Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
blob7ad300c6cccd45886e5fa06fa031fd0a9f053479
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/IntrinsicsMips.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "mips-isel"
40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41 Subtarget = &MF.getSubtarget<MipsSubtarget>();
42 if (Subtarget->inMips16Mode())
43 return false;
44 return MipsDAGToDAGISel::runOnMachineFunction(MF);
47 void MipsSEDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.addRequired<DominatorTreeWrapperPass>();
49 SelectionDAGISelLegacy::getAnalysisUsage(AU);
52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53 MachineFunction &MF) {
54 MachineInstrBuilder MIB(MF, &MI);
55 unsigned Mask = MI.getOperand(1).getImm();
56 unsigned Flag =
57 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
59 if (Mask & 1)
60 MIB.addReg(Mips::DSPPos, Flag);
62 if (Mask & 2)
63 MIB.addReg(Mips::DSPSCount, Flag);
65 if (Mask & 4)
66 MIB.addReg(Mips::DSPCarry, Flag);
68 if (Mask & 8)
69 MIB.addReg(Mips::DSPOutFlag, Flag);
71 if (Mask & 16)
72 MIB.addReg(Mips::DSPCCond, Flag);
74 if (Mask & 32)
75 MIB.addReg(Mips::DSPEFI, Flag);
78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79 uint64_t RegNum = RegIdx->getAsZExtVal();
80 return Mips::MSACtrlRegClass.getRegister(RegNum);
83 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
84 const MachineInstr& MI) {
85 unsigned DstReg = 0, ZeroReg = 0;
87 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
88 if ((MI.getOpcode() == Mips::ADDiu) &&
89 (MI.getOperand(1).getReg() == Mips::ZERO) &&
90 (MI.getOperand(2).isImm()) &&
91 (MI.getOperand(2).getImm() == 0)) {
92 DstReg = MI.getOperand(0).getReg();
93 ZeroReg = Mips::ZERO;
94 } else if ((MI.getOpcode() == Mips::DADDiu) &&
95 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
96 (MI.getOperand(2).isImm()) &&
97 (MI.getOperand(2).getImm() == 0)) {
98 DstReg = MI.getOperand(0).getReg();
99 ZeroReg = Mips::ZERO_64;
102 if (!DstReg)
103 return false;
105 // Replace uses with ZeroReg.
106 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107 E = MRI->use_end(); U != E;) {
108 MachineOperand &MO = *U;
109 unsigned OpNo = U.getOperandNo();
110 MachineInstr *MI = MO.getParent();
111 ++U;
113 // Do not replace if it is a phi's operand or is tied to def operand.
114 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115 continue;
117 // Also, we have to check that the register class of the operand
118 // contains the zero register.
119 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
120 continue;
122 MO.setReg(ZeroReg);
125 return true;
128 void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB,
129 MachineFunction &MF) {
130 MachineInstrBuilder MIB(MF, &MI);
131 if (!Subtarget->isABI_O32()) { // N32, N64
132 // Save current return address.
133 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64))
134 .addDef(Mips::AT_64)
135 .addUse(Mips::RA_64, RegState::Undef)
136 .addUse(Mips::ZERO_64);
137 // Stops instruction above from being removed later on.
138 MIB.addUse(Mips::AT_64, RegState::Implicit);
139 } else { // O32
140 // Save current return address.
141 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR))
142 .addDef(Mips::AT)
143 .addUse(Mips::RA, RegState::Undef)
144 .addUse(Mips::ZERO);
145 // _mcount pops 2 words from stack.
146 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu))
147 .addDef(Mips::SP)
148 .addUse(Mips::SP)
149 .addImm(-8);
150 // Stops first instruction above from being removed later on.
151 MIB.addUse(Mips::AT, RegState::Implicit);
155 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
156 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(MF);
158 MachineRegisterInfo *MRI = &MF.getRegInfo();
160 for (auto &MBB: MF) {
161 for (auto &MI: MBB) {
162 switch (MI.getOpcode()) {
163 case Mips::RDDSP:
164 addDSPCtrlRegOperands(false, MI, MF);
165 break;
166 case Mips::WRDSP:
167 addDSPCtrlRegOperands(true, MI, MF);
168 break;
169 case Mips::BuildPairF64_64:
170 case Mips::ExtractElementF64_64:
171 if (!Subtarget->useOddSPReg()) {
172 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
173 break;
175 [[fallthrough]];
176 case Mips::BuildPairF64:
177 case Mips::ExtractElementF64:
178 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
179 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
180 break;
181 case Mips::JAL:
182 case Mips::JAL_MM:
183 if (MI.getOperand(0).isGlobal() &&
184 MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount")
185 emitMCountABI(MI, MBB, MF);
186 break;
187 case Mips::JALRPseudo:
188 case Mips::JALR64Pseudo:
189 case Mips::JALR16_MM:
190 if (MI.getOperand(2).isMCSymbol() &&
191 MI.getOperand(2).getMCSymbol()->getName() == "_mcount")
192 emitMCountABI(MI, MBB, MF);
193 break;
194 case Mips::JALR:
195 if (MI.getOperand(3).isMCSymbol() &&
196 MI.getOperand(3).getMCSymbol()->getName() == "_mcount")
197 emitMCountABI(MI, MBB, MF);
198 break;
199 default:
200 replaceUsesWithZeroReg(MRI, MI);
206 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
207 SDValue InGlue = Node->getOperand(2);
208 unsigned Opc = InGlue.getOpcode();
209 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
210 EVT VT = LHS.getValueType();
212 // In the base case, we can rely on the carry bit from the addsc
213 // instruction.
214 if (Opc == ISD::ADDC) {
215 SDValue Ops[3] = {LHS, RHS, InGlue};
216 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
217 return;
220 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
222 // The more complex case is when there is a chain of ISD::ADDE nodes like:
223 // (adde (adde (adde (addc a b) c) d) e).
225 // The addwc instruction does not write to the carry bit, instead it writes
226 // to bit 20 of the dsp control register. To match this series of nodes, each
227 // intermediate adde node must be expanded to write the carry bit before the
228 // addition.
230 // Start by reading the overflow field for addsc and moving the value to the
231 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
232 // corresponds to reading/writing the entire control register to/from a GPR.
234 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
236 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
238 SDNode *DSPCtrlField = CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32,
239 MVT::Glue, CstOne, InGlue);
241 SDNode *Carry = CurDAG->getMachineNode(
242 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
244 SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
245 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
246 SDValue(Carry, 0)};
247 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
249 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
250 // would like about whether bit 20 always gets overwritten by addwc.
251 // Hence take an extremely conservative view and presume it's sticky. We
252 // therefore need to clear it.
254 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
256 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
257 SDNode *DSPCtrlFinal =
258 CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
260 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
261 SDValue(DSPCtrlFinal, 0), CstOne);
263 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
264 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
267 /// Match frameindex
268 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
269 SDValue &Offset) const {
270 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
271 EVT ValTy = Addr.getValueType();
273 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
274 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
275 return true;
277 return false;
280 /// Match frameindex+offset and frameindex|offset
281 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
282 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
283 unsigned ShiftAmount = 0) const {
284 if (CurDAG->isBaseWithConstantOffset(Addr)) {
285 auto *CN = cast<ConstantSDNode>(Addr.getOperand(1));
286 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
287 EVT ValTy = Addr.getValueType();
289 // If the first operand is a FI, get the TargetFI Node
290 if (FrameIndexSDNode *FIN =
291 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
292 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
293 else {
294 Base = Addr.getOperand(0);
295 // If base is a FI, additional offset calculation is done in
296 // eliminateFrameIndex, otherwise we need to check the alignment
297 const Align Alignment(1ULL << ShiftAmount);
298 if (!isAligned(Alignment, CN->getZExtValue()))
299 return false;
302 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
303 ValTy);
304 return true;
307 return false;
310 /// ComplexPattern used on MipsInstrInfo
311 /// Used on Mips Load/Store instructions
312 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
313 SDValue &Offset) const {
314 // if Address is FI, get the TargetFrameIndex.
315 if (selectAddrFrameIndex(Addr, Base, Offset))
316 return true;
318 // on PIC code Load GA
319 if (Addr.getOpcode() == MipsISD::Wrapper) {
320 Base = Addr.getOperand(0);
321 Offset = Addr.getOperand(1);
322 return true;
325 if (!TM.isPositionIndependent()) {
326 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
327 Addr.getOpcode() == ISD::TargetGlobalAddress))
328 return false;
331 // Addresses of the form FI+const or FI|const
332 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
333 return true;
335 // Operand is a result from an ADD.
336 if (Addr.getOpcode() == ISD::ADD) {
337 // When loading from constant pools, load the lower address part in
338 // the instruction itself. Example, instead of:
339 // lui $2, %hi($CPI1_0)
340 // addiu $2, $2, %lo($CPI1_0)
341 // lwc1 $f0, 0($2)
342 // Generate:
343 // lui $2, %hi($CPI1_0)
344 // lwc1 $f0, %lo($CPI1_0)($2)
345 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
346 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
347 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
348 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
349 isa<JumpTableSDNode>(Opnd0)) {
350 Base = Addr.getOperand(0);
351 Offset = Opnd0;
352 return true;
357 return false;
360 /// ComplexPattern used on MipsInstrInfo
361 /// Used on Mips Load/Store instructions
362 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
363 SDValue &Offset) const {
364 Base = Addr;
365 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
366 return true;
369 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
370 SDValue &Offset) const {
371 return selectAddrRegImm(Addr, Base, Offset) ||
372 selectAddrDefault(Addr, Base, Offset);
375 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
376 SDValue &Offset) const {
377 if (selectAddrFrameIndex(Addr, Base, Offset))
378 return true;
380 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
381 return true;
383 return false;
386 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
387 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
388 SDValue &Offset) const {
389 if (selectAddrFrameIndex(Addr, Base, Offset))
390 return true;
392 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
393 return true;
395 return false;
398 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
399 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
400 SDValue &Offset) const {
401 if (selectAddrFrameIndex(Addr, Base, Offset))
402 return true;
404 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
405 return true;
407 return false;
410 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
411 SDValue &Offset) const {
412 if (selectAddrFrameIndex(Addr, Base, Offset))
413 return true;
415 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
416 return true;
418 return false;
421 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
422 SDValue &Offset) const {
423 return selectAddrRegImm11(Addr, Base, Offset) ||
424 selectAddrDefault(Addr, Base, Offset);
427 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
428 SDValue &Offset) const {
429 return selectAddrRegImm12(Addr, Base, Offset) ||
430 selectAddrDefault(Addr, Base, Offset);
433 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
434 SDValue &Offset) const {
435 return selectAddrRegImm16(Addr, Base, Offset) ||
436 selectAddrDefault(Addr, Base, Offset);
439 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
440 SDValue &Offset) const {
441 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
442 if (isa<FrameIndexSDNode>(Base))
443 return false;
445 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
446 unsigned CnstOff = CN->getZExtValue();
447 return (CnstOff == (CnstOff & 0x3c));
450 return false;
453 // For all other cases where "lw" would be selected, don't select "lw16"
454 // because it would result in additional instructions to prepare operands.
455 if (selectAddrRegImm(Addr, Base, Offset))
456 return false;
458 return selectAddrDefault(Addr, Base, Offset);
461 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
462 SDValue &Offset) const {
464 if (selectAddrFrameIndex(Addr, Base, Offset))
465 return true;
467 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
468 return true;
470 return selectAddrDefault(Addr, Base, Offset);
473 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
474 SDValue &Offset) const {
475 if (selectAddrFrameIndex(Addr, Base, Offset))
476 return true;
478 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
479 return true;
481 return selectAddrDefault(Addr, Base, Offset);
484 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
485 SDValue &Offset) const {
486 if (selectAddrFrameIndex(Addr, Base, Offset))
487 return true;
489 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
490 return true;
492 return selectAddrDefault(Addr, Base, Offset);
495 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
496 SDValue &Offset) const {
497 if (selectAddrFrameIndex(Addr, Base, Offset))
498 return true;
500 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
501 return true;
503 return selectAddrDefault(Addr, Base, Offset);
506 // Select constant vector splats.
508 // Returns true and sets Imm if:
509 // * MSA is enabled
510 // * N is a ISD::BUILD_VECTOR representing a constant splat
511 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
512 unsigned MinSizeInBits) const {
513 if (!Subtarget->hasMSA())
514 return false;
516 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
518 if (!Node)
519 return false;
521 APInt SplatValue, SplatUndef;
522 unsigned SplatBitSize;
523 bool HasAnyUndefs;
525 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
526 MinSizeInBits, !Subtarget->isLittle()))
527 return false;
529 Imm = SplatValue;
531 return true;
534 // Select constant vector splats.
536 // In addition to the requirements of selectVSplat(), this function returns
537 // true and sets Imm if:
538 // * The splat value is the same width as the elements of the vector
539 // * The splat value fits in an integer with the specified signed-ness and
540 // width.
542 // This function looks through ISD::BITCAST nodes.
543 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
544 // sometimes a shuffle in big-endian mode.
546 // It's worth noting that this function is not used as part of the selection
547 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
548 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
549 // MipsSEDAGToDAGISel::selectNode.
550 bool MipsSEDAGToDAGISel::
551 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
552 unsigned ImmBitSize) const {
553 APInt ImmValue;
554 EVT EltTy = N->getValueType(0).getVectorElementType();
556 if (N->getOpcode() == ISD::BITCAST)
557 N = N->getOperand(0);
559 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
560 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
562 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
563 (!Signed && ImmValue.isIntN(ImmBitSize))) {
564 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
565 return true;
569 return false;
572 // Select constant vector splats.
573 bool MipsSEDAGToDAGISel::
574 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
575 return selectVSplatCommon(N, Imm, false, 1);
578 bool MipsSEDAGToDAGISel::
579 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
580 return selectVSplatCommon(N, Imm, false, 2);
583 bool MipsSEDAGToDAGISel::
584 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
585 return selectVSplatCommon(N, Imm, false, 3);
588 // Select constant vector splats.
589 bool MipsSEDAGToDAGISel::
590 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
591 return selectVSplatCommon(N, Imm, false, 4);
594 // Select constant vector splats.
595 bool MipsSEDAGToDAGISel::
596 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
597 return selectVSplatCommon(N, Imm, false, 5);
600 // Select constant vector splats.
601 bool MipsSEDAGToDAGISel::
602 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
603 return selectVSplatCommon(N, Imm, false, 6);
606 // Select constant vector splats.
607 bool MipsSEDAGToDAGISel::
608 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
609 return selectVSplatCommon(N, Imm, false, 8);
612 // Select constant vector splats.
613 bool MipsSEDAGToDAGISel::
614 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
615 return selectVSplatCommon(N, Imm, true, 5);
618 // Select constant vector splats whose value is a power of 2.
620 // In addition to the requirements of selectVSplat(), this function returns
621 // true and sets Imm if:
622 // * The splat value is the same width as the elements of the vector
623 // * The splat value is a power of two.
625 // This function looks through ISD::BITCAST nodes.
626 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
627 // sometimes a shuffle in big-endian mode.
628 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
629 APInt ImmValue;
630 EVT EltTy = N->getValueType(0).getVectorElementType();
632 if (N->getOpcode() == ISD::BITCAST)
633 N = N->getOperand(0);
635 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
636 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
637 int32_t Log2 = ImmValue.exactLogBase2();
639 if (Log2 != -1) {
640 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
641 return true;
645 return false;
648 // Select constant vector splats whose value only has a consecutive sequence
649 // of left-most bits set (e.g. 0b11...1100...00).
651 // In addition to the requirements of selectVSplat(), this function returns
652 // true and sets Imm if:
653 // * The splat value is the same width as the elements of the vector
654 // * The splat value is a consecutive sequence of left-most bits.
656 // This function looks through ISD::BITCAST nodes.
657 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
658 // sometimes a shuffle in big-endian mode.
659 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
660 APInt ImmValue;
661 EVT EltTy = N->getValueType(0).getVectorElementType();
663 if (N->getOpcode() == ISD::BITCAST)
664 N = N->getOperand(0);
666 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
667 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
668 // Extract the run of set bits starting with bit zero from the bitwise
669 // inverse of ImmValue, and test that the inverse of this is the same
670 // as the original value.
671 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
673 Imm = CurDAG->getTargetConstant(ImmValue.popcount() - 1, SDLoc(N), EltTy);
674 return true;
678 return false;
681 // Select constant vector splats whose value only has a consecutive sequence
682 // of right-most bits set (e.g. 0b00...0011...11).
684 // In addition to the requirements of selectVSplat(), this function returns
685 // true and sets Imm if:
686 // * The splat value is the same width as the elements of the vector
687 // * The splat value is a consecutive sequence of right-most bits.
689 // This function looks through ISD::BITCAST nodes.
690 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
691 // sometimes a shuffle in big-endian mode.
692 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
693 APInt ImmValue;
694 EVT EltTy = N->getValueType(0).getVectorElementType();
696 if (N->getOpcode() == ISD::BITCAST)
697 N = N->getOperand(0);
699 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
700 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
701 // Extract the run of set bits starting with bit zero, and test that the
702 // result is the same as the original value
703 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
704 Imm = CurDAG->getTargetConstant(ImmValue.popcount() - 1, SDLoc(N), EltTy);
705 return true;
709 return false;
712 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
713 SDValue &Imm) const {
714 APInt ImmValue;
715 EVT EltTy = N->getValueType(0).getVectorElementType();
717 if (N->getOpcode() == ISD::BITCAST)
718 N = N->getOperand(0);
720 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
721 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
722 int32_t Log2 = (~ImmValue).exactLogBase2();
724 if (Log2 != -1) {
725 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
726 return true;
730 return false;
733 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
734 unsigned Opcode = Node->getOpcode();
735 SDLoc DL(Node);
738 // Instruction Selection not handled by the auto-generated
739 // tablegen selection should be handled here.
741 switch(Opcode) {
742 default: break;
744 case MipsISD::DOUBLE_SELECT_I:
745 case MipsISD::DOUBLE_SELECT_I64: {
746 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
747 SDValue cond = Node->getOperand(0);
748 SDValue Hi1 = Node->getOperand(1);
749 SDValue Lo1 = Node->getOperand(2);
750 SDValue Hi2 = Node->getOperand(3);
751 SDValue Lo2 = Node->getOperand(4);
753 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
754 EVT NodeTys[] = {VT, VT};
755 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
756 ? Mips::PseudoD_SELECT_I64
757 : Mips::PseudoD_SELECT_I,
758 DL, NodeTys, ops));
759 return true;
762 case ISD::ADDE: {
763 selectAddE(Node, DL);
764 return true;
767 case ISD::ConstantFP: {
768 auto *CN = cast<ConstantFPSDNode>(Node);
769 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
770 if (Subtarget->isGP64bit()) {
771 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
772 Mips::ZERO_64, MVT::i64);
773 ReplaceNode(Node,
774 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
775 } else if (Subtarget->isFP64bit()) {
776 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
777 Mips::ZERO, MVT::i32);
778 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
779 MVT::f64, Zero, Zero));
780 } else {
781 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
782 Mips::ZERO, MVT::i32);
783 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
784 MVT::f64, Zero, Zero));
786 return true;
788 break;
791 case ISD::Constant: {
792 auto *CN = cast<ConstantSDNode>(Node);
793 int64_t Imm = CN->getSExtValue();
794 unsigned Size = CN->getValueSizeInBits(0);
796 if (isInt<32>(Imm))
797 break;
799 MipsAnalyzeImmediate AnalyzeImm;
801 const MipsAnalyzeImmediate::InstSeq &Seq =
802 AnalyzeImm.Analyze(Imm, Size, false);
804 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
805 SDLoc DL(CN);
806 SDNode *RegOpnd;
807 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
808 DL, MVT::i64);
810 // The first instruction can be a LUi which is different from other
811 // instructions (ADDiu, ORI and SLL) in that it does not have a register
812 // operand.
813 if (Inst->Opc == Mips::LUi64)
814 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
815 else
816 RegOpnd =
817 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
818 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
819 ImmOpnd);
821 // The remaining instructions in the sequence are handled here.
822 for (++Inst; Inst != Seq.end(); ++Inst) {
823 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
824 MVT::i64);
825 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
826 SDValue(RegOpnd, 0), ImmOpnd);
829 ReplaceNode(Node, RegOpnd);
830 return true;
833 case ISD::INTRINSIC_W_CHAIN: {
834 const unsigned IntrinsicOpcode = Node->getConstantOperandVal(1);
835 switch (IntrinsicOpcode) {
836 default:
837 break;
839 case Intrinsic::mips_cfcmsa: {
840 SDValue ChainIn = Node->getOperand(0);
841 SDValue RegIdx = Node->getOperand(2);
842 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
843 getMSACtrlReg(RegIdx), MVT::i32);
844 ReplaceNode(Node, Reg.getNode());
845 return true;
847 case Intrinsic::mips_ldr_d:
848 case Intrinsic::mips_ldr_w: {
849 unsigned Op = (IntrinsicOpcode == Intrinsic::mips_ldr_d) ? Mips::LDR_D
850 : Mips::LDR_W;
852 SDLoc DL(Node);
853 assert(Node->getNumOperands() == 4 && "Unexpected number of operands.");
854 const SDValue &Chain = Node->getOperand(0);
855 const SDValue &Intrinsic = Node->getOperand(1);
856 const SDValue &Pointer = Node->getOperand(2);
857 const SDValue &Constant = Node->getOperand(3);
859 assert(Chain.getValueType() == MVT::Other);
860 (void)Intrinsic;
861 assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
862 Constant.getOpcode() == ISD::Constant &&
863 "Invalid instruction operand.");
865 // Convert Constant to TargetConstant.
866 const ConstantInt *Val =
867 cast<ConstantSDNode>(Constant)->getConstantIntValue();
868 SDValue Imm =
869 CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
871 SmallVector<SDValue, 3> Ops{Pointer, Imm, Chain};
873 assert(Node->getNumValues() == 2);
874 assert(Node->getValueType(0).is128BitVector());
875 assert(Node->getValueType(1) == MVT::Other);
876 SmallVector<EVT, 2> ResTys{Node->getValueType(0), Node->getValueType(1)};
878 ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
880 return true;
883 break;
886 case ISD::INTRINSIC_WO_CHAIN: {
887 switch (Node->getConstantOperandVal(0)) {
888 default:
889 break;
891 case Intrinsic::mips_move_v:
892 // Like an assignment but will always produce a move.v even if
893 // unnecessary.
894 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
895 Node->getValueType(0),
896 Node->getOperand(1)));
897 return true;
899 break;
902 case ISD::INTRINSIC_VOID: {
903 const unsigned IntrinsicOpcode = Node->getConstantOperandVal(1);
904 switch (IntrinsicOpcode) {
905 default:
906 break;
908 case Intrinsic::mips_ctcmsa: {
909 SDValue ChainIn = Node->getOperand(0);
910 SDValue RegIdx = Node->getOperand(2);
911 SDValue Value = Node->getOperand(3);
912 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
913 getMSACtrlReg(RegIdx), Value);
914 ReplaceNode(Node, ChainOut.getNode());
915 return true;
917 case Intrinsic::mips_str_d:
918 case Intrinsic::mips_str_w: {
919 unsigned Op = (IntrinsicOpcode == Intrinsic::mips_str_d) ? Mips::STR_D
920 : Mips::STR_W;
922 SDLoc DL(Node);
923 assert(Node->getNumOperands() == 5 && "Unexpected number of operands.");
924 const SDValue &Chain = Node->getOperand(0);
925 const SDValue &Intrinsic = Node->getOperand(1);
926 const SDValue &Vec = Node->getOperand(2);
927 const SDValue &Pointer = Node->getOperand(3);
928 const SDValue &Constant = Node->getOperand(4);
930 assert(Chain.getValueType() == MVT::Other);
931 (void)Intrinsic;
932 assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
933 Constant.getOpcode() == ISD::Constant &&
934 "Invalid instruction operand.");
936 // Convert Constant to TargetConstant.
937 const ConstantInt *Val =
938 cast<ConstantSDNode>(Constant)->getConstantIntValue();
939 SDValue Imm =
940 CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
942 SmallVector<SDValue, 4> Ops{Vec, Pointer, Imm, Chain};
944 assert(Node->getNumValues() == 1);
945 assert(Node->getValueType(0) == MVT::Other);
946 SmallVector<EVT, 1> ResTys{Node->getValueType(0)};
948 ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
949 return true;
952 break;
955 case MipsISD::FAbs: {
956 MVT ResTy = Node->getSimpleValueType(0);
957 assert((ResTy == MVT::f64 || ResTy == MVT::f32) &&
958 "Unsupported float type!");
959 unsigned Opc = 0;
960 if (ResTy == MVT::f64)
961 Opc = (Subtarget->isFP64bit() ? Mips::FABS_D64 : Mips::FABS_D32);
962 else
963 Opc = Mips::FABS_S;
965 if (Subtarget->inMicroMipsMode()) {
966 switch (Opc) {
967 case Mips::FABS_D64:
968 Opc = Mips::FABS_D64_MM;
969 break;
970 case Mips::FABS_D32:
971 Opc = Mips::FABS_D32_MM;
972 break;
973 case Mips::FABS_S:
974 Opc = Mips::FABS_S_MM;
975 break;
976 default:
977 llvm_unreachable("Unknown opcode for MIPS floating point abs!");
981 ReplaceNode(Node,
982 CurDAG->getMachineNode(Opc, DL, ResTy, Node->getOperand(0)));
984 return true;
987 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
988 // to be done in this fashion so that we respect the differences between
989 // dins and dinsm, as the difference is that the size operand has the range
990 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
991 // means SelectionDAGISel would have to test all the operands at once to
992 // match the instruction.
993 case MipsISD::Ins: {
995 // Validating the node operands.
996 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
997 return false;
999 if (Node->getNumOperands() != 4)
1000 return false;
1002 if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
1003 Node->getOperand(2)->getOpcode() != ISD::Constant)
1004 return false;
1006 MVT ResTy = Node->getSimpleValueType(0);
1007 uint64_t Pos = Node->getConstantOperandVal(1);
1008 uint64_t Size = Node->getConstantOperandVal(2);
1010 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
1011 if (!Size)
1012 return false;
1014 if (Pos + Size > 64)
1015 return false;
1017 if (ResTy != MVT::i32 && ResTy != MVT::i64)
1018 return false;
1020 unsigned Opcode = 0;
1021 if (ResTy == MVT::i32) {
1022 if (Pos + Size <= 32)
1023 Opcode = Mips::INS;
1024 } else {
1025 if (Pos + Size <= 32)
1026 Opcode = Mips::DINS;
1027 else if (Pos < 32 && 1 < Size)
1028 Opcode = Mips::DINSM;
1029 else
1030 Opcode = Mips::DINSU;
1033 if (Opcode) {
1034 SDValue Ops[4] = {
1035 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
1036 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
1038 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
1039 return true;
1042 return false;
1045 case MipsISD::ThreadPointer: {
1046 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
1047 unsigned RdhwrOpc, DestReg;
1049 if (PtrVT == MVT::i32) {
1050 RdhwrOpc = Mips::RDHWR;
1051 DestReg = Mips::V1;
1052 } else {
1053 RdhwrOpc = Mips::RDHWR64;
1054 DestReg = Mips::V1_64;
1057 SDNode *Rdhwr =
1058 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), MVT::Glue,
1059 CurDAG->getRegister(Mips::HWR29, MVT::i32),
1060 CurDAG->getTargetConstant(0, DL, MVT::i32));
1061 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
1062 SDValue(Rdhwr, 0), SDValue(Rdhwr, 1));
1063 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT,
1064 Chain.getValue(1));
1065 ReplaceNode(Node, ResNode.getNode());
1066 return true;
1069 case ISD::BUILD_VECTOR: {
1070 // Select appropriate ldi.[bhwd] instructions for constant splats of
1071 // 128-bit when MSA is enabled. Fixup any register class mismatches that
1072 // occur as a result.
1074 // This allows the compiler to use a wider range of immediates than would
1075 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1076 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1077 // 0x01010101 } without using a constant pool. This would be sub-optimal
1078 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1079 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1080 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1082 const MipsABIInfo &ABI =
1083 static_cast<const MipsTargetMachine &>(TM).getABI();
1085 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
1086 APInt SplatValue, SplatUndef;
1087 unsigned SplatBitSize;
1088 bool HasAnyUndefs;
1089 unsigned LdiOp;
1090 EVT ResVecTy = BVN->getValueType(0);
1091 EVT ViaVecTy;
1093 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
1094 return false;
1096 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1097 HasAnyUndefs, 8,
1098 !Subtarget->isLittle()))
1099 return false;
1101 switch (SplatBitSize) {
1102 default:
1103 return false;
1104 case 8:
1105 LdiOp = Mips::LDI_B;
1106 ViaVecTy = MVT::v16i8;
1107 break;
1108 case 16:
1109 LdiOp = Mips::LDI_H;
1110 ViaVecTy = MVT::v8i16;
1111 break;
1112 case 32:
1113 LdiOp = Mips::LDI_W;
1114 ViaVecTy = MVT::v4i32;
1115 break;
1116 case 64:
1117 LdiOp = Mips::LDI_D;
1118 ViaVecTy = MVT::v2i64;
1119 break;
1122 SDNode *Res = nullptr;
1124 // If we have a signed 10 bit integer, we can splat it directly.
1126 // If we have something bigger we can synthesize the value into a GPR and
1127 // splat from there.
1128 if (SplatValue.isSignedIntN(10)) {
1129 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1130 ViaVecTy.getVectorElementType());
1132 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1133 } else if (SplatValue.isSignedIntN(16) &&
1134 ((ABI.IsO32() && SplatBitSize < 64) ||
1135 (ABI.IsN32() || ABI.IsN64()))) {
1136 // Only handle signed 16 bit values when the element size is GPR width.
1137 // MIPS64 can handle all the cases but MIPS32 would need to handle
1138 // negative cases specifically here. Instead, handle those cases as
1139 // 64bit values.
1141 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1142 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1143 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1144 SDValue ZeroVal = CurDAG->getRegister(
1145 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1147 const unsigned FILLOp =
1148 SplatBitSize == 16
1149 ? Mips::FILL_H
1150 : (SplatBitSize == 32 ? Mips::FILL_W
1151 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1153 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1154 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1155 "Attempting to use fill.d on MIPS32!");
1157 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1158 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1160 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1161 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1163 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1164 // Only handle the cases where the splat size agrees with the size
1165 // of the SplatValue here.
1166 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1167 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1168 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1170 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1171 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1173 if (Hi)
1174 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1176 if (Lo)
1177 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1178 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1180 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1181 Res =
1182 CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1184 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1185 (ABI.IsN32() || ABI.IsN64())) {
1186 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1187 // integers due to having 64bit registers. lui will cause the necessary
1188 // zero/sign extension.
1189 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1190 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1191 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1193 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1194 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1196 if (Hi)
1197 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1199 if (Lo)
1200 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1201 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1203 Res = CurDAG->getMachineNode(
1204 Mips::SUBREG_TO_REG, DL, MVT::i64,
1205 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1206 SDValue(Res, 0),
1207 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1209 Res =
1210 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1212 } else if (SplatValue.isSignedIntN(64)) {
1213 // If we have a 64 bit Splat value, we perform a similar sequence to the
1214 // above:
1216 // MIPS32: MIPS64:
1217 // lui $res, %highest(val) lui $res, %highest(val)
1218 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1219 // lui $res2, %hi(val) lui $res2, %hi(val)
1220 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1221 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1222 // $res4 = insert.w $res3[1], $res fill.d $res
1223 // splat.d $res4, 0
1225 // The ability to use dinsu is guaranteed as MSA requires MIPSR5.
1226 // This saves having to materialize the value by shifts and ors.
1228 // FIXME: Implement the preferred sequence for MIPS64R6:
1230 // MIPS64R6:
1231 // ori $res, $zero, %lo(val)
1232 // daui $res, $res, %hi(val)
1233 // dahi $res, $res, %higher(val)
1234 // dati $res, $res, %highest(cal)
1235 // fill.d $res
1238 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1239 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1240 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1241 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1243 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1244 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1245 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1246 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1247 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1249 // Independent of whether we're targeting MIPS64 or not, the basic
1250 // operations are the same. Also, directly use the $zero register if
1251 // the 16 bit chunk is zero.
1253 // For optimization purposes we always synthesize the splat value as
1254 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1255 // just before combining the values with dinsu to produce an i64. This
1256 // enables SelectionDAG to aggressively share components of splat values
1257 // where possible.
1259 // FIXME: This is the general constant synthesis problem. This code
1260 // should be factored out into a class shared between all the
1261 // classes that need it. Specifically, for a splat size of 64
1262 // bits that's a negative number we can do better than LUi/ORi
1263 // for the upper 32bits.
1265 if (Hi)
1266 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1268 if (Lo)
1269 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1270 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1272 SDNode *HiRes;
1273 if (Highest)
1274 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1276 if (Higher)
1277 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1278 Highest ? SDValue(HiRes, 0) : ZeroVal,
1279 HigherVal);
1282 if (ABI.IsO32()) {
1283 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1284 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1286 Res = CurDAG->getMachineNode(
1287 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1288 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1289 CurDAG->getTargetConstant(1, DL, MVT::i32));
1291 const TargetLowering *TLI = getTargetLowering();
1292 const TargetRegisterClass *RC =
1293 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1295 Res = CurDAG->getMachineNode(
1296 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1297 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1299 Res = CurDAG->getMachineNode(
1300 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1301 CurDAG->getTargetConstant(0, DL, MVT::i32));
1302 } else if (ABI.IsN64() || ABI.IsN32()) {
1304 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1305 const bool HiResNonZero = Highest || Higher;
1306 const bool ResNonZero = Hi || Lo;
1308 if (HiResNonZero)
1309 HiRes = CurDAG->getMachineNode(
1310 Mips::SUBREG_TO_REG, DL, MVT::i64,
1311 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1312 SDValue(HiRes, 0),
1313 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1315 if (ResNonZero)
1316 Res = CurDAG->getMachineNode(
1317 Mips::SUBREG_TO_REG, DL, MVT::i64,
1318 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1319 SDValue(Res, 0),
1320 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1322 // We have 3 cases:
1323 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1324 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1325 // Both are non zero => dinsu Res, HiRes, 32, 32
1327 // The obvious "missing" case is when both are zero, but that case is
1328 // handled by the ldi case.
1329 if (ResNonZero) {
1330 IntegerType *Int32Ty =
1331 IntegerType::get(MF->getFunction().getContext(), 32);
1332 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1333 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1334 CurDAG->getConstant(*Const32, DL, MVT::i32),
1335 CurDAG->getConstant(*Const32, DL, MVT::i32),
1336 SDValue(Res, 0)};
1338 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1339 } else if (HiResNonZero) {
1340 Res = CurDAG->getMachineNode(
1341 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1342 CurDAG->getTargetConstant(0, DL, MVT::i32));
1343 } else
1344 llvm_unreachable(
1345 "Zero splat value handled by non-zero 64bit splat synthesis!");
1347 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64,
1348 SDValue(Res, 0));
1349 } else
1350 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1352 } else
1353 return false;
1355 if (ResVecTy != ViaVecTy) {
1356 // If LdiOp is writing to a different register class to ResVecTy, then
1357 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1358 // since the source and destination register sets contain the same
1359 // registers.
1360 const TargetLowering *TLI = getTargetLowering();
1361 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1362 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1363 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1364 ResVecTy, SDValue(Res, 0),
1365 CurDAG->getTargetConstant(RC->getID(), DL,
1366 MVT::i32));
1369 ReplaceNode(Node, Res);
1370 return true;
1375 return false;
1378 bool MipsSEDAGToDAGISel::SelectInlineAsmMemoryOperand(
1379 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1380 std::vector<SDValue> &OutOps) {
1381 SDValue Base, Offset;
1383 switch(ConstraintID) {
1384 default:
1385 llvm_unreachable("Unexpected asm memory constraint");
1386 // All memory constraints can at least accept raw pointers.
1387 case InlineAsm::ConstraintCode::m:
1388 case InlineAsm::ConstraintCode::o:
1389 if (selectAddrRegImm16(Op, Base, Offset)) {
1390 OutOps.push_back(Base);
1391 OutOps.push_back(Offset);
1392 return false;
1394 OutOps.push_back(Op);
1395 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1396 return false;
1397 case InlineAsm::ConstraintCode::R:
1398 // The 'R' constraint is supposed to be much more complicated than this.
1399 // However, it's becoming less useful due to architectural changes and
1400 // ought to be replaced by other constraints such as 'ZC'.
1401 // For now, support 9-bit signed offsets which is supportable by all
1402 // subtargets for all instructions.
1403 if (selectAddrRegImm9(Op, Base, Offset)) {
1404 OutOps.push_back(Base);
1405 OutOps.push_back(Offset);
1406 return false;
1408 OutOps.push_back(Op);
1409 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1410 return false;
1411 case InlineAsm::ConstraintCode::ZC:
1412 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1413 // given subtarget.
1414 if (Subtarget->inMicroMipsMode()) {
1415 // On microMIPS, they can handle 12-bit offsets.
1416 if (selectAddrRegImm12(Op, Base, Offset)) {
1417 OutOps.push_back(Base);
1418 OutOps.push_back(Offset);
1419 return false;
1421 } else if (Subtarget->hasMips32r6()) {
1422 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1423 if (selectAddrRegImm9(Op, Base, Offset)) {
1424 OutOps.push_back(Base);
1425 OutOps.push_back(Offset);
1426 return false;
1428 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1429 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1430 OutOps.push_back(Base);
1431 OutOps.push_back(Offset);
1432 return false;
1434 // In all cases, 0-bit offsets are acceptable.
1435 OutOps.push_back(Op);
1436 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1437 return false;
1439 return true;
1442 MipsSEDAGToDAGISelLegacy::MipsSEDAGToDAGISelLegacy(MipsTargetMachine &TM,
1443 CodeGenOptLevel OL)
1444 : MipsDAGToDAGISelLegacy(std::make_unique<MipsSEDAGToDAGISel>(TM, OL)) {}
1446 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1447 CodeGenOptLevel OptLevel) {
1448 return new MipsSEDAGToDAGISelLegacy(TM, OptLevel);