1 //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // This describes the calling conventions for Mips architecture.
9 //===----------------------------------------------------------------------===//
11 /// CCIfSubtarget - Match if the current subtarget has a feature F.
12 class CCIfSubtarget<string F, CCAction A, string Invert = "">
13 : CCIf<!strconcat(Invert,
14 "static_cast<const MipsSubtarget&>"
15 "(State.getMachineFunction().getSubtarget()).",
19 // The inverse of CCIfSubtarget
20 class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
22 /// Match if the original argument (before lowering) was a float.
23 /// For example, this is true for i32's that were lowered from soft-float.
24 class CCIfOrigArgWasNotFloat<CCAction A>
25 : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
28 /// Match if the original argument (before lowering) was a 128-bit float (i.e.
30 class CCIfOrigArgWasF128<CCAction A>
31 : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
33 /// Match if this specific argument is a vararg.
34 /// This is slightly different fro CCIfIsVarArg which matches if any argument is
36 class CCIfArgIsVarArg<CCAction A>
37 : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
39 /// Match if the return was a floating point vector.
40 class CCIfOrigArgWasNotVectorFloat<CCAction A>
41 : CCIf<"!static_cast<MipsCCState *>(&State)"
42 "->WasOriginalRetVectorFloat(ValNo)", A>;
44 /// Match if the special calling conv is the specified value.
45 class CCIfSpecialCallingConv<string CC, CCAction A>
46 : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
47 "MipsCCState::" # CC, A>;
49 // For soft-float, f128 values are returned in A0_64 rather than V1_64.
50 def RetCC_F128SoftFloat : CallingConv<[
51 CCAssignToReg<[V0_64, A0_64]>
54 // For hard-float, f128 values are returned as a pair of f64's rather than a
56 def RetCC_F128HardFloat : CallingConv<[
57 CCBitConvertToType<f64>,
59 // Contrary to the ABI documentation, a struct containing a long double is
60 // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
61 // match the de facto ABI as implemented by GCC.
62 CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
64 CCAssignToReg<[D0_64, D2_64]>
67 // Handle F128 specially since we can't identify the original type during the
68 // tablegen-erated code.
69 def RetCC_F128 : CallingConv<[
70 CCIfSubtarget<"useSoftFloat()",
71 CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
72 CCIfSubtargetNot<"useSoftFloat()",
73 CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
76 //===----------------------------------------------------------------------===//
77 // Mips O32 Calling Convention
78 //===----------------------------------------------------------------------===//
80 def CC_MipsO32 : CallingConv<[
81 // Promote i8/i16 arguments to i32.
82 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
84 // Integer values get stored in stack slots that are 4 bytes in
85 // size and 4-byte aligned.
86 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
88 // Integer values get stored in stack slots that are 8 bytes in
89 // size and 8-byte aligned.
90 CCIfType<[f64], CCAssignToStack<8, 8>>
93 // Only the return rules are defined here for O32. The rules for argument
94 // passing are defined in MipsISelLowering.cpp.
95 def RetCC_MipsO32 : CallingConv<[
96 // Promote i1/i8/i16 return values to i32.
97 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
99 // i32 are returned in registers V0, V1, A0, A1, unless the original return
100 // type was a vector of floats.
101 CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
102 CCAssignToReg<[V0, V1, A0, A1]>>>,
104 // f32 are returned in registers F0, F2
105 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
107 // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
108 // in D0 and D1 in FP32bit mode.
109 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
110 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
113 def CC_MipsO32_FP32 : CustomCallingConv;
114 def CC_MipsO32_FP64 : CustomCallingConv;
116 def CC_MipsO32_FP : CallingConv<[
117 CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
118 CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
121 //===----------------------------------------------------------------------===//
122 // Mips N32/64 Calling Convention
123 //===----------------------------------------------------------------------===//
125 def CC_MipsN_SoftFloat : CallingConv<[
126 CCAssignToRegWithShadow<[A0, A1, A2, A3,
128 [D12_64, D13_64, D14_64, D15_64,
129 D16_64, D17_64, D18_64, D19_64]>,
130 CCAssignToStack<4, 8>
133 def CC_MipsN : CallingConv<[
134 CCIfType<[i8, i16, i32, i64],
135 CCIfSubtargetNot<"isLittle()",
136 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
138 // All integers (except soft-float integers) are promoted to 64-bit.
139 CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
141 // The only i32's we have left are soft-float arguments.
142 CCIfSubtarget<"useSoftFloat()", CCIfType<[i32],
143 CCDelegateTo<CC_MipsN_SoftFloat>>>,
145 // Integer arguments are passed in integer registers.
146 CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
147 T0_64, T1_64, T2_64, T3_64],
148 [D12_64, D13_64, D14_64, D15_64,
149 D16_64, D17_64, D18_64, D19_64]>>,
151 // f32 arguments are passed in single precision FP registers.
152 CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
154 [A0_64, A1_64, A2_64, A3_64,
155 T0_64, T1_64, T2_64, T3_64]>>,
157 // f64 arguments are passed in double precision FP registers.
158 CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
159 D16_64, D17_64, D18_64, D19_64],
160 [A0_64, A1_64, A2_64, A3_64,
161 T0_64, T1_64, T2_64, T3_64]>>,
163 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
164 CCIfType<[f32], CCAssignToStack<4, 8>>,
165 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
168 // N32/64 variable arguments.
169 // All arguments are passed in integer registers.
170 def CC_MipsN_VarArg : CallingConv<[
171 CCIfType<[i8, i16, i32, i64],
172 CCIfSubtargetNot<"isLittle()",
173 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
175 // All integers are promoted to 64-bit.
176 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
178 CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
180 CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
181 T0_64, T1_64, T2_64, T3_64]>>,
183 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
184 CCIfType<[f32], CCAssignToStack<4, 8>>,
185 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
188 def RetCC_MipsN : CallingConv<[
189 // f128 needs to be handled similarly to f32 and f64. However, f128 is not
190 // legal and is lowered to i128 which is further lowered to a pair of i64's.
191 // This presents us with a problem for the calling convention since hard-float
192 // still needs to pass them in FPU registers, and soft-float needs to use $v0,
193 // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
194 // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
195 // whether the result was originally an f128 into the tablegen-erated code.
197 // f128 should only occur for the N64 ABI where long double is 128-bit. On
198 // N32, long double is equivalent to double.
199 CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
201 // Aggregate returns are positioned at the lowest address in the slot for
202 // both little and big-endian targets. When passing in registers, this
203 // requires that big-endian targets shift the value into the upper bits.
204 CCIfSubtarget<"isLittle()",
205 CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
206 CCIfSubtargetNot<"isLittle()",
207 CCIfType<[i8, i16, i32, i64],
208 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
210 // i64 are returned in registers V0_64, V1_64
211 CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
213 // f32 are returned in registers F0, F2
214 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
216 // f64 are returned in registers D0, D2
217 CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
220 //===----------------------------------------------------------------------===//
221 // Mips FastCC Calling Convention
222 //===----------------------------------------------------------------------===//
223 def CC_MipsO32_FastCC : CallingConv<[
224 // f64 arguments are passed in double-precision floating pointer registers.
225 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
226 CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
228 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
229 CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
230 D4_64, D5_64, D6_64, D7_64,
231 D8_64, D9_64, D10_64, D11_64,
232 D12_64, D13_64, D14_64, D15_64,
233 D16_64, D17_64, D18_64,
235 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
236 CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
237 D8_64, D10_64, D12_64, D14_64,
240 // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
241 CCIfType<[f64], CCAssignToStack<8, 8>>
244 def CC_MipsN_FastCC : CallingConv<[
245 // Integer arguments are passed in integer registers.
246 CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
247 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
250 // f64 arguments are passed in double-precision floating pointer registers.
251 CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
252 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
253 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
256 // Stack parameter slots for i64 and f64 are 64-bit doublewords and
258 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
261 def CC_Mips_FastCC : CallingConv<[
262 // Handles byval parameters.
263 CCIfByVal<CCPassByVal<4, 4>>,
265 // Promote i8/i16 arguments to i32.
266 CCIfType<[i8, i16], CCPromoteToType<i32>>,
268 // Integer arguments are passed in integer registers. All scratch registers,
269 // except for AT, V0 and T9, are available to be used as argument registers.
270 CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
271 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
273 // In NaCl, T6, T7 and T8 are reserved and not available as argument
274 // registers for fastcc. T6 contains the mask for sandboxing control flow
275 // (indirect jumps and calls). T7 contains the mask for sandboxing memory
276 // accesses (loads and stores). T8 contains the thread pointer.
277 CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
278 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
280 // f32 arguments are passed in single-precision floating pointer registers.
281 CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
282 CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
283 F14, F15, F16, F17, F18, F19]>>>,
285 // Don't use odd numbered single-precision registers for -mno-odd-spreg.
286 CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
287 CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
289 // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
290 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
292 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
293 CCDelegateTo<CC_MipsN_FastCC>
296 //===----------------------------------------------------------------------===//
297 // Mips Calling Convention Dispatch
298 //===----------------------------------------------------------------------===//
300 def RetCC_Mips : CallingConv<[
301 CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
302 CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
303 CCDelegateTo<RetCC_MipsO32>
306 def CC_Mips_ByVal : CallingConv<[
307 CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
308 CCIfByVal<CCPassByVal<8, 8>>
311 def CC_Mips16RetHelper : CallingConv<[
312 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
314 // Integer arguments are passed in integer registers.
315 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
318 def CC_Mips_FixedArg : CallingConv<[
319 // Mips16 needs special handling on some functions.
320 CCIf<"State.getCallingConv() != CallingConv::Fast",
321 CCIfSpecialCallingConv<"Mips16RetHelperConv",
322 CCDelegateTo<CC_Mips16RetHelper>>>,
324 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
326 // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
327 // f128 is not legal and is lowered to i128 which is further lowered to a pair
329 // This presents us with a problem for the calling convention since hard-float
330 // still needs to pass them in FPU registers. We therefore resort to a
331 // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
332 // whether the argument was originally an f128 into the tablegen-erated code.
334 // f128 should only occur for the N64 ABI where long double is 128-bit. On
335 // N32, long double is equivalent to double.
337 CCIfSubtargetNot<"useSoftFloat()",
338 CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
340 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
342 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
343 CCDelegateTo<CC_MipsN>
346 def CC_Mips_VarArg : CallingConv<[
347 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
349 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
350 CCDelegateTo<CC_MipsN_VarArg>
353 def CC_Mips : CallingConv<[
354 CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
355 CCDelegateTo<CC_Mips_FixedArg>
358 //===----------------------------------------------------------------------===//
359 // Callee-saved register lists.
360 //===----------------------------------------------------------------------===//
362 def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
363 (sequence "S%u", 7, 0))>;
365 def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
366 (sequence "S%u", 7, 0))> {
367 let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
370 def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
371 (sequence "S%u", 7, 0))>;
374 CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
375 (sequence "S%u", 7, 0))>;
377 def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
378 D30_64, RA_64, FP_64, GP_64,
379 (sequence "S%u_64", 7, 0))>;
381 def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
382 GP_64, (sequence "S%u_64", 7, 0))>;
384 def CSR_Mips16RetHelper :
385 CalleeSavedRegs<(add V0, V1, FP,
386 (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
387 (sequence "D%u", 15, 10))>;
389 def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
390 (sequence "S%u", 7, 0),
391 (sequence "V%u", 1, 0),
392 (sequence "T%u", 9, 0),
395 def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
396 (sequence "S%u", 7, 0),
397 (sequence "V%u", 1, 0),
398 (sequence "T%u", 9, 0),
399 RA, FP, GP, AT, LO0, HI0)>;
401 def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
402 (sequence "V%u_64", 1, 0),
403 (sequence "S%u_64", 7, 0),
404 (sequence "T%u_64", 9, 0),
405 RA_64, FP_64, GP_64, AT_64)>;
407 def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
408 (sequence "S%u_64", 7, 0),
409 (sequence "T%u_64", 9, 0),
410 (sequence "V%u_64", 1, 0),
411 RA_64, FP_64, GP_64, AT_64,