b==0 then do nothing.
1062 // if b!=0 then rd = rs
1064 def SelTBteqZSlt: SelT<"bteqz", "slt">;
1067 // Format: SelTBteqZSlti rd, rs, rl, rr
1068 // Purpose: b = Slti rl, imm.
1069 // If b==0 then do nothing.
1070 // if b!=0 then rd = rs
1072 def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1075 // Format: SelTBteqZSltu rd, rs, rl, rr
1076 // Purpose: b = Sltu rl, rr.
1077 // If b==0 then do nothing.
1078 // if b!=0 then rd = rs
1080 def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1083 // Format: SelTBteqZSltiu rd, rs, rl, rr
1084 // Purpose: b = Sltiu rl, imm.
1085 // If b==0 then do nothing.
1086 // if b!=0 then rd = rs
1088 def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1091 // Format: SelBnez rd, rs, rt
1092 // Purpose: if rt!=0, do nothing
1095 def SelBneZ: Sel<"bnez">;
1098 // Format: SelTBtneZCmp rd, rs, rl, rr
1099 // Purpose: b = Cmp rl, rr.
1100 // If b!=0 then do nothing.
1101 // if b0=0 then rd = rs
1103 def SelTBtneZCmp: SelT<"btnez", "cmp">;
1106 // Format: SelTBtnezCmpi rd, rs, rl, rr
1107 // Purpose: b = Cmpi rl, imm.
1108 // If b!=0 then do nothing.
1109 // if b==0 then rd = rs
1111 def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1114 // Format: SelTBtneZSlt rd, rs, rl, rr
1115 // Purpose: b = Slt rl, rr.
1116 // If b!=0 then do nothing.
1117 // if b==0 then rd = rs
1119 def SelTBtneZSlt: SelT<"btnez", "slt">;
1122 // Format: SelTBtneZSlti rd, rs, rl, rr
1123 // Purpose: b = Slti rl, imm.
1124 // If b!=0 then do nothing.
1125 // if b==0 then rd = rs
1127 def SelTBtneZSlti: SeliT<"btnez", "slti">;
1130 // Format: SelTBtneZSltu rd, rs, rl, rr
1131 // Purpose: b = Sltu rl, rr.
1132 // If b!=0 then do nothing.
1133 // if b==0 then rd = rs
1135 def SelTBtneZSltu: SelT<"btnez", "sltu">;
1138 // Format: SelTBtneZSltiu rd, rs, rl, rr
1139 // Purpose: b = Slti rl, imm.
1140 // If b!=0 then do nothing.
1141 // if b==0 then rd = rs
1143 def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1146 // Format: SH ry, offset(rx) MIPS16e
1147 // Purpose: Store Halfword (Extended)
1148 // To store a halfword to memory.
1150 let DecoderMethod = "DecodeFIXMEInstruction" in
1151 def ShRxRyOffMemX16:
1152 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
1155 // Format: SLL rx, ry, sa MIPS16e
1156 // Purpose: Shift Word Left Logical (Extended)
1157 // To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1159 def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
1162 // Format: SLLV ry, rx MIPS16e
1163 // Purpose: Shift Word Left Logical Variable
1164 // To execute a left-shift of a word by a variable number of bits.
1166 def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
1168 // Format: SLTI rx, immediate MIPS16e
1169 // Purpose: Set on Less Than Immediate
1170 // To record the result of a less-than comparison with a constant.
1173 def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
1178 // Format: SLTI rx, immediate MIPS16e
1179 // Purpose: Set on Less Than Immediate (Extended)
1180 // To record the result of a less-than comparison with a constant.
1183 def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
1187 def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1189 // Format: SLTIU rx, immediate MIPS16e
1190 // Purpose: Set on Less Than Immediate Unsigned
1191 // To record the result of a less-than comparison with a constant.
1194 def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
1199 // Format: SLTI rx, immediate MIPS16e
1200 // Purpose: Set on Less Than Immediate Unsigned (Extended)
1201 // To record the result of a less-than comparison with a constant.
1204 def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
1208 // Format: SLTIU rx, immediate MIPS16e
1209 // Purpose: Set on Less Than Immediate Unsigned (Extended)
1210 // To record the result of a less-than comparison with a constant.
1212 def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1215 // Format: SLT rx, ry MIPS16e
1216 // Purpose: Set on Less Than
1217 // To record the result of a less-than comparison.
1219 def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
1223 def SltCCRxRy16: FCCRR16_ins<"slt">;
1225 // Format: SLTU rx, ry MIPS16e
1226 // Purpose: Set on Less Than Unsigned
1227 // To record the result of an unsigned less-than comparison.
1229 def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
1233 def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1234 let isCodeGenOnly=1;
1239 def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1241 // Format: SRAV ry, rx MIPS16e
1242 // Purpose: Shift Word Right Arithmetic Variable
1243 // To execute an arithmetic right-shift of a word by a variable
1246 def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
1250 // Format: SRA rx, ry, sa MIPS16e
1251 // Purpose: Shift Word Right Arithmetic (Extended)
1252 // To execute an arithmetic right-shift of a word by a fixed
1253 // number of bits-1 to 8 bits.
1255 def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
1259 // Format: SRLV ry, rx MIPS16e
1260 // Purpose: Shift Word Right Logical Variable
1261 // To execute a logical right-shift of a word by a variable
1264 def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
1268 // Format: SRL rx, ry, sa MIPS16e
1269 // Purpose: Shift Word Right Logical (Extended)
1270 // To execute a logical right-shift of a word by a fixed
1271 // number of bits-1 to 31 bits.
1273 def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
1276 // Format: SUBU rz, rx, ry MIPS16e
1277 // Purpose: Subtract Unsigned Word
1278 // To subtract 32-bit integers
1280 def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
1283 // Format: SW ry, offset(rx) MIPS16e
1284 // Purpose: Store Word (Extended)
1285 // To store a word to memory.
1287 let DecoderMethod = "DecodeFIXMEInstruction" in
1288 def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
1291 // Format: SW rx, offset(sp) MIPS16e
1292 // Purpose: Store Word rx (SP-Relative)
1293 // To store an SP-relative word to memory.
1295 let DecoderMethod = "DecodeFIXMEInstruction" in
1296 def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
1300 // Format: XOR rx, ry MIPS16e
1302 // To do a bitwise logical XOR.
1304 def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
1306 class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1307 let Predicates = [InMips16Mode];
1310 // Unary Arith/Logic
1312 class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1313 Mips16Pat<(OpNode CPU16Regs:$r),
1316 def: ArithLogicU_pat<not, NotRxRy16>;
1317 def: ArithLogicU_pat<ineg, NegRxRy16>;
1319 class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1320 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1321 (I CPU16Regs:$l, CPU16Regs:$r)>;
1323 def: ArithLogic16_pat<add, AdduRxRyRz16>;
1324 def: ArithLogic16_pat<and, AndRxRxRy16>;
1325 def: ArithLogic16_pat<mul, MultRxRyRz16>;
1326 def: ArithLogic16_pat<or, OrRxRxRy16>;
1327 def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1328 def: ArithLogic16_pat<xor, XorRxRxRy16>;
1330 // Arithmetic and logical instructions with 2 register operands.
1332 class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1333 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1334 (I CPU16Regs:$in, imm_type:$imm)>;
1336 def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1337 def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1338 def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1339 def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1340 def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1342 class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1343 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1344 (I CPU16Regs:$r, CPU16Regs:$ra)>;
1346 def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1347 def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1348 def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1350 class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1351 Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
1353 def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
1354 def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
1355 def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
1356 def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
1357 def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
1359 class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1360 Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
1362 def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
1363 def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
1364 def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
1366 // Unconditional branch
1367 class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1368 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1369 let Predicates = [InMips16Mode];
1372 def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1373 (Jal16 tglobaladdr:$dst)>;
1375 def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1376 (Jal16 texternalsym:$dst)>;
1379 def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
1380 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
1381 // MIPS16's behaviour.
1382 let AddedComplexity = 1;
1385 // Jump and Link (Call)
1386 let isCall=1, hasDelaySlot=0 in
1388 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rx),
1389 "jalrc\t$rx", [(MipsJmpLink CPU16Regs:$rx)], II_JALRC> {
1394 let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1395 hasExtraSrcRegAllocReq = 1 in
1396 def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1401 class SetCC_R16<PatFrag cond_op, Instruction I>:
1402 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1403 (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1405 class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1406 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1407 (I CPU16Regs:$rx, imm_type:$imm16)>;
1410 def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
1413 // Large (>16 bit) immediate loads
1414 def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1417 // Some branch conditional patterns are not generated by llvm at this time.
1418 // Some are for seemingly arbitrary reasons not used: i.e. with signed number
1419 // comparison they are used and for unsigned a different pattern is used.
1420 // I am pushing upstream from the full mips16 port and it seemed that I needed
1421 // these earlier and the mips32 port has these but now I cannot create test
1422 // cases that use these patterns. While I sort this all out I will leave these
1423 // extra patterns commented out and if I can be sure they are really not used,
1424 // I will delete the code. I don't want to check the code in uncommented without
1425 // a valid test case. In some cases, the compiler is generating patterns with
1426 // setcc instead and earlier I had implemented setcc first so may have masked
1427 // the problem. The setcc variants are suboptimal for mips16 so I may wantto
1428 // figure out how to enable the brcond patterns or else possibly new
1429 // combinations of brcond and setcc.
1435 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1436 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1441 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1442 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
1446 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1447 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
1451 // bcond-setgt (do we need to have this pair of setlt, setgt??)
1454 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1455 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
1462 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1463 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1467 // never called because compiler transforms a >= k to a > (k-1)
1469 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1470 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
1477 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1478 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1482 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1483 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
1490 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1491 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
1498 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1499 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1503 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1504 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
1508 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1509 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1513 // This needs to be there but I forget which code will generate it
1516 <(brcond CPU16Regs:$rx, bb:$targ16),
1517 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1526 // <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1527 // (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
1534 // <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1535 // (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1543 // <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1544 // (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
1547 def: UncondBranch16_pat<br, Bimm16>;
1550 def: Mips16Pat<(i32 immSExt16:$in),
1551 (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
1553 def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1559 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1560 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1566 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1567 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1572 // if !(a < b) x = y
1574 def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1575 CPU16Regs:$x, CPU16Regs:$y),
1576 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1577 CPU16Regs:$a, CPU16Regs:$b)>;
1584 def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1585 CPU16Regs:$x, CPU16Regs:$y),
1586 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1587 CPU16Regs:$b, CPU16Regs:$a)>;
1592 // if !(a < b) x = y;
1595 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1596 CPU16Regs:$x, CPU16Regs:$y),
1597 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1598 CPU16Regs:$a, CPU16Regs:$b)>;
1605 def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1606 CPU16Regs:$x, CPU16Regs:$y),
1607 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1608 CPU16Regs:$b, CPU16Regs:$a)>;
1612 // due to an llvm optimization, i don't think that this will ever
1613 // be used. This is transformed into x = (a > k-1)?x:y
1618 // (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1619 // CPU16Regs:$T, CPU16Regs:$F),
1620 // (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1621 // CPU16Regs:$lhs, immSExt16:$rhs)>;
1624 // (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1625 // CPU16Regs:$T, CPU16Regs:$F),
1626 // (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1627 // CPU16Regs:$lhs, immSExt16:$rhs)>;
1632 // if !(a < k) x = y;
1635 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1636 CPU16Regs:$x, CPU16Regs:$y),
1637 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1638 CPU16Regs:$a, immSExt16:$b)>;
1644 // x = (a <= b)? x : y
1648 def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1649 CPU16Regs:$x, CPU16Regs:$y),
1650 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1651 CPU16Regs:$b, CPU16Regs:$a)>;
1655 // x = (a <= b)? x : y
1659 def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1660 CPU16Regs:$x, CPU16Regs:$y),
1661 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1662 CPU16Regs:$b, CPU16Regs:$a)>;
1666 // x = (a == b)? x : y
1668 // if (a != b) x = y
1670 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1671 CPU16Regs:$x, CPU16Regs:$y),
1672 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1673 CPU16Regs:$b, CPU16Regs:$a)>;
1677 // x = (a == 0)? x : y
1679 // if (a != 0) x = y
1681 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1682 CPU16Regs:$x, CPU16Regs:$y),
1683 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1689 // x = (a == k)? x : y
1691 // if (a != k) x = y
1693 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1694 CPU16Regs:$x, CPU16Regs:$y),
1695 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1696 CPU16Regs:$a, immZExt16:$k)>;
1701 // x = (a != b)? x : y
1703 // if (a == b) x = y
1706 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1707 CPU16Regs:$x, CPU16Regs:$y),
1708 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1709 CPU16Regs:$b, CPU16Regs:$a)>;
1713 // x = (a != 0)? x : y
1715 // if (a == 0) x = y
1717 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1718 CPU16Regs:$x, CPU16Regs:$y),
1719 (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1727 def : Mips16Pat<(select CPU16Regs:$a,
1728 CPU16Regs:$x, CPU16Regs:$y),
1729 (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1735 // x = (a != k)? x : y
1737 // if (a == k) x = y
1739 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1740 CPU16Regs:$x, CPU16Regs:$y),
1741 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1742 CPU16Regs:$a, immZExt16:$k)>;
1745 // When writing C code to test setxx these patterns,
1746 // some will be transformed into
1747 // other things. So we test using C code but using -O3 and -O0
1752 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1753 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1756 <(seteq CPU16Regs:$lhs, 0),
1757 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1765 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1766 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1770 // For constants, llvm transforms this to:
1771 // x > (k - 1) and then reverses the operands to use setlt. So this pattern
1772 // is not used now by the compiler. (Presumably checking that k-1 does not
1773 // overflow). The compiler never uses this at the current time, due to
1774 // other optimizations.
1777 // <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1778 // (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1779 // (LiRxImmX16 1))>;
1781 // This catches the x >= -32768 case by transforming it to x > -32769
1784 <(setgt CPU16Regs:$lhs, -32769),
1785 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1794 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1795 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1801 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1802 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1807 def: SetCC_R16<setlt, SltCCRxRy16>;
1809 def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1815 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1816 (SltuCCRxRy16 (LiRxImmX16 0),
1817 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1824 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1825 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1828 // this pattern will never be used because the compiler will transform
1829 // x >= k to x > (k - 1) and then use SLT
1832 // <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1833 // (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1834 // (LiRxImmX16 1))>;
1840 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1841 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1847 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1848 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1853 def: SetCC_R16<setult, SltuCCRxRy16>;
1855 def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1857 def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1858 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1861 def : Mips16Pat<(MipsHi tblockaddress:$in),
1862 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1863 def : Mips16Pat<(MipsHi tglobaladdr:$in),
1864 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1865 def : Mips16Pat<(MipsHi tjumptable:$in),
1866 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1868 def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1870 def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in),
1871 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1874 class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1875 Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1876 (ADDiuOp RC:$gp, node:$in)>;
1879 def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1880 def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1882 def : Mips16Pat<(i32 (extloadi8 addr16:$src)),
1883 (LbuRxRyOffMemX16 addr16:$src)>;
1884 def : Mips16Pat<(i32 (extloadi16 addr16:$src)),
1885 (LhuRxRyOffMemX16 addr16:$src)>;
1887 def: Mips16Pat<(trap), (Break16)>;
1889 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1890 (SebRx16 CPU16Regs:$val)>;
1892 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1893 (SehRx16 CPU16Regs:$val)>;
1897 (outs CPU16Regs:$rh, CPU16Regs:$rl),
1898 (ins simm16:$immHi, simm16:$immLo),
1899 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1901 // An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1902 def cpinst_operand : Operand<i32> {
1903 // let PrintMethod = "printCPInstOperand";
1906 // CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1907 // the function. The first operand is the ID# for this instruction, the second
1908 // is the index into the MachineConstantPool that this is, the third is the
1909 // size in bytes of this constant pool entry.
1911 let hasSideEffects = 0, isNotDuplicable = 1 in
1912 def CONSTPOOL_ENTRY :
1913 MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1914 i32imm:$size), "foo", []>;
1916 // Instruction Aliases
1918 let EncodingPredicates = [InMips16Mode] in
1919 def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>;