Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / Mips / MipsAsmPrinter.cpp
blob018c620f5c84c74141ff7003f23de698f651a9fd
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "MipsAsmPrinter.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsInstPrinter.h"
18 #include "MCTargetDesc/MipsMCNaCl.h"
19 #include "MCTargetDesc/MipsMCTargetDesc.h"
20 #include "Mips.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetStreamer.h"
26 #include "TargetInfo/MipsTargetInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/ELF.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/MC/TargetRegistry.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLoweringObjectFile.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include "llvm/TargetParser/Triple.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <map>
65 #include <memory>
66 #include <string>
67 #include <vector>
69 using namespace llvm;
71 #define DEBUG_TYPE "mips-asm-printer"
73 extern cl::opt<bool> EmitJalrReloc;
75 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
76 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
79 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
80 Subtarget = &MF.getSubtarget<MipsSubtarget>();
82 MipsFI = MF.getInfo<MipsFunctionInfo>();
83 if (Subtarget->inMips16Mode())
84 for (const auto &I : MipsFI->StubsNeeded) {
85 const char *Symbol = I.first;
86 const Mips16HardFloatInfo::FuncSignature *Signature = I.second;
87 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
88 StubsNeeded[Symbol] = Signature;
90 MCP = MF.getConstantPool();
92 // In NaCl, all indirect jump targets must be aligned to bundle size.
93 if (Subtarget->isTargetNaCl())
94 NaClAlignIndirectJumpTargets(MF);
96 AsmPrinter::runOnMachineFunction(MF);
98 emitXRayTable();
100 return true;
103 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
104 MCOp = MCInstLowering.LowerOperand(MO);
105 return MCOp.isValid();
108 #include "MipsGenMCPseudoLowering.inc"
110 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
111 // JALR, or JALR64 as appropriate for the target.
112 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
113 const MachineInstr *MI) {
114 bool HasLinkReg = false;
115 bool InMicroMipsMode = Subtarget->inMicroMipsMode();
116 MCInst TmpInst0;
118 if (Subtarget->hasMips64r6()) {
119 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
120 TmpInst0.setOpcode(Mips::JALR64);
121 HasLinkReg = true;
122 } else if (Subtarget->hasMips32r6()) {
123 // MIPS32r6 should use (JALR ZERO, $rs)
124 if (InMicroMipsMode)
125 TmpInst0.setOpcode(Mips::JRC16_MMR6);
126 else {
127 TmpInst0.setOpcode(Mips::JALR);
128 HasLinkReg = true;
130 } else if (Subtarget->inMicroMipsMode())
131 // microMIPS should use (JR_MM $rs)
132 TmpInst0.setOpcode(Mips::JR_MM);
133 else {
134 // Everything else should use (JR $rs)
135 TmpInst0.setOpcode(Mips::JR);
138 MCOperand MCOp;
140 if (HasLinkReg) {
141 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
142 TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
145 lowerOperand(MI->getOperand(0), MCOp);
146 TmpInst0.addOperand(MCOp);
148 EmitToStreamer(OutStreamer, TmpInst0);
151 // If there is an MO_JALR operand, insert:
153 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
154 // tmplabel:
156 // This is an optimization hint for the linker which may then replace
157 // an indirect call with a direct branch.
158 static void emitDirectiveRelocJalr(const MachineInstr &MI,
159 MCContext &OutContext,
160 TargetMachine &TM,
161 MCStreamer &OutStreamer,
162 const MipsSubtarget &Subtarget) {
163 for (const MachineOperand &MO :
164 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) {
165 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
166 MCSymbol *Callee = MO.getMCSymbol();
167 if (Callee && !Callee->getName().empty()) {
168 MCSymbol *OffsetLabel = OutContext.createTempSymbol();
169 const MCExpr *OffsetExpr =
170 MCSymbolRefExpr::create(OffsetLabel, OutContext);
171 const MCExpr *CaleeExpr =
172 MCSymbolRefExpr::create(Callee, OutContext);
173 OutStreamer.emitRelocDirective(
174 *OffsetExpr,
175 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
176 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
177 OutStreamer.emitLabel(OffsetLabel);
178 return;
184 void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) {
185 // FIXME: Enable feature predicate checks once all the test pass.
186 // Mips_MC::verifyInstructionPredicates(MI->getOpcode(),
187 // getSubtargetInfo().getFeatureBits());
189 MipsTargetStreamer &TS = getTargetStreamer();
190 unsigned Opc = MI->getOpcode();
191 TS.forbidModuleDirective();
193 if (MI->isDebugValue()) {
194 SmallString<128> Str;
195 raw_svector_ostream OS(Str);
197 PrintDebugValueComment(MI, OS);
198 return;
200 if (MI->isDebugLabel())
201 return;
203 // If we just ended a constant pool, mark it as such.
204 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
205 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
206 InConstantPool = false;
208 if (Opc == Mips::CONSTPOOL_ENTRY) {
209 // CONSTPOOL_ENTRY - This instruction represents a floating
210 // constant pool in the function. The first operand is the ID#
211 // for this instruction, the second is the index into the
212 // MachineConstantPool that this is, the third is the size in
213 // bytes of this constant pool entry.
214 // The required alignment is specified on the basic block holding this MI.
216 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
217 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
219 // If this is the first entry of the pool, mark it.
220 if (!InConstantPool) {
221 OutStreamer->emitDataRegion(MCDR_DataRegion);
222 InConstantPool = true;
225 OutStreamer->emitLabel(GetCPISymbol(LabelId));
227 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
228 if (MCPE.isMachineConstantPoolEntry())
229 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
230 else
231 emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
232 return;
235 switch (Opc) {
236 case Mips::PATCHABLE_FUNCTION_ENTER:
237 LowerPATCHABLE_FUNCTION_ENTER(*MI);
238 return;
239 case Mips::PATCHABLE_FUNCTION_EXIT:
240 LowerPATCHABLE_FUNCTION_EXIT(*MI);
241 return;
242 case Mips::PATCHABLE_TAIL_CALL:
243 LowerPATCHABLE_TAIL_CALL(*MI);
244 return;
247 if (EmitJalrReloc &&
248 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
249 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
252 MachineBasicBlock::const_instr_iterator I = MI->getIterator();
253 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
255 do {
256 // Do any auto-generated pseudo lowerings.
257 if (emitPseudoExpansionLowering(*OutStreamer, &*I))
258 continue;
260 // Skip the BUNDLE pseudo instruction and lower the contents
261 if (I->isBundle())
262 continue;
264 if (I->getOpcode() == Mips::PseudoReturn ||
265 I->getOpcode() == Mips::PseudoReturn64 ||
266 I->getOpcode() == Mips::PseudoIndirectBranch ||
267 I->getOpcode() == Mips::PseudoIndirectBranch64 ||
268 I->getOpcode() == Mips::TAILCALLREG ||
269 I->getOpcode() == Mips::TAILCALLREG64) {
270 emitPseudoIndirectBranch(*OutStreamer, &*I);
271 continue;
274 // The inMips16Mode() test is not permanent.
275 // Some instructions are marked as pseudo right now which
276 // would make the test fail for the wrong reason but
277 // that will be fixed soon. We need this here because we are
278 // removing another test for this situation downstream in the
279 // callchain.
281 if (I->isPseudo() && !Subtarget->inMips16Mode()
282 && !isLongBranchPseudo(I->getOpcode()))
283 llvm_unreachable("Pseudo opcode found in emitInstruction()");
285 MCInst TmpInst0;
286 MCInstLowering.Lower(&*I, TmpInst0);
287 EmitToStreamer(*OutStreamer, TmpInst0);
288 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
291 //===----------------------------------------------------------------------===//
293 // Mips Asm Directives
295 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
296 // Describe the stack frame.
298 // -- Mask directives "(f)mask bitmask, offset"
299 // Tells the assembler which registers are saved and where.
300 // bitmask - contain a little endian bitset indicating which registers are
301 // saved on function prologue (e.g. with a 0x80000000 mask, the
302 // assembler knows the register 31 (RA) is saved at prologue.
303 // offset - the position before stack pointer subtraction indicating where
304 // the first saved register on prologue is located. (e.g. with a
306 // Consider the following function prologue:
308 // .frame $fp,48,$ra
309 // .mask 0xc0000000,-8
310 // addiu $sp, $sp, -48
311 // sw $ra, 40($sp)
312 // sw $fp, 36($sp)
314 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
315 // 30 (FP) are saved at prologue. As the save order on prologue is from
316 // left to right, RA is saved first. A -8 offset means that after the
317 // stack pointer subtration, the first register in the mask (RA) will be
318 // saved at address 48-8=40.
320 //===----------------------------------------------------------------------===//
322 //===----------------------------------------------------------------------===//
323 // Mask directives
324 //===----------------------------------------------------------------------===//
326 // Create a bitmask with all callee saved registers for CPU or Floating Point
327 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
328 void MipsAsmPrinter::printSavedRegsBitmask() {
329 // CPU and FPU Saved Registers Bitmasks
330 unsigned CPUBitmask = 0, FPUBitmask = 0;
331 int CPUTopSavedRegOff, FPUTopSavedRegOff;
333 // Set the CPU and FPU Bitmasks
334 const MachineFrameInfo &MFI = MF->getFrameInfo();
335 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
336 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
337 // size of stack area to which FP callee-saved regs are saved.
338 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
339 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
340 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
341 bool HasAFGR64Reg = false;
342 unsigned CSFPRegsSize = 0;
344 for (const auto &I : CSI) {
345 Register Reg = I.getReg();
346 unsigned RegNum = TRI->getEncodingValue(Reg);
348 // If it's a floating point register, set the FPU Bitmask.
349 // If it's a general purpose register, set the CPU Bitmask.
350 if (Mips::FGR32RegClass.contains(Reg)) {
351 FPUBitmask |= (1 << RegNum);
352 CSFPRegsSize += FGR32RegSize;
353 } else if (Mips::AFGR64RegClass.contains(Reg)) {
354 FPUBitmask |= (3 << RegNum);
355 CSFPRegsSize += AFGR64RegSize;
356 HasAFGR64Reg = true;
357 } else if (Mips::GPR32RegClass.contains(Reg))
358 CPUBitmask |= (1 << RegNum);
361 // FP Regs are saved right below where the virtual frame pointer points to.
362 FPUTopSavedRegOff = FPUBitmask ?
363 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
365 // CPU Regs are saved below FP Regs.
366 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
368 MipsTargetStreamer &TS = getTargetStreamer();
369 // Print CPUBitmask
370 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
372 // Print FPUBitmask
373 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
376 //===----------------------------------------------------------------------===//
377 // Frame and Set directives
378 //===----------------------------------------------------------------------===//
380 /// Frame Directive
381 void MipsAsmPrinter::emitFrameDirective() {
382 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
384 Register stackReg = RI.getFrameRegister(*MF);
385 unsigned returnReg = RI.getRARegister();
386 unsigned stackSize = MF->getFrameInfo().getStackSize();
388 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
391 /// Emit Set directives.
392 const char *MipsAsmPrinter::getCurrentABIString() const {
393 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
394 case MipsABIInfo::ABI::O32: return "abi32";
395 case MipsABIInfo::ABI::N32: return "abiN32";
396 case MipsABIInfo::ABI::N64: return "abi64";
397 default: llvm_unreachable("Unknown Mips ABI");
401 void MipsAsmPrinter::emitFunctionEntryLabel() {
402 MipsTargetStreamer &TS = getTargetStreamer();
404 // NaCl sandboxing requires that indirect call instructions are masked.
405 // This means that function entry points should be bundle-aligned.
406 if (Subtarget->isTargetNaCl())
407 emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
409 if (Subtarget->inMicroMipsMode()) {
410 TS.emitDirectiveSetMicroMips();
411 TS.setUsesMicroMips();
412 TS.updateABIInfo(*Subtarget);
413 } else
414 TS.emitDirectiveSetNoMicroMips();
416 if (Subtarget->inMips16Mode())
417 TS.emitDirectiveSetMips16();
418 else
419 TS.emitDirectiveSetNoMips16();
421 TS.emitDirectiveEnt(*CurrentFnSym);
422 OutStreamer->emitLabel(CurrentFnSym);
425 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
426 /// the first basic block in the function.
427 void MipsAsmPrinter::emitFunctionBodyStart() {
428 MipsTargetStreamer &TS = getTargetStreamer();
430 MCInstLowering.Initialize(&MF->getContext());
432 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
433 if (!IsNakedFunction)
434 emitFrameDirective();
436 if (!IsNakedFunction)
437 printSavedRegsBitmask();
439 if (!Subtarget->inMips16Mode()) {
440 TS.emitDirectiveSetNoReorder();
441 TS.emitDirectiveSetNoMacro();
442 TS.emitDirectiveSetNoAt();
446 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
447 /// the last basic block in the function.
448 void MipsAsmPrinter::emitFunctionBodyEnd() {
449 MipsTargetStreamer &TS = getTargetStreamer();
451 // There are instruction for this macros, but they must
452 // always be at the function end, and we can't emit and
453 // break with BB logic.
454 if (!Subtarget->inMips16Mode()) {
455 TS.emitDirectiveSetAt();
456 TS.emitDirectiveSetMacro();
457 TS.emitDirectiveSetReorder();
459 TS.emitDirectiveEnd(CurrentFnSym->getName());
460 // Make sure to terminate any constant pools that were at the end
461 // of the function.
462 if (!InConstantPool)
463 return;
464 InConstantPool = false;
465 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
468 void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
469 AsmPrinter::emitBasicBlockEnd(MBB);
470 MipsTargetStreamer &TS = getTargetStreamer();
471 if (MBB.empty())
472 TS.emitDirectiveInsn();
475 // Print out an operand for an inline asm expression.
476 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
477 const char *ExtraCode, raw_ostream &O) {
478 // Does this asm operand have a single letter operand modifier?
479 if (ExtraCode && ExtraCode[0]) {
480 if (ExtraCode[1] != 0) return true; // Unknown modifier.
482 const MachineOperand &MO = MI->getOperand(OpNum);
483 switch (ExtraCode[0]) {
484 default:
485 // See if this is a generic print operand
486 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
487 case 'X': // hex const int
488 if (!MO.isImm())
489 return true;
490 O << "0x" << Twine::utohexstr(MO.getImm());
491 return false;
492 case 'x': // hex const int (low 16 bits)
493 if (!MO.isImm())
494 return true;
495 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
496 return false;
497 case 'd': // decimal const int
498 if (!MO.isImm())
499 return true;
500 O << MO.getImm();
501 return false;
502 case 'm': // decimal const int minus 1
503 if (!MO.isImm())
504 return true;
505 O << MO.getImm() - 1;
506 return false;
507 case 'y': // exact log2
508 if (!MO.isImm())
509 return true;
510 if (!isPowerOf2_64(MO.getImm()))
511 return true;
512 O << Log2_64(MO.getImm());
513 return false;
514 case 'z':
515 // $0 if zero, regular printing otherwise
516 if (MO.isImm() && MO.getImm() == 0) {
517 O << "$0";
518 return false;
520 // If not, call printOperand as normal.
521 break;
522 case 'D': // Second part of a double word register operand
523 case 'L': // Low order register of a double word register operand
524 case 'M': // High order register of a double word register operand
526 if (OpNum == 0)
527 return true;
528 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
529 if (!FlagsOP.isImm())
530 return true;
531 const InlineAsm::Flag Flags(FlagsOP.getImm());
532 const unsigned NumVals = Flags.getNumOperandRegisters();
533 // Number of registers represented by this operand. We are looking
534 // for 2 for 32 bit mode and 1 for 64 bit mode.
535 if (NumVals != 2) {
536 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
537 Register Reg = MO.getReg();
538 O << '$' << MipsInstPrinter::getRegisterName(Reg);
539 return false;
541 return true;
544 unsigned RegOp = OpNum;
545 if (!Subtarget->isGP64bit()){
546 // Endianness reverses which register holds the high or low value
547 // between M and L.
548 switch(ExtraCode[0]) {
549 case 'M':
550 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
551 break;
552 case 'L':
553 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
554 break;
555 case 'D': // Always the second part
556 RegOp = OpNum + 1;
558 if (RegOp >= MI->getNumOperands())
559 return true;
560 const MachineOperand &MO = MI->getOperand(RegOp);
561 if (!MO.isReg())
562 return true;
563 Register Reg = MO.getReg();
564 O << '$' << MipsInstPrinter::getRegisterName(Reg);
565 return false;
567 break;
569 case 'w': {
570 MCRegister w = getMSARegFromFReg(MO.getReg());
571 if (w != Mips::NoRegister) {
572 O << '$' << MipsInstPrinter::getRegisterName(w);
573 return false;
575 break;
580 printOperand(MI, OpNum, O);
581 return false;
584 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
585 unsigned OpNum,
586 const char *ExtraCode,
587 raw_ostream &O) {
588 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
589 const MachineOperand &BaseMO = MI->getOperand(OpNum);
590 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
591 assert(BaseMO.isReg() &&
592 "Unexpected base pointer for inline asm memory operand.");
593 assert(OffsetMO.isImm() &&
594 "Unexpected offset for inline asm memory operand.");
595 int Offset = OffsetMO.getImm();
597 // Currently we are expecting either no ExtraCode or 'D','M','L'.
598 if (ExtraCode) {
599 switch (ExtraCode[0]) {
600 case 'D':
601 Offset += 4;
602 break;
603 case 'M':
604 if (Subtarget->isLittle())
605 Offset += 4;
606 break;
607 case 'L':
608 if (!Subtarget->isLittle())
609 Offset += 4;
610 break;
611 default:
612 return true; // Unknown modifier.
616 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
617 << ")";
619 return false;
622 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
623 raw_ostream &O) {
624 const MachineOperand &MO = MI->getOperand(opNum);
625 bool closeP = false;
627 if (MO.getTargetFlags())
628 closeP = true;
630 switch(MO.getTargetFlags()) {
631 case MipsII::MO_GPREL: O << "%gp_rel("; break;
632 case MipsII::MO_GOT_CALL: O << "%call16("; break;
633 case MipsII::MO_GOT: O << "%got("; break;
634 case MipsII::MO_ABS_HI: O << "%hi("; break;
635 case MipsII::MO_ABS_LO: O << "%lo("; break;
636 case MipsII::MO_HIGHER: O << "%higher("; break;
637 case MipsII::MO_HIGHEST: O << "%highest(("; break;
638 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
639 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
640 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
641 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
642 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
643 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
644 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
645 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
646 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
649 switch (MO.getType()) {
650 case MachineOperand::MO_Register:
651 O << '$'
652 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
653 break;
655 case MachineOperand::MO_Immediate:
656 O << MO.getImm();
657 break;
659 case MachineOperand::MO_MachineBasicBlock:
660 MO.getMBB()->getSymbol()->print(O, MAI);
661 return;
663 case MachineOperand::MO_GlobalAddress:
664 PrintSymbolOperand(MO, O);
665 break;
667 case MachineOperand::MO_BlockAddress: {
668 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
669 O << BA->getName();
670 break;
673 case MachineOperand::MO_ConstantPoolIndex:
674 O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
675 << getFunctionNumber() << "_" << MO.getIndex();
676 if (MO.getOffset())
677 O << "+" << MO.getOffset();
678 break;
680 default:
681 llvm_unreachable("<unknown operand type>");
684 if (closeP) O << ")";
687 void MipsAsmPrinter::
688 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
689 // Load/Store memory operands -- imm($reg)
690 // If PIC target the target is loaded as the
691 // pattern lw $25,%call16($28)
693 // opNum can be invalid if instruction has reglist as operand.
694 // MemOperand is always last operand of instruction (base + offset).
695 switch (MI->getOpcode()) {
696 default:
697 break;
698 case Mips::SWM32_MM:
699 case Mips::LWM32_MM:
700 opNum = MI->getNumOperands() - 2;
701 break;
704 printOperand(MI, opNum+1, O);
705 O << "(";
706 printOperand(MI, opNum, O);
707 O << ")";
710 void MipsAsmPrinter::
711 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
712 // when using stack locations for not load/store instructions
713 // print the same way as all normal 3 operand instructions.
714 printOperand(MI, opNum, O);
715 O << ", ";
716 printOperand(MI, opNum+1, O);
719 void MipsAsmPrinter::
720 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
721 const char *Modifier) {
722 const MachineOperand &MO = MI->getOperand(opNum);
723 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
726 void MipsAsmPrinter::
727 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
728 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
729 if (i != opNum) O << ", ";
730 printOperand(MI, i, O);
734 void MipsAsmPrinter::emitStartOfAsmFile(Module &M) {
735 MipsTargetStreamer &TS = getTargetStreamer();
737 // MipsTargetStreamer has an initialization order problem when emitting an
738 // object file directly (see MipsTargetELFStreamer for full details). Work
739 // around it by re-initializing the PIC state here.
740 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
742 // Try to get target-features from the first function.
743 StringRef FS = TM.getTargetFeatureString();
744 Module::iterator F = M.begin();
745 if (FS.empty() && M.size() && F->hasFnAttribute("target-features"))
746 FS = F->getFnAttribute("target-features").getValueAsString();
748 // Compute MIPS architecture attributes based on the default subtarget
749 // that we'd have constructed.
750 // FIXME: For ifunc related functions we could iterate over and look
751 // for a feature string that doesn't match the default one.
752 const Triple &TT = TM.getTargetTriple();
753 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
754 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
755 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, std::nullopt);
757 bool IsABICalls = STI.isABICalls();
758 const MipsABIInfo &ABI = MTM.getABI();
759 if (IsABICalls) {
760 TS.emitDirectiveAbiCalls();
761 // FIXME: This condition should be a lot more complicated that it is here.
762 // Ideally it should test for properties of the ABI and not the ABI
763 // itself.
764 // For the moment, I'm only correcting enough to make MIPS-IV work.
765 if (!isPositionIndependent() && STI.hasSym32())
766 TS.emitDirectiveOptionPic0();
769 // Tell the assembler which ABI we are using
770 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
771 OutStreamer->switchSection(
772 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
774 // NaN: At the moment we only support:
775 // 1. .nan legacy (default)
776 // 2. .nan 2008
777 STI.isNaN2008() ? TS.emitDirectiveNaN2008()
778 : TS.emitDirectiveNaNLegacy();
780 // TODO: handle O64 ABI
782 TS.updateABIInfo(STI);
784 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
785 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
786 // -mfp64) and omit it otherwise.
787 if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
788 STI.useSoftFloat())
789 TS.emitDirectiveModuleFP();
791 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
792 // accept it. We therefore emit it when it contradicts the default or an
793 // option has changed the default (i.e. FPXX) and omit it otherwise.
794 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
795 TS.emitDirectiveModuleOddSPReg();
797 // Switch to the .text section.
798 OutStreamer->switchSection(getObjFileLowering().getTextSection());
801 void MipsAsmPrinter::emitInlineAsmStart() const {
802 MipsTargetStreamer &TS = getTargetStreamer();
804 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
805 // and 'reorder') is different from LLVM's choice for generated code ('noat',
806 // 'nomacro' and 'noreorder').
807 // In order to maintain compatibility with inline assembly code which depends
808 // on GCC's assembler options being used, we have to switch to those options
809 // for the duration of the inline assembly block and then switch back.
810 TS.emitDirectiveSetPush();
811 TS.emitDirectiveSetAt();
812 TS.emitDirectiveSetMacro();
813 TS.emitDirectiveSetReorder();
814 OutStreamer->addBlankLine();
817 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
818 const MCSubtargetInfo *EndInfo) const {
819 OutStreamer->addBlankLine();
820 getTargetStreamer().emitDirectiveSetPop();
823 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
824 MCInst I;
825 I.setOpcode(Mips::JAL);
826 I.addOperand(
827 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
828 OutStreamer->emitInstruction(I, STI);
831 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
832 unsigned Reg) {
833 MCInst I;
834 I.setOpcode(Opcode);
835 I.addOperand(MCOperand::createReg(Reg));
836 OutStreamer->emitInstruction(I, STI);
839 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
840 unsigned Opcode, unsigned Reg1,
841 unsigned Reg2) {
842 MCInst I;
844 // Because of the current td files for Mips32, the operands for MTC1
845 // appear backwards from their normal assembly order. It's not a trivial
846 // change to fix this in the td file so we adjust for it here.
848 if (Opcode == Mips::MTC1) {
849 unsigned Temp = Reg1;
850 Reg1 = Reg2;
851 Reg2 = Temp;
853 I.setOpcode(Opcode);
854 I.addOperand(MCOperand::createReg(Reg1));
855 I.addOperand(MCOperand::createReg(Reg2));
856 OutStreamer->emitInstruction(I, STI);
859 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
860 unsigned Opcode, unsigned Reg1,
861 unsigned Reg2, unsigned Reg3) {
862 MCInst I;
863 I.setOpcode(Opcode);
864 I.addOperand(MCOperand::createReg(Reg1));
865 I.addOperand(MCOperand::createReg(Reg2));
866 I.addOperand(MCOperand::createReg(Reg3));
867 OutStreamer->emitInstruction(I, STI);
870 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
871 unsigned MovOpc, unsigned Reg1,
872 unsigned Reg2, unsigned FPReg1,
873 unsigned FPReg2, bool LE) {
874 if (!LE) {
875 unsigned temp = Reg1;
876 Reg1 = Reg2;
877 Reg2 = temp;
879 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
880 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
883 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
884 Mips16HardFloatInfo::FPParamVariant PV,
885 bool LE, bool ToFP) {
886 using namespace Mips16HardFloatInfo;
888 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
889 switch (PV) {
890 case FSig:
891 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
892 break;
893 case FFSig:
894 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
895 break;
896 case FDSig:
897 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
898 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
899 break;
900 case DSig:
901 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
902 break;
903 case DDSig:
904 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
905 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
906 break;
907 case DFSig:
908 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
909 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
910 break;
911 case NoSig:
912 return;
916 void MipsAsmPrinter::EmitSwapFPIntRetval(
917 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
918 bool LE) {
919 using namespace Mips16HardFloatInfo;
921 unsigned MovOpc = Mips::MFC1;
922 switch (RV) {
923 case FRet:
924 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
925 break;
926 case DRet:
927 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
928 break;
929 case CFRet:
930 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
931 break;
932 case CDRet:
933 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
934 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
935 break;
936 case NoFPRet:
937 break;
941 void MipsAsmPrinter::EmitFPCallStub(
942 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
943 using namespace Mips16HardFloatInfo;
945 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
946 bool LE = getDataLayout().isLittleEndian();
947 // Construct a local MCSubtargetInfo here.
948 // This is because the MachineFunction won't exist (but have not yet been
949 // freed) and since we're at the global level we can use the default
950 // constructed subtarget.
951 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
952 TM.getTargetTriple().str(), TM.getTargetCPU(),
953 TM.getTargetFeatureString()));
956 // .global xxxx
958 OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global);
959 const char *RetType;
961 // make the comment field identifying the return and parameter
962 // types of the floating point stub
963 // # Stub function to call rettype xxxx (params)
965 switch (Signature->RetSig) {
966 case FRet:
967 RetType = "float";
968 break;
969 case DRet:
970 RetType = "double";
971 break;
972 case CFRet:
973 RetType = "complex";
974 break;
975 case CDRet:
976 RetType = "double complex";
977 break;
978 case NoFPRet:
979 RetType = "";
980 break;
982 const char *Parms;
983 switch (Signature->ParamSig) {
984 case FSig:
985 Parms = "float";
986 break;
987 case FFSig:
988 Parms = "float, float";
989 break;
990 case FDSig:
991 Parms = "float, double";
992 break;
993 case DSig:
994 Parms = "double";
995 break;
996 case DDSig:
997 Parms = "double, double";
998 break;
999 case DFSig:
1000 Parms = "double, float";
1001 break;
1002 case NoSig:
1003 Parms = "";
1004 break;
1006 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
1007 Twine(Symbol) + " (" + Twine(Parms) + ")");
1009 // probably not necessary but we save and restore the current section state
1011 OutStreamer->pushSection();
1013 // .section mips16.call.fpxxxx,"ax",@progbits
1015 MCSectionELF *M = OutContext.getELFSection(
1016 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1017 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1018 OutStreamer->switchSection(M);
1020 // .align 2
1022 OutStreamer->emitValueToAlignment(Align(4));
1023 MipsTargetStreamer &TS = getTargetStreamer();
1025 // .set nomips16
1026 // .set nomicromips
1028 TS.emitDirectiveSetNoMips16();
1029 TS.emitDirectiveSetNoMicroMips();
1031 // .ent __call_stub_fp_xxxx
1032 // .type __call_stub_fp_xxxx,@function
1033 // __call_stub_fp_xxxx:
1035 std::string x = "__call_stub_fp_" + std::string(Symbol);
1036 MCSymbolELF *Stub =
1037 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1038 TS.emitDirectiveEnt(*Stub);
1039 MCSymbol *MType =
1040 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1041 OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1042 OutStreamer->emitLabel(Stub);
1044 // Only handle non-pic for now.
1045 assert(!isPositionIndependent() &&
1046 "should not be here if we are compiling pic");
1047 TS.emitDirectiveSetReorder();
1049 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1050 // stubs without raw text but this current patch is for compiler generated
1051 // functions and they all return some value.
1052 // The calling sequence for non pic is different in that case and we need
1053 // to implement %lo and %hi in order to handle the case of no return value
1054 // See the corresponding method in Mips16HardFloat for details.
1056 // mov the return address to S2.
1057 // we have no stack space to store it and we are about to make another call.
1058 // We need to make sure that the enclosing function knows to save S2
1059 // This should have already been handled.
1061 // Mov $18, $31
1063 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1065 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1067 // Jal xxxx
1069 EmitJal(*STI, MSymbol);
1071 // fix return values
1072 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1074 // do the return
1075 // if (Signature->RetSig == NoFPRet)
1076 // llvm_unreachable("should not be any stubs here with no return value");
1077 // else
1078 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1080 MCSymbol *Tmp = OutContext.createTempSymbol();
1081 OutStreamer->emitLabel(Tmp);
1082 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1083 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1084 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1085 OutStreamer->emitELFSize(Stub, T_min_E);
1086 TS.emitDirectiveEnd(x);
1087 OutStreamer->popSection();
1090 void MipsAsmPrinter::emitEndOfAsmFile(Module &M) {
1091 // Emit needed stubs
1093 for (std::map<
1094 const char *,
1095 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1096 it = StubsNeeded.begin();
1097 it != StubsNeeded.end(); ++it) {
1098 const char *Symbol = it->first;
1099 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1100 EmitFPCallStub(Symbol, Signature);
1102 // return to the text section
1103 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
1106 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1107 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1108 // For mips32 we want to emit the following pattern:
1110 // .Lxray_sled_N:
1111 // ALIGN
1112 // B .tmpN
1113 // 11 NOP instructions (44 bytes)
1114 // ADDIU T9, T9, 52
1115 // .tmpN
1117 // We need the 44 bytes (11 instructions) because at runtime, we'd
1118 // be patching over the full 48 bytes (12 instructions) with the following
1119 // pattern:
1121 // ADDIU SP, SP, -8
1122 // NOP
1123 // SW RA, 4(SP)
1124 // SW T9, 0(SP)
1125 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1126 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1127 // LUI T0, %hi(function_id)
1128 // JALR T9
1129 // ORI T0, T0, %lo(function_id)
1130 // LW T9, 0(SP)
1131 // LW RA, 4(SP)
1132 // ADDIU SP, SP, 8
1134 // We add 52 bytes to t9 because we want to adjust the function pointer to
1135 // the actual start of function i.e. the address just after the noop sled.
1136 // We do this because gp displacement relocation is emitted at the start of
1137 // of the function i.e after the nop sled and to correctly calculate the
1138 // global offset table address, t9 must hold the address of the instruction
1139 // containing the gp displacement relocation.
1140 // FIXME: Is this correct for the static relocation model?
1142 // For mips64 we want to emit the following pattern:
1144 // .Lxray_sled_N:
1145 // ALIGN
1146 // B .tmpN
1147 // 15 NOP instructions (60 bytes)
1148 // .tmpN
1150 // We need the 60 bytes (15 instructions) because at runtime, we'd
1151 // be patching over the full 64 bytes (16 instructions) with the following
1152 // pattern:
1154 // DADDIU SP, SP, -16
1155 // NOP
1156 // SD RA, 8(SP)
1157 // SD T9, 0(SP)
1158 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1159 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1160 // DSLL T9, T9, 16
1161 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1162 // DSLL T9, T9, 16
1163 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1164 // LUI T0, %hi(function_id)
1165 // JALR T9
1166 // ADDIU T0, T0, %lo(function_id)
1167 // LD T9, 0(SP)
1168 // LD RA, 8(SP)
1169 // DADDIU SP, SP, 16
1171 OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo());
1172 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1173 OutStreamer->emitLabel(CurSled);
1174 auto Target = OutContext.createTempSymbol();
1176 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1177 // start of function
1178 const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1179 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1180 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1181 .addReg(Mips::ZERO)
1182 .addReg(Mips::ZERO)
1183 .addExpr(TargetExpr));
1185 for (int8_t I = 0; I < NoopsInSledCount; I++)
1186 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1187 .addReg(Mips::ZERO)
1188 .addReg(Mips::ZERO)
1189 .addImm(0));
1191 OutStreamer->emitLabel(Target);
1193 if (!Subtarget->isGP64bit()) {
1194 EmitToStreamer(*OutStreamer,
1195 MCInstBuilder(Mips::ADDiu)
1196 .addReg(Mips::T9)
1197 .addReg(Mips::T9)
1198 .addImm(0x34));
1201 recordSled(CurSled, MI, Kind, 2);
1204 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1205 EmitSled(MI, SledKind::FUNCTION_ENTER);
1208 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1209 EmitSled(MI, SledKind::FUNCTION_EXIT);
1212 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1213 EmitSled(MI, SledKind::TAIL_CALL);
1216 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1217 raw_ostream &OS) {
1218 // TODO: implement
1221 // Emit .dtprelword or .dtpreldword directive
1222 // and value for debug thread local expression.
1223 void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
1224 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
1225 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
1226 switch (Size) {
1227 case 4:
1228 OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr());
1229 break;
1230 case 8:
1231 OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr());
1232 break;
1233 default:
1234 llvm_unreachable("Unexpected size of expression value.");
1236 return;
1239 AsmPrinter::emitDebugValue(Value, Size);
1242 // Align all targets of indirect branches on bundle size. Used only if target
1243 // is NaCl.
1244 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1245 // Align all blocks that are jumped to through jump table.
1246 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1247 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1248 for (const auto &I : JT) {
1249 const std::vector<MachineBasicBlock *> &MBBs = I.MBBs;
1251 for (MachineBasicBlock *MBB : MBBs)
1252 MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1256 // If basic block address is taken, block can be target of indirect branch.
1257 for (auto &MBB : MF) {
1258 if (MBB.hasAddressTaken())
1259 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1263 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1264 return (Opcode == Mips::LONG_BRANCH_LUi
1265 || Opcode == Mips::LONG_BRANCH_LUi2Op
1266 || Opcode == Mips::LONG_BRANCH_LUi2Op_64
1267 || Opcode == Mips::LONG_BRANCH_ADDiu
1268 || Opcode == Mips::LONG_BRANCH_ADDiu2Op
1269 || Opcode == Mips::LONG_BRANCH_DADDiu
1270 || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
1273 // Force static initialization.
1274 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() {
1275 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1276 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1277 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1278 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());