Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / NVPTX / NVPTXLowerArgs.cpp
blob773322937498dcfd46fdf869881356ad79e06021
1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer.
17 // Device function parameters are directly accessible via
18 // ld.param/st.param, but taking the address of one returns a pointer
19 // to a copy created in local space which *can't* be used with
20 // ld.param/st.param.
22 // Copying a byval struct into local memory in IR allows us to enforce
23 // the param space restrictions, gives the rest of IR a pointer w/o
24 // param space restrictions, and gives us an opportunity to eliminate
25 // the copy.
27 // Pointer arguments to kernel functions need more work to be lowered:
29 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
30 // global address space. This allows later optimizations to emit
31 // ld.global.*/st.global.* for accessing these pointer arguments. For
32 // example,
34 // define void @foo(float* %input) {
35 // %v = load float, float* %input, align 4
36 // ...
37 // }
39 // becomes
41 // define void @foo(float* %input) {
42 // %input2 = addrspacecast float* %input to float addrspace(1)*
43 // %input3 = addrspacecast float addrspace(1)* %input2 to float*
44 // %v = load float, float* %input3, align 4
45 // ...
46 // }
48 // Later, NVPTXInferAddressSpaces will optimize it to
50 // define void @foo(float* %input) {
51 // %input2 = addrspacecast float* %input to float addrspace(1)*
52 // %v = load float, float addrspace(1)* %input2, align 4
53 // ...
54 // }
56 // 2. Convert byval kernel parameters to pointers in the param address space
57 // (so that NVPTX emits ld/st.param). Convert pointers *within* a byval
58 // kernel parameter to pointers in the global address space. This allows
59 // NVPTX to emit ld/st.global.
61 // struct S {
62 // int *x;
63 // int *y;
64 // };
65 // __global__ void foo(S s) {
66 // int *b = s.y;
67 // // use b
68 // }
70 // "b" points to the global address space. In the IR level,
72 // define void @foo(ptr byval %input) {
73 // %b_ptr = getelementptr {ptr, ptr}, ptr %input, i64 0, i32 1
74 // %b = load ptr, ptr %b_ptr
75 // ; use %b
76 // }
78 // becomes
80 // define void @foo({i32*, i32*}* byval %input) {
81 // %b_param = addrspacecat ptr %input to ptr addrspace(101)
82 // %b_ptr = getelementptr {ptr, ptr}, ptr addrspace(101) %b_param, i64 0, i32 1
83 // %b = load ptr, ptr addrspace(101) %b_ptr
84 // %b_global = addrspacecast ptr %b to ptr addrspace(1)
85 // ; use %b_generic
86 // }
88 // Create a local copy of kernel byval parameters used in a way that *might* mutate
89 // the parameter, by storing it in an alloca. Mutations to "grid_constant" parameters
90 // are undefined behaviour, and don't require local copies.
92 // define void @foo(ptr byval(%struct.s) align 4 %input) {
93 // store i32 42, ptr %input
94 // ret void
95 // }
97 // becomes
99 // define void @foo(ptr byval(%struct.s) align 4 %input) #1 {
100 // %input1 = alloca %struct.s, align 4
101 // %input2 = addrspacecast ptr %input to ptr addrspace(101)
102 // %input3 = load %struct.s, ptr addrspace(101) %input2, align 4
103 // store %struct.s %input3, ptr %input1, align 4
104 // store i32 42, ptr %input1, align 4
105 // ret void
106 // }
108 // If %input were passed to a device function, or written to memory,
109 // conservatively assume that %input gets mutated, and create a local copy.
111 // Convert param pointers to grid_constant byval kernel parameters that are
112 // passed into calls (device functions, intrinsics, inline asm), or otherwise
113 // "escape" (into stores/ptrtoints) to the generic address space, using the
114 // `nvvm.ptr.param.to.gen` intrinsic, so that NVPTX emits cvta.param
115 // (available for sm70+)
117 // define void @foo(ptr byval(%struct.s) %input) {
118 // ; %input is a grid_constant
119 // %call = call i32 @escape(ptr %input)
120 // ret void
121 // }
123 // becomes
125 // define void @foo(ptr byval(%struct.s) %input) {
126 // %input1 = addrspacecast ptr %input to ptr addrspace(101)
127 // ; the following intrinsic converts pointer to generic. We don't use an addrspacecast
128 // ; to prevent generic -> param -> generic from getting cancelled out
129 // %input1.gen = call ptr @llvm.nvvm.ptr.param.to.gen.p0.p101(ptr addrspace(101) %input1)
130 // %call = call i32 @escape(ptr %input1.gen)
131 // ret void
132 // }
134 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
135 // cancel the addrspacecast pair this pass emits.
136 //===----------------------------------------------------------------------===//
138 #include "MCTargetDesc/NVPTXBaseInfo.h"
139 #include "NVPTX.h"
140 #include "NVPTXTargetMachine.h"
141 #include "NVPTXUtilities.h"
142 #include "llvm/Analysis/ValueTracking.h"
143 #include "llvm/CodeGen/TargetPassConfig.h"
144 #include "llvm/IR/Function.h"
145 #include "llvm/IR/IRBuilder.h"
146 #include "llvm/IR/Instructions.h"
147 #include "llvm/IR/IntrinsicsNVPTX.h"
148 #include "llvm/IR/Module.h"
149 #include "llvm/IR/Type.h"
150 #include "llvm/InitializePasses.h"
151 #include "llvm/Pass.h"
152 #include <numeric>
153 #include <queue>
155 #define DEBUG_TYPE "nvptx-lower-args"
157 using namespace llvm;
159 namespace llvm {
160 void initializeNVPTXLowerArgsPass(PassRegistry &);
163 namespace {
164 class NVPTXLowerArgs : public FunctionPass {
165 bool runOnFunction(Function &F) override;
167 bool runOnKernelFunction(const NVPTXTargetMachine &TM, Function &F);
168 bool runOnDeviceFunction(const NVPTXTargetMachine &TM, Function &F);
170 // handle byval parameters
171 void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg);
172 // Knowing Ptr must point to the global address space, this function
173 // addrspacecasts Ptr to global and then back to generic. This allows
174 // NVPTXInferAddressSpaces to fold the global-to-generic cast into
175 // loads/stores that appear later.
176 void markPointerAsGlobal(Value *Ptr);
178 public:
179 static char ID; // Pass identification, replacement for typeid
180 NVPTXLowerArgs() : FunctionPass(ID) {}
181 StringRef getPassName() const override {
182 return "Lower pointer arguments of CUDA kernels";
184 void getAnalysisUsage(AnalysisUsage &AU) const override {
185 AU.addRequired<TargetPassConfig>();
188 } // namespace
190 char NVPTXLowerArgs::ID = 1;
192 INITIALIZE_PASS_BEGIN(NVPTXLowerArgs, "nvptx-lower-args",
193 "Lower arguments (NVPTX)", false, false)
194 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
195 INITIALIZE_PASS_END(NVPTXLowerArgs, "nvptx-lower-args",
196 "Lower arguments (NVPTX)", false, false)
198 // =============================================================================
199 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
200 // and we can't guarantee that the only accesses are loads,
201 // then add the following instructions to the first basic block:
203 // %temp = alloca %struct.x, align 8
204 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
205 // %tv = load %struct.x addrspace(101)* %tempd
206 // store %struct.x %tv, %struct.x* %temp, align 8
208 // The above code allocates some space in the stack and copies the incoming
209 // struct from param space to local space.
210 // Then replace all occurrences of %d by %temp.
212 // In case we know that all users are GEPs or Loads, replace them with the same
213 // ones in parameter AS, so we can access them using ld.param.
214 // =============================================================================
216 // For Loads, replaces the \p OldUse of the pointer with a Use of the same
217 // pointer in parameter AS.
218 // For "escapes" (to memory, a function call, or a ptrtoint), cast the OldUse to
219 // generic using cvta.param.
220 static void convertToParamAS(Use *OldUse, Value *Param, bool GridConstant) {
221 Instruction *I = dyn_cast<Instruction>(OldUse->getUser());
222 assert(I && "OldUse must be in an instruction");
223 struct IP {
224 Use *OldUse;
225 Instruction *OldInstruction;
226 Value *NewParam;
228 SmallVector<IP> ItemsToConvert = {{OldUse, I, Param}};
229 SmallVector<Instruction *> InstructionsToDelete;
231 auto CloneInstInParamAS = [GridConstant](const IP &I) -> Value * {
232 if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
233 LI->setOperand(0, I.NewParam);
234 return LI;
236 if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
237 SmallVector<Value *, 4> Indices(GEP->indices());
238 auto *NewGEP = GetElementPtrInst::Create(
239 GEP->getSourceElementType(), I.NewParam, Indices, GEP->getName(),
240 GEP->getIterator());
241 NewGEP->setIsInBounds(GEP->isInBounds());
242 return NewGEP;
244 if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
245 auto *NewBCType = PointerType::get(BC->getContext(), ADDRESS_SPACE_PARAM);
246 return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
247 BC->getName(), BC->getIterator());
249 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
250 assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
251 (void)ASC;
252 // Just pass through the argument, the old ASC is no longer needed.
253 return I.NewParam;
256 if (GridConstant) {
257 auto GetParamAddrCastToGeneric =
258 [](Value *Addr, Instruction *OriginalUser) -> Value * {
259 PointerType *ReturnTy =
260 PointerType::get(OriginalUser->getContext(), ADDRESS_SPACE_GENERIC);
261 Function *CvtToGen = Intrinsic::getDeclaration(
262 OriginalUser->getModule(), Intrinsic::nvvm_ptr_param_to_gen,
263 {ReturnTy, PointerType::get(OriginalUser->getContext(),
264 ADDRESS_SPACE_PARAM)});
266 // Cast param address to generic address space
267 Value *CvtToGenCall =
268 CallInst::Create(CvtToGen, Addr, Addr->getName() + ".gen",
269 OriginalUser->getIterator());
270 return CvtToGenCall;
273 if (auto *CI = dyn_cast<CallInst>(I.OldInstruction)) {
274 I.OldUse->set(GetParamAddrCastToGeneric(I.NewParam, CI));
275 return CI;
277 if (auto *SI = dyn_cast<StoreInst>(I.OldInstruction)) {
278 // byval address is being stored, cast it to generic
279 if (SI->getValueOperand() == I.OldUse->get())
280 SI->setOperand(0, GetParamAddrCastToGeneric(I.NewParam, SI));
281 return SI;
283 if (auto *PI = dyn_cast<PtrToIntInst>(I.OldInstruction)) {
284 if (PI->getPointerOperand() == I.OldUse->get())
285 PI->setOperand(0, GetParamAddrCastToGeneric(I.NewParam, PI));
286 return PI;
288 llvm_unreachable(
289 "Instruction unsupported even for grid_constant argument");
292 llvm_unreachable("Unsupported instruction");
295 while (!ItemsToConvert.empty()) {
296 IP I = ItemsToConvert.pop_back_val();
297 Value *NewInst = CloneInstInParamAS(I);
299 if (NewInst && NewInst != I.OldInstruction) {
300 // We've created a new instruction. Queue users of the old instruction to
301 // be converted and the instruction itself to be deleted. We can't delete
302 // the old instruction yet, because it's still in use by a load somewhere.
303 for (Use &U : I.OldInstruction->uses())
304 ItemsToConvert.push_back({&U, cast<Instruction>(U.getUser()), NewInst});
306 InstructionsToDelete.push_back(I.OldInstruction);
310 // Now we know that all argument loads are using addresses in parameter space
311 // and we can finally remove the old instructions in generic AS. Instructions
312 // scheduled for removal should be processed in reverse order so the ones
313 // closest to the load are deleted first. Otherwise they may still be in use.
314 // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
315 // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
316 // the BitCast.
317 for (Instruction *I : llvm::reverse(InstructionsToDelete))
318 I->eraseFromParent();
321 // Adjust alignment of arguments passed byval in .param address space. We can
322 // increase alignment of such arguments in a way that ensures that we can
323 // effectively vectorize their loads. We should also traverse all loads from
324 // byval pointer and adjust their alignment, if those were using known offset.
325 // Such alignment changes must be conformed with parameter store and load in
326 // NVPTXTargetLowering::LowerCall.
327 static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
328 const NVPTXTargetLowering *TLI) {
329 Function *Func = Arg->getParent();
330 Type *StructType = Arg->getParamByValType();
331 const DataLayout DL(Func->getParent());
333 uint64_t NewArgAlign =
334 TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
335 uint64_t CurArgAlign =
336 Arg->getAttribute(Attribute::Alignment).getValueAsInt();
338 if (CurArgAlign >= NewArgAlign)
339 return;
341 LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
342 << CurArgAlign << " for " << *Arg << '\n');
344 auto NewAlignAttr =
345 Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
346 Arg->removeAttr(Attribute::Alignment);
347 Arg->addAttr(NewAlignAttr);
349 struct Load {
350 LoadInst *Inst;
351 uint64_t Offset;
354 struct LoadContext {
355 Value *InitialVal;
356 uint64_t Offset;
359 SmallVector<Load> Loads;
360 std::queue<LoadContext> Worklist;
361 Worklist.push({ArgInParamAS, 0});
362 bool IsGridConstant = isParamGridConstant(*Arg);
364 while (!Worklist.empty()) {
365 LoadContext Ctx = Worklist.front();
366 Worklist.pop();
368 for (User *CurUser : Ctx.InitialVal->users()) {
369 if (auto *I = dyn_cast<LoadInst>(CurUser)) {
370 Loads.push_back({I, Ctx.Offset});
371 continue;
374 if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
375 Worklist.push({I, Ctx.Offset});
376 continue;
379 if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
380 APInt OffsetAccumulated =
381 APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
383 if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
384 continue;
386 uint64_t OffsetLimit = -1;
387 uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
388 assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
390 Worklist.push({I, Ctx.Offset + Offset});
391 continue;
394 // supported for grid_constant
395 if (IsGridConstant &&
396 (isa<CallInst>(CurUser) || isa<StoreInst>(CurUser) ||
397 isa<PtrToIntInst>(CurUser)))
398 continue;
400 llvm_unreachable("All users must be one of: load, "
401 "bitcast, getelementptr, call, store, ptrtoint");
405 for (Load &CurLoad : Loads) {
406 Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
407 Align CurLoadAlign(CurLoad.Inst->getAlign());
408 CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
412 void NVPTXLowerArgs::handleByValParam(const NVPTXTargetMachine &TM,
413 Argument *Arg) {
414 bool IsGridConstant = isParamGridConstant(*Arg);
415 Function *Func = Arg->getParent();
416 BasicBlock::iterator FirstInst = Func->getEntryBlock().begin();
417 Type *StructType = Arg->getParamByValType();
418 assert(StructType && "Missing byval type");
420 auto AreSupportedUsers = [&](Value *Start) {
421 SmallVector<Value *, 16> ValuesToCheck = {Start};
422 auto IsSupportedUse = [IsGridConstant](Value *V) -> bool {
423 if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
424 return true;
425 // ASC to param space are OK, too -- we'll just strip them.
426 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
427 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
428 return true;
430 // Simple calls and stores are supported for grid_constants
431 // writes to these pointers are undefined behaviour
432 if (IsGridConstant &&
433 (isa<CallInst>(V) || isa<StoreInst>(V) || isa<PtrToIntInst>(V)))
434 return true;
435 return false;
438 while (!ValuesToCheck.empty()) {
439 Value *V = ValuesToCheck.pop_back_val();
440 if (!IsSupportedUse(V)) {
441 LLVM_DEBUG(dbgs() << "Need a "
442 << (isParamGridConstant(*Arg) ? "cast " : "copy ")
443 << "of " << *Arg << " because of " << *V << "\n");
444 (void)Arg;
445 return false;
447 if (!isa<LoadInst>(V) && !isa<CallInst>(V) && !isa<StoreInst>(V) &&
448 !isa<PtrToIntInst>(V))
449 llvm::append_range(ValuesToCheck, V->users());
451 return true;
454 if (llvm::all_of(Arg->users(), AreSupportedUsers)) {
455 // Convert all loads and intermediate operations to use parameter AS and
456 // skip creation of a local copy of the argument.
457 SmallVector<Use *, 16> UsesToUpdate;
458 for (Use &U : Arg->uses())
459 UsesToUpdate.push_back(&U);
461 Value *ArgInParamAS = new AddrSpaceCastInst(
462 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
463 FirstInst);
464 for (Use *U : UsesToUpdate)
465 convertToParamAS(U, ArgInParamAS, IsGridConstant);
466 LLVM_DEBUG(dbgs() << "No need to copy or cast " << *Arg << "\n");
468 const auto *TLI =
469 cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
471 adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
473 return;
476 const DataLayout &DL = Func->getDataLayout();
477 unsigned AS = DL.getAllocaAddrSpace();
478 if (isParamGridConstant(*Arg)) {
479 // Writes to a grid constant are undefined behaviour. We do not need a
480 // temporary copy. When a pointer might have escaped, conservatively replace
481 // all of its uses (which might include a device function call) with a cast
482 // to the generic address space.
483 IRBuilder<> IRB(&Func->getEntryBlock().front());
485 // Cast argument to param address space
486 auto *CastToParam = cast<AddrSpaceCastInst>(IRB.CreateAddrSpaceCast(
487 Arg, IRB.getPtrTy(ADDRESS_SPACE_PARAM), Arg->getName() + ".param"));
489 // Cast param address to generic address space. We do not use an
490 // addrspacecast to generic here, because, LLVM considers `Arg` to be in the
491 // generic address space, and a `generic -> param` cast followed by a `param
492 // -> generic` cast will be folded away. The `param -> generic` intrinsic
493 // will be correctly lowered to `cvta.param`.
494 Value *CvtToGenCall = IRB.CreateIntrinsic(
495 IRB.getPtrTy(ADDRESS_SPACE_GENERIC), Intrinsic::nvvm_ptr_param_to_gen,
496 CastToParam, nullptr, CastToParam->getName() + ".gen");
498 Arg->replaceAllUsesWith(CvtToGenCall);
500 // Do not replace Arg in the cast to param space
501 CastToParam->setOperand(0, Arg);
502 } else {
503 // Otherwise we have to create a temporary copy.
504 AllocaInst *AllocA =
505 new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
506 // Set the alignment to alignment of the byval parameter. This is because,
507 // later load/stores assume that alignment, and we are going to replace
508 // the use of the byval parameter with this alloca instruction.
509 AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
510 .value_or(DL.getPrefTypeAlign(StructType)));
511 Arg->replaceAllUsesWith(AllocA);
513 Value *ArgInParam = new AddrSpaceCastInst(
514 Arg, PointerType::get(Arg->getContext(), ADDRESS_SPACE_PARAM),
515 Arg->getName(), FirstInst);
516 // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
517 // addrspacecast preserves alignment. Since params are constant, this load
518 // is definitely not volatile.
519 LoadInst *LI =
520 new LoadInst(StructType, ArgInParam, Arg->getName(),
521 /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
522 new StoreInst(LI, AllocA, FirstInst);
526 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
527 if (Ptr->getType()->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
528 return;
530 // Deciding where to emit the addrspacecast pair.
531 BasicBlock::iterator InsertPt;
532 if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
533 // Insert at the functon entry if Ptr is an argument.
534 InsertPt = Arg->getParent()->getEntryBlock().begin();
535 } else {
536 // Insert right after Ptr if Ptr is an instruction.
537 InsertPt = ++cast<Instruction>(Ptr)->getIterator();
538 assert(InsertPt != InsertPt->getParent()->end() &&
539 "We don't call this function with Ptr being a terminator.");
542 Instruction *PtrInGlobal = new AddrSpaceCastInst(
543 Ptr, PointerType::get(Ptr->getContext(), ADDRESS_SPACE_GLOBAL),
544 Ptr->getName(), InsertPt);
545 Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
546 Ptr->getName(), InsertPt);
547 // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
548 Ptr->replaceAllUsesWith(PtrInGeneric);
549 PtrInGlobal->setOperand(0, Ptr);
552 // =============================================================================
553 // Main function for this pass.
554 // =============================================================================
555 bool NVPTXLowerArgs::runOnKernelFunction(const NVPTXTargetMachine &TM,
556 Function &F) {
557 // Copying of byval aggregates + SROA may result in pointers being loaded as
558 // integers, followed by intotoptr. We may want to mark those as global, too,
559 // but only if the loaded integer is used exclusively for conversion to a
560 // pointer with inttoptr.
561 auto HandleIntToPtr = [this](Value &V) {
562 if (llvm::all_of(V.users(), [](User *U) { return isa<IntToPtrInst>(U); })) {
563 SmallVector<User *, 16> UsersToUpdate(V.users());
564 for (User *U : UsersToUpdate)
565 markPointerAsGlobal(U);
568 if (TM.getDrvInterface() == NVPTX::CUDA) {
569 // Mark pointers in byval structs as global.
570 for (auto &B : F) {
571 for (auto &I : B) {
572 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
573 if (LI->getType()->isPointerTy() || LI->getType()->isIntegerTy()) {
574 Value *UO = getUnderlyingObject(LI->getPointerOperand());
575 if (Argument *Arg = dyn_cast<Argument>(UO)) {
576 if (Arg->hasByValAttr()) {
577 // LI is a load from a pointer within a byval kernel parameter.
578 if (LI->getType()->isPointerTy())
579 markPointerAsGlobal(LI);
580 else
581 HandleIntToPtr(*LI);
590 LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
591 for (Argument &Arg : F.args()) {
592 if (Arg.getType()->isPointerTy()) {
593 if (Arg.hasByValAttr())
594 handleByValParam(TM, &Arg);
595 else if (TM.getDrvInterface() == NVPTX::CUDA)
596 markPointerAsGlobal(&Arg);
597 } else if (Arg.getType()->isIntegerTy() &&
598 TM.getDrvInterface() == NVPTX::CUDA) {
599 HandleIntToPtr(Arg);
602 return true;
605 // Device functions only need to copy byval args into local memory.
606 bool NVPTXLowerArgs::runOnDeviceFunction(const NVPTXTargetMachine &TM,
607 Function &F) {
608 LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
609 for (Argument &Arg : F.args())
610 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
611 handleByValParam(TM, &Arg);
612 return true;
615 bool NVPTXLowerArgs::runOnFunction(Function &F) {
616 auto &TM = getAnalysis<TargetPassConfig>().getTM<NVPTXTargetMachine>();
618 return isKernelFunction(F) ? runOnKernelFunction(TM, F)
619 : runOnDeviceFunction(TM, F);
622 FunctionPass *llvm::createNVPTXLowerArgsPass() { return new NVPTXLowerArgs(); }