1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/CodeGenTypes/MachineValueType.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/MC/MCContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
82 #define DEBUG_TYPE "mips-lower"
84 STATISTIC(NumTailCalls
, "Number of tail calls");
87 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
88 cl::desc("MIPS: Don't trap on integer division by zero."),
91 extern cl::opt
<bool> EmitJalrReloc
;
93 static const MCPhysReg Mips64DPRegs
[8] = {
94 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
95 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
98 // The MIPS MSA ABI passes vector arguments in the integer register set.
99 // The number of integer registers used is dependant on the ABI used.
100 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
104 return getRegisterType(Context
, VT
);
106 if (VT
.isPow2VectorType() && VT
.getVectorElementType().isRound())
107 return Subtarget
.isABI_O32() || VT
.getSizeInBits() == 32 ? MVT::i32
109 return getRegisterType(Context
, VT
.getVectorElementType());
112 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
116 if (VT
.isPow2VectorType() && VT
.getVectorElementType().isRound())
117 return divideCeil(VT
.getSizeInBits(), Subtarget
.isABI_O32() ? 32 : 64);
118 return VT
.getVectorNumElements() *
119 getNumRegisters(Context
, VT
.getVectorElementType());
121 return MipsTargetLowering::getNumRegisters(Context
, VT
);
124 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
125 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
126 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
127 if (VT
.isPow2VectorType()) {
128 IntermediateVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
129 RegisterVT
= IntermediateVT
.getSimpleVT();
130 NumIntermediates
= getNumRegistersForCallingConv(Context
, CC
, VT
);
131 return NumIntermediates
;
133 IntermediateVT
= VT
.getVectorElementType();
134 NumIntermediates
= VT
.getVectorNumElements();
135 RegisterVT
= getRegisterType(Context
, IntermediateVT
);
136 return NumIntermediates
* getNumRegisters(Context
, IntermediateVT
);
139 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
140 MachineFunction
&MF
= DAG
.getMachineFunction();
141 MipsFunctionInfo
*FI
= MF
.getInfo
<MipsFunctionInfo
>();
142 return DAG
.getRegister(FI
->getGlobalBaseReg(MF
), Ty
);
145 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
147 unsigned Flag
) const {
148 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
151 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
153 unsigned Flag
) const {
154 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
157 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
159 unsigned Flag
) const {
160 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
163 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
165 unsigned Flag
) const {
166 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
169 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
171 unsigned Flag
) const {
172 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlign(),
173 N
->getOffset(), Flag
);
176 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
177 switch ((MipsISD::NodeType
)Opcode
) {
178 case MipsISD::FIRST_NUMBER
: break;
179 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
180 case MipsISD::TailCall
: return "MipsISD::TailCall";
181 case MipsISD::Highest
: return "MipsISD::Highest";
182 case MipsISD::Higher
: return "MipsISD::Higher";
183 case MipsISD::Hi
: return "MipsISD::Hi";
184 case MipsISD::Lo
: return "MipsISD::Lo";
185 case MipsISD::GotHi
: return "MipsISD::GotHi";
186 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
187 case MipsISD::GPRel
: return "MipsISD::GPRel";
188 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
189 case MipsISD::Ret
: return "MipsISD::Ret";
190 case MipsISD::ERet
: return "MipsISD::ERet";
191 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
192 case MipsISD::FAbs
: return "MipsISD::FAbs";
193 case MipsISD::FMS
: return "MipsISD::FMS";
194 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
195 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
196 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
197 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
198 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
199 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
200 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
201 case MipsISD::MFHI
: return "MipsISD::MFHI";
202 case MipsISD::MFLO
: return "MipsISD::MFLO";
203 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
204 case MipsISD::Mult
: return "MipsISD::Mult";
205 case MipsISD::Multu
: return "MipsISD::Multu";
206 case MipsISD::MAdd
: return "MipsISD::MAdd";
207 case MipsISD::MAddu
: return "MipsISD::MAddu";
208 case MipsISD::MSub
: return "MipsISD::MSub";
209 case MipsISD::MSubu
: return "MipsISD::MSubu";
210 case MipsISD::DivRem
: return "MipsISD::DivRem";
211 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
212 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
213 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
214 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
215 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
216 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
217 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
218 case MipsISD::Sync
: return "MipsISD::Sync";
219 case MipsISD::Ext
: return "MipsISD::Ext";
220 case MipsISD::Ins
: return "MipsISD::Ins";
221 case MipsISD::CIns
: return "MipsISD::CIns";
222 case MipsISD::LWL
: return "MipsISD::LWL";
223 case MipsISD::LWR
: return "MipsISD::LWR";
224 case MipsISD::SWL
: return "MipsISD::SWL";
225 case MipsISD::SWR
: return "MipsISD::SWR";
226 case MipsISD::LDL
: return "MipsISD::LDL";
227 case MipsISD::LDR
: return "MipsISD::LDR";
228 case MipsISD::SDL
: return "MipsISD::SDL";
229 case MipsISD::SDR
: return "MipsISD::SDR";
230 case MipsISD::EXTP
: return "MipsISD::EXTP";
231 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
232 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
233 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
234 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
235 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
236 case MipsISD::SHILO
: return "MipsISD::SHILO";
237 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
238 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
239 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
240 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
241 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
242 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
243 case MipsISD::DOUBLE_SELECT_I
: return "MipsISD::DOUBLE_SELECT_I";
244 case MipsISD::DOUBLE_SELECT_I64
: return "MipsISD::DOUBLE_SELECT_I64";
245 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
246 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
247 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
248 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
249 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
250 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
251 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
252 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
253 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
254 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
255 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
256 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
257 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
258 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
259 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
260 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
261 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
262 case MipsISD::MULT
: return "MipsISD::MULT";
263 case MipsISD::MULTU
: return "MipsISD::MULTU";
264 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
265 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
266 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
267 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
268 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
269 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
270 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
271 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
272 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
273 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
274 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
275 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
276 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
277 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
278 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
279 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
280 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
281 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
282 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
283 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
284 case MipsISD::VNOR
: return "MipsISD::VNOR";
285 case MipsISD::VSHF
: return "MipsISD::VSHF";
286 case MipsISD::SHF
: return "MipsISD::SHF";
287 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
288 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
289 case MipsISD::ILVL
: return "MipsISD::ILVL";
290 case MipsISD::ILVR
: return "MipsISD::ILVR";
291 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
292 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
293 case MipsISD::INSVE
: return "MipsISD::INSVE";
298 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
299 const MipsSubtarget
&STI
)
300 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
301 // Mips does not have i1 type, so use i32 for
302 // setcc operations results (slt, sgt, ...).
303 setBooleanContents(ZeroOrOneBooleanContent
);
304 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
305 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
306 // does. Integer booleans still use 0 and 1.
307 if (Subtarget
.hasMips32r6())
308 setBooleanContents(ZeroOrOneBooleanContent
,
309 ZeroOrNegativeOneBooleanContent
);
311 // Load extented operations for i1 types must be promoted
312 for (MVT VT
: MVT::integer_valuetypes()) {
313 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
314 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
315 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
318 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
320 for (MVT VT
: MVT::fp_valuetypes()) {
321 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
322 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
325 // Set LoadExtAction for f16 vectors to Expand
326 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes()) {
327 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
329 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
332 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
333 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
335 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
337 // Used by legalize types to correctly generate the setcc result.
338 // Without this, every float setcc comes with a AND/OR with the result,
339 // we don't want this, since the fpcmp result goes to a flag register,
340 // which is used implicitly by brcond and select operations.
341 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
343 // Mips Custom Operations
344 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
345 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
346 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
347 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
348 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
349 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
350 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
351 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
352 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
353 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
354 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
355 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
356 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
357 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
358 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
359 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
360 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
362 // Lower fmin and fmax operations for MIPS R6.
363 // Instructions are defined but never used.
364 if (Subtarget
.hasMips32r6()) {
365 setOperationAction(ISD::FMINNUM_IEEE
, MVT::f32
, Legal
);
366 setOperationAction(ISD::FMAXNUM_IEEE
, MVT::f32
, Legal
);
367 setOperationAction(ISD::FMINNUM
, MVT::f32
, Expand
);
368 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Expand
);
369 setOperationAction(ISD::FMINNUM_IEEE
, MVT::f64
, Legal
);
370 setOperationAction(ISD::FMAXNUM_IEEE
, MVT::f64
, Legal
);
371 setOperationAction(ISD::FMINNUM
, MVT::f64
, Expand
);
372 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Expand
);
375 if (Subtarget
.isGP64bit()) {
376 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
377 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
378 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
379 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
380 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
381 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
382 if (Subtarget
.hasMips64r6()) {
383 setOperationAction(ISD::LOAD
, MVT::i64
, Legal
);
384 setOperationAction(ISD::STORE
, MVT::i64
, Legal
);
386 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
387 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
389 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
390 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
391 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
392 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
395 if (!Subtarget
.isGP64bit()) {
396 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
397 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
398 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
401 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
402 if (Subtarget
.isGP64bit())
403 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
405 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
406 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
407 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
408 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
409 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
410 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
411 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
412 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
414 // Operations not directly supported by Mips.
415 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
416 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
417 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
418 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
419 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
420 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
421 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
422 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
423 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
424 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
425 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
426 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
427 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
428 if (Subtarget
.hasCnMips()) {
429 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
430 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
432 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
433 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
435 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
436 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
437 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
438 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
439 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
440 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
442 if (!Subtarget
.hasMips32r2())
443 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
445 if (!Subtarget
.hasMips64r2())
446 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
448 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
449 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
450 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
451 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
452 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
455 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
456 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
457 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
458 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
459 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
460 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
461 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
462 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
463 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
465 // Lower f16 conversion operations into library calls
466 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
467 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
468 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
469 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
471 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
473 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
474 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
475 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
476 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
478 // Use the default for now
479 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
480 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
482 if (!Subtarget
.isGP64bit()) {
483 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
484 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
487 if (!Subtarget
.hasMips32r2()) {
488 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
489 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
492 // MIPS16 lacks MIPS32's clz and clo instructions.
493 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
494 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
495 if (!Subtarget
.hasMips64())
496 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
498 if (!Subtarget
.hasMips32r2())
499 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
500 if (!Subtarget
.hasMips64r2())
501 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
503 if (Subtarget
.isGP64bit() && Subtarget
.hasMips64r6()) {
504 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Legal
);
505 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Legal
);
506 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Legal
);
507 setTruncStoreAction(MVT::i64
, MVT::i32
, Legal
);
508 } else if (Subtarget
.isGP64bit()) {
509 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
510 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
511 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
512 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
515 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
517 setTargetDAGCombine({ISD::SDIVREM
, ISD::UDIVREM
, ISD::SELECT
, ISD::AND
,
518 ISD::OR
, ISD::ADD
, ISD::SUB
, ISD::AssertZext
, ISD::SHL
});
520 if (Subtarget
.isGP64bit())
521 setMaxAtomicSizeInBitsSupported(64);
523 setMaxAtomicSizeInBitsSupported(32);
525 setMinFunctionAlignment(Subtarget
.isGP64bit() ? Align(8) : Align(4));
527 // The arguments on the stack are defined in terms of 4-byte slots on O32
528 // and 8-byte slots on N32/N64.
529 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? Align(8)
532 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
534 MaxStoresPerMemcpy
= 16;
536 isMicroMips
= Subtarget
.inMicroMipsMode();
539 const MipsTargetLowering
*
540 MipsTargetLowering::create(const MipsTargetMachine
&TM
,
541 const MipsSubtarget
&STI
) {
542 if (STI
.inMips16Mode())
543 return createMips16TargetLowering(TM
, STI
);
545 return createMipsSETargetLowering(TM
, STI
);
548 // Create a fast isel object.
550 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
551 const TargetLibraryInfo
*libInfo
) const {
552 const MipsTargetMachine
&TM
=
553 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
555 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
556 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
557 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
558 !Subtarget
.inMicroMipsMode();
560 // Disable if either of the following is true:
561 // We do not generate PIC, the ABI is not O32, XGOT is being used.
562 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() ||
566 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
569 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
573 return VT
.changeVectorElementTypeToInteger();
576 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
577 TargetLowering::DAGCombinerInfo
&DCI
,
578 const MipsSubtarget
&Subtarget
) {
579 if (DCI
.isBeforeLegalizeOps())
582 EVT Ty
= N
->getValueType(0);
583 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
584 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
585 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
589 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
590 N
->getOperand(0), N
->getOperand(1));
591 SDValue InChain
= DAG
.getEntryNode();
592 SDValue InGlue
= DivRem
;
595 if (N
->hasAnyUseOfValue(0)) {
596 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
598 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
599 InChain
= CopyFromLo
.getValue(1);
600 InGlue
= CopyFromLo
.getValue(2);
604 if (N
->hasAnyUseOfValue(1)) {
605 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
607 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
613 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
615 default: llvm_unreachable("Unknown fp condition code!");
617 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
618 case ISD::SETUNE
: return Mips::FCOND_UNE
;
620 case ISD::SETOLT
: return Mips::FCOND_OLT
;
622 case ISD::SETOGT
: return Mips::FCOND_OGT
;
624 case ISD::SETOLE
: return Mips::FCOND_OLE
;
626 case ISD::SETOGE
: return Mips::FCOND_OGE
;
627 case ISD::SETULT
: return Mips::FCOND_ULT
;
628 case ISD::SETULE
: return Mips::FCOND_ULE
;
629 case ISD::SETUGT
: return Mips::FCOND_UGT
;
630 case ISD::SETUGE
: return Mips::FCOND_UGE
;
631 case ISD::SETUO
: return Mips::FCOND_UN
;
632 case ISD::SETO
: return Mips::FCOND_OR
;
634 case ISD::SETONE
: return Mips::FCOND_ONE
;
635 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
639 /// This function returns true if the floating point conditional branches and
640 /// conditional moves which use condition code CC should be inverted.
641 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
642 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
645 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
646 "Illegal Condition Code");
651 // Creates and returns an FPCmp node from a setcc node.
652 // Returns Op if setcc is not a floating point comparison.
653 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
654 // must be a SETCC node
655 if (Op
.getOpcode() != ISD::SETCC
)
658 SDValue LHS
= Op
.getOperand(0);
660 if (!LHS
.getValueType().isFloatingPoint())
663 SDValue RHS
= Op
.getOperand(1);
666 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
667 // node if necessary.
668 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
670 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
671 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
674 // Creates and returns a CMovFPT/F node.
675 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
676 SDValue False
, const SDLoc
&DL
) {
677 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
678 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
679 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
681 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
682 True
.getValueType(), True
, FCC0
, False
, Cond
);
685 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
686 TargetLowering::DAGCombinerInfo
&DCI
,
687 const MipsSubtarget
&Subtarget
) {
688 if (DCI
.isBeforeLegalizeOps())
691 SDValue SetCC
= N
->getOperand(0);
693 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
694 !SetCC
.getOperand(0).getValueType().isInteger())
697 SDValue False
= N
->getOperand(2);
698 EVT FalseTy
= False
.getValueType();
700 if (!FalseTy
.isInteger())
703 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
705 // If the RHS (False) is 0, we swap the order of the operands
706 // of ISD::SELECT (obviously also inverting the condition) so that we can
707 // take advantage of conditional moves using the $0 register.
709 // return (a != 0) ? x : 0;
717 if (!FalseC
->getZExtValue()) {
718 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
719 SDValue True
= N
->getOperand(1);
721 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
723 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
725 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
728 // If both operands are integer constants there's a possibility that we
729 // can do some interesting optimizations.
730 SDValue True
= N
->getOperand(1);
731 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
733 if (!TrueC
|| !True
.getValueType().isInteger())
736 // We'll also ignore MVT::i64 operands as this optimizations proves
737 // to be ineffective because of the required sign extensions as the result
738 // of a SETCC operator is always MVT::i32 for non-vector types.
739 if (True
.getValueType() == MVT::i64
)
742 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
744 // 1) (a < x) ? y : y-1
746 // addiu $reg2, $reg1, y-1
748 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
750 // 2) (a < x) ? y-1 : y
752 // xor $reg1, $reg1, 1
753 // addiu $reg2, $reg1, y-1
755 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
756 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
758 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
759 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
762 // Could not optimize.
766 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
767 TargetLowering::DAGCombinerInfo
&DCI
,
768 const MipsSubtarget
&Subtarget
) {
769 if (DCI
.isBeforeLegalizeOps())
772 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
774 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
775 if (!FalseC
|| FalseC
->getZExtValue())
778 // Since RHS (False) is 0, we swap the order of the True/False operands
779 // (obviously also inverting the condition) so that we can
780 // take advantage of conditional moves using the $0 register.
782 // return (a != 0) ? x : 0;
785 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
788 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
789 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
790 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
793 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
794 TargetLowering::DAGCombinerInfo
&DCI
,
795 const MipsSubtarget
&Subtarget
) {
796 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
799 SDValue FirstOperand
= N
->getOperand(0);
800 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
801 SDValue Mask
= N
->getOperand(1);
802 EVT ValTy
= N
->getValueType(0);
806 unsigned SMPos
, SMSize
;
811 // Op's second operand must be a shifted mask.
812 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
813 !isShiftedMask_64(CN
->getZExtValue(), SMPos
, SMSize
))
816 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
817 // Pattern match EXT.
818 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
819 // => ext $dst, $src, pos, size
821 // The second operand of the shift must be an immediate.
822 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
825 Pos
= CN
->getZExtValue();
827 // Return if the shifted mask does not start at bit 0 or the sum of its size
828 // and Pos exceeds the word's size.
829 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
833 NewOperand
= FirstOperand
.getOperand(0);
834 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
835 // Pattern match CINS.
836 // $dst = and (shl $src , pos), mask
837 // => cins $dst, $src, pos, size
838 // mask is a shifted mask with consecutive 1's, pos = shift amount,
839 // size = population count.
841 // The second operand of the shift must be an immediate.
842 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
845 Pos
= CN
->getZExtValue();
847 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
848 Pos
+ SMSize
> ValTy
.getSizeInBits())
851 NewOperand
= FirstOperand
.getOperand(0);
852 // SMSize is 'location' (position) in this case, not size.
856 // Pattern match EXT.
857 // $dst = and $src, (2**size - 1) , if size > 16
858 // => ext $dst, $src, pos, size , pos = 0
860 // If the mask is <= 0xffff, andi can be used instead.
861 if (CN
->getZExtValue() <= 0xffff)
864 // Return if the mask doesn't start at position 0.
869 NewOperand
= FirstOperand
;
871 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
872 DAG
.getConstant(Pos
, DL
, MVT::i32
),
873 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
876 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
877 TargetLowering::DAGCombinerInfo
&DCI
,
878 const MipsSubtarget
&Subtarget
) {
879 // Pattern match INS.
880 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
881 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
882 // => ins $dst, $src, size, pos, $src1
883 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
886 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
887 unsigned SMPos0
, SMSize0
, SMPos1
, SMSize1
;
888 ConstantSDNode
*CN
, *CN1
;
890 // See if Op's first operand matches (and $src1 , mask0).
891 if (And0
.getOpcode() != ISD::AND
)
894 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
895 !isShiftedMask_64(~CN
->getSExtValue(), SMPos0
, SMSize0
))
898 // See if Op's second operand matches (and (shl $src, pos), mask1).
899 if (And1
.getOpcode() == ISD::AND
&&
900 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
902 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
903 !isShiftedMask_64(CN
->getZExtValue(), SMPos1
, SMSize1
))
906 // The shift masks must have the same position and size.
907 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
910 SDValue Shl
= And1
.getOperand(0);
912 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
915 unsigned Shamt
= CN
->getZExtValue();
917 // Return if the shift amount and the first bit position of mask are not the
919 EVT ValTy
= N
->getValueType(0);
920 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
924 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
925 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
926 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
929 // Pattern match DINS.
930 // $dst = or (and $src, mask0), mask1
931 // where mask0 = ((1 << SMSize0) -1) << SMPos0
932 // => dins $dst, $src, pos, size
933 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
934 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
935 (SMSize0
+ SMPos0
<= 32))) {
936 // Check if AND instruction has constant as argument
937 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
938 if (And1
.getOpcode() == ISD::AND
) {
939 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
942 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
945 // Don't generate INS if constant OR operand doesn't fit into bits
946 // cleared by constant AND operand.
947 if (CN
->getSExtValue() & CN1
->getSExtValue())
951 EVT ValTy
= N
->getOperand(0)->getValueType(0);
955 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
956 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
959 MipsISD::Ins
, DL
, N
->getValueType(0),
961 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
963 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
964 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
967 And0
->getOperand(0));
974 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
975 const MipsSubtarget
&Subtarget
) {
976 // ROOTNode must have a multiplication as an operand for the match to be
978 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
979 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
982 // In the case where we have a multiplication as the left operand of
983 // of a subtraction, we can't combine into a MipsISD::MSub node as the
984 // the instruction definition of msub(u) places the multiplication on
986 if (ROOTNode
->getOpcode() == ISD::SUB
&&
987 ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
)
990 // We don't handle vector types here.
991 if (ROOTNode
->getValueType(0).isVector())
994 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
996 // (add (mul a b) c) =>
997 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
998 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
1000 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
1002 // The overhead of setting up the Hi/Lo registers and reassembling the
1003 // result makes this a dubious optimzation for MIPS64. The core of the
1004 // problem is that Hi/Lo contain the upper and lower 32 bits of the
1005 // operand and result.
1007 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
1008 // density than doing it naively, 5 for MIPS64. Additionally, using
1009 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
1010 // extended operands, not true 64 bit values.
1012 // FIXME: For the moment, disable this completely for MIPS64.
1013 if (Subtarget
.hasMips64())
1016 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1017 ? ROOTNode
->getOperand(0)
1018 : ROOTNode
->getOperand(1);
1020 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1021 ? ROOTNode
->getOperand(1)
1022 : ROOTNode
->getOperand(0);
1024 // Transform this to a MADD only if the user of this node is the add.
1025 // If there are other users of the mul, this function returns here.
1026 if (!Mult
.hasOneUse())
1029 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1030 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1031 // of the multiply must have 32 or more sign bits, otherwise we cannot
1032 // perform this optimization. We have to check this here as we're performing
1033 // this optimization pre-legalization.
1034 SDValue MultLHS
= Mult
->getOperand(0);
1035 SDValue MultRHS
= Mult
->getOperand(1);
1037 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1038 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1039 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1040 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1042 if (!IsSigned
&& !IsUnsigned
)
1045 // Initialize accumulator.
1047 SDValue BottomHalf
, TopHalf
;
1048 std::tie(BottomHalf
, TopHalf
) =
1049 CurDAG
.SplitScalar(AddOperand
, DL
, MVT::i32
, MVT::i32
);
1051 CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
, BottomHalf
, TopHalf
);
1053 // Create MipsMAdd(u) / MipsMSub(u) node.
1054 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1055 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1056 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1057 SDValue MAddOps
[3] = {
1058 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1059 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1060 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1061 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1063 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1064 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1066 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1070 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1071 TargetLowering::DAGCombinerInfo
&DCI
,
1072 const MipsSubtarget
&Subtarget
) {
1073 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1074 if (DCI
.isBeforeLegalizeOps()) {
1075 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1076 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1077 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1085 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1086 TargetLowering::DAGCombinerInfo
&DCI
,
1087 const MipsSubtarget
&Subtarget
) {
1088 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1089 if (DCI
.isBeforeLegalizeOps()) {
1090 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1091 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1092 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1097 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1098 SDValue Add
= N
->getOperand(1);
1100 if (Add
.getOpcode() != ISD::ADD
)
1103 SDValue Lo
= Add
.getOperand(1);
1105 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1106 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1109 EVT ValTy
= N
->getValueType(0);
1112 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1114 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1117 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1118 TargetLowering::DAGCombinerInfo
&DCI
,
1119 const MipsSubtarget
&Subtarget
) {
1120 // Pattern match CINS.
1121 // $dst = shl (and $src , imm), pos
1122 // => cins $dst, $src, pos, size
1124 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1127 SDValue FirstOperand
= N
->getOperand(0);
1128 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1129 SDValue SecondOperand
= N
->getOperand(1);
1130 EVT ValTy
= N
->getValueType(0);
1134 unsigned SMPos
, SMSize
;
1138 // The second operand of the shift must be an immediate.
1139 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1142 Pos
= CN
->getZExtValue();
1144 if (Pos
>= ValTy
.getSizeInBits())
1147 if (FirstOperandOpc
!= ISD::AND
)
1150 // AND's second operand must be a shifted mask.
1151 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1152 !isShiftedMask_64(CN
->getZExtValue(), SMPos
, SMSize
))
1155 // Return if the shifted mask does not start at bit 0 or the sum of its size
1156 // and Pos exceeds the word's size.
1157 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1160 NewOperand
= FirstOperand
.getOperand(0);
1161 // SMSize is 'location' (position) in this case, not size.
1164 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1165 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1166 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1169 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1171 SelectionDAG
&DAG
= DCI
.DAG
;
1172 unsigned Opc
= N
->getOpcode();
1178 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1180 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1181 case MipsISD::CMovFP_F
:
1182 case MipsISD::CMovFP_T
:
1183 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1185 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1187 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1189 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1191 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1193 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1199 bool MipsTargetLowering::isCheapToSpeculateCttz(Type
*Ty
) const {
1200 return Subtarget
.hasMips32();
1203 bool MipsTargetLowering::isCheapToSpeculateCtlz(Type
*Ty
) const {
1204 return Subtarget
.hasMips32();
1207 bool MipsTargetLowering::hasBitTest(SDValue X
, SDValue Y
) const {
1208 // We can use ANDI+SLTIU as a bit test. Y contains the bit position.
1209 // For MIPSR2 or later, we may be able to use the `ext` instruction or its'
1210 // double-word variants.
1211 if (auto *C
= dyn_cast
<ConstantSDNode
>(Y
))
1212 return C
->getAPIntValue().ule(15);
1217 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1218 const SDNode
*N
, CombineLevel Level
) const {
1219 assert(((N
->getOpcode() == ISD::SHL
&&
1220 N
->getOperand(0).getOpcode() == ISD::SRL
) ||
1221 (N
->getOpcode() == ISD::SRL
&&
1222 N
->getOperand(0).getOpcode() == ISD::SHL
)) &&
1223 "Expected shift-shift mask");
1225 if (N
->getOperand(0).getValueType().isVector())
1231 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1232 SmallVectorImpl
<SDValue
> &Results
,
1233 SelectionDAG
&DAG
) const {
1234 return LowerOperationWrapper(N
, Results
, DAG
);
1237 SDValue
MipsTargetLowering::
1238 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1240 switch (Op
.getOpcode())
1242 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1243 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1244 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1245 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1246 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1247 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1248 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1249 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1250 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1251 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1252 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1253 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1254 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1255 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1256 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1257 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1258 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1259 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1260 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1261 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1262 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1263 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1264 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1269 //===----------------------------------------------------------------------===//
1270 // Lower helper functions
1271 //===----------------------------------------------------------------------===//
1273 // addLiveIn - This helper function adds the specified physical register to the
1274 // MachineFunction as a live in value. It also creates a corresponding
1275 // virtual register for it.
1277 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1279 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1280 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1284 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1285 MachineBasicBlock
&MBB
,
1286 const TargetInstrInfo
&TII
,
1287 bool Is64Bit
, bool IsMicroMips
) {
1291 // Insert instruction "teq $divisor_reg, $zero, 7".
1292 MachineBasicBlock::iterator
I(MI
);
1293 MachineInstrBuilder MIB
;
1294 MachineOperand
&Divisor
= MI
.getOperand(2);
1295 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1296 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1297 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1301 // Use the 32-bit sub-register if this is a 64-bit division.
1303 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1305 // Clear Divisor's kill flag.
1306 Divisor
.setIsKill(false);
1308 // We would normally delete the original instruction here but in this case
1309 // we only needed to inject an additional instruction rather than replace it.
1315 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1316 MachineBasicBlock
*BB
) const {
1317 switch (MI
.getOpcode()) {
1319 llvm_unreachable("Unexpected instr type to insert");
1320 case Mips::ATOMIC_LOAD_ADD_I8
:
1321 return emitAtomicBinaryPartword(MI
, BB
, 1);
1322 case Mips::ATOMIC_LOAD_ADD_I16
:
1323 return emitAtomicBinaryPartword(MI
, BB
, 2);
1324 case Mips::ATOMIC_LOAD_ADD_I32
:
1325 return emitAtomicBinary(MI
, BB
);
1326 case Mips::ATOMIC_LOAD_ADD_I64
:
1327 return emitAtomicBinary(MI
, BB
);
1329 case Mips::ATOMIC_LOAD_AND_I8
:
1330 return emitAtomicBinaryPartword(MI
, BB
, 1);
1331 case Mips::ATOMIC_LOAD_AND_I16
:
1332 return emitAtomicBinaryPartword(MI
, BB
, 2);
1333 case Mips::ATOMIC_LOAD_AND_I32
:
1334 return emitAtomicBinary(MI
, BB
);
1335 case Mips::ATOMIC_LOAD_AND_I64
:
1336 return emitAtomicBinary(MI
, BB
);
1338 case Mips::ATOMIC_LOAD_OR_I8
:
1339 return emitAtomicBinaryPartword(MI
, BB
, 1);
1340 case Mips::ATOMIC_LOAD_OR_I16
:
1341 return emitAtomicBinaryPartword(MI
, BB
, 2);
1342 case Mips::ATOMIC_LOAD_OR_I32
:
1343 return emitAtomicBinary(MI
, BB
);
1344 case Mips::ATOMIC_LOAD_OR_I64
:
1345 return emitAtomicBinary(MI
, BB
);
1347 case Mips::ATOMIC_LOAD_XOR_I8
:
1348 return emitAtomicBinaryPartword(MI
, BB
, 1);
1349 case Mips::ATOMIC_LOAD_XOR_I16
:
1350 return emitAtomicBinaryPartword(MI
, BB
, 2);
1351 case Mips::ATOMIC_LOAD_XOR_I32
:
1352 return emitAtomicBinary(MI
, BB
);
1353 case Mips::ATOMIC_LOAD_XOR_I64
:
1354 return emitAtomicBinary(MI
, BB
);
1356 case Mips::ATOMIC_LOAD_NAND_I8
:
1357 return emitAtomicBinaryPartword(MI
, BB
, 1);
1358 case Mips::ATOMIC_LOAD_NAND_I16
:
1359 return emitAtomicBinaryPartword(MI
, BB
, 2);
1360 case Mips::ATOMIC_LOAD_NAND_I32
:
1361 return emitAtomicBinary(MI
, BB
);
1362 case Mips::ATOMIC_LOAD_NAND_I64
:
1363 return emitAtomicBinary(MI
, BB
);
1365 case Mips::ATOMIC_LOAD_SUB_I8
:
1366 return emitAtomicBinaryPartword(MI
, BB
, 1);
1367 case Mips::ATOMIC_LOAD_SUB_I16
:
1368 return emitAtomicBinaryPartword(MI
, BB
, 2);
1369 case Mips::ATOMIC_LOAD_SUB_I32
:
1370 return emitAtomicBinary(MI
, BB
);
1371 case Mips::ATOMIC_LOAD_SUB_I64
:
1372 return emitAtomicBinary(MI
, BB
);
1374 case Mips::ATOMIC_SWAP_I8
:
1375 return emitAtomicBinaryPartword(MI
, BB
, 1);
1376 case Mips::ATOMIC_SWAP_I16
:
1377 return emitAtomicBinaryPartword(MI
, BB
, 2);
1378 case Mips::ATOMIC_SWAP_I32
:
1379 return emitAtomicBinary(MI
, BB
);
1380 case Mips::ATOMIC_SWAP_I64
:
1381 return emitAtomicBinary(MI
, BB
);
1383 case Mips::ATOMIC_CMP_SWAP_I8
:
1384 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1385 case Mips::ATOMIC_CMP_SWAP_I16
:
1386 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1387 case Mips::ATOMIC_CMP_SWAP_I32
:
1388 return emitAtomicCmpSwap(MI
, BB
);
1389 case Mips::ATOMIC_CMP_SWAP_I64
:
1390 return emitAtomicCmpSwap(MI
, BB
);
1392 case Mips::ATOMIC_LOAD_MIN_I8
:
1393 return emitAtomicBinaryPartword(MI
, BB
, 1);
1394 case Mips::ATOMIC_LOAD_MIN_I16
:
1395 return emitAtomicBinaryPartword(MI
, BB
, 2);
1396 case Mips::ATOMIC_LOAD_MIN_I32
:
1397 return emitAtomicBinary(MI
, BB
);
1398 case Mips::ATOMIC_LOAD_MIN_I64
:
1399 return emitAtomicBinary(MI
, BB
);
1401 case Mips::ATOMIC_LOAD_MAX_I8
:
1402 return emitAtomicBinaryPartword(MI
, BB
, 1);
1403 case Mips::ATOMIC_LOAD_MAX_I16
:
1404 return emitAtomicBinaryPartword(MI
, BB
, 2);
1405 case Mips::ATOMIC_LOAD_MAX_I32
:
1406 return emitAtomicBinary(MI
, BB
);
1407 case Mips::ATOMIC_LOAD_MAX_I64
:
1408 return emitAtomicBinary(MI
, BB
);
1410 case Mips::ATOMIC_LOAD_UMIN_I8
:
1411 return emitAtomicBinaryPartword(MI
, BB
, 1);
1412 case Mips::ATOMIC_LOAD_UMIN_I16
:
1413 return emitAtomicBinaryPartword(MI
, BB
, 2);
1414 case Mips::ATOMIC_LOAD_UMIN_I32
:
1415 return emitAtomicBinary(MI
, BB
);
1416 case Mips::ATOMIC_LOAD_UMIN_I64
:
1417 return emitAtomicBinary(MI
, BB
);
1419 case Mips::ATOMIC_LOAD_UMAX_I8
:
1420 return emitAtomicBinaryPartword(MI
, BB
, 1);
1421 case Mips::ATOMIC_LOAD_UMAX_I16
:
1422 return emitAtomicBinaryPartword(MI
, BB
, 2);
1423 case Mips::ATOMIC_LOAD_UMAX_I32
:
1424 return emitAtomicBinary(MI
, BB
);
1425 case Mips::ATOMIC_LOAD_UMAX_I64
:
1426 return emitAtomicBinary(MI
, BB
);
1428 case Mips::PseudoSDIV
:
1429 case Mips::PseudoUDIV
:
1434 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1436 case Mips::SDIV_MM_Pseudo
:
1437 case Mips::UDIV_MM_Pseudo
:
1440 case Mips::DIV_MMR6
:
1441 case Mips::DIVU_MMR6
:
1442 case Mips::MOD_MMR6
:
1443 case Mips::MODU_MMR6
:
1444 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1445 case Mips::PseudoDSDIV
:
1446 case Mips::PseudoDUDIV
:
1451 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1453 case Mips::PseudoSELECT_I
:
1454 case Mips::PseudoSELECT_I64
:
1455 case Mips::PseudoSELECT_S
:
1456 case Mips::PseudoSELECT_D32
:
1457 case Mips::PseudoSELECT_D64
:
1458 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1459 case Mips::PseudoSELECTFP_F_I
:
1460 case Mips::PseudoSELECTFP_F_I64
:
1461 case Mips::PseudoSELECTFP_F_S
:
1462 case Mips::PseudoSELECTFP_F_D32
:
1463 case Mips::PseudoSELECTFP_F_D64
:
1464 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1465 case Mips::PseudoSELECTFP_T_I
:
1466 case Mips::PseudoSELECTFP_T_I64
:
1467 case Mips::PseudoSELECTFP_T_S
:
1468 case Mips::PseudoSELECTFP_T_D32
:
1469 case Mips::PseudoSELECTFP_T_D64
:
1470 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1471 case Mips::PseudoD_SELECT_I
:
1472 case Mips::PseudoD_SELECT_I64
:
1473 return emitPseudoD_SELECT(MI
, BB
);
1475 return emitLDR_W(MI
, BB
);
1477 return emitLDR_D(MI
, BB
);
1479 return emitSTR_W(MI
, BB
);
1481 return emitSTR_D(MI
, BB
);
1485 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1486 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1488 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1489 MachineBasicBlock
*BB
) const {
1491 MachineFunction
*MF
= BB
->getParent();
1492 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1493 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1494 DebugLoc DL
= MI
.getDebugLoc();
1497 bool NeedsAdditionalReg
= false;
1498 switch (MI
.getOpcode()) {
1499 case Mips::ATOMIC_LOAD_ADD_I32
:
1500 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1502 case Mips::ATOMIC_LOAD_SUB_I32
:
1503 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1505 case Mips::ATOMIC_LOAD_AND_I32
:
1506 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1508 case Mips::ATOMIC_LOAD_OR_I32
:
1509 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1511 case Mips::ATOMIC_LOAD_XOR_I32
:
1512 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1514 case Mips::ATOMIC_LOAD_NAND_I32
:
1515 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1517 case Mips::ATOMIC_SWAP_I32
:
1518 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1520 case Mips::ATOMIC_LOAD_ADD_I64
:
1521 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1523 case Mips::ATOMIC_LOAD_SUB_I64
:
1524 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1526 case Mips::ATOMIC_LOAD_AND_I64
:
1527 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1529 case Mips::ATOMIC_LOAD_OR_I64
:
1530 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1532 case Mips::ATOMIC_LOAD_XOR_I64
:
1533 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1535 case Mips::ATOMIC_LOAD_NAND_I64
:
1536 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1538 case Mips::ATOMIC_SWAP_I64
:
1539 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1541 case Mips::ATOMIC_LOAD_MIN_I32
:
1542 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I32_POSTRA
;
1543 NeedsAdditionalReg
= true;
1545 case Mips::ATOMIC_LOAD_MAX_I32
:
1546 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I32_POSTRA
;
1547 NeedsAdditionalReg
= true;
1549 case Mips::ATOMIC_LOAD_UMIN_I32
:
1550 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I32_POSTRA
;
1551 NeedsAdditionalReg
= true;
1553 case Mips::ATOMIC_LOAD_UMAX_I32
:
1554 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I32_POSTRA
;
1555 NeedsAdditionalReg
= true;
1557 case Mips::ATOMIC_LOAD_MIN_I64
:
1558 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I64_POSTRA
;
1559 NeedsAdditionalReg
= true;
1561 case Mips::ATOMIC_LOAD_MAX_I64
:
1562 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I64_POSTRA
;
1563 NeedsAdditionalReg
= true;
1565 case Mips::ATOMIC_LOAD_UMIN_I64
:
1566 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I64_POSTRA
;
1567 NeedsAdditionalReg
= true;
1569 case Mips::ATOMIC_LOAD_UMAX_I64
:
1570 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I64_POSTRA
;
1571 NeedsAdditionalReg
= true;
1574 llvm_unreachable("Unknown pseudo atomic for replacement!");
1577 Register OldVal
= MI
.getOperand(0).getReg();
1578 Register Ptr
= MI
.getOperand(1).getReg();
1579 Register Incr
= MI
.getOperand(2).getReg();
1580 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1582 MachineBasicBlock::iterator
II(MI
);
1584 // The scratch registers here with the EarlyClobber | Define | Implicit
1585 // flags is used to persuade the register allocator and the machine
1586 // verifier to accept the usage of this register. This has to be a real
1587 // register which has an UNDEF value but is dead after the instruction which
1588 // is unique among the registers chosen for the instruction.
1590 // The EarlyClobber flag has the semantic properties that the operand it is
1591 // attached to is clobbered before the rest of the inputs are read. Hence it
1592 // must be unique among the operands to the instruction.
1593 // The Define flag is needed to coerce the machine verifier that an Undef
1594 // value isn't a problem.
1595 // The Dead flag is needed as the value in scratch isn't used by any other
1596 // instruction. Kill isn't used as Dead is more precise.
1597 // The implicit flag is here due to the interaction between the other flags
1598 // and the machine verifier.
1600 // For correctness purpose, a new pseudo is introduced here. We need this
1601 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1602 // that is spread over >1 basic blocks. A register allocator which
1603 // introduces (or any codegen infact) a store, can violate the expectations
1606 // An atomic read-modify-write sequence starts with a linked load
1607 // instruction and ends with a store conditional instruction. The atomic
1608 // read-modify-write sequence fails if any of the following conditions
1609 // occur between the execution of ll and sc:
1610 // * A coherent store is completed by another process or coherent I/O
1611 // module into the block of synchronizable physical memory containing
1612 // the word. The size and alignment of the block is
1613 // implementation-dependent.
1614 // * A coherent store is executed between an LL and SC sequence on the
1615 // same processor to the block of synchornizable physical memory
1616 // containing the word.
1619 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1620 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1622 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1623 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1625 MachineInstrBuilder MIB
=
1626 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1627 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1630 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1631 RegState::Implicit
| RegState::Dead
);
1632 if (NeedsAdditionalReg
) {
1634 RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1635 MIB
.addReg(Scratch2
, RegState::Define
| RegState::EarlyClobber
|
1636 RegState::Implicit
| RegState::Dead
);
1639 MI
.eraseFromParent();
1644 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1645 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1646 unsigned SrcReg
) const {
1647 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1648 const DebugLoc
&DL
= MI
.getDebugLoc();
1650 if (Subtarget
.hasMips32r2() && Size
== 1) {
1651 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1655 if (Subtarget
.hasMips32r2() && Size
== 2) {
1656 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1660 MachineFunction
*MF
= BB
->getParent();
1661 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1662 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1663 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1666 int64_t ShiftImm
= 32 - (Size
* 8);
1668 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1669 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1674 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1675 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1676 assert((Size
== 1 || Size
== 2) &&
1677 "Unsupported size for EmitAtomicBinaryPartial.");
1679 MachineFunction
*MF
= BB
->getParent();
1680 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1681 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1682 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1683 const TargetRegisterClass
*RCp
=
1684 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1685 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1686 DebugLoc DL
= MI
.getDebugLoc();
1688 Register Dest
= MI
.getOperand(0).getReg();
1689 Register Ptr
= MI
.getOperand(1).getReg();
1690 Register Incr
= MI
.getOperand(2).getReg();
1692 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1693 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1694 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1695 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1696 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1697 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1698 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1699 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1700 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1701 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1702 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1704 unsigned AtomicOp
= 0;
1705 bool NeedsAdditionalReg
= false;
1706 switch (MI
.getOpcode()) {
1707 case Mips::ATOMIC_LOAD_NAND_I8
:
1708 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1710 case Mips::ATOMIC_LOAD_NAND_I16
:
1711 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1713 case Mips::ATOMIC_SWAP_I8
:
1714 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1716 case Mips::ATOMIC_SWAP_I16
:
1717 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1719 case Mips::ATOMIC_LOAD_ADD_I8
:
1720 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1722 case Mips::ATOMIC_LOAD_ADD_I16
:
1723 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1725 case Mips::ATOMIC_LOAD_SUB_I8
:
1726 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1728 case Mips::ATOMIC_LOAD_SUB_I16
:
1729 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1731 case Mips::ATOMIC_LOAD_AND_I8
:
1732 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1734 case Mips::ATOMIC_LOAD_AND_I16
:
1735 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1737 case Mips::ATOMIC_LOAD_OR_I8
:
1738 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1740 case Mips::ATOMIC_LOAD_OR_I16
:
1741 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1743 case Mips::ATOMIC_LOAD_XOR_I8
:
1744 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1746 case Mips::ATOMIC_LOAD_XOR_I16
:
1747 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1749 case Mips::ATOMIC_LOAD_MIN_I8
:
1750 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I8_POSTRA
;
1751 NeedsAdditionalReg
= true;
1753 case Mips::ATOMIC_LOAD_MIN_I16
:
1754 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I16_POSTRA
;
1755 NeedsAdditionalReg
= true;
1757 case Mips::ATOMIC_LOAD_MAX_I8
:
1758 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I8_POSTRA
;
1759 NeedsAdditionalReg
= true;
1761 case Mips::ATOMIC_LOAD_MAX_I16
:
1762 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I16_POSTRA
;
1763 NeedsAdditionalReg
= true;
1765 case Mips::ATOMIC_LOAD_UMIN_I8
:
1766 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I8_POSTRA
;
1767 NeedsAdditionalReg
= true;
1769 case Mips::ATOMIC_LOAD_UMIN_I16
:
1770 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I16_POSTRA
;
1771 NeedsAdditionalReg
= true;
1773 case Mips::ATOMIC_LOAD_UMAX_I8
:
1774 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I8_POSTRA
;
1775 NeedsAdditionalReg
= true;
1777 case Mips::ATOMIC_LOAD_UMAX_I16
:
1778 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I16_POSTRA
;
1779 NeedsAdditionalReg
= true;
1782 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1785 // insert new blocks after the current block
1786 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1787 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1788 MachineFunction::iterator It
= ++BB
->getIterator();
1789 MF
->insert(It
, exitMBB
);
1791 // Transfer the remainder of BB and its successor edges to exitMBB.
1792 exitMBB
->splice(exitMBB
->begin(), BB
,
1793 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1794 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1796 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1799 // addiu masklsb2,$0,-4 # 0xfffffffc
1800 // and alignedaddr,ptr,masklsb2
1801 // andi ptrlsb2,ptr,3
1802 // sll shiftamt,ptrlsb2,3
1803 // ori maskupper,$0,255 # 0xff
1804 // sll mask,maskupper,shiftamt
1805 // nor mask2,$0,mask
1806 // sll incr2,incr,shiftamt
1808 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1809 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1810 .addReg(ABI
.GetNullPtr()).addImm(-4);
1811 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1812 .addReg(Ptr
).addReg(MaskLSB2
);
1813 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1814 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1815 if (Subtarget
.isLittle()) {
1816 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1818 Register Off
= RegInfo
.createVirtualRegister(RC
);
1819 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1820 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1821 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1823 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1824 .addReg(Mips::ZERO
).addImm(MaskImm
);
1825 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1826 .addReg(MaskUpper
).addReg(ShiftAmt
);
1827 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1828 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1831 // The purposes of the flags on the scratch registers is explained in
1832 // emitAtomicBinary. In summary, we need a scratch register which is going to
1833 // be undef, that is unique among registers chosen for the instruction.
1835 MachineInstrBuilder MIB
=
1836 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1837 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1838 .addReg(AlignedAddr
)
1843 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1844 RegState::Dead
| RegState::Implicit
)
1845 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1846 RegState::Dead
| RegState::Implicit
)
1847 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1848 RegState::Dead
| RegState::Implicit
);
1849 if (NeedsAdditionalReg
) {
1850 Register Scratch4
= RegInfo
.createVirtualRegister(RC
);
1851 MIB
.addReg(Scratch4
, RegState::EarlyClobber
| RegState::Define
|
1852 RegState::Dead
| RegState::Implicit
);
1855 MI
.eraseFromParent(); // The instruction is gone now.
1860 // Lower atomic compare and swap to a pseudo instruction, taking care to
1861 // define a scratch register for the pseudo instruction's expansion. The
1862 // instruction is expanded after the register allocator as to prevent
1863 // the insertion of stores between the linked load and the store conditional.
1866 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1867 MachineBasicBlock
*BB
) const {
1869 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1870 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1871 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1873 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1875 MachineFunction
*MF
= BB
->getParent();
1876 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1877 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1878 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1879 DebugLoc DL
= MI
.getDebugLoc();
1881 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1882 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1883 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1884 Register Dest
= MI
.getOperand(0).getReg();
1885 Register Ptr
= MI
.getOperand(1).getReg();
1886 Register OldVal
= MI
.getOperand(2).getReg();
1887 Register NewVal
= MI
.getOperand(3).getReg();
1889 Register Scratch
= MRI
.createVirtualRegister(RC
);
1890 MachineBasicBlock::iterator
II(MI
);
1892 // We need to create copies of the various registers and kill them at the
1893 // atomic pseudo. If the copies are not made, when the atomic is expanded
1894 // after fast register allocation, the spills will end up outside of the
1895 // blocks that their values are defined in, causing livein errors.
1897 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1898 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1899 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1901 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1902 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1903 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1905 // The purposes of the flags on the scratch registers is explained in
1906 // emitAtomicBinary. In summary, we need a scratch register which is going to
1907 // be undef, that is unique among registers chosen for the instruction.
1909 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1910 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1911 .addReg(PtrCopy
, RegState::Kill
)
1912 .addReg(OldValCopy
, RegState::Kill
)
1913 .addReg(NewValCopy
, RegState::Kill
)
1914 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1915 RegState::Dead
| RegState::Implicit
);
1917 MI
.eraseFromParent(); // The instruction is gone now.
1922 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1923 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1924 assert((Size
== 1 || Size
== 2) &&
1925 "Unsupported size for EmitAtomicCmpSwapPartial.");
1927 MachineFunction
*MF
= BB
->getParent();
1928 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1929 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1930 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1931 const TargetRegisterClass
*RCp
=
1932 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1933 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1934 DebugLoc DL
= MI
.getDebugLoc();
1936 Register Dest
= MI
.getOperand(0).getReg();
1937 Register Ptr
= MI
.getOperand(1).getReg();
1938 Register CmpVal
= MI
.getOperand(2).getReg();
1939 Register NewVal
= MI
.getOperand(3).getReg();
1941 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1942 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1943 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1944 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1945 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1946 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1947 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1948 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1949 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1950 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1951 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1952 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1953 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1954 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1956 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1957 // flags are used to coerce the register allocator and the machine verifier to
1958 // accept the usage of these registers.
1959 // The EarlyClobber flag has the semantic properties that the operand it is
1960 // attached to is clobbered before the rest of the inputs are read. Hence it
1961 // must be unique among the operands to the instruction.
1962 // The Define flag is needed to coerce the machine verifier that an Undef
1963 // value isn't a problem.
1964 // The Dead flag is needed as the value in scratch isn't used by any other
1965 // instruction. Kill isn't used as Dead is more precise.
1966 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1967 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1969 // insert new blocks after the current block
1970 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1971 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1972 MachineFunction::iterator It
= ++BB
->getIterator();
1973 MF
->insert(It
, exitMBB
);
1975 // Transfer the remainder of BB and its successor edges to exitMBB.
1976 exitMBB
->splice(exitMBB
->begin(), BB
,
1977 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1978 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1980 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1983 // addiu masklsb2,$0,-4 # 0xfffffffc
1984 // and alignedaddr,ptr,masklsb2
1985 // andi ptrlsb2,ptr,3
1986 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1987 // sll shiftamt,ptrlsb2,3
1988 // ori maskupper,$0,255 # 0xff
1989 // sll mask,maskupper,shiftamt
1990 // nor mask2,$0,mask
1991 // andi maskedcmpval,cmpval,255
1992 // sll shiftedcmpval,maskedcmpval,shiftamt
1993 // andi maskednewval,newval,255
1994 // sll shiftednewval,maskednewval,shiftamt
1995 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1996 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1997 .addReg(ABI
.GetNullPtr()).addImm(-4);
1998 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1999 .addReg(Ptr
).addReg(MaskLSB2
);
2000 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
2001 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
2002 if (Subtarget
.isLittle()) {
2003 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
2005 Register Off
= RegInfo
.createVirtualRegister(RC
);
2006 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
2007 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
2008 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
2010 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
2011 .addReg(Mips::ZERO
).addImm(MaskImm
);
2012 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
2013 .addReg(MaskUpper
).addReg(ShiftAmt
);
2014 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
2015 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
2016 .addReg(CmpVal
).addImm(MaskImm
);
2017 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
2018 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
2019 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
2020 .addReg(NewVal
).addImm(MaskImm
);
2021 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
2022 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
2024 // The purposes of the flags on the scratch registers are explained in
2025 // emitAtomicBinary. In summary, we need a scratch register which is going to
2026 // be undef, that is unique among the register chosen for the instruction.
2028 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
2029 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
2030 .addReg(AlignedAddr
)
2032 .addReg(ShiftedCmpVal
)
2034 .addReg(ShiftedNewVal
)
2036 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
2037 RegState::Dead
| RegState::Implicit
)
2038 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
2039 RegState::Dead
| RegState::Implicit
);
2041 MI
.eraseFromParent(); // The instruction is gone now.
2046 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
2047 // The first operand is the chain, the second is the condition, the third is
2048 // the block to branch to if the condition is true.
2049 SDValue Chain
= Op
.getOperand(0);
2050 SDValue Dest
= Op
.getOperand(2);
2053 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2054 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
2056 // Return if flag is not set by a floating point comparison.
2057 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
2060 SDValue CCNode
= CondRes
.getOperand(2);
2061 Mips::CondCode CC
= (Mips::CondCode
)CCNode
->getAsZExtVal();
2062 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
2063 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
2064 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
2065 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
2066 FCC0
, Dest
, CondRes
);
2069 SDValue
MipsTargetLowering::
2070 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
2072 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2073 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
2075 // Return if flag is not set by a floating point comparison.
2076 if (Cond
.getOpcode() != MipsISD::FPCmp
)
2079 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
2083 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
2084 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2085 SDValue Cond
= createFPCmp(DAG
, Op
);
2087 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
2088 "Floating point operand expected.");
2091 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
2092 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
2094 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
2097 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
2098 SelectionDAG
&DAG
) const {
2099 EVT Ty
= Op
.getValueType();
2100 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
2101 const GlobalValue
*GV
= N
->getGlobal();
2103 if (!isPositionIndependent()) {
2104 const MipsTargetObjectFile
*TLOF
=
2105 static_cast<const MipsTargetObjectFile
*>(
2106 getTargetMachine().getObjFileLowering());
2107 const GlobalObject
*GO
= GV
->getAliaseeObject();
2108 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
2109 // %gp_rel relocation
2110 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2112 // %hi/%lo relocation
2113 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2114 // %highest/%higher/%hi/%lo relocation
2115 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2118 // Every other architecture would use shouldAssumeDSOLocal in here, but
2120 // * In PIC code mips requires got loads even for local statics!
2121 // * To save on got entries, for local statics the got entry contains the
2122 // page and an additional add instruction takes care of the low bits.
2123 // * It is legal to access a hidden symbol with a non hidden undefined,
2124 // so one cannot guarantee that all access to a hidden symbol will know
2126 // * Mips linkers don't support creating a page and a full got entry for
2128 // * Given all that, we have to use a full got entry for hidden symbols :-(
2129 if (GV
->hasLocalLinkage())
2130 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2132 if (Subtarget
.useXGOT())
2133 return getAddrGlobalLargeGOT(
2134 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
2136 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2138 return getAddrGlobal(
2139 N
, SDLoc(N
), Ty
, DAG
,
2140 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
2141 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2144 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2145 SelectionDAG
&DAG
) const {
2146 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2147 EVT Ty
= Op
.getValueType();
2149 if (!isPositionIndependent())
2150 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2151 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2153 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2156 SDValue
MipsTargetLowering::
2157 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2159 // If the relocation model is PIC, use the General Dynamic TLS Model or
2160 // Local Dynamic TLS model, otherwise use the Initial Exec or
2161 // Local Exec TLS Model.
2163 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2164 if (DAG
.getTarget().useEmulatedTLS())
2165 return LowerToTLSEmulatedModel(GA
, DAG
);
2168 const GlobalValue
*GV
= GA
->getGlobal();
2169 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2171 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2173 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2174 // General Dynamic and Local Dynamic TLS Model.
2175 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2178 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2179 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2180 getGlobalReg(DAG
, PtrVT
), TGA
);
2181 unsigned PtrSize
= PtrVT
.getSizeInBits();
2182 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2184 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2188 Entry
.Node
= Argument
;
2190 Args
.push_back(Entry
);
2192 TargetLowering::CallLoweringInfo
CLI(DAG
);
2194 .setChain(DAG
.getEntryNode())
2195 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2196 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2198 SDValue Ret
= CallResult
.first
;
2200 if (model
!= TLSModel::LocalDynamic
)
2203 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2204 MipsII::MO_DTPREL_HI
);
2205 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2206 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2207 MipsII::MO_DTPREL_LO
);
2208 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2209 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2210 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2214 if (model
== TLSModel::InitialExec
) {
2215 // Initial Exec TLS Model
2216 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2217 MipsII::MO_GOTTPREL
);
2218 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2221 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2223 // Local Exec TLS Model
2224 assert(model
== TLSModel::LocalExec
);
2225 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2226 MipsII::MO_TPREL_HI
);
2227 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2228 MipsII::MO_TPREL_LO
);
2229 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2230 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2231 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2234 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2235 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2238 SDValue
MipsTargetLowering::
2239 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2241 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2242 EVT Ty
= Op
.getValueType();
2244 if (!isPositionIndependent())
2245 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2246 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2248 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2251 SDValue
MipsTargetLowering::
2252 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2254 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2255 EVT Ty
= Op
.getValueType();
2257 if (!isPositionIndependent()) {
2258 const MipsTargetObjectFile
*TLOF
=
2259 static_cast<const MipsTargetObjectFile
*>(
2260 getTargetMachine().getObjFileLowering());
2262 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2263 getTargetMachine()))
2264 // %gp_rel relocation
2265 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2267 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2268 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2271 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2274 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2275 MachineFunction
&MF
= DAG
.getMachineFunction();
2276 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2279 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2280 getPointerTy(MF
.getDataLayout()));
2282 // vastart just stores the address of the VarArgsFrameIndex slot into the
2283 // memory location argument.
2284 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2285 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2286 MachinePointerInfo(SV
));
2289 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2290 SDNode
*Node
= Op
.getNode();
2291 EVT VT
= Node
->getValueType(0);
2292 SDValue Chain
= Node
->getOperand(0);
2293 SDValue VAListPtr
= Node
->getOperand(1);
2295 llvm::MaybeAlign(Node
->getConstantOperandVal(3)).valueOrOne();
2296 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2298 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2300 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2301 VAListPtr
, MachinePointerInfo(SV
));
2302 SDValue VAList
= VAListLoad
;
2304 // Re-align the pointer if necessary.
2305 // It should only ever be necessary for 64-bit types on O32 since the minimum
2306 // argument alignment is the same as the maximum type alignment for N32/N64.
2308 // FIXME: We currently align too often. The code generator doesn't notice
2309 // when the pointer is still aligned from the last va_arg (or pair of
2310 // va_args for the i64 on O32 case).
2311 if (Align
> getMinStackArgumentAlignment()) {
2312 VAList
= DAG
.getNode(
2313 ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2314 DAG
.getConstant(Align
.value() - 1, DL
, VAList
.getValueType()));
2316 VAList
= DAG
.getNode(
2317 ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2318 DAG
.getConstant(-(int64_t)Align
.value(), DL
, VAList
.getValueType()));
2321 // Increment the pointer, VAList, to the next vaarg.
2322 auto &TD
= DAG
.getDataLayout();
2323 unsigned ArgSizeInBytes
=
2324 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2326 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2327 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2328 DL
, VAList
.getValueType()));
2329 // Store the incremented VAList to the legalized pointer
2330 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2331 MachinePointerInfo(SV
));
2333 // In big-endian mode we must adjust the pointer when the load size is smaller
2334 // than the argument slot size. We must also reduce the known alignment to
2335 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2336 // the correct half of the slot, and reduce the alignment from 8 (slot
2337 // alignment) down to 4 (type alignment).
2338 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2339 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2340 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2341 DAG
.getIntPtrConstant(Adjustment
, DL
));
2343 // Load the actual argument out of the pointer VAList
2344 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2347 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2348 bool HasExtractInsert
) {
2349 EVT TyX
= Op
.getOperand(0).getValueType();
2350 EVT TyY
= Op
.getOperand(1).getValueType();
2352 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2353 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2356 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2358 SDValue X
= (TyX
== MVT::f32
) ?
2359 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2360 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2362 SDValue Y
= (TyY
== MVT::f32
) ?
2363 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2364 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2367 if (HasExtractInsert
) {
2368 // ext E, Y, 31, 1 ; extract bit31 of Y
2369 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2370 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2371 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2374 // srl SrlX, SllX, 1
2376 // sll SllY, SrlX, 31
2377 // or Or, SrlX, SllY
2378 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2379 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2380 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2381 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2382 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2385 if (TyX
== MVT::f32
)
2386 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2388 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2390 DAG
.getConstant(0, DL
, MVT::i32
));
2391 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2394 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2395 bool HasExtractInsert
) {
2396 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2397 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2398 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2400 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2402 // Bitcast to integer nodes.
2403 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2404 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2406 if (HasExtractInsert
) {
2407 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2408 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2409 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2410 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2412 if (WidthX
> WidthY
)
2413 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2414 else if (WidthY
> WidthX
)
2415 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2417 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2418 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2420 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2423 // (d)sll SllX, X, 1
2424 // (d)srl SrlX, SllX, 1
2425 // (d)srl SrlY, Y, width(Y)-1
2426 // (d)sll SllY, SrlX, width(Y)-1
2427 // or Or, SrlX, SllY
2428 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2429 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2430 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2431 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2433 if (WidthX
> WidthY
)
2434 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2435 else if (WidthY
> WidthX
)
2436 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2438 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2439 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2440 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2441 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2445 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2446 if (Subtarget
.isGP64bit())
2447 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2449 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2452 SDValue
MipsTargetLowering::lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2453 bool HasExtractInsert
) const {
2455 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2457 if (DAG
.getTarget().Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())
2458 return DAG
.getNode(MipsISD::FAbs
, DL
, Op
.getValueType(), Op
.getOperand(0));
2460 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2462 SDValue X
= (Op
.getValueType() == MVT::f32
)
2463 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2464 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2465 Op
.getOperand(0), Const1
);
2468 if (HasExtractInsert
)
2469 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2470 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2471 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2473 // TODO: Provide DAG patterns which transform (and x, cst)
2474 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2475 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2476 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2479 if (Op
.getValueType() == MVT::f32
)
2480 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2482 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2483 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2484 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2487 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2488 DAG
.getConstant(0, DL
, MVT::i32
));
2489 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2492 SDValue
MipsTargetLowering::lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2493 bool HasExtractInsert
) const {
2495 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2497 if (DAG
.getTarget().Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())
2498 return DAG
.getNode(MipsISD::FAbs
, DL
, Op
.getValueType(), Op
.getOperand(0));
2500 // Bitcast to integer node.
2501 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2504 if (HasExtractInsert
)
2505 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2506 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2507 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2509 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2510 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2513 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2516 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2517 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2518 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2520 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2523 SDValue
MipsTargetLowering::
2524 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2526 if (Op
.getConstantOperandVal(0) != 0) {
2527 DAG
.getContext()->emitError(
2528 "return address can be determined only for current frame");
2532 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2533 MFI
.setFrameAddressIsTaken(true);
2534 EVT VT
= Op
.getValueType();
2536 SDValue FrameAddr
= DAG
.getCopyFromReg(
2537 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2541 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2542 SelectionDAG
&DAG
) const {
2543 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2547 if (Op
.getConstantOperandVal(0) != 0) {
2548 DAG
.getContext()->emitError(
2549 "return address can be determined only for current frame");
2553 MachineFunction
&MF
= DAG
.getMachineFunction();
2554 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2555 MVT VT
= Op
.getSimpleValueType();
2556 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2557 MFI
.setReturnAddressIsTaken(true);
2559 // Return RA, which contains the return address. Mark it an implicit live-in.
2560 Register Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2561 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2564 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2565 // generated from __builtin_eh_return (offset, handler)
2566 // The effect of this is to adjust the stack pointer by "offset"
2567 // and then branch to "handler".
2568 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2570 MachineFunction
&MF
= DAG
.getMachineFunction();
2571 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2573 MipsFI
->setCallsEhReturn();
2574 SDValue Chain
= Op
.getOperand(0);
2575 SDValue Offset
= Op
.getOperand(1);
2576 SDValue Handler
= Op
.getOperand(2);
2578 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2580 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2581 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2582 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2583 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2584 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2585 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2586 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2587 DAG
.getRegister(OffsetReg
, Ty
),
2588 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2592 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2593 SelectionDAG
&DAG
) const {
2594 // FIXME: Need pseudo-fence for 'singlethread' fences
2595 // FIXME: Set SType for weaker fences where supported/appropriate.
2598 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2599 DAG
.getConstant(SType
, DL
, MVT::i32
));
2602 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2603 SelectionDAG
&DAG
) const {
2605 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2607 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2608 SDValue Shamt
= Op
.getOperand(2);
2609 // if shamt < (VT.bits):
2610 // lo = (shl lo, shamt)
2611 // hi = (or (shl hi, shamt) (srl (srl lo, 1), (xor shamt, (VT.bits-1))))
2614 // hi = (shl lo, shamt[4:0])
2616 DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2617 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, MVT::i32
));
2618 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2619 DAG
.getConstant(1, DL
, VT
));
2620 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2621 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2622 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2623 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2624 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2625 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2626 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2627 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2628 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2630 SDValue Ops
[2] = {Lo
, Hi
};
2631 return DAG
.getMergeValues(Ops
, DL
);
2634 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2637 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2638 SDValue Shamt
= Op
.getOperand(2);
2639 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2641 // if shamt < (VT.bits):
2642 // lo = (or (shl (shl hi, 1), (xor shamt, (VT.bits-1))) (srl lo, shamt))
2644 // hi = (sra hi, shamt)
2646 // hi = (srl hi, shamt)
2649 // lo = (sra hi, shamt[4:0])
2650 // hi = (sra hi, 31)
2652 // lo = (srl hi, shamt[4:0])
2655 DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2656 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, MVT::i32
));
2657 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2658 DAG
.getConstant(1, DL
, VT
));
2659 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2660 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2661 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2662 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2664 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2665 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2666 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2667 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2669 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2670 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2671 return DAG
.getNode(Subtarget
.isGP64bit() ? MipsISD::DOUBLE_SELECT_I64
2672 : MipsISD::DOUBLE_SELECT_I
,
2673 DL
, VTList
, Cond
, ShiftRightHi
,
2674 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2678 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2679 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2680 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2682 SDValue Ops
[2] = {Lo
, Hi
};
2683 return DAG
.getMergeValues(Ops
, DL
);
2686 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2687 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2688 SDValue Ptr
= LD
->getBasePtr();
2689 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2690 EVT BasePtrVT
= Ptr
.getValueType();
2692 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2695 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2696 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2698 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2699 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2700 LD
->getMemOperand());
2703 // Expand an unaligned 32 or 64-bit integer load node.
2704 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2705 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2706 EVT MemVT
= LD
->getMemoryVT();
2708 if (Subtarget
.systemSupportsUnalignedAccess())
2711 // Return if load is aligned or if MemVT is neither i32 nor i64.
2712 if ((LD
->getAlign().value() >= (MemVT
.getSizeInBits() / 8)) ||
2713 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2716 bool IsLittle
= Subtarget
.isLittle();
2717 EVT VT
= Op
.getValueType();
2718 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2719 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2721 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2724 // (set dst, (i64 (load baseptr)))
2726 // (set tmp, (ldl (add baseptr, 7), undef))
2727 // (set dst, (ldr baseptr, tmp))
2728 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2729 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2731 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2735 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2737 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2741 // (set dst, (i32 (load baseptr))) or
2742 // (set dst, (i64 (sextload baseptr))) or
2743 // (set dst, (i64 (extload baseptr)))
2745 // (set tmp, (lwl (add baseptr, 3), undef))
2746 // (set dst, (lwr baseptr, tmp))
2747 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2748 (ExtType
== ISD::EXTLOAD
))
2751 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2754 // (set dst, (i64 (zextload baseptr)))
2756 // (set tmp0, (lwl (add baseptr, 3), undef))
2757 // (set tmp1, (lwr baseptr, tmp0))
2758 // (set tmp2, (shl tmp1, 32))
2759 // (set dst, (srl tmp2, 32))
2761 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2762 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2763 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2764 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2765 return DAG
.getMergeValues(Ops
, DL
);
2768 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2769 SDValue Chain
, unsigned Offset
) {
2770 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2771 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2773 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2776 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2777 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2779 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2780 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2781 SD
->getMemOperand());
2784 // Expand an unaligned 32 or 64-bit integer store node.
2785 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2787 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2788 EVT VT
= Value
.getValueType();
2791 // (store val, baseptr) or
2792 // (truncstore val, baseptr)
2794 // (swl val, (add baseptr, 3))
2795 // (swr val, baseptr)
2796 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2797 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2799 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2802 assert(VT
== MVT::i64
);
2805 // (store val, baseptr)
2807 // (sdl val, (add baseptr, 7))
2808 // (sdr val, baseptr)
2809 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2810 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2813 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2814 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2816 SDValue Val
= SD
->getValue();
2818 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2819 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2822 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2823 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2825 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2826 SD
->getPointerInfo(), SD
->getAlign(),
2827 SD
->getMemOperand()->getFlags());
2830 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2831 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2832 EVT MemVT
= SD
->getMemoryVT();
2834 // Lower unaligned integer stores.
2835 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2836 (SD
->getAlign().value() < (MemVT
.getSizeInBits() / 8)) &&
2837 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2838 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2840 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2843 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2844 SelectionDAG
&DAG
) const {
2846 // Return a fixed StackObject with offset 0 which points to the old stack
2848 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2849 EVT ValTy
= Op
->getValueType(0);
2850 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2851 return DAG
.getFrameIndex(FI
, ValTy
);
2854 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2855 SelectionDAG
&DAG
) const {
2856 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2859 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2860 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2862 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2865 //===----------------------------------------------------------------------===//
2866 // Calling Convention Implementation
2867 //===----------------------------------------------------------------------===//
2869 //===----------------------------------------------------------------------===//
2870 // TODO: Implement a generic logic using tblgen that can support this.
2871 // Mips O32 ABI rules:
2873 // i32 - Passed in A0, A1, A2, A3 and stack
2874 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2875 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2876 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2877 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2878 // not used, it must be shadowed. If only A3 is available, shadow it and
2880 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2881 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2882 // with the remainder spilled to the stack.
2883 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2884 // spilling the remainder to the stack.
2886 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2887 //===----------------------------------------------------------------------===//
2889 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2890 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2891 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2892 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2893 State
.getMachineFunction().getSubtarget());
2895 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2897 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2899 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2901 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2903 // Do not process byval args here.
2904 if (ArgFlags
.isByVal())
2907 // Promote i8 and i16
2908 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2909 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2911 if (ArgFlags
.isSExt())
2912 LocInfo
= CCValAssign::SExtUpper
;
2913 else if (ArgFlags
.isZExt())
2914 LocInfo
= CCValAssign::ZExtUpper
;
2916 LocInfo
= CCValAssign::AExtUpper
;
2920 // Promote i8 and i16
2921 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2923 if (ArgFlags
.isSExt())
2924 LocInfo
= CCValAssign::SExt
;
2925 else if (ArgFlags
.isZExt())
2926 LocInfo
= CCValAssign::ZExt
;
2928 LocInfo
= CCValAssign::AExt
;
2933 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2934 // is true: function is vararg, argument is 3rd or higher, there is previous
2935 // argument which is not f32 or f64.
2936 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2937 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2938 Align OrigAlign
= ArgFlags
.getNonZeroOrigAlign();
2939 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== Align(8));
2940 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2942 // The MIPS vector ABI for floats passes them in a pair of registers
2943 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2944 // This is the start of an vector that was scalarized into an unknown number
2945 // of components. It doesn't matter how many there are. Allocate one of the
2946 // notional 8 byte aligned registers which map onto the argument stack, and
2947 // shadow the register lost to alignment requirements.
2948 if (ArgFlags
.isSplit()) {
2949 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2950 if (Reg
== Mips::A2
)
2951 State
.AllocateReg(Mips::A1
);
2953 State
.AllocateReg(Mips::A3
);
2955 // If we're an intermediate component of the split, we can just attempt to
2956 // allocate a register directly.
2957 Reg
= State
.AllocateReg(IntRegs
);
2959 } else if (ValVT
== MVT::i32
||
2960 (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2961 Reg
= State
.AllocateReg(IntRegs
);
2962 // If this is the first part of an i64 arg,
2963 // the allocated register must be either A0 or A2.
2964 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2965 Reg
= State
.AllocateReg(IntRegs
);
2967 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2968 // Allocate int register and shadow next int register. If first
2969 // available register is Mips::A1 or Mips::A3, shadow it too.
2970 Reg
= State
.AllocateReg(IntRegs
);
2971 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2972 Reg
= State
.AllocateReg(IntRegs
);
2978 CCValAssign::getCustomReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2979 MCRegister HiReg
= State
.AllocateReg(IntRegs
);
2982 CCValAssign::getCustomReg(ValNo
, ValVT
, HiReg
, LocVT
, LocInfo
));
2985 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2986 // we are guaranteed to find an available float register
2987 if (ValVT
== MVT::f32
) {
2988 Reg
= State
.AllocateReg(F32Regs
);
2989 // Shadow int register
2990 State
.AllocateReg(IntRegs
);
2992 Reg
= State
.AllocateReg(F64Regs
);
2993 // Shadow int registers
2994 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2995 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2996 State
.AllocateReg(IntRegs
);
2997 State
.AllocateReg(IntRegs
);
3000 llvm_unreachable("Cannot handle this ValVT.");
3003 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
3004 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
3006 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
3011 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
3012 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
3013 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
3014 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
3016 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
3019 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
3020 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
3021 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
3022 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
3024 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
3027 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
3028 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
3029 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
3031 #include "MipsGenCallingConv.inc"
3033 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
3034 return CC_Mips_FixedArg
;
3037 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
3040 //===----------------------------------------------------------------------===//
3041 // Call Calling Convention Implementation
3042 //===----------------------------------------------------------------------===//
3044 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
3045 SDValue Chain
, SDValue Arg
,
3046 const SDLoc
&DL
, bool IsTailCall
,
3047 SelectionDAG
&DAG
) const {
3050 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
3051 DAG
.getIntPtrConstant(Offset
, DL
));
3052 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
3055 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
3056 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
3057 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3058 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(), MaybeAlign(),
3059 MachineMemOperand::MOVolatile
);
3062 void MipsTargetLowering::
3063 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
3064 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
3065 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
3066 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
3067 SDValue Chain
) const {
3068 // Insert node "GP copy globalreg" before call to function.
3070 // R_MIPS_CALL* operators (emitted when non-internal functions are called
3071 // in PIC mode) allow symbols to be resolved via lazy binding.
3072 // The lazy binding stub requires GP to point to the GOT.
3073 // Note that we don't need GP to point to the GOT for indirect calls
3074 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3075 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3076 // used for the function (that is, Mips linker doesn't generate lazy binding
3077 // stub for a function whose address is taken in the program).
3078 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
3079 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
3080 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
3081 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
3084 // Build a sequence of copy-to-reg nodes chained together with token
3085 // chain and flag operands which copy the outgoing args into registers.
3086 // The InGlue in necessary since all emitted instructions must be
3090 for (auto &R
: RegsToPass
) {
3091 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, R
.first
, R
.second
, InGlue
);
3092 InGlue
= Chain
.getValue(1);
3095 // Add argument registers to the end of the list so that they are
3096 // known live into the call.
3097 for (auto &R
: RegsToPass
)
3098 Ops
.push_back(CLI
.DAG
.getRegister(R
.first
, R
.second
.getValueType()));
3100 // Add a register mask operand representing the call-preserved registers.
3101 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3102 const uint32_t *Mask
=
3103 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
3104 assert(Mask
&& "Missing call preserved mask for calling convention");
3105 if (Subtarget
.inMips16HardFloat()) {
3106 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
3107 StringRef Sym
= G
->getGlobal()->getName();
3108 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
3109 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
3110 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
3114 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
3116 if (InGlue
.getNode())
3117 Ops
.push_back(InGlue
);
3120 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
3121 SDNode
*Node
) const {
3122 switch (MI
.getOpcode()) {
3126 case Mips::JALRPseudo
:
3128 case Mips::JALR64Pseudo
:
3129 case Mips::JALR16_MM
:
3130 case Mips::JALRC16_MMR6
:
3131 case Mips::TAILCALLREG
:
3132 case Mips::TAILCALLREG64
:
3133 case Mips::TAILCALLR6REG
:
3134 case Mips::TAILCALL64R6REG
:
3135 case Mips::TAILCALLREG_MM
:
3136 case Mips::TAILCALLREG_MMR6
: {
3137 if (!EmitJalrReloc
||
3138 Subtarget
.inMips16Mode() ||
3139 !isPositionIndependent() ||
3140 Node
->getNumOperands() < 1 ||
3141 Node
->getOperand(0).getNumOperands() < 2) {
3144 // We are after the callee address, set by LowerCall().
3145 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3147 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
3149 if (const GlobalAddressSDNode
*G
=
3150 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
3151 // We must not emit the R_MIPS_JALR relocation against data symbols
3152 // since this will cause run-time crashes if the linker replaces the
3153 // call instruction with a relative branch to the data symbol.
3154 if (!isa
<Function
>(G
->getGlobal())) {
3155 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3156 << G
->getGlobal()->getName() << "\n");
3159 Sym
= G
->getGlobal()->getName();
3161 else if (const ExternalSymbolSDNode
*ES
=
3162 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3163 Sym
= ES
->getSymbol();
3169 MachineFunction
*MF
= MI
.getParent()->getParent();
3170 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3171 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym
<< "\n");
3172 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3177 /// LowerCall - functions arguments are copied from virtual regs to
3178 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3180 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3181 SmallVectorImpl
<SDValue
> &InVals
) const {
3182 SelectionDAG
&DAG
= CLI
.DAG
;
3184 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3185 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3186 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3187 SDValue Chain
= CLI
.Chain
;
3188 SDValue Callee
= CLI
.Callee
;
3189 bool &IsTailCall
= CLI
.IsTailCall
;
3190 CallingConv::ID CallConv
= CLI
.CallConv
;
3191 bool IsVarArg
= CLI
.IsVarArg
;
3193 MachineFunction
&MF
= DAG
.getMachineFunction();
3194 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3195 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3196 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3197 bool IsPIC
= isPositionIndependent();
3199 // Analyze operands of the call, assigning locations to each operand.
3200 SmallVector
<CCValAssign
, 16> ArgLocs
;
3202 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3203 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3205 const ExternalSymbolSDNode
*ES
=
3206 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3208 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3209 // is during the lowering of a call with a byval argument which produces
3210 // a call to memcpy. For the O32 case, this causes the caller to allocate
3211 // stack space for the reserved argument area for the callee, then recursively
3212 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3213 // ABIs mandate that the callee allocates the reserved argument area. We do
3214 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3216 // If the callee has a byval argument and memcpy is used, we are mandated
3217 // to already have produced a reserved argument area for the callee for O32.
3218 // Therefore, the reserved argument area can be reused for both calls.
3220 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3221 // present, as we have yet to hook that node onto the chain.
3223 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3224 // case. GCC does a similar trick, in that wherever possible, it calculates
3225 // the maximum out going argument area (including the reserved area), and
3226 // preallocates the stack space on entrance to the caller.
3228 // FIXME: We should do the same for efficiency and space.
3230 // Note: The check on the calling convention below must match
3231 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3232 bool MemcpyInByVal
= ES
&& StringRef(ES
->getSymbol()) == "memcpy" &&
3233 CallConv
!= CallingConv::Fast
&&
3234 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3236 // Allocate the reserved argument area. It seems strange to do this from the
3237 // caller side but removing it breaks the frame size calculation.
3238 unsigned ReservedArgArea
=
3239 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3240 CCInfo
.AllocateStack(ReservedArgArea
, Align(1));
3242 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3243 ES
? ES
->getSymbol() : nullptr);
3245 // Get a count of how many bytes are to be pushed on the stack.
3246 unsigned StackSize
= CCInfo
.getStackSize();
3248 // Call site info for function parameters tracking.
3249 MachineFunction::CallSiteInfo CSInfo
;
3251 // Check if it's really possible to do a tail call. Restrict it to functions
3252 // that are part of this compilation unit.
3253 bool InternalLinkage
= false;
3255 IsTailCall
= isEligibleForTailCallOptimization(
3256 CCInfo
, StackSize
, *MF
.getInfo
<MipsFunctionInfo
>());
3257 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3258 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3259 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3260 G
->getGlobal()->hasPrivateLinkage() ||
3261 G
->getGlobal()->hasHiddenVisibility() ||
3262 G
->getGlobal()->hasProtectedVisibility());
3265 if (!IsTailCall
&& CLI
.CB
&& CLI
.CB
->isMustTailCall())
3266 report_fatal_error("failed to perform tail call elimination on a call "
3267 "site marked musttail");
3272 // Chain is the output chain of the last Load/Store or CopyToReg node.
3273 // ByValChain is the output chain of the last Memcpy node created for copying
3274 // byval arguments to the stack.
3275 unsigned StackAlignment
= TFL
->getStackAlignment();
3276 StackSize
= alignTo(StackSize
, StackAlignment
);
3278 if (!(IsTailCall
|| MemcpyInByVal
))
3279 Chain
= DAG
.getCALLSEQ_START(Chain
, StackSize
, 0, DL
);
3282 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3283 getPointerTy(DAG
.getDataLayout()));
3285 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3286 SmallVector
<SDValue
, 8> MemOpChains
;
3288 CCInfo
.rewindByValRegsInfo();
3290 // Walk the register/memloc assignments, inserting copies/loads.
3291 for (unsigned i
= 0, e
= ArgLocs
.size(), OutIdx
= 0; i
!= e
; ++i
, ++OutIdx
) {
3292 SDValue Arg
= OutVals
[OutIdx
];
3293 CCValAssign
&VA
= ArgLocs
[i
];
3294 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3295 ISD::ArgFlagsTy Flags
= Outs
[OutIdx
].Flags
;
3296 bool UseUpperBits
= false;
3299 if (Flags
.isByVal()) {
3300 unsigned FirstByValReg
, LastByValReg
;
3301 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3302 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3304 assert(Flags
.getByValSize() &&
3305 "ByVal args of size 0 should have been ignored by front-end.");
3306 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3307 assert(!IsTailCall
&&
3308 "Do not tail-call optimize if there is a byval argument.");
3309 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3310 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3312 CCInfo
.nextInRegsParam();
3316 // Promote the value if needed.
3317 switch (VA
.getLocInfo()) {
3319 llvm_unreachable("Unknown loc info!");
3320 case CCValAssign::Full
:
3321 if (VA
.isRegLoc()) {
3322 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3323 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3324 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3325 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3326 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3327 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3328 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3329 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3330 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3331 if (!Subtarget
.isLittle())
3334 assert(VA
.needsCustom());
3336 Register LocRegLo
= VA
.getLocReg();
3337 Register LocRegHigh
= ArgLocs
[++i
].getLocReg();
3338 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3339 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3344 case CCValAssign::BCvt
:
3345 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3347 case CCValAssign::SExtUpper
:
3348 UseUpperBits
= true;
3350 case CCValAssign::SExt
:
3351 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3353 case CCValAssign::ZExtUpper
:
3354 UseUpperBits
= true;
3356 case CCValAssign::ZExt
:
3357 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3359 case CCValAssign::AExtUpper
:
3360 UseUpperBits
= true;
3362 case CCValAssign::AExt
:
3363 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3368 unsigned ValSizeInBits
= Outs
[OutIdx
].ArgVT
.getSizeInBits();
3369 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3371 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3372 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3375 // Arguments that can be passed on register must be kept at
3376 // RegsToPass vector
3377 if (VA
.isRegLoc()) {
3378 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3380 // If the parameter is passed through reg $D, which splits into
3381 // two physical registers, avoid creating call site info.
3382 if (Mips::AFGR64RegClass
.contains(VA
.getLocReg()))
3385 // Collect CSInfo about which register passes which parameter.
3386 const TargetOptions
&Options
= DAG
.getTarget().Options
;
3387 if (Options
.EmitCallSiteInfo
)
3388 CSInfo
.ArgRegPairs
.emplace_back(VA
.getLocReg(), i
);
3393 // Register can't get to this point...
3394 assert(VA
.isMemLoc());
3396 // emit ISD::STORE whichs stores the
3397 // parameter value to a stack Location
3398 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3399 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3402 // Transform all store nodes into one single node because all store
3403 // nodes are independent of each other.
3404 if (!MemOpChains
.empty())
3405 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3407 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3408 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3409 // node so that legalize doesn't hack it.
3411 EVT Ty
= Callee
.getValueType();
3412 bool GlobalOrExternal
= false, IsCallReloc
= false;
3414 // The long-calls feature is ignored in case of PIC.
3415 // While we do not support -mshared / -mno-shared properly,
3416 // ignore long-calls in case of -mabicalls too.
3417 if (!Subtarget
.isABICalls() && !IsPIC
) {
3418 // If the function should be called using "long call",
3419 // get its address into a register to prevent using
3420 // of the `jal` instruction for the direct call.
3421 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3422 if (Subtarget
.useLongCalls())
3423 Callee
= Subtarget
.hasSym32()
3424 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3425 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3426 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3427 bool UseLongCalls
= Subtarget
.useLongCalls();
3428 // If the function has long-call/far/near attribute
3429 // it overrides command line switch pased to the backend.
3430 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3431 if (F
->hasFnAttribute("long-call"))
3432 UseLongCalls
= true;
3433 else if (F
->hasFnAttribute("short-call"))
3434 UseLongCalls
= false;
3437 Callee
= Subtarget
.hasSym32()
3438 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3439 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3443 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3445 const GlobalValue
*Val
= G
->getGlobal();
3446 InternalLinkage
= Val
->hasInternalLinkage();
3448 if (InternalLinkage
)
3449 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3450 else if (Subtarget
.useXGOT()) {
3451 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3452 MipsII::MO_CALL_LO16
, Chain
,
3453 FuncInfo
->callPtrInfo(MF
, Val
));
3456 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3457 FuncInfo
->callPtrInfo(MF
, Val
));
3461 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3462 getPointerTy(DAG
.getDataLayout()), 0,
3463 MipsII::MO_NO_FLAG
);
3464 GlobalOrExternal
= true;
3466 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3467 const char *Sym
= S
->getSymbol();
3469 if (!IsPIC
) // static
3470 Callee
= DAG
.getTargetExternalSymbol(
3471 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3472 else if (Subtarget
.useXGOT()) {
3473 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3474 MipsII::MO_CALL_LO16
, Chain
,
3475 FuncInfo
->callPtrInfo(MF
, Sym
));
3478 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3479 FuncInfo
->callPtrInfo(MF
, Sym
));
3483 GlobalOrExternal
= true;
3486 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3487 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3489 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3490 IsCallReloc
, CLI
, Callee
, Chain
);
3493 MF
.getFrameInfo().setHasTailCall();
3494 SDValue Ret
= DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3495 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
3499 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3500 SDValue InGlue
= Chain
.getValue(1);
3502 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
3504 // Create the CALLSEQ_END node in the case of where it is not a call to
3506 if (!(MemcpyInByVal
)) {
3507 Chain
= DAG
.getCALLSEQ_END(Chain
, StackSize
, 0, InGlue
, DL
);
3508 InGlue
= Chain
.getValue(1);
3511 // Handle result values, copying them out of physregs into vregs that we
3513 return LowerCallResult(Chain
, InGlue
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3517 /// LowerCallResult - Lower the result values of a call into the
3518 /// appropriate copies out of appropriate physical registers.
3519 SDValue
MipsTargetLowering::LowerCallResult(
3520 SDValue Chain
, SDValue InGlue
, CallingConv::ID CallConv
, bool IsVarArg
,
3521 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3522 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3523 TargetLowering::CallLoweringInfo
&CLI
) const {
3524 // Assign locations to each value returned by this call.
3525 SmallVector
<CCValAssign
, 16> RVLocs
;
3526 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3529 const ExternalSymbolSDNode
*ES
=
3530 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3531 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3532 ES
? ES
->getSymbol() : nullptr);
3534 // Copy all of the result registers out of their specified physreg.
3535 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3536 CCValAssign
&VA
= RVLocs
[i
];
3537 assert(VA
.isRegLoc() && "Can only return in registers!");
3539 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3540 RVLocs
[i
].getLocVT(), InGlue
);
3541 Chain
= Val
.getValue(1);
3542 InGlue
= Val
.getValue(2);
3544 if (VA
.isUpperBitsInLoc()) {
3545 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3546 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3548 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3550 Shift
, DL
, VA
.getLocVT(), Val
,
3551 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3554 switch (VA
.getLocInfo()) {
3556 llvm_unreachable("Unknown loc info!");
3557 case CCValAssign::Full
:
3559 case CCValAssign::BCvt
:
3560 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3562 case CCValAssign::AExt
:
3563 case CCValAssign::AExtUpper
:
3564 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3566 case CCValAssign::ZExt
:
3567 case CCValAssign::ZExtUpper
:
3568 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3569 DAG
.getValueType(VA
.getValVT()));
3570 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3572 case CCValAssign::SExt
:
3573 case CCValAssign::SExtUpper
:
3574 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3575 DAG
.getValueType(VA
.getValVT()));
3576 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3580 InVals
.push_back(Val
);
3586 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3587 EVT ArgVT
, const SDLoc
&DL
,
3588 SelectionDAG
&DAG
) {
3589 MVT LocVT
= VA
.getLocVT();
3590 EVT ValVT
= VA
.getValVT();
3592 // Shift into the upper bits if necessary.
3593 switch (VA
.getLocInfo()) {
3596 case CCValAssign::AExtUpper
:
3597 case CCValAssign::SExtUpper
:
3598 case CCValAssign::ZExtUpper
: {
3599 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3600 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3602 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3604 Opcode
, DL
, VA
.getLocVT(), Val
,
3605 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3610 // If this is an value smaller than the argument slot size (32-bit for O32,
3611 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3612 // size. Extract the value and insert any appropriate assertions regarding
3613 // sign/zero extension.
3614 switch (VA
.getLocInfo()) {
3616 llvm_unreachable("Unknown loc info!");
3617 case CCValAssign::Full
:
3619 case CCValAssign::AExtUpper
:
3620 case CCValAssign::AExt
:
3621 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3623 case CCValAssign::SExtUpper
:
3624 case CCValAssign::SExt
:
3625 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3626 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3628 case CCValAssign::ZExtUpper
:
3629 case CCValAssign::ZExt
:
3630 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3631 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3633 case CCValAssign::BCvt
:
3634 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3641 //===----------------------------------------------------------------------===//
3642 // Formal Arguments Calling Convention Implementation
3643 //===----------------------------------------------------------------------===//
3644 /// LowerFormalArguments - transform physical registers into virtual registers
3645 /// and generate load operations for arguments places on the stack.
3646 SDValue
MipsTargetLowering::LowerFormalArguments(
3647 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3648 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3649 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3650 MachineFunction
&MF
= DAG
.getMachineFunction();
3651 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3652 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3654 MipsFI
->setVarArgsFrameIndex(0);
3656 // Used with vargs to acumulate store chains.
3657 std::vector
<SDValue
> OutChains
;
3659 // Assign locations to all of the incoming arguments.
3660 SmallVector
<CCValAssign
, 16> ArgLocs
;
3661 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3663 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), Align(1));
3664 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3665 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3667 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3669 "Functions with the interrupt attribute cannot have arguments!");
3671 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3672 MipsFI
->setFormalArgInfo(CCInfo
.getStackSize(),
3673 CCInfo
.getInRegsParamsCount() > 0);
3675 unsigned CurArgIdx
= 0;
3676 CCInfo
.rewindByValRegsInfo();
3678 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3679 CCValAssign
&VA
= ArgLocs
[i
];
3680 if (Ins
[InsIdx
].isOrigArg()) {
3681 std::advance(FuncArg
, Ins
[InsIdx
].getOrigArgIndex() - CurArgIdx
);
3682 CurArgIdx
= Ins
[InsIdx
].getOrigArgIndex();
3684 EVT ValVT
= VA
.getValVT();
3685 ISD::ArgFlagsTy Flags
= Ins
[InsIdx
].Flags
;
3686 bool IsRegLoc
= VA
.isRegLoc();
3688 if (Flags
.isByVal()) {
3689 assert(Ins
[InsIdx
].isOrigArg() && "Byval arguments cannot be implicit");
3690 unsigned FirstByValReg
, LastByValReg
;
3691 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3692 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3694 assert(Flags
.getByValSize() &&
3695 "ByVal args of size 0 should have been ignored by front-end.");
3696 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3697 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3698 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3699 CCInfo
.nextInRegsParam();
3703 // Arguments stored on registers
3705 MVT RegVT
= VA
.getLocVT();
3706 Register ArgReg
= VA
.getLocReg();
3707 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3709 // Transform the arguments stored on
3710 // physical registers into virtual ones
3711 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3712 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3715 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3717 // Handle floating point arguments passed in integer registers and
3718 // long double arguments passed in floating point registers.
3719 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3720 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3721 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3722 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3723 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3724 ValVT
== MVT::f64
) {
3725 assert(VA
.needsCustom() && "Expected custom argument for f64 split");
3726 CCValAssign
&NextVA
= ArgLocs
[++i
];
3728 addLiveIn(DAG
.getMachineFunction(), NextVA
.getLocReg(), RC
);
3729 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3730 if (!Subtarget
.isLittle())
3731 std::swap(ArgValue
, ArgValue2
);
3732 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3733 ArgValue
, ArgValue2
);
3736 InVals
.push_back(ArgValue
);
3737 } else { // VA.isRegLoc()
3738 MVT LocVT
= VA
.getLocVT();
3740 assert(!VA
.needsCustom() && "unexpected custom memory argument");
3742 // Only arguments pased on the stack should make it here.
3743 assert(VA
.isMemLoc());
3745 // The stack pointer offset is relative to the caller stack frame.
3746 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3747 VA
.getLocMemOffset(), true);
3749 // Create load nodes to retrieve arguments from the stack
3750 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3751 SDValue ArgValue
= DAG
.getLoad(
3752 LocVT
, DL
, Chain
, FIN
,
3753 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3754 OutChains
.push_back(ArgValue
.getValue(1));
3757 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3759 InVals
.push_back(ArgValue
);
3763 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3765 if (ArgLocs
[i
].needsCustom()) {
3770 // The mips ABIs for returning structs by value requires that we copy
3771 // the sret argument into $v0 for the return. Save the argument into
3772 // a virtual register so that we can access it from the return points.
3773 if (Ins
[InsIdx
].Flags
.isSRet()) {
3774 unsigned Reg
= MipsFI
->getSRetReturnReg();
3776 Reg
= MF
.getRegInfo().createVirtualRegister(
3777 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3778 MipsFI
->setSRetReturnReg(Reg
);
3780 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3781 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3787 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3789 // All stores are grouped in one node to allow the matching between
3790 // the size of Ins and InVals. This only happens when on varg functions
3791 if (!OutChains
.empty()) {
3792 OutChains
.push_back(Chain
);
3793 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3799 //===----------------------------------------------------------------------===//
3800 // Return Value Calling Convention Implementation
3801 //===----------------------------------------------------------------------===//
3804 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3805 MachineFunction
&MF
, bool IsVarArg
,
3806 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3807 LLVMContext
&Context
) const {
3808 SmallVector
<CCValAssign
, 16> RVLocs
;
3809 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3810 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3813 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
,
3814 bool IsSigned
) const {
3815 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3822 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3824 SelectionDAG
&DAG
) const {
3825 MachineFunction
&MF
= DAG
.getMachineFunction();
3826 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3830 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3834 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3836 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3837 const SmallVectorImpl
<SDValue
> &OutVals
,
3838 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3839 // CCValAssign - represent the assignment of
3840 // the return value to a location
3841 SmallVector
<CCValAssign
, 16> RVLocs
;
3842 MachineFunction
&MF
= DAG
.getMachineFunction();
3844 // CCState - Info about the registers and stack slot.
3845 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3847 // Analyze return values.
3848 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3851 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3853 // Copy the result values into the output registers.
3854 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3855 SDValue Val
= OutVals
[i
];
3856 CCValAssign
&VA
= RVLocs
[i
];
3857 assert(VA
.isRegLoc() && "Can only return in registers!");
3858 bool UseUpperBits
= false;
3860 switch (VA
.getLocInfo()) {
3862 llvm_unreachable("Unknown loc info!");
3863 case CCValAssign::Full
:
3865 case CCValAssign::BCvt
:
3866 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3868 case CCValAssign::AExtUpper
:
3869 UseUpperBits
= true;
3871 case CCValAssign::AExt
:
3872 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3874 case CCValAssign::ZExtUpper
:
3875 UseUpperBits
= true;
3877 case CCValAssign::ZExt
:
3878 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3880 case CCValAssign::SExtUpper
:
3881 UseUpperBits
= true;
3883 case CCValAssign::SExt
:
3884 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3889 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3890 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3892 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3893 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3896 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Glue
);
3898 // Guarantee that all emitted copies are stuck together with flags.
3899 Glue
= Chain
.getValue(1);
3900 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3903 // The mips ABIs for returning structs by value requires that we copy
3904 // the sret argument into $v0 for the return. We saved the argument into
3905 // a virtual register in the entry block, so now we copy the value out
3907 if (MF
.getFunction().hasStructRetAttr()) {
3908 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3909 unsigned Reg
= MipsFI
->getSRetReturnReg();
3912 llvm_unreachable("sret virtual register not created in the entry block");
3914 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3915 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3917 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Glue
);
3918 Glue
= Chain
.getValue(1);
3919 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3922 RetOps
[0] = Chain
; // Update chain.
3924 // Add the glue if we have it.
3926 RetOps
.push_back(Glue
);
3928 // ISRs must use "eret".
3929 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3930 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3932 // Standard return on Mips is a "jr $ra"
3933 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3936 //===----------------------------------------------------------------------===//
3937 // Mips Inline Assembly Support
3938 //===----------------------------------------------------------------------===//
3940 /// getConstraintType - Given a constraint letter, return the type of
3941 /// constraint it is for this target.
3942 MipsTargetLowering::ConstraintType
3943 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3944 // Mips specific constraints
3945 // GCC config/mips/constraints.md
3947 // 'd' : An address register. Equivalent to r
3948 // unless generating MIPS16 code.
3949 // 'y' : Equivalent to r; retained for
3950 // backwards compatibility.
3951 // 'c' : A register suitable for use in an indirect
3952 // jump. This will always be $25 for -mabicalls.
3953 // 'l' : The lo register. 1 word storage.
3954 // 'x' : The hilo register pair. Double word storage.
3955 if (Constraint
.size() == 1) {
3956 switch (Constraint
[0]) {
3964 return C_RegisterClass
;
3970 if (Constraint
== "ZC")
3973 return TargetLowering::getConstraintType(Constraint
);
3976 /// Examine constraint type and operand type and determine a weight value.
3977 /// This object must already have been set up with the operand type
3978 /// and the current alternative constraint selected.
3979 TargetLowering::ConstraintWeight
3980 MipsTargetLowering::getSingleConstraintMatchWeight(
3981 AsmOperandInfo
&info
, const char *constraint
) const {
3982 ConstraintWeight weight
= CW_Invalid
;
3983 Value
*CallOperandVal
= info
.CallOperandVal
;
3984 // If we don't have a value, we can't do a match,
3985 // but allow it at the lowest weight.
3986 if (!CallOperandVal
)
3988 Type
*type
= CallOperandVal
->getType();
3989 // Look at the constraint type.
3990 switch (*constraint
) {
3992 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3996 if (type
->isIntegerTy())
3997 weight
= CW_Register
;
3999 case 'f': // FPU or MSA register
4000 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
4001 type
->getPrimitiveSizeInBits().getFixedValue() == 128)
4002 weight
= CW_Register
;
4003 else if (type
->isFloatTy())
4004 weight
= CW_Register
;
4006 case 'c': // $25 for indirect jumps
4007 case 'l': // lo register
4008 case 'x': // hilo register pair
4009 if (type
->isIntegerTy())
4010 weight
= CW_SpecificReg
;
4012 case 'I': // signed 16 bit immediate
4013 case 'J': // integer zero
4014 case 'K': // unsigned 16 bit immediate
4015 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4016 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4017 case 'O': // signed 15 bit immediate (+- 16383)
4018 case 'P': // immediate in the range of 65535 to 1 (inclusive)
4019 if (isa
<ConstantInt
>(CallOperandVal
))
4020 weight
= CW_Constant
;
4029 /// This is a helper function to parse a physical register string and split it
4030 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4031 /// that is returned indicates whether parsing was successful. The second flag
4032 /// is true if the numeric part exists.
4033 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
4034 unsigned long long &Reg
) {
4035 if (C
.front() != '{' || C
.back() != '}')
4036 return std::make_pair(false, false);
4038 // Search for the first numeric character.
4039 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
4040 I
= std::find_if(B
, E
, isdigit
);
4042 Prefix
= StringRef(B
, I
- B
);
4044 // The second flag is set to false if no numeric characters were found.
4046 return std::make_pair(true, false);
4048 // Parse the numeric characters.
4049 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
4053 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
4054 ISD::NodeType
) const {
4055 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
4056 EVT MinVT
= getRegisterType(Cond
? MVT::i64
: MVT::i32
);
4057 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
4060 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
4061 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
4062 const TargetRegisterInfo
*TRI
=
4063 Subtarget
.getRegisterInfo();
4064 const TargetRegisterClass
*RC
;
4066 unsigned long long Reg
;
4068 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
4071 return std::make_pair(0U, nullptr);
4073 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
4074 // No numeric characters follow "hi" or "lo".
4076 return std::make_pair(0U, nullptr);
4078 RC
= TRI
->getRegClass(Prefix
== "hi" ?
4079 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
4080 return std::make_pair(*(RC
->begin()), RC
);
4081 } else if (Prefix
.starts_with("$msa")) {
4082 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4084 // No numeric characters follow the name.
4086 return std::make_pair(0U, nullptr);
4088 Reg
= StringSwitch
<unsigned long long>(Prefix
)
4089 .Case("$msair", Mips::MSAIR
)
4090 .Case("$msacsr", Mips::MSACSR
)
4091 .Case("$msaaccess", Mips::MSAAccess
)
4092 .Case("$msasave", Mips::MSASave
)
4093 .Case("$msamodify", Mips::MSAModify
)
4094 .Case("$msarequest", Mips::MSARequest
)
4095 .Case("$msamap", Mips::MSAMap
)
4096 .Case("$msaunmap", Mips::MSAUnmap
)
4100 return std::make_pair(0U, nullptr);
4102 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
4103 return std::make_pair(Reg
, RC
);
4107 return std::make_pair(0U, nullptr);
4109 if (Prefix
== "$f") { // Parse $f0-$f31.
4110 // If the size of FP registers is 64-bit or Reg is an even number, select
4111 // the 64-bit register class. Otherwise, select the 32-bit register class.
4112 if (VT
== MVT::Other
)
4113 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
4115 RC
= getRegClassFor(VT
);
4117 if (RC
== &Mips::AFGR64RegClass
) {
4118 assert(Reg
% 2 == 0);
4121 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
4122 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
4123 else if (Prefix
== "$w") { // Parse $w0-$w31.
4124 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
4125 } else { // Parse $0-$31.
4126 assert(Prefix
== "$");
4127 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
4130 assert(Reg
< RC
->getNumRegs());
4131 return std::make_pair(*(RC
->begin() + Reg
), RC
);
4134 /// Given a register class constraint, like 'r', if this corresponds directly
4135 /// to an LLVM register class, return a register of 0 and the register class
4137 std::pair
<unsigned, const TargetRegisterClass
*>
4138 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
4139 StringRef Constraint
,
4141 if (Constraint
.size() == 1) {
4142 switch (Constraint
[0]) {
4143 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4144 case 'y': // Same as 'r'. Exists for compatibility.
4146 if ((VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
||
4148 (VT
== MVT::f32
&& Subtarget
.useSoftFloat())) {
4149 if (Subtarget
.inMips16Mode())
4150 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
4151 return std::make_pair(0U, &Mips::GPR32RegClass
);
4153 if ((VT
== MVT::i64
|| (VT
== MVT::f64
&& Subtarget
.useSoftFloat())) &&
4154 !Subtarget
.isGP64bit())
4155 return std::make_pair(0U, &Mips::GPR32RegClass
);
4156 if ((VT
== MVT::i64
|| (VT
== MVT::f64
&& Subtarget
.useSoftFloat())) &&
4157 Subtarget
.isGP64bit())
4158 return std::make_pair(0U, &Mips::GPR64RegClass
);
4159 // This will generate an error message
4160 return std::make_pair(0U, nullptr);
4161 case 'f': // FPU or MSA register
4162 if (VT
== MVT::v16i8
)
4163 return std::make_pair(0U, &Mips::MSA128BRegClass
);
4164 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
4165 return std::make_pair(0U, &Mips::MSA128HRegClass
);
4166 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
4167 return std::make_pair(0U, &Mips::MSA128WRegClass
);
4168 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
4169 return std::make_pair(0U, &Mips::MSA128DRegClass
);
4170 else if (VT
== MVT::f32
)
4171 return std::make_pair(0U, &Mips::FGR32RegClass
);
4172 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
4173 if (Subtarget
.isFP64bit())
4174 return std::make_pair(0U, &Mips::FGR64RegClass
);
4175 return std::make_pair(0U, &Mips::AFGR64RegClass
);
4178 case 'c': // register suitable for indirect jump
4180 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
4182 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
4183 // This will generate an error message
4184 return std::make_pair(0U, nullptr);
4185 case 'l': // use the `lo` register to store values
4186 // that are no bigger than a word
4187 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4188 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4189 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4190 case 'x': // use the concatenated `hi` and `lo` registers
4191 // to store doubleword values
4192 // Fixme: Not triggering the use of both hi and low
4193 // This will generate an error message
4194 return std::make_pair(0U, nullptr);
4198 if (!Constraint
.empty()) {
4199 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4200 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4206 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4209 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4210 /// vector. If it is invalid, don't add anything to Ops.
4211 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4212 StringRef Constraint
,
4213 std::vector
<SDValue
> &Ops
,
4214 SelectionDAG
&DAG
) const {
4218 // Only support length 1 constraints for now.
4219 if (Constraint
.size() > 1)
4222 char ConstraintLetter
= Constraint
[0];
4223 switch (ConstraintLetter
) {
4224 default: break; // This will fall through to the generic implementation
4225 case 'I': // Signed 16 bit constant
4226 // If this fails, the parent routine will give an error
4227 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4228 EVT Type
= Op
.getValueType();
4229 int64_t Val
= C
->getSExtValue();
4230 if (isInt
<16>(Val
)) {
4231 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4236 case 'J': // integer zero
4237 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4238 EVT Type
= Op
.getValueType();
4239 int64_t Val
= C
->getZExtValue();
4241 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4246 case 'K': // unsigned 16 bit immediate
4247 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4248 EVT Type
= Op
.getValueType();
4249 uint64_t Val
= (uint64_t)C
->getZExtValue();
4250 if (isUInt
<16>(Val
)) {
4251 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4256 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4257 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4258 EVT Type
= Op
.getValueType();
4259 int64_t Val
= C
->getSExtValue();
4260 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4261 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4266 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4267 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4268 EVT Type
= Op
.getValueType();
4269 int64_t Val
= C
->getSExtValue();
4270 if ((Val
>= -65535) && (Val
<= -1)) {
4271 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4276 case 'O': // signed 15 bit immediate
4277 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4278 EVT Type
= Op
.getValueType();
4279 int64_t Val
= C
->getSExtValue();
4280 if ((isInt
<15>(Val
))) {
4281 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4286 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4287 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4288 EVT Type
= Op
.getValueType();
4289 int64_t Val
= C
->getSExtValue();
4290 if ((Val
<= 65535) && (Val
>= 1)) {
4291 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4298 if (Result
.getNode()) {
4299 Ops
.push_back(Result
);
4303 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4306 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4307 const AddrMode
&AM
, Type
*Ty
,
4309 Instruction
*I
) const {
4310 // No global is ever allowed as a base.
4315 case 0: // "r+i" or just "i", depending on HasBaseReg.
4318 if (!AM
.HasBaseReg
) // allow "r+i".
4320 return false; // disallow "r+r" or "r+r+i".
4329 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4330 // The Mips target isn't yet aware of offsets.
4334 EVT
MipsTargetLowering::getOptimalMemOpType(
4335 const MemOp
&Op
, const AttributeList
&FuncAttributes
) const {
4336 if (Subtarget
.hasMips64())
4342 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4343 bool ForCodeSize
) const {
4344 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4346 if (Imm
.isNegZero())
4348 return Imm
.isZero();
4351 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4353 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4354 if (ABI
.IsN64() && isPositionIndependent())
4355 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4357 return TargetLowering::getJumpTableEncoding();
4360 bool MipsTargetLowering::useSoftFloat() const {
4361 return Subtarget
.useSoftFloat();
4364 void MipsTargetLowering::copyByValRegs(
4365 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4366 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4367 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4368 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4369 MipsCCState
&State
) const {
4370 MachineFunction
&MF
= DAG
.getMachineFunction();
4371 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4372 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4373 unsigned NumRegs
= LastReg
- FirstReg
;
4374 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4375 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4377 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4381 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4382 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4384 FrameObjOffset
= VA
.getLocMemOffset();
4386 // Create frame object.
4387 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4388 // Make the fixed object stored to mutable so that the load instructions
4389 // referencing it have their memory dependencies added.
4390 // Set the frame object as isAliased which clears the underlying objects
4391 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4392 // stores as dependencies for loads referencing this fixed object.
4393 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4394 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4395 InVals
.push_back(FIN
);
4400 // Copy arg registers.
4401 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4402 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4404 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4405 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4406 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4407 unsigned Offset
= I
* GPRSizeInBytes
;
4408 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4409 DAG
.getConstant(Offset
, DL
, PtrTy
));
4410 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4411 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4412 OutChains
.push_back(Store
);
4416 // Copy byVal arg to registers and stack.
4417 void MipsTargetLowering::passByValArg(
4418 SDValue Chain
, const SDLoc
&DL
,
4419 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4420 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4421 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4422 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4423 const CCValAssign
&VA
) const {
4424 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4425 unsigned OffsetInBytes
= 0; // From beginning of struct
4426 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4428 std::min(Flags
.getNonZeroByValAlign(), Align(RegSizeInBytes
));
4429 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4430 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4431 unsigned NumRegs
= LastReg
- FirstReg
;
4434 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4435 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4438 // Copy words to registers.
4439 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4440 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4441 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4442 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4443 MachinePointerInfo(), Alignment
);
4444 MemOpChains
.push_back(LoadVal
.getValue(1));
4445 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4446 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4449 // Return if the struct has been fully copied.
4450 if (ByValSizeInBytes
== OffsetInBytes
)
4453 // Copy the remainder of the byval argument with sub-word loads and shifts.
4454 if (LeftoverBytes
) {
4457 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4458 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4459 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4461 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4465 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4466 DAG
.getConstant(OffsetInBytes
, DL
,
4468 SDValue LoadVal
= DAG
.getExtLoad(
4469 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4470 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4471 MemOpChains
.push_back(LoadVal
.getValue(1));
4473 // Shift the loaded value.
4477 Shamt
= TotalBytesLoaded
* 8;
4479 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4481 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4482 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4485 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4489 OffsetInBytes
+= LoadSizeInBytes
;
4490 TotalBytesLoaded
+= LoadSizeInBytes
;
4491 Alignment
= std::min(Alignment
, Align(LoadSizeInBytes
));
4494 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4495 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4500 // Copy remainder of byval arg to it with memcpy.
4501 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4502 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4503 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4504 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4505 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4506 Chain
= DAG
.getMemcpy(
4507 Chain
, DL
, Dst
, Src
, DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4508 Align(Alignment
), /*isVolatile=*/false, /*AlwaysInline=*/false,
4509 /*CI=*/nullptr, std::nullopt
, MachinePointerInfo(), MachinePointerInfo());
4510 MemOpChains
.push_back(Chain
);
4513 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4514 SDValue Chain
, const SDLoc
&DL
,
4516 CCState
&State
) const {
4517 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4518 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4519 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4520 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4521 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4522 MachineFunction
&MF
= DAG
.getMachineFunction();
4523 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4524 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4526 // Offset of the first variable argument from stack pointer.
4529 if (ArgRegs
.size() == Idx
)
4530 VaArgOffset
= alignTo(State
.getStackSize(), RegSizeInBytes
);
4533 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4534 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4537 // Record the frame index of the first variable argument
4538 // which is a value necessary to VASTART.
4539 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4540 MipsFI
->setVarArgsFrameIndex(FI
);
4542 // Copy the integer registers that have not been used for argument passing
4543 // to the argument register save area. For O32, the save area is allocated
4544 // in the caller's stack frame, while for N32/64, it is allocated in the
4545 // callee's stack frame.
4546 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4547 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4548 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4549 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4550 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4551 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4553 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4554 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4556 OutChains
.push_back(Store
);
4560 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4561 Align Alignment
) const {
4562 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4564 assert(Size
&& "Byval argument's size shouldn't be 0.");
4566 Alignment
= std::min(Alignment
, TFL
->getStackAlign());
4568 unsigned FirstReg
= 0;
4569 unsigned NumRegs
= 0;
4571 if (State
->getCallingConv() != CallingConv::Fast
) {
4572 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4573 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4574 // FIXME: The O32 case actually describes no shadow registers.
4575 const MCPhysReg
*ShadowRegs
=
4576 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4578 // We used to check the size as well but we can't do that anymore since
4579 // CCState::HandleByVal() rounds up the size after calling this function.
4581 Alignment
>= Align(RegSizeInBytes
) &&
4582 "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4584 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4586 // If Alignment > RegSizeInBytes, the first arg register must be even.
4587 // FIXME: This condition happens to do the right thing but it's not the
4588 // right way to test it. We want to check that the stack frame offset
4589 // of the register is aligned.
4590 if ((Alignment
> RegSizeInBytes
) && (FirstReg
% 2)) {
4591 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4595 // Mark the registers allocated.
4596 Size
= alignTo(Size
, RegSizeInBytes
);
4597 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4598 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4599 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4602 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4605 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4606 MachineBasicBlock
*BB
,
4608 unsigned Opc
) const {
4609 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4610 "Subtarget already supports SELECT nodes with the use of"
4611 "conditional-move instructions.");
4613 const TargetInstrInfo
*TII
=
4614 Subtarget
.getInstrInfo();
4615 DebugLoc DL
= MI
.getDebugLoc();
4617 // To "insert" a SELECT instruction, we actually have to insert the
4618 // diamond control-flow pattern. The incoming instruction knows the
4619 // destination vreg to set, the condition code register to branch on, the
4620 // true/false values to select between, and a branch opcode to use.
4621 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4622 MachineFunction::iterator It
= ++BB
->getIterator();
4628 // bNE r1, r0, copy1MBB
4629 // fallthrough --> copy0MBB
4630 MachineBasicBlock
*thisMBB
= BB
;
4631 MachineFunction
*F
= BB
->getParent();
4632 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4633 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4634 F
->insert(It
, copy0MBB
);
4635 F
->insert(It
, sinkMBB
);
4637 // Transfer the remainder of BB and its successor edges to sinkMBB.
4638 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4639 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4640 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4642 // Next, add the true and fallthrough blocks as its successors.
4643 BB
->addSuccessor(copy0MBB
);
4644 BB
->addSuccessor(sinkMBB
);
4647 // bc1[tf] cc, sinkMBB
4648 BuildMI(BB
, DL
, TII
->get(Opc
))
4649 .addReg(MI
.getOperand(1).getReg())
4652 // bne rs, $0, sinkMBB
4653 BuildMI(BB
, DL
, TII
->get(Opc
))
4654 .addReg(MI
.getOperand(1).getReg())
4660 // %FalseValue = ...
4661 // # fallthrough to sinkMBB
4664 // Update machine-CFG edges
4665 BB
->addSuccessor(sinkMBB
);
4668 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4672 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4673 .addReg(MI
.getOperand(2).getReg())
4675 .addReg(MI
.getOperand(3).getReg())
4678 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4684 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4685 MachineBasicBlock
*BB
) const {
4686 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4687 "Subtarget already supports SELECT nodes with the use of"
4688 "conditional-move instructions.");
4690 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4691 DebugLoc DL
= MI
.getDebugLoc();
4693 // D_SELECT substitutes two SELECT nodes that goes one after another and
4694 // have the same condition operand. On machines which don't have
4695 // conditional-move instruction, it reduces unnecessary branch instructions
4696 // which are result of using two diamond patterns that are result of two
4697 // SELECT pseudo instructions.
4698 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4699 MachineFunction::iterator It
= ++BB
->getIterator();
4705 // bNE r1, r0, copy1MBB
4706 // fallthrough --> copy0MBB
4707 MachineBasicBlock
*thisMBB
= BB
;
4708 MachineFunction
*F
= BB
->getParent();
4709 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4710 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4711 F
->insert(It
, copy0MBB
);
4712 F
->insert(It
, sinkMBB
);
4714 // Transfer the remainder of BB and its successor edges to sinkMBB.
4715 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4716 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4717 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4719 // Next, add the true and fallthrough blocks as its successors.
4720 BB
->addSuccessor(copy0MBB
);
4721 BB
->addSuccessor(sinkMBB
);
4723 // bne rs, $0, sinkMBB
4724 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4725 .addReg(MI
.getOperand(2).getReg())
4730 // %FalseValue = ...
4731 // # fallthrough to sinkMBB
4734 // Update machine-CFG edges
4735 BB
->addSuccessor(sinkMBB
);
4738 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4742 // Use two PHI nodes to select two reults
4743 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4744 .addReg(MI
.getOperand(3).getReg())
4746 .addReg(MI
.getOperand(5).getReg())
4748 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4749 .addReg(MI
.getOperand(4).getReg())
4751 .addReg(MI
.getOperand(6).getReg())
4754 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4759 // FIXME? Maybe this could be a TableGen attribute on some registers and
4760 // this table could be generated automatically from RegInfo.
4762 MipsTargetLowering::getRegisterByName(const char *RegName
, LLT VT
,
4763 const MachineFunction
&MF
) const {
4764 // The Linux kernel uses $28 and sp.
4765 if (Subtarget
.isGP64bit()) {
4766 Register Reg
= StringSwitch
<Register
>(RegName
)
4767 .Case("$28", Mips::GP_64
)
4768 .Case("sp", Mips::SP_64
)
4769 .Default(Register());
4773 Register Reg
= StringSwitch
<Register
>(RegName
)
4774 .Case("$28", Mips::GP
)
4775 .Case("sp", Mips::SP
)
4776 .Default(Register());
4780 report_fatal_error("Invalid register name global variable");
4783 MachineBasicBlock
*MipsTargetLowering::emitLDR_W(MachineInstr
&MI
,
4784 MachineBasicBlock
*BB
) const {
4785 MachineFunction
*MF
= BB
->getParent();
4786 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4787 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4788 const bool IsLittle
= Subtarget
.isLittle();
4789 DebugLoc DL
= MI
.getDebugLoc();
4791 Register Dest
= MI
.getOperand(0).getReg();
4792 Register Address
= MI
.getOperand(1).getReg();
4793 unsigned Imm
= MI
.getOperand(2).getImm();
4795 MachineBasicBlock::iterator
I(MI
);
4797 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4798 // Mips release 6 can load from adress that is not naturally-aligned.
4799 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4800 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4804 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(Temp
);
4806 // Mips release 5 needs to use instructions that can load from an unaligned
4808 Register LoadHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4809 Register LoadFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4810 Register Undef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4811 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(Undef
);
4812 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4815 .addImm(Imm
+ (IsLittle
? 0 : 3))
4817 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4820 .addImm(Imm
+ (IsLittle
? 3 : 0))
4822 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(LoadFull
);
4825 MI
.eraseFromParent();
4829 MachineBasicBlock
*MipsTargetLowering::emitLDR_D(MachineInstr
&MI
,
4830 MachineBasicBlock
*BB
) const {
4831 MachineFunction
*MF
= BB
->getParent();
4832 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4833 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4834 const bool IsLittle
= Subtarget
.isLittle();
4835 DebugLoc DL
= MI
.getDebugLoc();
4837 Register Dest
= MI
.getOperand(0).getReg();
4838 Register Address
= MI
.getOperand(1).getReg();
4839 unsigned Imm
= MI
.getOperand(2).getImm();
4841 MachineBasicBlock::iterator
I(MI
);
4843 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4844 // Mips release 6 can load from adress that is not naturally-aligned.
4845 if (Subtarget
.isGP64bit()) {
4846 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4847 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LD
))
4851 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_D
)).addDef(Dest
).addUse(Temp
);
4853 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4854 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4855 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4856 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4859 .addImm(Imm
+ (IsLittle
? 0 : 4));
4860 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4863 .addImm(Imm
+ (IsLittle
? 4 : 0));
4864 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(Lo
);
4865 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4871 // Mips release 5 needs to use instructions that can load from an unaligned
4873 Register LoHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4874 Register LoFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4875 Register LoUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4876 Register HiHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4877 Register HiFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4878 Register HiUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4879 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4880 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(LoUndef
);
4881 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4884 .addImm(Imm
+ (IsLittle
? 0 : 7))
4886 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4889 .addImm(Imm
+ (IsLittle
? 3 : 4))
4891 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(HiUndef
);
4892 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4895 .addImm(Imm
+ (IsLittle
? 4 : 3))
4897 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4900 .addImm(Imm
+ (IsLittle
? 7 : 0))
4902 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(LoFull
);
4903 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4909 MI
.eraseFromParent();
4913 MachineBasicBlock
*MipsTargetLowering::emitSTR_W(MachineInstr
&MI
,
4914 MachineBasicBlock
*BB
) const {
4915 MachineFunction
*MF
= BB
->getParent();
4916 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4917 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4918 const bool IsLittle
= Subtarget
.isLittle();
4919 DebugLoc DL
= MI
.getDebugLoc();
4921 Register StoreVal
= MI
.getOperand(0).getReg();
4922 Register Address
= MI
.getOperand(1).getReg();
4923 unsigned Imm
= MI
.getOperand(2).getImm();
4925 MachineBasicBlock::iterator
I(MI
);
4927 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4928 // Mips release 6 can store to adress that is not naturally-aligned.
4929 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4930 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4931 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(BitcastW
).addUse(StoreVal
);
4932 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4936 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4941 // Mips release 5 needs to use instructions that can store to an unaligned
4943 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4944 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4948 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
4951 .addImm(Imm
+ (IsLittle
? 0 : 3));
4952 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
4955 .addImm(Imm
+ (IsLittle
? 3 : 0));
4958 MI
.eraseFromParent();
4963 MachineBasicBlock
*MipsTargetLowering::emitSTR_D(MachineInstr
&MI
,
4964 MachineBasicBlock
*BB
) const {
4965 MachineFunction
*MF
= BB
->getParent();
4966 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4967 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4968 const bool IsLittle
= Subtarget
.isLittle();
4969 DebugLoc DL
= MI
.getDebugLoc();
4971 Register StoreVal
= MI
.getOperand(0).getReg();
4972 Register Address
= MI
.getOperand(1).getReg();
4973 unsigned Imm
= MI
.getOperand(2).getImm();
4975 MachineBasicBlock::iterator
I(MI
);
4977 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4978 // Mips release 6 can store to adress that is not naturally-aligned.
4979 if (Subtarget
.isGP64bit()) {
4980 Register BitcastD
= MRI
.createVirtualRegister(&Mips::MSA128DRegClass
);
4981 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4982 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
4985 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_D
))
4989 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SD
))
4994 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4995 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4996 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4997 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
5000 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5004 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5008 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
5011 .addImm(Imm
+ (IsLittle
? 0 : 4));
5012 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
5015 .addImm(Imm
+ (IsLittle
? 4 : 0));
5018 // Mips release 5 needs to use instructions that can store to an unaligned
5020 Register Bitcast
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
5021 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
5022 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
5023 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(Bitcast
).addUse(StoreVal
);
5024 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5028 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5032 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5035 .addImm(Imm
+ (IsLittle
? 0 : 3));
5036 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5039 .addImm(Imm
+ (IsLittle
? 3 : 0));
5040 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5043 .addImm(Imm
+ (IsLittle
? 4 : 7));
5044 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5047 .addImm(Imm
+ (IsLittle
? 7 : 4));
5050 MI
.eraseFromParent();