Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
blob1a69d1e89313b82371cfe546381f5c2a19f72d2d
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/APSInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/CodeGenTypes/MachineValueType.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/IntrinsicsPowerPC.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CodeGen.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <new>
67 #include <tuple>
68 #include <utility>
70 using namespace llvm;
72 #define DEBUG_TYPE "ppc-isel"
73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
75 STATISTIC(NumSextSetcc,
76 "Number of (sext(setcc)) nodes expanded into GPR sequence.");
77 STATISTIC(NumZextSetcc,
78 "Number of (zext(setcc)) nodes expanded into GPR sequence.");
79 STATISTIC(SignExtensionsAdded,
80 "Number of sign extensions for compare inputs added.");
81 STATISTIC(ZeroExtensionsAdded,
82 "Number of zero extensions for compare inputs added.");
83 STATISTIC(NumLogicOpsOnComparison,
84 "Number of logical ops on i1 values calculated in GPR.");
85 STATISTIC(OmittedForNonExtendUses,
86 "Number of compares not eliminated as they have non-extending uses.");
87 STATISTIC(NumP9Setb,
88 "Number of compares lowered to setb.");
90 // FIXME: Remove this once the bug has been fixed!
91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
94 static cl::opt<bool>
95 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
96 cl::desc("use aggressive ppc isel for bit permutations"),
97 cl::Hidden);
98 static cl::opt<bool> BPermRewriterNoMasking(
99 "ppc-bit-perm-rewriter-stress-rotates",
100 cl::desc("stress rotate selection in aggressive ppc isel for "
101 "bit permutations"),
102 cl::Hidden);
104 static cl::opt<bool> EnableBranchHint(
105 "ppc-use-branch-hint", cl::init(true),
106 cl::desc("Enable static hinting of branches on ppc"),
107 cl::Hidden);
109 static cl::opt<bool> EnableTLSOpt(
110 "ppc-tls-opt", cl::init(true),
111 cl::desc("Enable tls optimization peephole"),
112 cl::Hidden);
114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
115 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
116 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
118 static cl::opt<ICmpInGPRType> CmpInGPR(
119 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
120 cl::desc("Specify the types of comparisons to emit GPR-only code for."),
121 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
122 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
123 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
124 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
125 clEnumValN(ICGPR_NonExtIn, "nonextin",
126 "Only comparisons where inputs don't need [sz]ext."),
127 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
128 clEnumValN(ICGPR_ZextI32, "zexti32",
129 "Only i32 comparisons with zext result."),
130 clEnumValN(ICGPR_ZextI64, "zexti64",
131 "Only i64 comparisons with zext result."),
132 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
133 clEnumValN(ICGPR_SextI32, "sexti32",
134 "Only i32 comparisons with sext result."),
135 clEnumValN(ICGPR_SextI64, "sexti64",
136 "Only i64 comparisons with sext result.")));
137 namespace {
139 //===--------------------------------------------------------------------===//
140 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
141 /// instructions for SelectionDAG operations.
143 class PPCDAGToDAGISel : public SelectionDAGISel {
144 const PPCTargetMachine &TM;
145 const PPCSubtarget *Subtarget = nullptr;
146 const PPCTargetLowering *PPCLowering = nullptr;
147 unsigned GlobalBaseReg = 0;
149 public:
150 PPCDAGToDAGISel() = delete;
152 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOptLevel OptLevel)
153 : SelectionDAGISel(tm, OptLevel), TM(tm) {}
155 bool runOnMachineFunction(MachineFunction &MF) override {
156 // Make sure we re-emit a set of the global base reg if necessary
157 GlobalBaseReg = 0;
158 Subtarget = &MF.getSubtarget<PPCSubtarget>();
159 PPCLowering = Subtarget->getTargetLowering();
160 if (Subtarget->hasROPProtect()) {
161 // Create a place on the stack for the ROP Protection Hash.
162 // The ROP Protection Hash will always be 8 bytes and aligned to 8
163 // bytes.
164 MachineFrameInfo &MFI = MF.getFrameInfo();
165 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
166 const int Result = MFI.CreateStackObject(8, Align(8), false);
167 FI->setROPProtectionHashSaveIndex(Result);
169 SelectionDAGISel::runOnMachineFunction(MF);
171 return true;
174 void PreprocessISelDAG() override;
175 void PostprocessISelDAG() override;
177 /// getI16Imm - Return a target constant with the specified value, of type
178 /// i16.
179 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
180 return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
183 /// getI32Imm - Return a target constant with the specified value, of type
184 /// i32.
185 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
186 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
189 /// getI64Imm - Return a target constant with the specified value, of type
190 /// i64.
191 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
192 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
195 /// getSmallIPtrImm - Return a target constant of pointer type.
196 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
197 return CurDAG->getTargetConstant(
198 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
201 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
202 /// rotate and mask opcode and mask operation.
203 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
204 unsigned &SH, unsigned &MB, unsigned &ME);
206 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
207 /// base register. Return the virtual register that holds this value.
208 SDNode *getGlobalBaseReg();
210 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
212 // Select - Convert the specified operand from a target-independent to a
213 // target-specific node if it hasn't already been changed.
214 void Select(SDNode *N) override;
216 bool tryBitfieldInsert(SDNode *N);
217 bool tryBitPermutation(SDNode *N);
218 bool tryIntCompareInGPR(SDNode *N);
220 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
221 // an X-Form load instruction with the offset being a relocation coming from
222 // the PPCISD::ADD_TLS.
223 bool tryTLSXFormLoad(LoadSDNode *N);
224 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
225 // an X-Form store instruction with the offset being a relocation coming from
226 // the PPCISD::ADD_TLS.
227 bool tryTLSXFormStore(StoreSDNode *N);
228 /// SelectCC - Select a comparison of the specified values with the
229 /// specified condition code, returning the CR# of the expression.
230 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
231 const SDLoc &dl, SDValue Chain = SDValue());
233 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
234 /// immediate field. Note that the operand at this point is already the
235 /// result of a prior SelectAddressRegImm call.
236 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
237 if (N.getOpcode() == ISD::TargetConstant ||
238 N.getOpcode() == ISD::TargetGlobalAddress) {
239 Out = N;
240 return true;
243 return false;
246 /// SelectDSForm - Returns true if address N can be represented by the
247 /// addressing mode of DSForm instructions (a base register, plus a signed
248 /// 16-bit displacement that is a multiple of 4.
249 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
250 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
251 Align(4)) == PPC::AM_DSForm;
254 /// SelectDQForm - Returns true if address N can be represented by the
255 /// addressing mode of DQForm instructions (a base register, plus a signed
256 /// 16-bit displacement that is a multiple of 16.
257 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
258 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
259 Align(16)) == PPC::AM_DQForm;
262 /// SelectDForm - Returns true if address N can be represented by
263 /// the addressing mode of DForm instructions (a base register, plus a
264 /// signed 16-bit immediate.
265 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
266 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
267 std::nullopt) == PPC::AM_DForm;
270 /// SelectPCRelForm - Returns true if address N can be represented by
271 /// PC-Relative addressing mode.
272 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
273 SDValue &Base) {
274 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
275 std::nullopt) == PPC::AM_PCRel;
278 /// SelectPDForm - Returns true if address N can be represented by Prefixed
279 /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
280 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
281 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
282 std::nullopt) ==
283 PPC::AM_PrefixDForm;
286 /// SelectXForm - Returns true if address N can be represented by the
287 /// addressing mode of XForm instructions (an indexed [r+r] operation).
288 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
289 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
290 std::nullopt) == PPC::AM_XForm;
293 /// SelectForceXForm - Given the specified address, force it to be
294 /// represented as an indexed [r+r] operation (an XForm instruction).
295 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
296 SDValue &Base) {
297 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
298 PPC::AM_XForm;
301 /// SelectAddrIdx - Given the specified address, check to see if it can be
302 /// represented as an indexed [r+r] operation.
303 /// This is for xform instructions whose associated displacement form is D.
304 /// The last parameter \p 0 means associated D form has no requirment for 16
305 /// bit signed displacement.
306 /// Returns false if it can be represented by [r+imm], which are preferred.
307 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
308 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
309 std::nullopt);
312 /// SelectAddrIdx4 - Given the specified address, check to see if it can be
313 /// represented as an indexed [r+r] operation.
314 /// This is for xform instructions whose associated displacement form is DS.
315 /// The last parameter \p 4 means associated DS form 16 bit signed
316 /// displacement must be a multiple of 4.
317 /// Returns false if it can be represented by [r+imm], which are preferred.
318 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
319 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
320 Align(4));
323 /// SelectAddrIdx16 - Given the specified address, check to see if it can be
324 /// represented as an indexed [r+r] operation.
325 /// This is for xform instructions whose associated displacement form is DQ.
326 /// The last parameter \p 16 means associated DQ form 16 bit signed
327 /// displacement must be a multiple of 16.
328 /// Returns false if it can be represented by [r+imm], which are preferred.
329 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
330 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
331 Align(16));
334 /// SelectAddrIdxOnly - Given the specified address, force it to be
335 /// represented as an indexed [r+r] operation.
336 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
337 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
340 /// SelectAddrImm - Returns true if the address N can be represented by
341 /// a base register plus a signed 16-bit displacement [r+imm].
342 /// The last parameter \p 0 means D form has no requirment for 16 bit signed
343 /// displacement.
344 bool SelectAddrImm(SDValue N, SDValue &Disp,
345 SDValue &Base) {
346 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
347 std::nullopt);
350 /// SelectAddrImmX4 - Returns true if the address N can be represented by
351 /// a base register plus a signed 16-bit displacement that is a multiple of
352 /// 4 (last parameter). Suitable for use by STD and friends.
353 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
354 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
357 /// SelectAddrImmX16 - Returns true if the address N can be represented by
358 /// a base register plus a signed 16-bit displacement that is a multiple of
359 /// 16(last parameter). Suitable for use by STXV and friends.
360 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
361 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
362 Align(16));
365 /// SelectAddrImmX34 - Returns true if the address N can be represented by
366 /// a base register plus a signed 34-bit displacement. Suitable for use by
367 /// PSTXVP and friends.
368 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
369 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
372 // Select an address into a single register.
373 bool SelectAddr(SDValue N, SDValue &Base) {
374 Base = N;
375 return true;
378 bool SelectAddrPCRel(SDValue N, SDValue &Base) {
379 return PPCLowering->SelectAddressPCRel(N, Base);
382 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
383 /// inline asm expressions. It is always correct to compute the value into
384 /// a register. The case of adding a (possibly relocatable) constant to a
385 /// register can be improved, but it is wrong to substitute Reg+Reg for
386 /// Reg in an asm, because the load or store opcode would have to change.
387 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
388 InlineAsm::ConstraintCode ConstraintID,
389 std::vector<SDValue> &OutOps) override {
390 switch(ConstraintID) {
391 default:
392 errs() << "ConstraintID: "
393 << InlineAsm::getMemConstraintName(ConstraintID) << "\n";
394 llvm_unreachable("Unexpected asm memory constraint");
395 case InlineAsm::ConstraintCode::es:
396 case InlineAsm::ConstraintCode::m:
397 case InlineAsm::ConstraintCode::o:
398 case InlineAsm::ConstraintCode::Q:
399 case InlineAsm::ConstraintCode::Z:
400 case InlineAsm::ConstraintCode::Zy:
401 // We need to make sure that this one operand does not end up in r0
402 // (because we might end up lowering this as 0(%op)).
403 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
404 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
405 SDLoc dl(Op);
406 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
407 SDValue NewOp =
408 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
409 dl, Op.getValueType(),
410 Op, RC), 0);
412 OutOps.push_back(NewOp);
413 return false;
415 return true;
418 // Include the pieces autogenerated from the target description.
419 #include "PPCGenDAGISel.inc"
421 private:
422 bool trySETCC(SDNode *N);
423 bool tryFoldSWTestBRCC(SDNode *N);
424 bool trySelectLoopCountIntrinsic(SDNode *N);
425 bool tryAsSingleRLDICL(SDNode *N);
426 bool tryAsSingleRLDCL(SDNode *N);
427 bool tryAsSingleRLDICR(SDNode *N);
428 bool tryAsSingleRLWINM(SDNode *N);
429 bool tryAsSingleRLWINM8(SDNode *N);
430 bool tryAsSingleRLWIMI(SDNode *N);
431 bool tryAsPairOfRLDICL(SDNode *N);
432 bool tryAsSingleRLDIMI(SDNode *N);
434 void PeepholePPC64();
435 void PeepholePPC64ZExt();
436 void PeepholeCROps();
438 SDValue combineToCMPB(SDNode *N);
439 void foldBoolExts(SDValue &Res, SDNode *&N);
441 bool AllUsersSelectZero(SDNode *N);
442 void SwapAllSelectUsers(SDNode *N);
444 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
445 void transferMemOperands(SDNode *N, SDNode *Result);
448 class PPCDAGToDAGISelLegacy : public SelectionDAGISelLegacy {
449 public:
450 static char ID;
451 explicit PPCDAGToDAGISelLegacy(PPCTargetMachine &tm,
452 CodeGenOptLevel OptLevel)
453 : SelectionDAGISelLegacy(
454 ID, std::make_unique<PPCDAGToDAGISel>(tm, OptLevel)) {}
456 } // end anonymous namespace
458 char PPCDAGToDAGISelLegacy::ID = 0;
460 INITIALIZE_PASS(PPCDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
462 /// getGlobalBaseReg - Output the instructions required to put the
463 /// base address to use for accessing globals into a register.
465 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
466 if (!GlobalBaseReg) {
467 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
468 // Insert the set of GlobalBaseReg into the first MBB of the function
469 MachineBasicBlock &FirstMBB = MF->front();
470 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
471 const Module *M = MF->getFunction().getParent();
472 DebugLoc dl;
474 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
475 if (Subtarget->isTargetELF()) {
476 GlobalBaseReg = PPC::R30;
477 if (!Subtarget->isSecurePlt() &&
478 M->getPICLevel() == PICLevel::SmallPIC) {
479 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
480 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
481 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
482 } else {
483 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
484 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
485 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
486 BuildMI(FirstMBB, MBBI, dl,
487 TII.get(PPC::UpdateGBR), GlobalBaseReg)
488 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
489 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
491 } else {
492 GlobalBaseReg =
493 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
494 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
495 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
497 } else {
498 // We must ensure that this sequence is dominated by the prologue.
499 // FIXME: This is a bit of a big hammer since we don't get the benefits
500 // of shrink-wrapping whenever we emit this instruction. Considering
501 // this is used in any function where we emit a jump table, this may be
502 // a significant limitation. We should consider inserting this in the
503 // block where it is used and then commoning this sequence up if it
504 // appears in multiple places.
505 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
506 // MovePCtoLR8.
507 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
508 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
509 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
510 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
513 return CurDAG->getRegister(GlobalBaseReg,
514 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
515 .getNode();
518 // Check if a SDValue has the toc-data attribute.
519 static bool hasTocDataAttr(SDValue Val) {
520 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
521 if (!GA)
522 return false;
524 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
525 if (!GV)
526 return false;
528 if (!GV->hasAttribute("toc-data"))
529 return false;
530 return true;
533 static CodeModel::Model getCodeModel(const PPCSubtarget &Subtarget,
534 const TargetMachine &TM,
535 const SDNode *Node) {
536 // If there isn't an attribute to override the module code model
537 // this will be the effective code model.
538 CodeModel::Model ModuleModel = TM.getCodeModel();
540 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Node->getOperand(0));
541 if (!GA)
542 return ModuleModel;
544 const GlobalValue *GV = GA->getGlobal();
545 if (!GV)
546 return ModuleModel;
548 return Subtarget.getCodeModel(TM, GV);
551 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
552 /// operand. If so Imm will receive the 32-bit value.
553 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
554 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
555 Imm = N->getAsZExtVal();
556 return true;
558 return false;
561 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
562 /// operand. If so Imm will receive the 64-bit value.
563 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
564 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
565 Imm = N->getAsZExtVal();
566 return true;
568 return false;
571 // isInt32Immediate - This method tests to see if a constant operand.
572 // If so Imm will receive the 32 bit value.
573 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
574 return isInt32Immediate(N.getNode(), Imm);
577 /// isInt64Immediate - This method tests to see if the value is a 64-bit
578 /// constant operand. If so Imm will receive the 64-bit value.
579 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
580 return isInt64Immediate(N.getNode(), Imm);
583 static unsigned getBranchHint(unsigned PCC,
584 const FunctionLoweringInfo &FuncInfo,
585 const SDValue &DestMBB) {
586 assert(isa<BasicBlockSDNode>(DestMBB));
588 if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
590 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
591 const Instruction *BBTerm = BB->getTerminator();
593 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
595 const BasicBlock *TBB = BBTerm->getSuccessor(0);
596 const BasicBlock *FBB = BBTerm->getSuccessor(1);
598 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
599 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
601 // We only want to handle cases which are easy to predict at static time, e.g.
602 // C++ throw statement, that is very likely not taken, or calling never
603 // returned function, e.g. stdlib exit(). So we set Threshold to filter
604 // unwanted cases.
606 // Below is LLVM branch weight table, we only want to handle case 1, 2
608 // Case Taken:Nontaken Example
609 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
610 // 2. Invoke-terminating 1:1048575
611 // 3. Coldblock 4:64 __builtin_expect
612 // 4. Loop Branch 124:4 For loop
613 // 5. PH/ZH/FPH 20:12
614 const uint32_t Threshold = 10000;
616 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
617 return PPC::BR_NO_HINT;
619 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
620 << "::" << BB->getName() << "'\n"
621 << " -> " << TBB->getName() << ": " << TProb << "\n"
622 << " -> " << FBB->getName() << ": " << FProb << "\n");
624 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
626 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
627 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
628 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
629 std::swap(TProb, FProb);
631 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
634 // isOpcWithIntImmediate - This method tests to see if the node is a specific
635 // opcode and that it has a immediate integer right operand.
636 // If so Imm will receive the 32 bit value.
637 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
638 return N->getOpcode() == Opc
639 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
642 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
643 SDLoc dl(SN);
644 int FI = cast<FrameIndexSDNode>(N)->getIndex();
645 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
646 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
647 if (SN->hasOneUse())
648 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
649 getSmallIPtrImm(Offset, dl));
650 else
651 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
652 getSmallIPtrImm(Offset, dl)));
655 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
656 bool isShiftMask, unsigned &SH,
657 unsigned &MB, unsigned &ME) {
658 // Don't even go down this path for i64, since different logic will be
659 // necessary for rldicl/rldicr/rldimi.
660 if (N->getValueType(0) != MVT::i32)
661 return false;
663 unsigned Shift = 32;
664 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
665 unsigned Opcode = N->getOpcode();
666 if (N->getNumOperands() != 2 ||
667 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
668 return false;
670 if (Opcode == ISD::SHL) {
671 // apply shift left to mask if it comes first
672 if (isShiftMask) Mask = Mask << Shift;
673 // determine which bits are made indeterminant by shift
674 Indeterminant = ~(0xFFFFFFFFu << Shift);
675 } else if (Opcode == ISD::SRL) {
676 // apply shift right to mask if it comes first
677 if (isShiftMask) Mask = Mask >> Shift;
678 // determine which bits are made indeterminant by shift
679 Indeterminant = ~(0xFFFFFFFFu >> Shift);
680 // adjust for the left rotate
681 Shift = 32 - Shift;
682 } else if (Opcode == ISD::ROTL) {
683 Indeterminant = 0;
684 } else {
685 return false;
688 // if the mask doesn't intersect any Indeterminant bits
689 if (Mask && !(Mask & Indeterminant)) {
690 SH = Shift & 31;
691 // make sure the mask is still a mask (wrap arounds may not be)
692 return isRunOfOnes(Mask, MB, ME);
694 return false;
697 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS
698 // instruction use the thread pointer.
699 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) {
700 assert(
701 Base.getOpcode() == PPCISD::ADD_TLS &&
702 "Only expecting the ADD_TLS instruction to acquire the thread pointer!");
703 const PPCSubtarget &Subtarget =
704 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
705 SDValue ADDTLSOp1 = Base.getOperand(0);
706 unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode();
708 // Account for when ADD_TLS is used for the initial-exec TLS model on Linux.
710 // Although ADD_TLS does not explicitly use the thread pointer
711 // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L
712 // instruction will have a relocation specifier, @got@tprel, that is used to
713 // generate a GOT entry. The linker replaces this entry with an offset for a
714 // for a thread local variable, which will be relative to the thread pointer.
715 if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L)
716 return true;
717 // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR
718 // node is produced instead to represent the aforementioned situation.
719 LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1);
720 if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR)
721 return true;
723 // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand
724 // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer,
725 // later returning it into R3.
726 if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER)
727 return true;
729 // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13).
730 RegisterSDNode *AddFirstOpReg =
731 dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode());
732 if (AddFirstOpReg &&
733 AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister())
734 return true;
736 return false;
739 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS
740 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory
741 // operation, can be optimized to use an X-Form load or store, allowing the
742 // ADD_TLS node to be removed completely.
743 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) {
745 // Do not do this transformation at -O0.
746 if (CurDAG->getTarget().getOptLevel() == CodeGenOptLevel::None)
747 return false;
749 // In order to perform this optimization inside tryTLSXForm[Load|Store],
750 // Base is expected to be an ADD_TLS node.
751 if (Base.getOpcode() != PPCISD::ADD_TLS)
752 return false;
753 for (auto *ADDTLSUse : Base.getNode()->uses()) {
754 // The optimization to convert the D-Form load/store into its X-Form
755 // counterpart should only occur if the source value offset of the load/
756 // store is 0. This also means that The offset should always be undefined.
757 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) {
758 if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef())
759 return false;
760 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) {
761 if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef())
762 return false;
763 } else // Don't optimize if there are ADD_TLS users that aren't load/stores.
764 return false;
767 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
768 return false;
770 // Does the ADD_TLS node of the load/store use the thread pointer?
771 // If the thread pointer is not used as one of the operands of ADD_TLS,
772 // then this optimization is not valid.
773 return isThreadPointerAcquisitionNode(Base, CurDAG);
776 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
777 SDValue Base = ST->getBasePtr();
778 if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
779 return false;
781 SDLoc dl(ST);
782 EVT MemVT = ST->getMemoryVT();
783 EVT RegVT = ST->getValue().getValueType();
785 unsigned Opcode;
786 switch (MemVT.getSimpleVT().SimpleTy) {
787 default:
788 return false;
789 case MVT::i8: {
790 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
791 break;
793 case MVT::i16: {
794 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
795 break;
797 case MVT::i32: {
798 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
799 break;
801 case MVT::i64: {
802 Opcode = PPC::STDXTLS;
803 break;
805 case MVT::f32: {
806 Opcode = PPC::STFSXTLS;
807 break;
809 case MVT::f64: {
810 Opcode = PPC::STFDXTLS;
811 break;
814 SDValue Chain = ST->getChain();
815 SDVTList VTs = ST->getVTList();
816 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
817 Chain};
818 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
819 transferMemOperands(ST, MN);
820 ReplaceNode(ST, MN);
821 return true;
824 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
825 SDValue Base = LD->getBasePtr();
826 if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
827 return false;
829 SDLoc dl(LD);
830 EVT MemVT = LD->getMemoryVT();
831 EVT RegVT = LD->getValueType(0);
832 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
833 unsigned Opcode;
834 switch (MemVT.getSimpleVT().SimpleTy) {
835 default:
836 return false;
837 case MVT::i8: {
838 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
839 break;
841 case MVT::i16: {
842 if (RegVT == MVT::i32)
843 Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32;
844 else
845 Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS;
846 break;
848 case MVT::i32: {
849 if (RegVT == MVT::i32)
850 Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32;
851 else
852 Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS;
853 break;
855 case MVT::i64: {
856 Opcode = PPC::LDXTLS;
857 break;
859 case MVT::f32: {
860 Opcode = PPC::LFSXTLS;
861 break;
863 case MVT::f64: {
864 Opcode = PPC::LFDXTLS;
865 break;
868 SDValue Chain = LD->getChain();
869 SDVTList VTs = LD->getVTList();
870 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
871 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
872 transferMemOperands(LD, MN);
873 ReplaceNode(LD, MN);
874 return true;
877 /// Turn an or of two masked values into the rotate left word immediate then
878 /// mask insert (rlwimi) instruction.
879 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
880 SDValue Op0 = N->getOperand(0);
881 SDValue Op1 = N->getOperand(1);
882 SDLoc dl(N);
884 KnownBits LKnown = CurDAG->computeKnownBits(Op0);
885 KnownBits RKnown = CurDAG->computeKnownBits(Op1);
887 unsigned TargetMask = LKnown.Zero.getZExtValue();
888 unsigned InsertMask = RKnown.Zero.getZExtValue();
890 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
891 unsigned Op0Opc = Op0.getOpcode();
892 unsigned Op1Opc = Op1.getOpcode();
893 unsigned Value, SH = 0;
894 TargetMask = ~TargetMask;
895 InsertMask = ~InsertMask;
897 // If the LHS has a foldable shift and the RHS does not, then swap it to the
898 // RHS so that we can fold the shift into the insert.
899 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
900 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
901 Op0.getOperand(0).getOpcode() == ISD::SRL) {
902 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
903 Op1.getOperand(0).getOpcode() != ISD::SRL) {
904 std::swap(Op0, Op1);
905 std::swap(Op0Opc, Op1Opc);
906 std::swap(TargetMask, InsertMask);
909 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
910 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
911 Op1.getOperand(0).getOpcode() != ISD::SRL) {
912 std::swap(Op0, Op1);
913 std::swap(Op0Opc, Op1Opc);
914 std::swap(TargetMask, InsertMask);
918 unsigned MB, ME;
919 if (isRunOfOnes(InsertMask, MB, ME)) {
920 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
921 isInt32Immediate(Op1.getOperand(1), Value)) {
922 Op1 = Op1.getOperand(0);
923 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
925 if (Op1Opc == ISD::AND) {
926 // The AND mask might not be a constant, and we need to make sure that
927 // if we're going to fold the masking with the insert, all bits not
928 // know to be zero in the mask are known to be one.
929 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
930 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
932 unsigned SHOpc = Op1.getOperand(0).getOpcode();
933 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
934 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
935 // Note that Value must be in range here (less than 32) because
936 // otherwise there would not be any bits set in InsertMask.
937 Op1 = Op1.getOperand(0).getOperand(0);
938 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
942 SH &= 31;
943 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
944 getI32Imm(ME, dl) };
945 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
946 return true;
949 return false;
952 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
953 unsigned MaxTruncation = 0;
954 // Cannot use range-based for loop here as we need the actual use (i.e. we
955 // need the operand number corresponding to the use). A range-based for
956 // will unbox the use and provide an SDNode*.
957 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
958 Use != UseEnd; ++Use) {
959 unsigned Opc =
960 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
961 switch (Opc) {
962 default: return 0;
963 case ISD::TRUNCATE:
964 if (Use->isMachineOpcode())
965 return 0;
966 MaxTruncation =
967 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
968 continue;
969 case ISD::STORE: {
970 if (Use->isMachineOpcode())
971 return 0;
972 StoreSDNode *STN = cast<StoreSDNode>(*Use);
973 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
974 if (MemVTSize == 64 || Use.getOperandNo() != 0)
975 return 0;
976 MaxTruncation = std::max(MaxTruncation, MemVTSize);
977 continue;
979 case PPC::STW8:
980 case PPC::STWX8:
981 case PPC::STWU8:
982 case PPC::STWUX8:
983 if (Use.getOperandNo() != 0)
984 return 0;
985 MaxTruncation = std::max(MaxTruncation, 32u);
986 continue;
987 case PPC::STH8:
988 case PPC::STHX8:
989 case PPC::STHU8:
990 case PPC::STHUX8:
991 if (Use.getOperandNo() != 0)
992 return 0;
993 MaxTruncation = std::max(MaxTruncation, 16u);
994 continue;
995 case PPC::STB8:
996 case PPC::STBX8:
997 case PPC::STBU8:
998 case PPC::STBUX8:
999 if (Use.getOperandNo() != 0)
1000 return 0;
1001 MaxTruncation = std::max(MaxTruncation, 8u);
1002 continue;
1005 return MaxTruncation;
1008 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
1009 // zeros and return the number of bits by the left of these consecutive zeros.
1010 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
1011 unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm));
1012 unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm));
1013 if ((HiTZ + LoLZ) >= Num)
1014 return (32 + HiTZ);
1015 return 0;
1018 // Direct materialization of 64-bit constants by enumerated patterns.
1019 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
1020 uint64_t Imm, unsigned &InstCnt) {
1021 unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1022 unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1023 unsigned TO = llvm::countr_one<uint64_t>(Imm);
1024 unsigned LO = llvm::countl_one<uint64_t>(Imm);
1025 unsigned Hi32 = Hi_32(Imm);
1026 unsigned Lo32 = Lo_32(Imm);
1027 SDNode *Result = nullptr;
1028 unsigned Shift = 0;
1030 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1031 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1034 // Following patterns use 1 instructions to materialize the Imm.
1035 InstCnt = 1;
1036 // 1-1) Patterns : {zeros}{15-bit valve}
1037 // {ones}{15-bit valve}
1038 if (isInt<16>(Imm)) {
1039 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1040 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1042 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
1043 // {ones}{15-bit valve}{16 zeros}
1044 if (TZ > 15 && (LZ > 32 || LO > 32))
1045 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1046 getI32Imm((Imm >> 16) & 0xffff));
1048 // Following patterns use 2 instructions to materialize the Imm.
1049 InstCnt = 2;
1050 assert(LZ < 64 && "Unexpected leading zeros here.");
1051 // Count of ones follwing the leading zeros.
1052 unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ);
1053 // 2-1) Patterns : {zeros}{31-bit value}
1054 // {ones}{31-bit value}
1055 if (isInt<32>(Imm)) {
1056 uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
1057 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1058 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1059 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1060 getI32Imm(Imm & 0xffff));
1062 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
1063 // {zeros}{15-bit value}{zeros}
1064 // {zeros}{ones}{15-bit value}
1065 // {ones}{15-bit value}{zeros}
1066 // We can take advantage of LI's sign-extension semantics to generate leading
1067 // ones, and then use RLDIC to mask off the ones in both sides after rotation.
1068 if ((LZ + FO + TZ) > 48) {
1069 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1070 getI32Imm((Imm >> TZ) & 0xffff));
1071 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1072 getI32Imm(TZ), getI32Imm(LZ));
1074 // 2-3) Pattern : {zeros}{15-bit value}{ones}
1075 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
1076 // therefore we can take advantage of LI's sign-extension semantics, and then
1077 // mask them off after rotation.
1079 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
1080 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
1081 // +------------------------+ +------------------------+
1082 // 63 0 63 0
1083 // Imm (Imm >> (48 - LZ) & 0xffff)
1084 // +----sext-----|--16-bit--+ +clear-|-----------------+
1085 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1086 // +------------------------+ +------------------------+
1087 // 63 0 63 0
1088 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
1089 if ((LZ + TO) > 48) {
1090 // Since the immediates with (LZ > 32) have been handled by previous
1091 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1092 // the Imm by a negative value.
1093 assert(LZ <= 32 && "Unexpected shift value.");
1094 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1095 getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1096 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1097 getI32Imm(48 - LZ), getI32Imm(LZ));
1099 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1100 // {ones}{15-bit value}{ones}
1101 // We can take advantage of LI's sign-extension semantics to generate leading
1102 // ones, and then use RLDICL to mask off the ones in left sides (if required)
1103 // after rotation.
1105 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
1106 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
1107 // +------------------------+ +------------------------+
1108 // 63 0 63 0
1109 // Imm (Imm >> TO) & 0xffff
1110 // +----sext-----|--16-bit--+ +LZ|---------------------+
1111 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
1112 // +------------------------+ +------------------------+
1113 // 63 0 63 0
1114 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
1115 if ((LZ + FO + TO) > 48) {
1116 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1117 getI32Imm((Imm >> TO) & 0xffff));
1118 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1119 getI32Imm(TO), getI32Imm(LZ));
1121 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1122 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1123 // value, we can use LI for Lo16 without generating leading ones then add the
1124 // Hi16(in Lo32).
1125 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1126 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1127 getI32Imm(Lo32 & 0xffff));
1128 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1129 getI32Imm(Lo32 >> 16));
1131 // 2-6) Patterns : {******}{49 zeros}{******}
1132 // {******}{49 ones}{******}
1133 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1134 // bits remain on both sides. Rotate right the Imm to construct an int<16>
1135 // value, use LI for int<16> value and then use RLDICL without mask to rotate
1136 // it back.
1138 // 1) findContiguousZerosAtLeast(Imm, 49)
1139 // +------|--zeros-|------+ +---ones--||---15 bit--+
1140 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
1141 // +----------------------+ +----------------------+
1142 // 63 0 63 0
1144 // 2) findContiguousZerosAtLeast(~Imm, 49)
1145 // +------|--ones--|------+ +---ones--||---15 bit--+
1146 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1147 // +----------------------+ +----------------------+
1148 // 63 0 63 0
1149 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1150 (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1151 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1152 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1153 getI32Imm(RotImm & 0xffff));
1154 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1155 getI32Imm(Shift), getI32Imm(0));
1157 // 2-7) Patterns : High word == Low word
1158 // This may require 2 to 3 instructions, depending on whether Lo32 can be
1159 // materialized in 1 instruction.
1160 if (Hi32 == Lo32) {
1161 // Handle the first 32 bits.
1162 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1163 uint64_t ImmLo16 = Lo32 & 0xffff;
1164 if (isInt<16>(Lo32))
1165 Result =
1166 CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(ImmLo16));
1167 else if (!ImmLo16)
1168 Result =
1169 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1170 else {
1171 InstCnt = 3;
1172 Result =
1173 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1174 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1175 SDValue(Result, 0), getI32Imm(ImmLo16));
1177 // Use rldimi to insert the Low word into High word.
1178 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1179 getI32Imm(0)};
1180 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1183 // Following patterns use 3 instructions to materialize the Imm.
1184 InstCnt = 3;
1185 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1186 // {zeros}{31-bit value}{zeros}
1187 // {zeros}{ones}{31-bit value}
1188 // {ones}{31-bit value}{zeros}
1189 // We can take advantage of LIS's sign-extension semantics to generate leading
1190 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1191 // ones in both sides after rotation.
1192 if ((LZ + FO + TZ) > 32) {
1193 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1194 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1195 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1196 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1197 getI32Imm((Imm >> TZ) & 0xffff));
1198 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1199 getI32Imm(TZ), getI32Imm(LZ));
1201 // 3-2) Pattern : {zeros}{31-bit value}{ones}
1202 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1203 // value, therefore we can take advantage of LIS's sign-extension semantics,
1204 // add the remaining bits with ORI, and then mask them off after rotation.
1205 // This is similar to Pattern 2-3, please refer to the diagram there.
1206 if ((LZ + TO) > 32) {
1207 // Since the immediates with (LZ > 32) have been handled by previous
1208 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1209 // the Imm by a negative value.
1210 assert(LZ <= 32 && "Unexpected shift value.");
1211 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1212 getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1213 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1214 getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1215 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1216 getI32Imm(32 - LZ), getI32Imm(LZ));
1218 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1219 // {ones}{31-bit value}{ones}
1220 // We can take advantage of LIS's sign-extension semantics to generate leading
1221 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1222 // ones in left sides (if required) after rotation.
1223 // This is similar to Pattern 2-4, please refer to the diagram there.
1224 if ((LZ + FO + TO) > 32) {
1225 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1226 getI32Imm((Imm >> (TO + 16)) & 0xffff));
1227 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1228 getI32Imm((Imm >> TO) & 0xffff));
1229 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1230 getI32Imm(TO), getI32Imm(LZ));
1232 // 3-4) Patterns : {******}{33 zeros}{******}
1233 // {******}{33 ones}{******}
1234 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1235 // bits remain on both sides. Rotate right the Imm to construct an int<32>
1236 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1237 // rotate it back.
1238 // This is similar to Pattern 2-6, please refer to the diagram there.
1239 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1240 (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1241 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1242 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1243 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1244 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1245 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1246 getI32Imm(RotImm & 0xffff));
1247 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1248 getI32Imm(Shift), getI32Imm(0));
1251 InstCnt = 0;
1252 return nullptr;
1255 // Try to select instructions to generate a 64 bit immediate using prefix as
1256 // well as non prefix instructions. The function will return the SDNode
1257 // to materialize that constant or it will return nullptr if it does not
1258 // find one. The variable InstCnt is set to the number of instructions that
1259 // were selected.
1260 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1261 uint64_t Imm, unsigned &InstCnt) {
1262 unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1263 unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1264 unsigned TO = llvm::countr_one<uint64_t>(Imm);
1265 unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1266 unsigned Hi32 = Hi_32(Imm);
1267 unsigned Lo32 = Lo_32(Imm);
1269 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1270 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1273 auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1274 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1277 // Following patterns use 1 instruction to materialize Imm.
1278 InstCnt = 1;
1280 // The pli instruction can materialize up to 34 bits directly.
1281 // If a constant fits within 34-bits, emit the pli instruction here directly.
1282 if (isInt<34>(Imm))
1283 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1284 CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1286 // Require at least two instructions.
1287 InstCnt = 2;
1288 SDNode *Result = nullptr;
1289 // Patterns : {zeros}{ones}{33-bit value}{zeros}
1290 // {zeros}{33-bit value}{zeros}
1291 // {zeros}{ones}{33-bit value}
1292 // {ones}{33-bit value}{zeros}
1293 // We can take advantage of PLI's sign-extension semantics to generate leading
1294 // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1295 if ((LZ + FO + TZ) > 30) {
1296 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1297 APInt Extended = SignedInt34.sext(64);
1298 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1299 getI64Imm(*Extended.getRawData()));
1300 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1301 getI32Imm(TZ), getI32Imm(LZ));
1303 // Pattern : {zeros}{33-bit value}{ones}
1304 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1305 // therefore we can take advantage of PLI's sign-extension semantics, and then
1306 // mask them off after rotation.
1308 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+
1309 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
1310 // +------------------------+ +------------------------+
1311 // 63 0 63 0
1313 // +----sext-----|--34-bit--+ +clear-|-----------------+
1314 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1315 // +------------------------+ +------------------------+
1316 // 63 0 63 0
1317 if ((LZ + TO) > 30) {
1318 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1319 APInt Extended = SignedInt34.sext(64);
1320 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1321 getI64Imm(*Extended.getRawData()));
1322 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1323 getI32Imm(30 - LZ), getI32Imm(LZ));
1325 // Patterns : {zeros}{ones}{33-bit value}{ones}
1326 // {ones}{33-bit value}{ones}
1327 // Similar to LI we can take advantage of PLI's sign-extension semantics to
1328 // generate leading ones, and then use RLDICL to mask off the ones in left
1329 // sides (if required) after rotation.
1330 if ((LZ + FO + TO) > 30) {
1331 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1332 APInt Extended = SignedInt34.sext(64);
1333 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1334 getI64Imm(*Extended.getRawData()));
1335 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1336 getI32Imm(TO), getI32Imm(LZ));
1338 // Patterns : {******}{31 zeros}{******}
1339 // : {******}{31 ones}{******}
1340 // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1341 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1342 // for the int<33> value and then use RLDICL without a mask to rotate it back.
1344 // +------|--ones--|------+ +---ones--||---33 bit--+
1345 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1346 // +----------------------+ +----------------------+
1347 // 63 0 63 0
1348 for (unsigned Shift = 0; Shift < 63; ++Shift) {
1349 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1350 if (isInt<34>(RotImm)) {
1351 Result =
1352 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1353 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1354 SDValue(Result, 0), getI32Imm(Shift),
1355 getI32Imm(0));
1359 // Patterns : High word == Low word
1360 // This is basically a splat of a 32 bit immediate.
1361 if (Hi32 == Lo32) {
1362 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1363 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1364 getI32Imm(0)};
1365 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1368 InstCnt = 3;
1369 // Catch-all
1370 // This pattern can form any 64 bit immediate in 3 instructions.
1371 SDNode *ResultHi =
1372 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1373 SDNode *ResultLo =
1374 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1375 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1376 getI32Imm(0)};
1377 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1380 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1381 unsigned *InstCnt = nullptr) {
1382 unsigned InstCntDirect = 0;
1383 // No more than 3 instructions are used if we can select the i64 immediate
1384 // directly.
1385 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1387 const PPCSubtarget &Subtarget =
1388 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1390 // If we have prefixed instructions and there is a chance we can
1391 // materialize the constant with fewer prefixed instructions than
1392 // non-prefixed, try that.
1393 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1394 unsigned InstCntDirectP = 0;
1395 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1396 // Use the prefix case in either of two cases:
1397 // 1) We have no result from the non-prefix case to use.
1398 // 2) The non-prefix case uses more instructions than the prefix case.
1399 // If the prefix and non-prefix cases use the same number of instructions
1400 // we will prefer the non-prefix case.
1401 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1402 if (InstCnt)
1403 *InstCnt = InstCntDirectP;
1404 return ResultP;
1408 if (Result) {
1409 if (InstCnt)
1410 *InstCnt = InstCntDirect;
1411 return Result;
1413 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1414 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1417 uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff;
1418 uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff;
1420 // Try to use 4 instructions to materialize the immediate which is "almost" a
1421 // splat of a 32 bit immediate.
1422 if (Hi16OfLo32 && Lo16OfLo32) {
1423 uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff;
1424 uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff;
1425 bool IsSelected = false;
1427 auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) {
1428 SDNode *Result =
1429 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16));
1430 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1431 SDValue(Result, 0), getI32Imm(Lo16));
1432 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1433 getI32Imm(0)};
1434 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1437 if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) {
1438 IsSelected = true;
1439 Result = getSplat(Hi16OfLo32, Lo16OfLo32);
1440 // Modify Hi16OfHi32.
1441 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48),
1442 getI32Imm(0)};
1443 Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1444 } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1445 IsSelected = true;
1446 Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1447 // Modify Lo16OfLo32.
1448 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1449 getI32Imm(16), getI32Imm(31)};
1450 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1451 } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1452 IsSelected = true;
1453 Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1454 // Modify Hi16OfLo32.
1455 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1456 getI32Imm(0), getI32Imm(15)};
1457 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1459 if (IsSelected == true) {
1460 if (InstCnt)
1461 *InstCnt = 4;
1462 return Result;
1466 // Handle the upper 32 bit value.
1467 Result =
1468 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1469 // Add in the last bits as required.
1470 if (Hi16OfLo32) {
1471 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1472 SDValue(Result, 0), getI32Imm(Hi16OfLo32));
1473 ++InstCntDirect;
1475 if (Lo16OfLo32) {
1476 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1477 getI32Imm(Lo16OfLo32));
1478 ++InstCntDirect;
1480 if (InstCnt)
1481 *InstCnt = InstCntDirect;
1482 return Result;
1485 // Select a 64-bit constant.
1486 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1487 SDLoc dl(N);
1489 // Get 64 bit value.
1490 int64_t Imm = N->getAsZExtVal();
1491 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1492 uint64_t SextImm = SignExtend64(Imm, MinSize);
1493 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1494 if (isInt<16>(SextImm))
1495 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1497 return selectI64Imm(CurDAG, dl, Imm);
1500 namespace {
1502 class BitPermutationSelector {
1503 struct ValueBit {
1504 SDValue V;
1506 // The bit number in the value, using a convention where bit 0 is the
1507 // lowest-order bit.
1508 unsigned Idx;
1510 // ConstZero means a bit we need to mask off.
1511 // Variable is a bit comes from an input variable.
1512 // VariableKnownToBeZero is also a bit comes from an input variable,
1513 // but it is known to be already zero. So we do not need to mask them.
1514 enum Kind {
1515 ConstZero,
1516 Variable,
1517 VariableKnownToBeZero
1518 } K;
1520 ValueBit(SDValue V, unsigned I, Kind K = Variable)
1521 : V(V), Idx(I), K(K) {}
1522 ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1524 bool isZero() const {
1525 return K == ConstZero || K == VariableKnownToBeZero;
1528 bool hasValue() const {
1529 return K == Variable || K == VariableKnownToBeZero;
1532 SDValue getValue() const {
1533 assert(hasValue() && "Cannot get the value of a constant bit");
1534 return V;
1537 unsigned getValueBitIndex() const {
1538 assert(hasValue() && "Cannot get the value bit index of a constant bit");
1539 return Idx;
1543 // A bit group has the same underlying value and the same rotate factor.
1544 struct BitGroup {
1545 SDValue V;
1546 unsigned RLAmt;
1547 unsigned StartIdx, EndIdx;
1549 // This rotation amount assumes that the lower 32 bits of the quantity are
1550 // replicated in the high 32 bits by the rotation operator (which is done
1551 // by rlwinm and friends in 64-bit mode).
1552 bool Repl32;
1553 // Did converting to Repl32 == true change the rotation factor? If it did,
1554 // it decreased it by 32.
1555 bool Repl32CR;
1556 // Was this group coalesced after setting Repl32 to true?
1557 bool Repl32Coalesced;
1559 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1560 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1561 Repl32Coalesced(false) {
1562 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1563 << " [" << S << ", " << E << "]\n");
1567 // Information on each (Value, RLAmt) pair (like the number of groups
1568 // associated with each) used to choose the lowering method.
1569 struct ValueRotInfo {
1570 SDValue V;
1571 unsigned RLAmt = std::numeric_limits<unsigned>::max();
1572 unsigned NumGroups = 0;
1573 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1574 bool Repl32 = false;
1576 ValueRotInfo() = default;
1578 // For sorting (in reverse order) by NumGroups, and then by
1579 // FirstGroupStartIdx.
1580 bool operator < (const ValueRotInfo &Other) const {
1581 // We need to sort so that the non-Repl32 come first because, when we're
1582 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1583 // masking operation.
1584 if (Repl32 < Other.Repl32)
1585 return true;
1586 else if (Repl32 > Other.Repl32)
1587 return false;
1588 else if (NumGroups > Other.NumGroups)
1589 return true;
1590 else if (NumGroups < Other.NumGroups)
1591 return false;
1592 else if (RLAmt == 0 && Other.RLAmt != 0)
1593 return true;
1594 else if (RLAmt != 0 && Other.RLAmt == 0)
1595 return false;
1596 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1597 return true;
1598 return false;
1602 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1603 using ValueBitsMemoizer =
1604 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1605 ValueBitsMemoizer Memoizer;
1607 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1608 // The bool is true if something interesting was deduced, otherwise if we're
1609 // providing only a generic representation of V (or something else likewise
1610 // uninteresting for instruction selection) through the SmallVector.
1611 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1612 unsigned NumBits) {
1613 auto &ValueEntry = Memoizer[V];
1614 if (ValueEntry)
1615 return std::make_pair(ValueEntry->first, &ValueEntry->second);
1616 ValueEntry.reset(new ValueBitsMemoizedValue());
1617 bool &Interesting = ValueEntry->first;
1618 SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1619 Bits.resize(NumBits);
1621 switch (V.getOpcode()) {
1622 default: break;
1623 case ISD::ROTL:
1624 if (isa<ConstantSDNode>(V.getOperand(1))) {
1625 assert(isPowerOf2_32(NumBits) && "rotl bits should be power of 2!");
1626 unsigned RotAmt = V.getConstantOperandVal(1) & (NumBits - 1);
1628 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1630 for (unsigned i = 0; i < NumBits; ++i)
1631 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1633 return std::make_pair(Interesting = true, &Bits);
1635 break;
1636 case ISD::SHL:
1637 case PPCISD::SHL:
1638 if (isa<ConstantSDNode>(V.getOperand(1))) {
1639 // sld takes 7 bits, slw takes 6.
1640 unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1642 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1644 if (ShiftAmt >= NumBits) {
1645 for (unsigned i = 0; i < NumBits; ++i)
1646 Bits[i] = ValueBit(ValueBit::ConstZero);
1647 } else {
1648 for (unsigned i = ShiftAmt; i < NumBits; ++i)
1649 Bits[i] = LHSBits[i - ShiftAmt];
1650 for (unsigned i = 0; i < ShiftAmt; ++i)
1651 Bits[i] = ValueBit(ValueBit::ConstZero);
1654 return std::make_pair(Interesting = true, &Bits);
1656 break;
1657 case ISD::SRL:
1658 case PPCISD::SRL:
1659 if (isa<ConstantSDNode>(V.getOperand(1))) {
1660 // srd takes lowest 7 bits, srw takes 6.
1661 unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1663 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1665 if (ShiftAmt >= NumBits) {
1666 for (unsigned i = 0; i < NumBits; ++i)
1667 Bits[i] = ValueBit(ValueBit::ConstZero);
1668 } else {
1669 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1670 Bits[i] = LHSBits[i + ShiftAmt];
1671 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1672 Bits[i] = ValueBit(ValueBit::ConstZero);
1675 return std::make_pair(Interesting = true, &Bits);
1677 break;
1678 case ISD::AND:
1679 if (isa<ConstantSDNode>(V.getOperand(1))) {
1680 uint64_t Mask = V.getConstantOperandVal(1);
1682 const SmallVector<ValueBit, 64> *LHSBits;
1683 // Mark this as interesting, only if the LHS was also interesting. This
1684 // prevents the overall procedure from matching a single immediate 'and'
1685 // (which is non-optimal because such an and might be folded with other
1686 // things if we don't select it here).
1687 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1689 for (unsigned i = 0; i < NumBits; ++i)
1690 if (((Mask >> i) & 1) == 1)
1691 Bits[i] = (*LHSBits)[i];
1692 else {
1693 // AND instruction masks this bit. If the input is already zero,
1694 // we have nothing to do here. Otherwise, make the bit ConstZero.
1695 if ((*LHSBits)[i].isZero())
1696 Bits[i] = (*LHSBits)[i];
1697 else
1698 Bits[i] = ValueBit(ValueBit::ConstZero);
1701 return std::make_pair(Interesting, &Bits);
1703 break;
1704 case ISD::OR: {
1705 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1706 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1708 bool AllDisjoint = true;
1709 SDValue LastVal = SDValue();
1710 unsigned LastIdx = 0;
1711 for (unsigned i = 0; i < NumBits; ++i) {
1712 if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1713 // If both inputs are known to be zero and one is ConstZero and
1714 // another is VariableKnownToBeZero, we can select whichever
1715 // we like. To minimize the number of bit groups, we select
1716 // VariableKnownToBeZero if this bit is the next bit of the same
1717 // input variable from the previous bit. Otherwise, we select
1718 // ConstZero.
1719 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1720 LHSBits[i].getValueBitIndex() == LastIdx + 1)
1721 Bits[i] = LHSBits[i];
1722 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1723 RHSBits[i].getValueBitIndex() == LastIdx + 1)
1724 Bits[i] = RHSBits[i];
1725 else
1726 Bits[i] = ValueBit(ValueBit::ConstZero);
1728 else if (LHSBits[i].isZero())
1729 Bits[i] = RHSBits[i];
1730 else if (RHSBits[i].isZero())
1731 Bits[i] = LHSBits[i];
1732 else {
1733 AllDisjoint = false;
1734 break;
1736 // We remember the value and bit index of this bit.
1737 if (Bits[i].hasValue()) {
1738 LastVal = Bits[i].getValue();
1739 LastIdx = Bits[i].getValueBitIndex();
1741 else {
1742 if (LastVal) LastVal = SDValue();
1743 LastIdx = 0;
1747 if (!AllDisjoint)
1748 break;
1750 return std::make_pair(Interesting = true, &Bits);
1752 case ISD::ZERO_EXTEND: {
1753 // We support only the case with zero extension from i32 to i64 so far.
1754 if (V.getValueType() != MVT::i64 ||
1755 V.getOperand(0).getValueType() != MVT::i32)
1756 break;
1758 const SmallVector<ValueBit, 64> *LHSBits;
1759 const unsigned NumOperandBits = 32;
1760 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1761 NumOperandBits);
1763 for (unsigned i = 0; i < NumOperandBits; ++i)
1764 Bits[i] = (*LHSBits)[i];
1766 for (unsigned i = NumOperandBits; i < NumBits; ++i)
1767 Bits[i] = ValueBit(ValueBit::ConstZero);
1769 return std::make_pair(Interesting, &Bits);
1771 case ISD::TRUNCATE: {
1772 EVT FromType = V.getOperand(0).getValueType();
1773 EVT ToType = V.getValueType();
1774 // We support only the case with truncate from i64 to i32.
1775 if (FromType != MVT::i64 || ToType != MVT::i32)
1776 break;
1777 const unsigned NumAllBits = FromType.getSizeInBits();
1778 SmallVector<ValueBit, 64> *InBits;
1779 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1780 NumAllBits);
1781 const unsigned NumValidBits = ToType.getSizeInBits();
1783 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1784 // So, we cannot include this truncate.
1785 bool UseUpper32bit = false;
1786 for (unsigned i = 0; i < NumValidBits; ++i)
1787 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1788 UseUpper32bit = true;
1789 break;
1791 if (UseUpper32bit)
1792 break;
1794 for (unsigned i = 0; i < NumValidBits; ++i)
1795 Bits[i] = (*InBits)[i];
1797 return std::make_pair(Interesting, &Bits);
1799 case ISD::AssertZext: {
1800 // For AssertZext, we look through the operand and
1801 // mark the bits known to be zero.
1802 const SmallVector<ValueBit, 64> *LHSBits;
1803 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1804 NumBits);
1806 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1807 const unsigned NumValidBits = FromType.getSizeInBits();
1808 for (unsigned i = 0; i < NumValidBits; ++i)
1809 Bits[i] = (*LHSBits)[i];
1811 // These bits are known to be zero but the AssertZext may be from a value
1812 // that already has some constant zero bits (i.e. from a masking and).
1813 for (unsigned i = NumValidBits; i < NumBits; ++i)
1814 Bits[i] = (*LHSBits)[i].hasValue()
1815 ? ValueBit((*LHSBits)[i].getValue(),
1816 (*LHSBits)[i].getValueBitIndex(),
1817 ValueBit::VariableKnownToBeZero)
1818 : ValueBit(ValueBit::ConstZero);
1820 return std::make_pair(Interesting, &Bits);
1822 case ISD::LOAD:
1823 LoadSDNode *LD = cast<LoadSDNode>(V);
1824 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1825 EVT VT = LD->getMemoryVT();
1826 const unsigned NumValidBits = VT.getSizeInBits();
1828 for (unsigned i = 0; i < NumValidBits; ++i)
1829 Bits[i] = ValueBit(V, i);
1831 // These bits are known to be zero.
1832 for (unsigned i = NumValidBits; i < NumBits; ++i)
1833 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1835 // Zero-extending load itself cannot be optimized. So, it is not
1836 // interesting by itself though it gives useful information.
1837 return std::make_pair(Interesting = false, &Bits);
1839 break;
1842 for (unsigned i = 0; i < NumBits; ++i)
1843 Bits[i] = ValueBit(V, i);
1845 return std::make_pair(Interesting = false, &Bits);
1848 // For each value (except the constant ones), compute the left-rotate amount
1849 // to get it from its original to final position.
1850 void computeRotationAmounts() {
1851 NeedMask = false;
1852 RLAmt.resize(Bits.size());
1853 for (unsigned i = 0; i < Bits.size(); ++i)
1854 if (Bits[i].hasValue()) {
1855 unsigned VBI = Bits[i].getValueBitIndex();
1856 if (i >= VBI)
1857 RLAmt[i] = i - VBI;
1858 else
1859 RLAmt[i] = Bits.size() - (VBI - i);
1860 } else if (Bits[i].isZero()) {
1861 NeedMask = true;
1862 RLAmt[i] = UINT32_MAX;
1863 } else {
1864 llvm_unreachable("Unknown value bit type");
1868 // Collect groups of consecutive bits with the same underlying value and
1869 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1870 // they break up groups.
1871 void collectBitGroups(bool LateMask) {
1872 BitGroups.clear();
1874 unsigned LastRLAmt = RLAmt[0];
1875 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1876 unsigned LastGroupStartIdx = 0;
1877 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1878 for (unsigned i = 1; i < Bits.size(); ++i) {
1879 unsigned ThisRLAmt = RLAmt[i];
1880 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1881 if (LateMask && !ThisValue) {
1882 ThisValue = LastValue;
1883 ThisRLAmt = LastRLAmt;
1884 // If we're doing late masking, then the first bit group always starts
1885 // at zero (even if the first bits were zero).
1886 if (BitGroups.empty())
1887 LastGroupStartIdx = 0;
1890 // If this bit is known to be zero and the current group is a bit group
1891 // of zeros, we do not need to terminate the current bit group even the
1892 // Value or RLAmt does not match here. Instead, we terminate this group
1893 // when the first non-zero bit appears later.
1894 if (IsGroupOfZeros && Bits[i].isZero())
1895 continue;
1897 // If this bit has the same underlying value and the same rotate factor as
1898 // the last one, then they're part of the same group.
1899 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1900 // We cannot continue the current group if this bits is not known to
1901 // be zero in a bit group of zeros.
1902 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1903 continue;
1905 if (LastValue.getNode())
1906 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1907 i-1));
1908 LastRLAmt = ThisRLAmt;
1909 LastValue = ThisValue;
1910 LastGroupStartIdx = i;
1911 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1913 if (LastValue.getNode())
1914 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1915 Bits.size()-1));
1917 if (BitGroups.empty())
1918 return;
1920 // We might be able to combine the first and last groups.
1921 if (BitGroups.size() > 1) {
1922 // If the first and last groups are the same, then remove the first group
1923 // in favor of the last group, making the ending index of the last group
1924 // equal to the ending index of the to-be-removed first group.
1925 if (BitGroups[0].StartIdx == 0 &&
1926 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1927 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1928 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1929 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1930 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1931 BitGroups.erase(BitGroups.begin());
1936 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1937 // associated with each. If the number of groups are same, we prefer a group
1938 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1939 // instruction. If there is a degeneracy, pick the one that occurs
1940 // first (in the final value).
1941 void collectValueRotInfo() {
1942 ValueRots.clear();
1944 for (auto &BG : BitGroups) {
1945 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1946 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1947 VRI.V = BG.V;
1948 VRI.RLAmt = BG.RLAmt;
1949 VRI.Repl32 = BG.Repl32;
1950 VRI.NumGroups += 1;
1951 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1954 // Now that we've collected the various ValueRotInfo instances, we need to
1955 // sort them.
1956 ValueRotsVec.clear();
1957 for (auto &I : ValueRots) {
1958 ValueRotsVec.push_back(I.second);
1960 llvm::sort(ValueRotsVec);
1963 // In 64-bit mode, rlwinm and friends have a rotation operator that
1964 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1965 // indices of these instructions can only be in the lower 32 bits, so they
1966 // can only represent some 64-bit bit groups. However, when they can be used,
1967 // the 32-bit replication can be used to represent, as a single bit group,
1968 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1969 // groups when possible. Returns true if any of the bit groups were
1970 // converted.
1971 void assignRepl32BitGroups() {
1972 // If we have bits like this:
1974 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1975 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1976 // Groups: | RLAmt = 8 | RLAmt = 40 |
1978 // But, making use of a 32-bit operation that replicates the low-order 32
1979 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1980 // of 8.
1982 auto IsAllLow32 = [this](BitGroup & BG) {
1983 if (BG.StartIdx <= BG.EndIdx) {
1984 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1985 if (!Bits[i].hasValue())
1986 continue;
1987 if (Bits[i].getValueBitIndex() >= 32)
1988 return false;
1990 } else {
1991 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1992 if (!Bits[i].hasValue())
1993 continue;
1994 if (Bits[i].getValueBitIndex() >= 32)
1995 return false;
1997 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1998 if (!Bits[i].hasValue())
1999 continue;
2000 if (Bits[i].getValueBitIndex() >= 32)
2001 return false;
2005 return true;
2008 for (auto &BG : BitGroups) {
2009 // If this bit group has RLAmt of 0 and will not be merged with
2010 // another bit group, we don't benefit from Repl32. We don't mark
2011 // such group to give more freedom for later instruction selection.
2012 if (BG.RLAmt == 0) {
2013 auto PotentiallyMerged = [this](BitGroup & BG) {
2014 for (auto &BG2 : BitGroups)
2015 if (&BG != &BG2 && BG.V == BG2.V &&
2016 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
2017 return true;
2018 return false;
2020 if (!PotentiallyMerged(BG))
2021 continue;
2023 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
2024 if (IsAllLow32(BG)) {
2025 if (BG.RLAmt >= 32) {
2026 BG.RLAmt -= 32;
2027 BG.Repl32CR = true;
2030 BG.Repl32 = true;
2032 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
2033 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
2034 << BG.StartIdx << ", " << BG.EndIdx << "]\n");
2039 // Now walk through the bit groups, consolidating where possible.
2040 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
2041 // We might want to remove this bit group by merging it with the previous
2042 // group (which might be the ending group).
2043 auto IP = (I == BitGroups.begin()) ?
2044 std::prev(BitGroups.end()) : std::prev(I);
2045 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
2046 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
2048 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
2049 << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
2050 << I->StartIdx << ", " << I->EndIdx
2051 << "] with group with range [" << IP->StartIdx << ", "
2052 << IP->EndIdx << "]\n");
2054 IP->EndIdx = I->EndIdx;
2055 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
2056 IP->Repl32Coalesced = true;
2057 I = BitGroups.erase(I);
2058 continue;
2059 } else {
2060 // There is a special case worth handling: If there is a single group
2061 // covering the entire upper 32 bits, and it can be merged with both
2062 // the next and previous groups (which might be the same group), then
2063 // do so. If it is the same group (so there will be only one group in
2064 // total), then we need to reverse the order of the range so that it
2065 // covers the entire 64 bits.
2066 if (I->StartIdx == 32 && I->EndIdx == 63) {
2067 assert(std::next(I) == BitGroups.end() &&
2068 "bit group ends at index 63 but there is another?");
2069 auto IN = BitGroups.begin();
2071 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
2072 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
2073 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
2074 IsAllLow32(*I)) {
2076 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
2077 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
2078 << ", " << I->EndIdx
2079 << "] with 32-bit replicated groups with ranges ["
2080 << IP->StartIdx << ", " << IP->EndIdx << "] and ["
2081 << IN->StartIdx << ", " << IN->EndIdx << "]\n");
2083 if (IP == IN) {
2084 // There is only one other group; change it to cover the whole
2085 // range (backward, so that it can still be Repl32 but cover the
2086 // whole 64-bit range).
2087 IP->StartIdx = 31;
2088 IP->EndIdx = 30;
2089 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
2090 IP->Repl32Coalesced = true;
2091 I = BitGroups.erase(I);
2092 } else {
2093 // There are two separate groups, one before this group and one
2094 // after us (at the beginning). We're going to remove this group,
2095 // but also the group at the very beginning.
2096 IP->EndIdx = IN->EndIdx;
2097 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
2098 IP->Repl32Coalesced = true;
2099 I = BitGroups.erase(I);
2100 BitGroups.erase(BitGroups.begin());
2103 // This must be the last group in the vector (and we might have
2104 // just invalidated the iterator above), so break here.
2105 break;
2110 ++I;
2114 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
2115 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
2118 uint64_t getZerosMask() {
2119 uint64_t Mask = 0;
2120 for (unsigned i = 0; i < Bits.size(); ++i) {
2121 if (Bits[i].hasValue())
2122 continue;
2123 Mask |= (UINT64_C(1) << i);
2126 return ~Mask;
2129 // This method extends an input value to 64 bit if input is 32-bit integer.
2130 // While selecting instructions in BitPermutationSelector in 64-bit mode,
2131 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
2132 // In such case, we extend it to 64 bit to be consistent with other values.
2133 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
2134 if (V.getValueSizeInBits() == 64)
2135 return V;
2137 assert(V.getValueSizeInBits() == 32);
2138 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2139 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
2140 MVT::i64), 0);
2141 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
2142 MVT::i64, ImDef, V,
2143 SubRegIdx), 0);
2144 return ExtVal;
2147 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
2148 if (V.getValueSizeInBits() == 32)
2149 return V;
2151 assert(V.getValueSizeInBits() == 64);
2152 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2153 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
2154 MVT::i32, V, SubRegIdx), 0);
2155 return SubVal;
2158 // Depending on the number of groups for a particular value, it might be
2159 // better to rotate, mask explicitly (using andi/andis), and then or the
2160 // result. Select this part of the result first.
2161 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2162 if (BPermRewriterNoMasking)
2163 return;
2165 for (ValueRotInfo &VRI : ValueRotsVec) {
2166 unsigned Mask = 0;
2167 for (unsigned i = 0; i < Bits.size(); ++i) {
2168 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2169 continue;
2170 if (RLAmt[i] != VRI.RLAmt)
2171 continue;
2172 Mask |= (1u << i);
2175 // Compute the masks for andi/andis that would be necessary.
2176 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2177 assert((ANDIMask != 0 || ANDISMask != 0) &&
2178 "No set bits in mask for value bit groups");
2179 bool NeedsRotate = VRI.RLAmt != 0;
2181 // We're trying to minimize the number of instructions. If we have one
2182 // group, using one of andi/andis can break even. If we have three
2183 // groups, we can use both andi and andis and break even (to use both
2184 // andi and andis we also need to or the results together). We need four
2185 // groups if we also need to rotate. To use andi/andis we need to do more
2186 // than break even because rotate-and-mask instructions tend to be easier
2187 // to schedule.
2189 // FIXME: We've biased here against using andi/andis, which is right for
2190 // POWER cores, but not optimal everywhere. For example, on the A2,
2191 // andi/andis have single-cycle latency whereas the rotate-and-mask
2192 // instructions take two cycles, and it would be better to bias toward
2193 // andi/andis in break-even cases.
2195 unsigned NumAndInsts = (unsigned) NeedsRotate +
2196 (unsigned) (ANDIMask != 0) +
2197 (unsigned) (ANDISMask != 0) +
2198 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2199 (unsigned) (bool) Res;
2201 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2202 << " RL: " << VRI.RLAmt << ":"
2203 << "\n\t\t\tisel using masking: " << NumAndInsts
2204 << " using rotates: " << VRI.NumGroups << "\n");
2206 if (NumAndInsts >= VRI.NumGroups)
2207 continue;
2209 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2211 if (InstCnt) *InstCnt += NumAndInsts;
2213 SDValue VRot;
2214 if (VRI.RLAmt) {
2215 SDValue Ops[] =
2216 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2217 getI32Imm(0, dl), getI32Imm(31, dl) };
2218 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2219 Ops), 0);
2220 } else {
2221 VRot = TruncateToInt32(VRI.V, dl);
2224 SDValue ANDIVal, ANDISVal;
2225 if (ANDIMask != 0)
2226 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2227 VRot, getI32Imm(ANDIMask, dl)),
2229 if (ANDISMask != 0)
2230 ANDISVal =
2231 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2232 getI32Imm(ANDISMask, dl)),
2235 SDValue TotalVal;
2236 if (!ANDIVal)
2237 TotalVal = ANDISVal;
2238 else if (!ANDISVal)
2239 TotalVal = ANDIVal;
2240 else
2241 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2242 ANDIVal, ANDISVal), 0);
2244 if (!Res)
2245 Res = TotalVal;
2246 else
2247 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2248 Res, TotalVal), 0);
2250 // Now, remove all groups with this underlying value and rotation
2251 // factor.
2252 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2253 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2258 // Instruction selection for the 32-bit case.
2259 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2260 SDLoc dl(N);
2261 SDValue Res;
2263 if (InstCnt) *InstCnt = 0;
2265 // Take care of cases that should use andi/andis first.
2266 SelectAndParts32(dl, Res, InstCnt);
2268 // If we've not yet selected a 'starting' instruction, and we have no zeros
2269 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2270 // number of groups), and start with this rotated value.
2271 if ((!NeedMask || LateMask) && !Res) {
2272 ValueRotInfo &VRI = ValueRotsVec[0];
2273 if (VRI.RLAmt) {
2274 if (InstCnt) *InstCnt += 1;
2275 SDValue Ops[] =
2276 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2277 getI32Imm(0, dl), getI32Imm(31, dl) };
2278 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2280 } else {
2281 Res = TruncateToInt32(VRI.V, dl);
2284 // Now, remove all groups with this underlying value and rotation factor.
2285 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2286 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2290 if (InstCnt) *InstCnt += BitGroups.size();
2292 // Insert the other groups (one at a time).
2293 for (auto &BG : BitGroups) {
2294 if (!Res) {
2295 SDValue Ops[] =
2296 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2297 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2298 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2299 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2300 } else {
2301 SDValue Ops[] =
2302 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2303 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2304 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2305 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2309 if (LateMask) {
2310 unsigned Mask = (unsigned) getZerosMask();
2312 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2313 assert((ANDIMask != 0 || ANDISMask != 0) &&
2314 "No set bits in zeros mask?");
2316 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2317 (unsigned) (ANDISMask != 0) +
2318 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2320 SDValue ANDIVal, ANDISVal;
2321 if (ANDIMask != 0)
2322 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2323 Res, getI32Imm(ANDIMask, dl)),
2325 if (ANDISMask != 0)
2326 ANDISVal =
2327 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2328 getI32Imm(ANDISMask, dl)),
2331 if (!ANDIVal)
2332 Res = ANDISVal;
2333 else if (!ANDISVal)
2334 Res = ANDIVal;
2335 else
2336 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2337 ANDIVal, ANDISVal), 0);
2340 return Res.getNode();
2343 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2344 unsigned MaskStart, unsigned MaskEnd,
2345 bool IsIns) {
2346 // In the notation used by the instructions, 'start' and 'end' are reversed
2347 // because bits are counted from high to low order.
2348 unsigned InstMaskStart = 64 - MaskEnd - 1,
2349 InstMaskEnd = 64 - MaskStart - 1;
2351 if (Repl32)
2352 return 1;
2354 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2355 InstMaskEnd == 63 - RLAmt)
2356 return 1;
2358 return 2;
2361 // For 64-bit values, not all combinations of rotates and masks are
2362 // available. Produce one if it is available.
2363 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2364 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2365 unsigned *InstCnt = nullptr) {
2366 // In the notation used by the instructions, 'start' and 'end' are reversed
2367 // because bits are counted from high to low order.
2368 unsigned InstMaskStart = 64 - MaskEnd - 1,
2369 InstMaskEnd = 64 - MaskStart - 1;
2371 if (InstCnt) *InstCnt += 1;
2373 if (Repl32) {
2374 // This rotation amount assumes that the lower 32 bits of the quantity
2375 // are replicated in the high 32 bits by the rotation operator (which is
2376 // done by rlwinm and friends).
2377 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2378 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
2379 SDValue Ops[] =
2380 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2381 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2382 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2383 Ops), 0);
2386 if (InstMaskEnd == 63) {
2387 SDValue Ops[] =
2388 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2389 getI32Imm(InstMaskStart, dl) };
2390 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2393 if (InstMaskStart == 0) {
2394 SDValue Ops[] =
2395 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2396 getI32Imm(InstMaskEnd, dl) };
2397 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2400 if (InstMaskEnd == 63 - RLAmt) {
2401 SDValue Ops[] =
2402 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2403 getI32Imm(InstMaskStart, dl) };
2404 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2407 // We cannot do this with a single instruction, so we'll use two. The
2408 // problem is that we're not free to choose both a rotation amount and mask
2409 // start and end independently. We can choose an arbitrary mask start and
2410 // end, but then the rotation amount is fixed. Rotation, however, can be
2411 // inverted, and so by applying an "inverse" rotation first, we can get the
2412 // desired result.
2413 if (InstCnt) *InstCnt += 1;
2415 // The rotation mask for the second instruction must be MaskStart.
2416 unsigned RLAmt2 = MaskStart;
2417 // The first instruction must rotate V so that the overall rotation amount
2418 // is RLAmt.
2419 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2420 if (RLAmt1)
2421 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2422 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2425 // For 64-bit values, not all combinations of rotates and masks are
2426 // available. Produce a rotate-mask-and-insert if one is available.
2427 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2428 unsigned RLAmt, bool Repl32, unsigned MaskStart,
2429 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2430 // In the notation used by the instructions, 'start' and 'end' are reversed
2431 // because bits are counted from high to low order.
2432 unsigned InstMaskStart = 64 - MaskEnd - 1,
2433 InstMaskEnd = 64 - MaskStart - 1;
2435 if (InstCnt) *InstCnt += 1;
2437 if (Repl32) {
2438 // This rotation amount assumes that the lower 32 bits of the quantity
2439 // are replicated in the high 32 bits by the rotation operator (which is
2440 // done by rlwinm and friends).
2441 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2442 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
2443 SDValue Ops[] =
2444 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2445 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2446 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2447 Ops), 0);
2450 if (InstMaskEnd == 63 - RLAmt) {
2451 SDValue Ops[] =
2452 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2453 getI32Imm(InstMaskStart, dl) };
2454 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2457 // We cannot do this with a single instruction, so we'll use two. The
2458 // problem is that we're not free to choose both a rotation amount and mask
2459 // start and end independently. We can choose an arbitrary mask start and
2460 // end, but then the rotation amount is fixed. Rotation, however, can be
2461 // inverted, and so by applying an "inverse" rotation first, we can get the
2462 // desired result.
2463 if (InstCnt) *InstCnt += 1;
2465 // The rotation mask for the second instruction must be MaskStart.
2466 unsigned RLAmt2 = MaskStart;
2467 // The first instruction must rotate V so that the overall rotation amount
2468 // is RLAmt.
2469 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2470 if (RLAmt1)
2471 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2472 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2475 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2476 if (BPermRewriterNoMasking)
2477 return;
2479 // The idea here is the same as in the 32-bit version, but with additional
2480 // complications from the fact that Repl32 might be true. Because we
2481 // aggressively convert bit groups to Repl32 form (which, for small
2482 // rotation factors, involves no other change), and then coalesce, it might
2483 // be the case that a single 64-bit masking operation could handle both
2484 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2485 // form allowed coalescing, then we must use a 32-bit rotaton in order to
2486 // completely capture the new combined bit group.
2488 for (ValueRotInfo &VRI : ValueRotsVec) {
2489 uint64_t Mask = 0;
2491 // We need to add to the mask all bits from the associated bit groups.
2492 // If Repl32 is false, we need to add bits from bit groups that have
2493 // Repl32 true, but are trivially convertable to Repl32 false. Such a
2494 // group is trivially convertable if it overlaps only with the lower 32
2495 // bits, and the group has not been coalesced.
2496 auto MatchingBG = [VRI](const BitGroup &BG) {
2497 if (VRI.V != BG.V)
2498 return false;
2500 unsigned EffRLAmt = BG.RLAmt;
2501 if (!VRI.Repl32 && BG.Repl32) {
2502 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2503 !BG.Repl32Coalesced) {
2504 if (BG.Repl32CR)
2505 EffRLAmt += 32;
2506 } else {
2507 return false;
2509 } else if (VRI.Repl32 != BG.Repl32) {
2510 return false;
2513 return VRI.RLAmt == EffRLAmt;
2516 for (auto &BG : BitGroups) {
2517 if (!MatchingBG(BG))
2518 continue;
2520 if (BG.StartIdx <= BG.EndIdx) {
2521 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2522 Mask |= (UINT64_C(1) << i);
2523 } else {
2524 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2525 Mask |= (UINT64_C(1) << i);
2526 for (unsigned i = 0; i <= BG.EndIdx; ++i)
2527 Mask |= (UINT64_C(1) << i);
2531 // We can use the 32-bit andi/andis technique if the mask does not
2532 // require any higher-order bits. This can save an instruction compared
2533 // to always using the general 64-bit technique.
2534 bool Use32BitInsts = isUInt<32>(Mask);
2535 // Compute the masks for andi/andis that would be necessary.
2536 unsigned ANDIMask = (Mask & UINT16_MAX),
2537 ANDISMask = (Mask >> 16) & UINT16_MAX;
2539 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2541 unsigned NumAndInsts = (unsigned) NeedsRotate +
2542 (unsigned) (bool) Res;
2543 unsigned NumOfSelectInsts = 0;
2544 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2545 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2546 if (Use32BitInsts)
2547 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2548 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2549 else
2550 NumAndInsts += NumOfSelectInsts + /* and */ 1;
2552 unsigned NumRLInsts = 0;
2553 bool FirstBG = true;
2554 bool MoreBG = false;
2555 for (auto &BG : BitGroups) {
2556 if (!MatchingBG(BG)) {
2557 MoreBG = true;
2558 continue;
2560 NumRLInsts +=
2561 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2562 !FirstBG);
2563 FirstBG = false;
2566 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2567 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2568 << "\n\t\t\tisel using masking: " << NumAndInsts
2569 << " using rotates: " << NumRLInsts << "\n");
2571 // When we'd use andi/andis, we bias toward using the rotates (andi only
2572 // has a record form, and is cracked on POWER cores). However, when using
2573 // general 64-bit constant formation, bias toward the constant form,
2574 // because that exposes more opportunities for CSE.
2575 if (NumAndInsts > NumRLInsts)
2576 continue;
2577 // When merging multiple bit groups, instruction or is used.
2578 // But when rotate is used, rldimi can inert the rotated value into any
2579 // register, so instruction or can be avoided.
2580 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2581 continue;
2583 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2585 if (InstCnt) *InstCnt += NumAndInsts;
2587 SDValue VRot;
2588 // We actually need to generate a rotation if we have a non-zero rotation
2589 // factor or, in the Repl32 case, if we care about any of the
2590 // higher-order replicated bits. In the latter case, we generate a mask
2591 // backward so that it actually includes the entire 64 bits.
2592 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2593 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2594 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2595 else
2596 VRot = VRI.V;
2598 SDValue TotalVal;
2599 if (Use32BitInsts) {
2600 assert((ANDIMask != 0 || ANDISMask != 0) &&
2601 "No set bits in mask when using 32-bit ands for 64-bit value");
2603 SDValue ANDIVal, ANDISVal;
2604 if (ANDIMask != 0)
2605 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2606 ExtendToInt64(VRot, dl),
2607 getI32Imm(ANDIMask, dl)),
2609 if (ANDISMask != 0)
2610 ANDISVal =
2611 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2612 ExtendToInt64(VRot, dl),
2613 getI32Imm(ANDISMask, dl)),
2616 if (!ANDIVal)
2617 TotalVal = ANDISVal;
2618 else if (!ANDISVal)
2619 TotalVal = ANDIVal;
2620 else
2621 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2622 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2623 } else {
2624 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2625 TotalVal =
2626 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2627 ExtendToInt64(VRot, dl), TotalVal),
2631 if (!Res)
2632 Res = TotalVal;
2633 else
2634 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2635 ExtendToInt64(Res, dl), TotalVal),
2638 // Now, remove all groups with this underlying value and rotation
2639 // factor.
2640 eraseMatchingBitGroups(MatchingBG);
2644 // Instruction selection for the 64-bit case.
2645 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2646 SDLoc dl(N);
2647 SDValue Res;
2649 if (InstCnt) *InstCnt = 0;
2651 // Take care of cases that should use andi/andis first.
2652 SelectAndParts64(dl, Res, InstCnt);
2654 // If we've not yet selected a 'starting' instruction, and we have no zeros
2655 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2656 // number of groups), and start with this rotated value.
2657 if ((!NeedMask || LateMask) && !Res) {
2658 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2659 // groups will come first, and so the VRI representing the largest number
2660 // of groups might not be first (it might be the first Repl32 groups).
2661 unsigned MaxGroupsIdx = 0;
2662 if (!ValueRotsVec[0].Repl32) {
2663 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2664 if (ValueRotsVec[i].Repl32) {
2665 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2666 MaxGroupsIdx = i;
2667 break;
2671 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2672 bool NeedsRotate = false;
2673 if (VRI.RLAmt) {
2674 NeedsRotate = true;
2675 } else if (VRI.Repl32) {
2676 for (auto &BG : BitGroups) {
2677 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2678 BG.Repl32 != VRI.Repl32)
2679 continue;
2681 // We don't need a rotate if the bit group is confined to the lower
2682 // 32 bits.
2683 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2684 continue;
2686 NeedsRotate = true;
2687 break;
2691 if (NeedsRotate)
2692 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2693 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2694 InstCnt);
2695 else
2696 Res = VRI.V;
2698 // Now, remove all groups with this underlying value and rotation factor.
2699 if (Res)
2700 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2701 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2702 BG.Repl32 == VRI.Repl32;
2706 // Because 64-bit rotates are more flexible than inserts, we might have a
2707 // preference regarding which one we do first (to save one instruction).
2708 if (!Res)
2709 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2710 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2711 false) <
2712 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2713 true)) {
2714 if (I != BitGroups.begin()) {
2715 BitGroup BG = *I;
2716 BitGroups.erase(I);
2717 BitGroups.insert(BitGroups.begin(), BG);
2720 break;
2724 // Insert the other groups (one at a time).
2725 for (auto &BG : BitGroups) {
2726 if (!Res)
2727 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2728 BG.EndIdx, InstCnt);
2729 else
2730 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2731 BG.StartIdx, BG.EndIdx, InstCnt);
2734 if (LateMask) {
2735 uint64_t Mask = getZerosMask();
2737 // We can use the 32-bit andi/andis technique if the mask does not
2738 // require any higher-order bits. This can save an instruction compared
2739 // to always using the general 64-bit technique.
2740 bool Use32BitInsts = isUInt<32>(Mask);
2741 // Compute the masks for andi/andis that would be necessary.
2742 unsigned ANDIMask = (Mask & UINT16_MAX),
2743 ANDISMask = (Mask >> 16) & UINT16_MAX;
2745 if (Use32BitInsts) {
2746 assert((ANDIMask != 0 || ANDISMask != 0) &&
2747 "No set bits in mask when using 32-bit ands for 64-bit value");
2749 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2750 (unsigned) (ANDISMask != 0) +
2751 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2753 SDValue ANDIVal, ANDISVal;
2754 if (ANDIMask != 0)
2755 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2756 ExtendToInt64(Res, dl),
2757 getI32Imm(ANDIMask, dl)),
2759 if (ANDISMask != 0)
2760 ANDISVal =
2761 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2762 ExtendToInt64(Res, dl),
2763 getI32Imm(ANDISMask, dl)),
2766 if (!ANDIVal)
2767 Res = ANDISVal;
2768 else if (!ANDISVal)
2769 Res = ANDIVal;
2770 else
2771 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2772 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2773 } else {
2774 unsigned NumOfSelectInsts = 0;
2775 SDValue MaskVal =
2776 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2777 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2778 ExtendToInt64(Res, dl), MaskVal),
2780 if (InstCnt)
2781 *InstCnt += NumOfSelectInsts + /* and */ 1;
2785 return Res.getNode();
2788 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2789 // Fill in BitGroups.
2790 collectBitGroups(LateMask);
2791 if (BitGroups.empty())
2792 return nullptr;
2794 // For 64-bit values, figure out when we can use 32-bit instructions.
2795 if (Bits.size() == 64)
2796 assignRepl32BitGroups();
2798 // Fill in ValueRotsVec.
2799 collectValueRotInfo();
2801 if (Bits.size() == 32) {
2802 return Select32(N, LateMask, InstCnt);
2803 } else {
2804 assert(Bits.size() == 64 && "Not 64 bits here?");
2805 return Select64(N, LateMask, InstCnt);
2808 return nullptr;
2811 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2812 erase_if(BitGroups, F);
2815 SmallVector<ValueBit, 64> Bits;
2817 bool NeedMask = false;
2818 SmallVector<unsigned, 64> RLAmt;
2820 SmallVector<BitGroup, 16> BitGroups;
2822 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2823 SmallVector<ValueRotInfo, 16> ValueRotsVec;
2825 SelectionDAG *CurDAG = nullptr;
2827 public:
2828 BitPermutationSelector(SelectionDAG *DAG)
2829 : CurDAG(DAG) {}
2831 // Here we try to match complex bit permutations into a set of
2832 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2833 // known to produce optimal code for common cases (like i32 byte swapping).
2834 SDNode *Select(SDNode *N) {
2835 Memoizer.clear();
2836 auto Result =
2837 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2838 if (!Result.first)
2839 return nullptr;
2840 Bits = std::move(*Result.second);
2842 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2843 " selection for: ");
2844 LLVM_DEBUG(N->dump(CurDAG));
2846 // Fill it RLAmt and set NeedMask.
2847 computeRotationAmounts();
2849 if (!NeedMask)
2850 return Select(N, false);
2852 // We currently have two techniques for handling results with zeros: early
2853 // masking (the default) and late masking. Late masking is sometimes more
2854 // efficient, but because the structure of the bit groups is different, it
2855 // is hard to tell without generating both and comparing the results. With
2856 // late masking, we ignore zeros in the resulting value when inserting each
2857 // set of bit groups, and then mask in the zeros at the end. With early
2858 // masking, we only insert the non-zero parts of the result at every step.
2860 unsigned InstCnt = 0, InstCntLateMask = 0;
2861 LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2862 SDNode *RN = Select(N, false, &InstCnt);
2863 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2865 LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2866 SDNode *RNLM = Select(N, true, &InstCntLateMask);
2867 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2868 << " instructions\n");
2870 if (InstCnt <= InstCntLateMask) {
2871 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2872 return RN;
2875 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2876 return RNLM;
2880 class IntegerCompareEliminator {
2881 SelectionDAG *CurDAG;
2882 PPCDAGToDAGISel *S;
2883 // Conversion type for interpreting results of a 32-bit instruction as
2884 // a 64-bit value or vice versa.
2885 enum ExtOrTruncConversion { Ext, Trunc };
2887 // Modifiers to guide how an ISD::SETCC node's result is to be computed
2888 // in a GPR.
2889 // ZExtOrig - use the original condition code, zero-extend value
2890 // ZExtInvert - invert the condition code, zero-extend value
2891 // SExtOrig - use the original condition code, sign-extend value
2892 // SExtInvert - invert the condition code, sign-extend value
2893 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2895 // Comparisons against zero to emit GPR code sequences for. Each of these
2896 // sequences may need to be emitted for two or more equivalent patterns.
2897 // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2898 // matters as well as the extension type: sext (-1/0), zext (1/0).
2899 // GEZExt - (zext (LHS >= 0))
2900 // GESExt - (sext (LHS >= 0))
2901 // LEZExt - (zext (LHS <= 0))
2902 // LESExt - (sext (LHS <= 0))
2903 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2905 SDNode *tryEXTEND(SDNode *N);
2906 SDNode *tryLogicOpOfCompares(SDNode *N);
2907 SDValue computeLogicOpInGPR(SDValue LogicOp);
2908 SDValue signExtendInputIfNeeded(SDValue Input);
2909 SDValue zeroExtendInputIfNeeded(SDValue Input);
2910 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2911 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2912 ZeroCompare CmpTy);
2913 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2914 int64_t RHSValue, SDLoc dl);
2915 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2916 int64_t RHSValue, SDLoc dl);
2917 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2918 int64_t RHSValue, SDLoc dl);
2919 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2920 int64_t RHSValue, SDLoc dl);
2921 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2923 public:
2924 IntegerCompareEliminator(SelectionDAG *DAG,
2925 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2926 assert(CurDAG->getTargetLoweringInfo()
2927 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2928 "Only expecting to use this on 64 bit targets.");
2930 SDNode *Select(SDNode *N) {
2931 if (CmpInGPR == ICGPR_None)
2932 return nullptr;
2933 switch (N->getOpcode()) {
2934 default: break;
2935 case ISD::ZERO_EXTEND:
2936 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2937 CmpInGPR == ICGPR_SextI64)
2938 return nullptr;
2939 [[fallthrough]];
2940 case ISD::SIGN_EXTEND:
2941 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2942 CmpInGPR == ICGPR_ZextI64)
2943 return nullptr;
2944 return tryEXTEND(N);
2945 case ISD::AND:
2946 case ISD::OR:
2947 case ISD::XOR:
2948 return tryLogicOpOfCompares(N);
2950 return nullptr;
2954 // The obvious case for wanting to keep the value in a GPR. Namely, the
2955 // result of the comparison is actually needed in a GPR.
2956 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2957 assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2958 N->getOpcode() == ISD::SIGN_EXTEND) &&
2959 "Expecting a zero/sign extend node!");
2960 SDValue WideRes;
2961 // If we are zero-extending the result of a logical operation on i1
2962 // values, we can keep the values in GPRs.
2963 if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) &&
2964 N->getOperand(0).getValueType() == MVT::i1 &&
2965 N->getOpcode() == ISD::ZERO_EXTEND)
2966 WideRes = computeLogicOpInGPR(N->getOperand(0));
2967 else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2968 return nullptr;
2969 else
2970 WideRes =
2971 getSETCCInGPR(N->getOperand(0),
2972 N->getOpcode() == ISD::SIGN_EXTEND ?
2973 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2975 if (!WideRes)
2976 return nullptr;
2978 SDLoc dl(N);
2979 bool Input32Bit = WideRes.getValueType() == MVT::i32;
2980 bool Output32Bit = N->getValueType(0) == MVT::i32;
2982 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2983 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2985 SDValue ConvOp = WideRes;
2986 if (Input32Bit != Output32Bit)
2987 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2988 ExtOrTruncConversion::Trunc);
2989 return ConvOp.getNode();
2992 // Attempt to perform logical operations on the results of comparisons while
2993 // keeping the values in GPRs. Without doing so, these would end up being
2994 // lowered to CR-logical operations which suffer from significant latency and
2995 // low ILP.
2996 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2997 if (N->getValueType(0) != MVT::i1)
2998 return nullptr;
2999 assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
3000 "Expected a logic operation on setcc results.");
3001 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
3002 if (!LoweredLogical)
3003 return nullptr;
3005 SDLoc dl(N);
3006 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
3007 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
3008 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
3009 SDValue LHS = LoweredLogical.getOperand(0);
3010 SDValue RHS = LoweredLogical.getOperand(1);
3011 SDValue WideOp;
3012 SDValue OpToConvToRecForm;
3014 // Look through any 32-bit to 64-bit implicit extend nodes to find the
3015 // opcode that is input to the XORI.
3016 if (IsBitwiseNegate &&
3017 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
3018 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
3019 else if (IsBitwiseNegate)
3020 // If the input to the XORI isn't an extension, that's what we're after.
3021 OpToConvToRecForm = LoweredLogical.getOperand(0);
3022 else
3023 // If this is not an XORI, it is a reg-reg logical op and we can convert
3024 // it to record-form.
3025 OpToConvToRecForm = LoweredLogical;
3027 // Get the record-form version of the node we're looking to use to get the
3028 // CR result from.
3029 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
3030 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
3032 // Convert the right node to record-form. This is either the logical we're
3033 // looking at or it is the input node to the negation (if we're looking at
3034 // a bitwise negation).
3035 if (NewOpc != -1 && IsBitwiseNegate) {
3036 // The input to the XORI has a record-form. Use it.
3037 assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
3038 "Expected a PPC::XORI8 only for bitwise negation.");
3039 // Emit the record-form instruction.
3040 std::vector<SDValue> Ops;
3041 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
3042 Ops.push_back(OpToConvToRecForm.getOperand(i));
3044 WideOp =
3045 SDValue(CurDAG->getMachineNode(NewOpc, dl,
3046 OpToConvToRecForm.getValueType(),
3047 MVT::Glue, Ops), 0);
3048 } else {
3049 assert((NewOpc != -1 || !IsBitwiseNegate) &&
3050 "No record form available for AND8/OR8/XOR8?");
3051 WideOp =
3052 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
3053 dl, MVT::i64, MVT::Glue, LHS, RHS),
3057 // Select this node to a single bit from CR0 set by the record-form node
3058 // just created. For bitwise negation, use the EQ bit which is the equivalent
3059 // of negating the result (i.e. it is a bit set when the result of the
3060 // operation is zero).
3061 SDValue SRIdxVal =
3062 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
3063 SDValue CRBit =
3064 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
3065 MVT::i1, CR0Reg, SRIdxVal,
3066 WideOp.getValue(1)), 0);
3067 return CRBit.getNode();
3070 // Lower a logical operation on i1 values into a GPR sequence if possible.
3071 // The result can be kept in a GPR if requested.
3072 // Three types of inputs can be handled:
3073 // - SETCC
3074 // - TRUNCATE
3075 // - Logical operation (AND/OR/XOR)
3076 // There is also a special case that is handled (namely a complement operation
3077 // achieved with xor %a, -1).
3078 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
3079 assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&
3080 "Can only handle logic operations here.");
3081 assert(LogicOp.getValueType() == MVT::i1 &&
3082 "Can only handle logic operations on i1 values here.");
3083 SDLoc dl(LogicOp);
3084 SDValue LHS, RHS;
3086 // Special case: xor %a, -1
3087 bool IsBitwiseNegation = isBitwiseNot(LogicOp);
3089 // Produces a GPR sequence for each operand of the binary logic operation.
3090 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
3091 // the value in a GPR and for logic operations, it will recursively produce
3092 // a GPR sequence for the operation.
3093 auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
3094 unsigned OperandOpcode = Operand.getOpcode();
3095 if (OperandOpcode == ISD::SETCC)
3096 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
3097 else if (OperandOpcode == ISD::TRUNCATE) {
3098 SDValue InputOp = Operand.getOperand(0);
3099 EVT InVT = InputOp.getValueType();
3100 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
3101 PPC::RLDICL, dl, InVT, InputOp,
3102 S->getI64Imm(0, dl),
3103 S->getI64Imm(63, dl)), 0);
3104 } else if (ISD::isBitwiseLogicOp(OperandOpcode))
3105 return computeLogicOpInGPR(Operand);
3106 return SDValue();
3108 LHS = getLogicOperand(LogicOp.getOperand(0));
3109 RHS = getLogicOperand(LogicOp.getOperand(1));
3111 // If a GPR sequence can't be produced for the LHS we can't proceed.
3112 // Not producing a GPR sequence for the RHS is only a problem if this isn't
3113 // a bitwise negation operation.
3114 if (!LHS || (!RHS && !IsBitwiseNegation))
3115 return SDValue();
3117 NumLogicOpsOnComparison++;
3119 // We will use the inputs as 64-bit values.
3120 if (LHS.getValueType() == MVT::i32)
3121 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
3122 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
3123 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
3125 unsigned NewOpc;
3126 switch (LogicOp.getOpcode()) {
3127 default: llvm_unreachable("Unknown logic operation.");
3128 case ISD::AND: NewOpc = PPC::AND8; break;
3129 case ISD::OR: NewOpc = PPC::OR8; break;
3130 case ISD::XOR: NewOpc = PPC::XOR8; break;
3133 if (IsBitwiseNegation) {
3134 RHS = S->getI64Imm(1, dl);
3135 NewOpc = PPC::XORI8;
3138 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
3142 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
3143 /// Otherwise just reinterpret it as a 64-bit value.
3144 /// Useful when emitting comparison code for 32-bit values without using
3145 /// the compare instruction (which only considers the lower 32-bits).
3146 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
3147 assert(Input.getValueType() == MVT::i32 &&
3148 "Can only sign-extend 32-bit values here.");
3149 unsigned Opc = Input.getOpcode();
3151 // The value was sign extended and then truncated to 32-bits. No need to
3152 // sign extend it again.
3153 if (Opc == ISD::TRUNCATE &&
3154 (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3155 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3156 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3158 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3159 // The input is a sign-extending load. All ppc sign-extending loads
3160 // sign-extend to the full 64-bits.
3161 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3162 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3164 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3165 // We don't sign-extend constants.
3166 if (InputConst)
3167 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3169 SDLoc dl(Input);
3170 SignExtensionsAdded++;
3171 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3172 MVT::i64, Input), 0);
3175 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3176 /// Otherwise just reinterpret it as a 64-bit value.
3177 /// Useful when emitting comparison code for 32-bit values without using
3178 /// the compare instruction (which only considers the lower 32-bits).
3179 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3180 assert(Input.getValueType() == MVT::i32 &&
3181 "Can only zero-extend 32-bit values here.");
3182 unsigned Opc = Input.getOpcode();
3184 // The only condition under which we can omit the actual extend instruction:
3185 // - The value is a positive constant
3186 // - The value comes from a load that isn't a sign-extending load
3187 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3188 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3189 (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3190 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3191 if (IsTruncateOfZExt)
3192 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3194 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3195 if (InputConst && InputConst->getSExtValue() >= 0)
3196 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3198 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3199 // The input is a load that doesn't sign-extend (it will be zero-extended).
3200 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3201 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3203 // None of the above, need to zero-extend.
3204 SDLoc dl(Input);
3205 ZeroExtensionsAdded++;
3206 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3207 S->getI64Imm(0, dl),
3208 S->getI64Imm(32, dl)), 0);
3211 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3212 // course not actual zero/sign extensions that will generate machine code,
3213 // they're just a way to reinterpret a 32 bit value in a register as a
3214 // 64 bit value and vice-versa.
3215 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3216 ExtOrTruncConversion Conv) {
3217 SDLoc dl(NatWidthRes);
3219 // For reinterpreting 32-bit values as 64 bit values, we generate
3220 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3221 if (Conv == ExtOrTruncConversion::Ext) {
3222 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3223 SDValue SubRegIdx =
3224 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3225 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3226 ImDef, NatWidthRes, SubRegIdx), 0);
3229 assert(Conv == ExtOrTruncConversion::Trunc &&
3230 "Unknown convertion between 32 and 64 bit values.");
3231 // For reinterpreting 64-bit values as 32-bit values, we just need to
3232 // EXTRACT_SUBREG (i.e. extract the low word).
3233 SDValue SubRegIdx =
3234 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3235 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3236 NatWidthRes, SubRegIdx), 0);
3239 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3240 // Handle both zero-extensions and sign-extensions.
3241 SDValue
3242 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3243 ZeroCompare CmpTy) {
3244 EVT InVT = LHS.getValueType();
3245 bool Is32Bit = InVT == MVT::i32;
3246 SDValue ToExtend;
3248 // Produce the value that needs to be either zero or sign extended.
3249 switch (CmpTy) {
3250 case ZeroCompare::GEZExt:
3251 case ZeroCompare::GESExt:
3252 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3253 dl, InVT, LHS, LHS), 0);
3254 break;
3255 case ZeroCompare::LEZExt:
3256 case ZeroCompare::LESExt: {
3257 if (Is32Bit) {
3258 // Upper 32 bits cannot be undefined for this sequence.
3259 LHS = signExtendInputIfNeeded(LHS);
3260 SDValue Neg =
3261 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3262 ToExtend =
3263 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3264 Neg, S->getI64Imm(1, dl),
3265 S->getI64Imm(63, dl)), 0);
3266 } else {
3267 SDValue Addi =
3268 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3269 S->getI64Imm(~0ULL, dl)), 0);
3270 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3271 Addi, LHS), 0);
3273 break;
3277 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3278 if (!Is32Bit &&
3279 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3280 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3281 ToExtend, S->getI64Imm(1, dl),
3282 S->getI64Imm(63, dl)), 0);
3283 if (!Is32Bit &&
3284 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3285 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3286 S->getI64Imm(63, dl)), 0);
3288 assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3289 // For 32-bit sequences, the extensions differ between GE/LE cases.
3290 switch (CmpTy) {
3291 case ZeroCompare::GEZExt: {
3292 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3293 S->getI32Imm(31, dl) };
3294 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3295 ShiftOps), 0);
3297 case ZeroCompare::GESExt:
3298 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3299 S->getI32Imm(31, dl)), 0);
3300 case ZeroCompare::LEZExt:
3301 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3302 S->getI32Imm(1, dl)), 0);
3303 case ZeroCompare::LESExt:
3304 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3305 S->getI32Imm(-1, dl)), 0);
3308 // The above case covers all the enumerators so it can't have a default clause
3309 // to avoid compiler warnings.
3310 llvm_unreachable("Unknown zero-comparison type.");
3313 /// Produces a zero-extended result of comparing two 32-bit values according to
3314 /// the passed condition code.
3315 SDValue
3316 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3317 ISD::CondCode CC,
3318 int64_t RHSValue, SDLoc dl) {
3319 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3320 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3321 return SDValue();
3322 bool IsRHSZero = RHSValue == 0;
3323 bool IsRHSOne = RHSValue == 1;
3324 bool IsRHSNegOne = RHSValue == -1LL;
3325 switch (CC) {
3326 default: return SDValue();
3327 case ISD::SETEQ: {
3328 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3329 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
3330 SDValue Xor = IsRHSZero ? LHS :
3331 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3332 SDValue Clz =
3333 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3334 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3335 S->getI32Imm(31, dl) };
3336 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3337 ShiftOps), 0);
3339 case ISD::SETNE: {
3340 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3341 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
3342 SDValue Xor = IsRHSZero ? LHS :
3343 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3344 SDValue Clz =
3345 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3346 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3347 S->getI32Imm(31, dl) };
3348 SDValue Shift =
3349 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3350 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3351 S->getI32Imm(1, dl)), 0);
3353 case ISD::SETGE: {
3354 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3355 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
3356 if(IsRHSZero)
3357 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3359 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3360 // by swapping inputs and falling through.
3361 std::swap(LHS, RHS);
3362 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3363 IsRHSZero = RHSConst && RHSConst->isZero();
3364 [[fallthrough]];
3366 case ISD::SETLE: {
3367 if (CmpInGPR == ICGPR_NonExtIn)
3368 return SDValue();
3369 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3370 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
3371 if(IsRHSZero) {
3372 if (CmpInGPR == ICGPR_NonExtIn)
3373 return SDValue();
3374 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3377 // The upper 32-bits of the register can't be undefined for this sequence.
3378 LHS = signExtendInputIfNeeded(LHS);
3379 RHS = signExtendInputIfNeeded(RHS);
3380 SDValue Sub =
3381 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3382 SDValue Shift =
3383 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3384 S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3386 return
3387 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3388 MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3390 case ISD::SETGT: {
3391 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3392 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3393 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
3394 // Handle SETLT -1 (which is equivalent to SETGE 0).
3395 if (IsRHSNegOne)
3396 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3398 if (IsRHSZero) {
3399 if (CmpInGPR == ICGPR_NonExtIn)
3400 return SDValue();
3401 // The upper 32-bits of the register can't be undefined for this sequence.
3402 LHS = signExtendInputIfNeeded(LHS);
3403 RHS = signExtendInputIfNeeded(RHS);
3404 SDValue Neg =
3405 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3406 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3407 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3409 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3410 // (%b < %a) by swapping inputs and falling through.
3411 std::swap(LHS, RHS);
3412 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3413 IsRHSZero = RHSConst && RHSConst->isZero();
3414 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3415 [[fallthrough]];
3417 case ISD::SETLT: {
3418 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3419 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
3420 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
3421 // Handle SETLT 1 (which is equivalent to SETLE 0).
3422 if (IsRHSOne) {
3423 if (CmpInGPR == ICGPR_NonExtIn)
3424 return SDValue();
3425 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3428 if (IsRHSZero) {
3429 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3430 S->getI32Imm(31, dl) };
3431 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3432 ShiftOps), 0);
3435 if (CmpInGPR == ICGPR_NonExtIn)
3436 return SDValue();
3437 // The upper 32-bits of the register can't be undefined for this sequence.
3438 LHS = signExtendInputIfNeeded(LHS);
3439 RHS = signExtendInputIfNeeded(RHS);
3440 SDValue SUBFNode =
3441 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3442 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3443 SUBFNode, S->getI64Imm(1, dl),
3444 S->getI64Imm(63, dl)), 0);
3446 case ISD::SETUGE:
3447 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3448 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3449 std::swap(LHS, RHS);
3450 [[fallthrough]];
3451 case ISD::SETULE: {
3452 if (CmpInGPR == ICGPR_NonExtIn)
3453 return SDValue();
3454 // The upper 32-bits of the register can't be undefined for this sequence.
3455 LHS = zeroExtendInputIfNeeded(LHS);
3456 RHS = zeroExtendInputIfNeeded(RHS);
3457 SDValue Subtract =
3458 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3459 SDValue SrdiNode =
3460 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3461 Subtract, S->getI64Imm(1, dl),
3462 S->getI64Imm(63, dl)), 0);
3463 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3464 S->getI32Imm(1, dl)), 0);
3466 case ISD::SETUGT:
3467 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3468 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3469 std::swap(LHS, RHS);
3470 [[fallthrough]];
3471 case ISD::SETULT: {
3472 if (CmpInGPR == ICGPR_NonExtIn)
3473 return SDValue();
3474 // The upper 32-bits of the register can't be undefined for this sequence.
3475 LHS = zeroExtendInputIfNeeded(LHS);
3476 RHS = zeroExtendInputIfNeeded(RHS);
3477 SDValue Subtract =
3478 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3479 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3480 Subtract, S->getI64Imm(1, dl),
3481 S->getI64Imm(63, dl)), 0);
3486 /// Produces a sign-extended result of comparing two 32-bit values according to
3487 /// the passed condition code.
3488 SDValue
3489 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3490 ISD::CondCode CC,
3491 int64_t RHSValue, SDLoc dl) {
3492 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3493 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3494 return SDValue();
3495 bool IsRHSZero = RHSValue == 0;
3496 bool IsRHSOne = RHSValue == 1;
3497 bool IsRHSNegOne = RHSValue == -1LL;
3499 switch (CC) {
3500 default: return SDValue();
3501 case ISD::SETEQ: {
3502 // (sext (setcc %a, %b, seteq)) ->
3503 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3504 // (sext (setcc %a, 0, seteq)) ->
3505 // (ashr (shl (ctlz %a), 58), 63)
3506 SDValue CountInput = IsRHSZero ? LHS :
3507 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3508 SDValue Cntlzw =
3509 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3510 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3511 S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3512 SDValue Slwi =
3513 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3514 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3516 case ISD::SETNE: {
3517 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3518 // flip the bit, finally take 2's complement.
3519 // (sext (setcc %a, %b, setne)) ->
3520 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3521 // Same as above, but the first xor is not needed.
3522 // (sext (setcc %a, 0, setne)) ->
3523 // (neg (xor (lshr (ctlz %a), 5), 1))
3524 SDValue Xor = IsRHSZero ? LHS :
3525 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3526 SDValue Clz =
3527 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3528 SDValue ShiftOps[] =
3529 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3530 SDValue Shift =
3531 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3532 SDValue Xori =
3533 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3534 S->getI32Imm(1, dl)), 0);
3535 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3537 case ISD::SETGE: {
3538 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3539 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
3540 if (IsRHSZero)
3541 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3543 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3544 // by swapping inputs and falling through.
3545 std::swap(LHS, RHS);
3546 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3547 IsRHSZero = RHSConst && RHSConst->isZero();
3548 [[fallthrough]];
3550 case ISD::SETLE: {
3551 if (CmpInGPR == ICGPR_NonExtIn)
3552 return SDValue();
3553 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3554 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
3555 if (IsRHSZero)
3556 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3558 // The upper 32-bits of the register can't be undefined for this sequence.
3559 LHS = signExtendInputIfNeeded(LHS);
3560 RHS = signExtendInputIfNeeded(RHS);
3561 SDValue SUBFNode =
3562 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3563 LHS, RHS), 0);
3564 SDValue Srdi =
3565 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3566 SUBFNode, S->getI64Imm(1, dl),
3567 S->getI64Imm(63, dl)), 0);
3568 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3569 S->getI32Imm(-1, dl)), 0);
3571 case ISD::SETGT: {
3572 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3573 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3574 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
3575 if (IsRHSNegOne)
3576 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3577 if (IsRHSZero) {
3578 if (CmpInGPR == ICGPR_NonExtIn)
3579 return SDValue();
3580 // The upper 32-bits of the register can't be undefined for this sequence.
3581 LHS = signExtendInputIfNeeded(LHS);
3582 RHS = signExtendInputIfNeeded(RHS);
3583 SDValue Neg =
3584 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3585 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3586 S->getI64Imm(63, dl)), 0);
3588 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3589 // (%b < %a) by swapping inputs and falling through.
3590 std::swap(LHS, RHS);
3591 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3592 IsRHSZero = RHSConst && RHSConst->isZero();
3593 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3594 [[fallthrough]];
3596 case ISD::SETLT: {
3597 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3598 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
3599 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
3600 if (IsRHSOne) {
3601 if (CmpInGPR == ICGPR_NonExtIn)
3602 return SDValue();
3603 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3605 if (IsRHSZero)
3606 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3607 S->getI32Imm(31, dl)), 0);
3609 if (CmpInGPR == ICGPR_NonExtIn)
3610 return SDValue();
3611 // The upper 32-bits of the register can't be undefined for this sequence.
3612 LHS = signExtendInputIfNeeded(LHS);
3613 RHS = signExtendInputIfNeeded(RHS);
3614 SDValue SUBFNode =
3615 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3616 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3617 SUBFNode, S->getI64Imm(63, dl)), 0);
3619 case ISD::SETUGE:
3620 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3621 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3622 std::swap(LHS, RHS);
3623 [[fallthrough]];
3624 case ISD::SETULE: {
3625 if (CmpInGPR == ICGPR_NonExtIn)
3626 return SDValue();
3627 // The upper 32-bits of the register can't be undefined for this sequence.
3628 LHS = zeroExtendInputIfNeeded(LHS);
3629 RHS = zeroExtendInputIfNeeded(RHS);
3630 SDValue Subtract =
3631 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3632 SDValue Shift =
3633 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3634 S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3636 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3637 S->getI32Imm(-1, dl)), 0);
3639 case ISD::SETUGT:
3640 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3641 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3642 std::swap(LHS, RHS);
3643 [[fallthrough]];
3644 case ISD::SETULT: {
3645 if (CmpInGPR == ICGPR_NonExtIn)
3646 return SDValue();
3647 // The upper 32-bits of the register can't be undefined for this sequence.
3648 LHS = zeroExtendInputIfNeeded(LHS);
3649 RHS = zeroExtendInputIfNeeded(RHS);
3650 SDValue Subtract =
3651 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3652 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3653 Subtract, S->getI64Imm(63, dl)), 0);
3658 /// Produces a zero-extended result of comparing two 64-bit values according to
3659 /// the passed condition code.
3660 SDValue
3661 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3662 ISD::CondCode CC,
3663 int64_t RHSValue, SDLoc dl) {
3664 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3665 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3666 return SDValue();
3667 bool IsRHSZero = RHSValue == 0;
3668 bool IsRHSOne = RHSValue == 1;
3669 bool IsRHSNegOne = RHSValue == -1LL;
3670 switch (CC) {
3671 default: return SDValue();
3672 case ISD::SETEQ: {
3673 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3674 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3675 SDValue Xor = IsRHSZero ? LHS :
3676 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3677 SDValue Clz =
3678 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3679 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3680 S->getI64Imm(58, dl),
3681 S->getI64Imm(63, dl)), 0);
3683 case ISD::SETNE: {
3684 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3685 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3686 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3687 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3688 SDValue Xor = IsRHSZero ? LHS :
3689 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3690 SDValue AC =
3691 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3692 Xor, S->getI32Imm(~0U, dl)), 0);
3693 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3694 Xor, AC.getValue(1)), 0);
3696 case ISD::SETGE: {
3697 // {subc.reg, subc.CA} = (subcarry %a, %b)
3698 // (zext (setcc %a, %b, setge)) ->
3699 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3700 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3701 if (IsRHSZero)
3702 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3703 std::swap(LHS, RHS);
3704 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3705 IsRHSZero = RHSConst && RHSConst->isZero();
3706 [[fallthrough]];
3708 case ISD::SETLE: {
3709 // {subc.reg, subc.CA} = (subcarry %b, %a)
3710 // (zext (setcc %a, %b, setge)) ->
3711 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3712 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3713 if (IsRHSZero)
3714 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3715 SDValue ShiftL =
3716 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3717 S->getI64Imm(1, dl),
3718 S->getI64Imm(63, dl)), 0);
3719 SDValue ShiftR =
3720 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3721 S->getI64Imm(63, dl)), 0);
3722 SDValue SubtractCarry =
3723 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3724 LHS, RHS), 1);
3725 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3726 ShiftR, ShiftL, SubtractCarry), 0);
3728 case ISD::SETGT: {
3729 // {subc.reg, subc.CA} = (subcarry %b, %a)
3730 // (zext (setcc %a, %b, setgt)) ->
3731 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3732 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3733 if (IsRHSNegOne)
3734 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3735 if (IsRHSZero) {
3736 SDValue Addi =
3737 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3738 S->getI64Imm(~0ULL, dl)), 0);
3739 SDValue Nor =
3740 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3741 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3742 S->getI64Imm(1, dl),
3743 S->getI64Imm(63, dl)), 0);
3745 std::swap(LHS, RHS);
3746 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3747 IsRHSZero = RHSConst && RHSConst->isZero();
3748 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3749 [[fallthrough]];
3751 case ISD::SETLT: {
3752 // {subc.reg, subc.CA} = (subcarry %a, %b)
3753 // (zext (setcc %a, %b, setlt)) ->
3754 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3755 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3756 if (IsRHSOne)
3757 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3758 if (IsRHSZero)
3759 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3760 S->getI64Imm(1, dl),
3761 S->getI64Imm(63, dl)), 0);
3762 SDValue SRADINode =
3763 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3764 LHS, S->getI64Imm(63, dl)), 0);
3765 SDValue SRDINode =
3766 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3767 RHS, S->getI64Imm(1, dl),
3768 S->getI64Imm(63, dl)), 0);
3769 SDValue SUBFC8Carry =
3770 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3771 RHS, LHS), 1);
3772 SDValue ADDE8Node =
3773 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3774 SRDINode, SRADINode, SUBFC8Carry), 0);
3775 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3776 ADDE8Node, S->getI64Imm(1, dl)), 0);
3778 case ISD::SETUGE:
3779 // {subc.reg, subc.CA} = (subcarry %a, %b)
3780 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3781 std::swap(LHS, RHS);
3782 [[fallthrough]];
3783 case ISD::SETULE: {
3784 // {subc.reg, subc.CA} = (subcarry %b, %a)
3785 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3786 SDValue SUBFC8Carry =
3787 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3788 LHS, RHS), 1);
3789 SDValue SUBFE8Node =
3790 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3791 LHS, LHS, SUBFC8Carry), 0);
3792 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3793 SUBFE8Node, S->getI64Imm(1, dl)), 0);
3795 case ISD::SETUGT:
3796 // {subc.reg, subc.CA} = (subcarry %b, %a)
3797 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3798 std::swap(LHS, RHS);
3799 [[fallthrough]];
3800 case ISD::SETULT: {
3801 // {subc.reg, subc.CA} = (subcarry %a, %b)
3802 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3803 SDValue SubtractCarry =
3804 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3805 RHS, LHS), 1);
3806 SDValue ExtSub =
3807 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3808 LHS, LHS, SubtractCarry), 0);
3809 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3810 ExtSub), 0);
3815 /// Produces a sign-extended result of comparing two 64-bit values according to
3816 /// the passed condition code.
3817 SDValue
3818 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3819 ISD::CondCode CC,
3820 int64_t RHSValue, SDLoc dl) {
3821 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3822 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3823 return SDValue();
3824 bool IsRHSZero = RHSValue == 0;
3825 bool IsRHSOne = RHSValue == 1;
3826 bool IsRHSNegOne = RHSValue == -1LL;
3827 switch (CC) {
3828 default: return SDValue();
3829 case ISD::SETEQ: {
3830 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3831 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3832 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3833 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3834 SDValue AddInput = IsRHSZero ? LHS :
3835 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3836 SDValue Addic =
3837 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3838 AddInput, S->getI32Imm(~0U, dl)), 0);
3839 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3840 Addic, Addic.getValue(1)), 0);
3842 case ISD::SETNE: {
3843 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3844 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3845 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3846 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3847 SDValue Xor = IsRHSZero ? LHS :
3848 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3849 SDValue SC =
3850 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3851 Xor, S->getI32Imm(0, dl)), 0);
3852 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3853 SC, SC.getValue(1)), 0);
3855 case ISD::SETGE: {
3856 // {subc.reg, subc.CA} = (subcarry %a, %b)
3857 // (zext (setcc %a, %b, setge)) ->
3858 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3859 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3860 if (IsRHSZero)
3861 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3862 std::swap(LHS, RHS);
3863 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3864 IsRHSZero = RHSConst && RHSConst->isZero();
3865 [[fallthrough]];
3867 case ISD::SETLE: {
3868 // {subc.reg, subc.CA} = (subcarry %b, %a)
3869 // (zext (setcc %a, %b, setge)) ->
3870 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3871 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3872 if (IsRHSZero)
3873 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3874 SDValue ShiftR =
3875 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3876 S->getI64Imm(63, dl)), 0);
3877 SDValue ShiftL =
3878 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3879 S->getI64Imm(1, dl),
3880 S->getI64Imm(63, dl)), 0);
3881 SDValue SubtractCarry =
3882 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3883 LHS, RHS), 1);
3884 SDValue Adde =
3885 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3886 ShiftR, ShiftL, SubtractCarry), 0);
3887 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3889 case ISD::SETGT: {
3890 // {subc.reg, subc.CA} = (subcarry %b, %a)
3891 // (zext (setcc %a, %b, setgt)) ->
3892 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3893 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3894 if (IsRHSNegOne)
3895 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3896 if (IsRHSZero) {
3897 SDValue Add =
3898 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3899 S->getI64Imm(-1, dl)), 0);
3900 SDValue Nor =
3901 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3902 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3903 S->getI64Imm(63, dl)), 0);
3905 std::swap(LHS, RHS);
3906 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3907 IsRHSZero = RHSConst && RHSConst->isZero();
3908 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3909 [[fallthrough]];
3911 case ISD::SETLT: {
3912 // {subc.reg, subc.CA} = (subcarry %a, %b)
3913 // (zext (setcc %a, %b, setlt)) ->
3914 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3915 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3916 if (IsRHSOne)
3917 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3918 if (IsRHSZero) {
3919 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3920 S->getI64Imm(63, dl)), 0);
3922 SDValue SRADINode =
3923 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3924 LHS, S->getI64Imm(63, dl)), 0);
3925 SDValue SRDINode =
3926 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3927 RHS, S->getI64Imm(1, dl),
3928 S->getI64Imm(63, dl)), 0);
3929 SDValue SUBFC8Carry =
3930 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3931 RHS, LHS), 1);
3932 SDValue ADDE8Node =
3933 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3934 SRDINode, SRADINode, SUBFC8Carry), 0);
3935 SDValue XORI8Node =
3936 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3937 ADDE8Node, S->getI64Imm(1, dl)), 0);
3938 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3939 XORI8Node), 0);
3941 case ISD::SETUGE:
3942 // {subc.reg, subc.CA} = (subcarry %a, %b)
3943 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3944 std::swap(LHS, RHS);
3945 [[fallthrough]];
3946 case ISD::SETULE: {
3947 // {subc.reg, subc.CA} = (subcarry %b, %a)
3948 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3949 SDValue SubtractCarry =
3950 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3951 LHS, RHS), 1);
3952 SDValue ExtSub =
3953 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3954 LHS, SubtractCarry), 0);
3955 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3956 ExtSub, ExtSub), 0);
3958 case ISD::SETUGT:
3959 // {subc.reg, subc.CA} = (subcarry %b, %a)
3960 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3961 std::swap(LHS, RHS);
3962 [[fallthrough]];
3963 case ISD::SETULT: {
3964 // {subc.reg, subc.CA} = (subcarry %a, %b)
3965 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3966 SDValue SubCarry =
3967 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3968 RHS, LHS), 1);
3969 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3970 LHS, LHS, SubCarry), 0);
3975 /// Do all uses of this SDValue need the result in a GPR?
3976 /// This is meant to be used on values that have type i1 since
3977 /// it is somewhat meaningless to ask if values of other types
3978 /// should be kept in GPR's.
3979 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3980 assert(Compare.getOpcode() == ISD::SETCC &&
3981 "An ISD::SETCC node required here.");
3983 // For values that have a single use, the caller should obviously already have
3984 // checked if that use is an extending use. We check the other uses here.
3985 if (Compare.hasOneUse())
3986 return true;
3987 // We want the value in a GPR if it is being extended, used for a select, or
3988 // used in logical operations.
3989 for (auto *CompareUse : Compare.getNode()->uses())
3990 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3991 CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3992 CompareUse->getOpcode() != ISD::SELECT &&
3993 !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) {
3994 OmittedForNonExtendUses++;
3995 return false;
3997 return true;
4000 /// Returns an equivalent of a SETCC node but with the result the same width as
4001 /// the inputs. This can also be used for SELECT_CC if either the true or false
4002 /// values is a power of two while the other is zero.
4003 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
4004 SetccInGPROpts ConvOpts) {
4005 assert((Compare.getOpcode() == ISD::SETCC ||
4006 Compare.getOpcode() == ISD::SELECT_CC) &&
4007 "An ISD::SETCC node required here.");
4009 // Don't convert this comparison to a GPR sequence because there are uses
4010 // of the i1 result (i.e. uses that require the result in the CR).
4011 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
4012 return SDValue();
4014 SDValue LHS = Compare.getOperand(0);
4015 SDValue RHS = Compare.getOperand(1);
4017 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
4018 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
4019 ISD::CondCode CC =
4020 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
4021 EVT InputVT = LHS.getValueType();
4022 if (InputVT != MVT::i32 && InputVT != MVT::i64)
4023 return SDValue();
4025 if (ConvOpts == SetccInGPROpts::ZExtInvert ||
4026 ConvOpts == SetccInGPROpts::SExtInvert)
4027 CC = ISD::getSetCCInverse(CC, InputVT);
4029 bool Inputs32Bit = InputVT == MVT::i32;
4031 SDLoc dl(Compare);
4032 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
4033 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
4034 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
4035 ConvOpts == SetccInGPROpts::SExtInvert;
4037 if (IsSext && Inputs32Bit)
4038 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4039 else if (Inputs32Bit)
4040 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4041 else if (IsSext)
4042 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4043 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4046 } // end anonymous namespace
4048 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
4049 if (N->getValueType(0) != MVT::i32 &&
4050 N->getValueType(0) != MVT::i64)
4051 return false;
4053 // This optimization will emit code that assumes 64-bit registers
4054 // so we don't want to run it in 32-bit mode. Also don't run it
4055 // on functions that are not to be optimized.
4056 if (TM.getOptLevel() == CodeGenOptLevel::None || !TM.isPPC64())
4057 return false;
4059 // For POWER10, it is more profitable to use the set boolean extension
4060 // instructions rather than the integer compare elimination codegen.
4061 // Users can override this via the command line option, `--ppc-gpr-icmps`.
4062 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
4063 return false;
4065 switch (N->getOpcode()) {
4066 default: break;
4067 case ISD::ZERO_EXTEND:
4068 case ISD::SIGN_EXTEND:
4069 case ISD::AND:
4070 case ISD::OR:
4071 case ISD::XOR: {
4072 IntegerCompareEliminator ICmpElim(CurDAG, this);
4073 if (SDNode *New = ICmpElim.Select(N)) {
4074 ReplaceNode(N, New);
4075 return true;
4079 return false;
4082 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
4083 if (N->getValueType(0) != MVT::i32 &&
4084 N->getValueType(0) != MVT::i64)
4085 return false;
4087 if (!UseBitPermRewriter)
4088 return false;
4090 switch (N->getOpcode()) {
4091 default: break;
4092 case ISD::SRL:
4093 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
4094 // uses the BRH instruction.
4095 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
4096 N->getOperand(0).getOpcode() == ISD::BSWAP) {
4097 auto &OpRight = N->getOperand(1);
4098 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
4099 if (SRLConst && SRLConst->getSExtValue() == 16)
4100 return false;
4102 [[fallthrough]];
4103 case ISD::ROTL:
4104 case ISD::SHL:
4105 case ISD::AND:
4106 case ISD::OR: {
4107 BitPermutationSelector BPS(CurDAG);
4108 if (SDNode *New = BPS.Select(N)) {
4109 ReplaceNode(N, New);
4110 return true;
4112 return false;
4116 return false;
4119 /// SelectCC - Select a comparison of the specified values with the specified
4120 /// condition code, returning the CR# of the expression.
4121 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4122 const SDLoc &dl, SDValue Chain) {
4123 // Always select the LHS.
4124 unsigned Opc;
4126 if (LHS.getValueType() == MVT::i32) {
4127 unsigned Imm;
4128 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4129 if (isInt32Immediate(RHS, Imm)) {
4130 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4131 if (isUInt<16>(Imm))
4132 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4133 getI32Imm(Imm & 0xFFFF, dl)),
4135 // If this is a 16-bit signed immediate, fold it.
4136 if (isInt<16>((int)Imm))
4137 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4138 getI32Imm(Imm & 0xFFFF, dl)),
4141 // For non-equality comparisons, the default code would materialize the
4142 // constant, then compare against it, like this:
4143 // lis r2, 4660
4144 // ori r2, r2, 22136
4145 // cmpw cr0, r3, r2
4146 // Since we are just comparing for equality, we can emit this instead:
4147 // xoris r0,r3,0x1234
4148 // cmplwi cr0,r0,0x5678
4149 // beq cr0,L6
4150 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
4151 getI32Imm(Imm >> 16, dl)), 0);
4152 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4153 getI32Imm(Imm & 0xFFFF, dl)), 0);
4155 Opc = PPC::CMPLW;
4156 } else if (ISD::isUnsignedIntSetCC(CC)) {
4157 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4158 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4159 getI32Imm(Imm & 0xFFFF, dl)), 0);
4160 Opc = PPC::CMPLW;
4161 } else {
4162 int16_t SImm;
4163 if (isIntS16Immediate(RHS, SImm))
4164 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4165 getI32Imm((int)SImm & 0xFFFF,
4166 dl)),
4168 Opc = PPC::CMPW;
4170 } else if (LHS.getValueType() == MVT::i64) {
4171 uint64_t Imm;
4172 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4173 if (isInt64Immediate(RHS.getNode(), Imm)) {
4174 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4175 if (isUInt<16>(Imm))
4176 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4177 getI32Imm(Imm & 0xFFFF, dl)),
4179 // If this is a 16-bit signed immediate, fold it.
4180 if (isInt<16>(Imm))
4181 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4182 getI32Imm(Imm & 0xFFFF, dl)),
4185 // For non-equality comparisons, the default code would materialize the
4186 // constant, then compare against it, like this:
4187 // lis r2, 4660
4188 // ori r2, r2, 22136
4189 // cmpd cr0, r3, r2
4190 // Since we are just comparing for equality, we can emit this instead:
4191 // xoris r0,r3,0x1234
4192 // cmpldi cr0,r0,0x5678
4193 // beq cr0,L6
4194 if (isUInt<32>(Imm)) {
4195 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4196 getI64Imm(Imm >> 16, dl)), 0);
4197 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4198 getI64Imm(Imm & 0xFFFF, dl)),
4202 Opc = PPC::CMPLD;
4203 } else if (ISD::isUnsignedIntSetCC(CC)) {
4204 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4205 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4206 getI64Imm(Imm & 0xFFFF, dl)), 0);
4207 Opc = PPC::CMPLD;
4208 } else {
4209 int16_t SImm;
4210 if (isIntS16Immediate(RHS, SImm))
4211 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4212 getI64Imm(SImm & 0xFFFF, dl)),
4214 Opc = PPC::CMPD;
4216 } else if (LHS.getValueType() == MVT::f32) {
4217 if (Subtarget->hasSPE()) {
4218 switch (CC) {
4219 default:
4220 case ISD::SETEQ:
4221 case ISD::SETNE:
4222 Opc = PPC::EFSCMPEQ;
4223 break;
4224 case ISD::SETLT:
4225 case ISD::SETGE:
4226 case ISD::SETOLT:
4227 case ISD::SETOGE:
4228 case ISD::SETULT:
4229 case ISD::SETUGE:
4230 Opc = PPC::EFSCMPLT;
4231 break;
4232 case ISD::SETGT:
4233 case ISD::SETLE:
4234 case ISD::SETOGT:
4235 case ISD::SETOLE:
4236 case ISD::SETUGT:
4237 case ISD::SETULE:
4238 Opc = PPC::EFSCMPGT;
4239 break;
4241 } else
4242 Opc = PPC::FCMPUS;
4243 } else if (LHS.getValueType() == MVT::f64) {
4244 if (Subtarget->hasSPE()) {
4245 switch (CC) {
4246 default:
4247 case ISD::SETEQ:
4248 case ISD::SETNE:
4249 Opc = PPC::EFDCMPEQ;
4250 break;
4251 case ISD::SETLT:
4252 case ISD::SETGE:
4253 case ISD::SETOLT:
4254 case ISD::SETOGE:
4255 case ISD::SETULT:
4256 case ISD::SETUGE:
4257 Opc = PPC::EFDCMPLT;
4258 break;
4259 case ISD::SETGT:
4260 case ISD::SETLE:
4261 case ISD::SETOGT:
4262 case ISD::SETOLE:
4263 case ISD::SETUGT:
4264 case ISD::SETULE:
4265 Opc = PPC::EFDCMPGT;
4266 break;
4268 } else
4269 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4270 } else {
4271 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4272 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4273 Opc = PPC::XSCMPUQP;
4275 if (Chain)
4276 return SDValue(
4277 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4279 else
4280 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4283 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4284 const PPCSubtarget *Subtarget) {
4285 // For SPE instructions, the result is in GT bit of the CR
4286 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4288 switch (CC) {
4289 case ISD::SETUEQ:
4290 case ISD::SETONE:
4291 case ISD::SETOLE:
4292 case ISD::SETOGE:
4293 llvm_unreachable("Should be lowered by legalize!");
4294 default: llvm_unreachable("Unknown condition!");
4295 case ISD::SETOEQ:
4296 case ISD::SETEQ:
4297 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4298 case ISD::SETUNE:
4299 case ISD::SETNE:
4300 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4301 case ISD::SETOLT:
4302 case ISD::SETLT:
4303 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4304 case ISD::SETULE:
4305 case ISD::SETLE:
4306 return PPC::PRED_LE;
4307 case ISD::SETOGT:
4308 case ISD::SETGT:
4309 return PPC::PRED_GT;
4310 case ISD::SETUGE:
4311 case ISD::SETGE:
4312 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4313 case ISD::SETO: return PPC::PRED_NU;
4314 case ISD::SETUO: return PPC::PRED_UN;
4315 // These two are invalid for floating point. Assume we have int.
4316 case ISD::SETULT: return PPC::PRED_LT;
4317 case ISD::SETUGT: return PPC::PRED_GT;
4321 /// getCRIdxForSetCC - Return the index of the condition register field
4322 /// associated with the SetCC condition, and whether or not the field is
4323 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
4324 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4325 Invert = false;
4326 switch (CC) {
4327 default: llvm_unreachable("Unknown condition!");
4328 case ISD::SETOLT:
4329 case ISD::SETLT: return 0; // Bit #0 = SETOLT
4330 case ISD::SETOGT:
4331 case ISD::SETGT: return 1; // Bit #1 = SETOGT
4332 case ISD::SETOEQ:
4333 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
4334 case ISD::SETUO: return 3; // Bit #3 = SETUO
4335 case ISD::SETUGE:
4336 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
4337 case ISD::SETULE:
4338 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
4339 case ISD::SETUNE:
4340 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
4341 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
4342 case ISD::SETUEQ:
4343 case ISD::SETOGE:
4344 case ISD::SETOLE:
4345 case ISD::SETONE:
4346 llvm_unreachable("Invalid branch code: should be expanded by legalize");
4347 // These are invalid for floating point. Assume integer.
4348 case ISD::SETULT: return 0;
4349 case ISD::SETUGT: return 1;
4353 // getVCmpInst: return the vector compare instruction for the specified
4354 // vector type and condition code. Since this is for altivec specific code,
4355 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4356 // and v4f32).
4357 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4358 bool HasVSX, bool &Swap, bool &Negate) {
4359 Swap = false;
4360 Negate = false;
4362 if (VecVT.isFloatingPoint()) {
4363 /* Handle some cases by swapping input operands. */
4364 switch (CC) {
4365 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4366 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4367 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4368 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4369 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4370 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4371 default: break;
4373 /* Handle some cases by negating the result. */
4374 switch (CC) {
4375 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4376 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4377 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4378 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4379 default: break;
4381 /* We have instructions implementing the remaining cases. */
4382 switch (CC) {
4383 case ISD::SETEQ:
4384 case ISD::SETOEQ:
4385 if (VecVT == MVT::v4f32)
4386 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4387 else if (VecVT == MVT::v2f64)
4388 return PPC::XVCMPEQDP;
4389 break;
4390 case ISD::SETGT:
4391 case ISD::SETOGT:
4392 if (VecVT == MVT::v4f32)
4393 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4394 else if (VecVT == MVT::v2f64)
4395 return PPC::XVCMPGTDP;
4396 break;
4397 case ISD::SETGE:
4398 case ISD::SETOGE:
4399 if (VecVT == MVT::v4f32)
4400 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4401 else if (VecVT == MVT::v2f64)
4402 return PPC::XVCMPGEDP;
4403 break;
4404 default:
4405 break;
4407 llvm_unreachable("Invalid floating-point vector compare condition");
4408 } else {
4409 /* Handle some cases by swapping input operands. */
4410 switch (CC) {
4411 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4412 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4413 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4414 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4415 default: break;
4417 /* Handle some cases by negating the result. */
4418 switch (CC) {
4419 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4420 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4421 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4422 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4423 default: break;
4425 /* We have instructions implementing the remaining cases. */
4426 switch (CC) {
4427 case ISD::SETEQ:
4428 case ISD::SETUEQ:
4429 if (VecVT == MVT::v16i8)
4430 return PPC::VCMPEQUB;
4431 else if (VecVT == MVT::v8i16)
4432 return PPC::VCMPEQUH;
4433 else if (VecVT == MVT::v4i32)
4434 return PPC::VCMPEQUW;
4435 else if (VecVT == MVT::v2i64)
4436 return PPC::VCMPEQUD;
4437 else if (VecVT == MVT::v1i128)
4438 return PPC::VCMPEQUQ;
4439 break;
4440 case ISD::SETGT:
4441 if (VecVT == MVT::v16i8)
4442 return PPC::VCMPGTSB;
4443 else if (VecVT == MVT::v8i16)
4444 return PPC::VCMPGTSH;
4445 else if (VecVT == MVT::v4i32)
4446 return PPC::VCMPGTSW;
4447 else if (VecVT == MVT::v2i64)
4448 return PPC::VCMPGTSD;
4449 else if (VecVT == MVT::v1i128)
4450 return PPC::VCMPGTSQ;
4451 break;
4452 case ISD::SETUGT:
4453 if (VecVT == MVT::v16i8)
4454 return PPC::VCMPGTUB;
4455 else if (VecVT == MVT::v8i16)
4456 return PPC::VCMPGTUH;
4457 else if (VecVT == MVT::v4i32)
4458 return PPC::VCMPGTUW;
4459 else if (VecVT == MVT::v2i64)
4460 return PPC::VCMPGTUD;
4461 else if (VecVT == MVT::v1i128)
4462 return PPC::VCMPGTUQ;
4463 break;
4464 default:
4465 break;
4467 llvm_unreachable("Invalid integer vector compare condition");
4471 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4472 SDLoc dl(N);
4473 unsigned Imm;
4474 bool IsStrict = N->isStrictFPOpcode();
4475 ISD::CondCode CC =
4476 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4477 EVT PtrVT =
4478 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4479 bool isPPC64 = (PtrVT == MVT::i64);
4480 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4482 SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4483 SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4485 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4486 // We can codegen setcc op, imm very efficiently compared to a brcond.
4487 // Check for those cases here.
4488 // setcc op, 0
4489 if (Imm == 0) {
4490 SDValue Op = LHS;
4491 switch (CC) {
4492 default: break;
4493 case ISD::SETEQ: {
4494 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4495 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4496 getI32Imm(31, dl) };
4497 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4498 return true;
4500 case ISD::SETNE: {
4501 if (isPPC64) break;
4502 SDValue AD =
4503 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4504 Op, getI32Imm(~0U, dl)), 0);
4505 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4506 return true;
4508 case ISD::SETLT: {
4509 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4510 getI32Imm(31, dl) };
4511 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4512 return true;
4514 case ISD::SETGT: {
4515 SDValue T =
4516 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4517 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4518 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4519 getI32Imm(31, dl) };
4520 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4521 return true;
4524 } else if (Imm == ~0U) { // setcc op, -1
4525 SDValue Op = LHS;
4526 switch (CC) {
4527 default: break;
4528 case ISD::SETEQ:
4529 if (isPPC64) break;
4530 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4531 Op, getI32Imm(1, dl)), 0);
4532 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4533 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4534 MVT::i32,
4535 getI32Imm(0, dl)),
4536 0), Op.getValue(1));
4537 return true;
4538 case ISD::SETNE: {
4539 if (isPPC64) break;
4540 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4541 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4542 Op, getI32Imm(~0U, dl));
4543 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4544 SDValue(AD, 1));
4545 return true;
4547 case ISD::SETLT: {
4548 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4549 getI32Imm(1, dl)), 0);
4550 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4551 Op), 0);
4552 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4553 getI32Imm(31, dl) };
4554 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4555 return true;
4557 case ISD::SETGT: {
4558 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4559 getI32Imm(31, dl) };
4560 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4561 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4562 return true;
4568 // Altivec Vector compare instructions do not set any CR register by default and
4569 // vector compare operations return the same type as the operands.
4570 if (!IsStrict && LHS.getValueType().isVector()) {
4571 if (Subtarget->hasSPE())
4572 return false;
4574 EVT VecVT = LHS.getValueType();
4575 bool Swap, Negate;
4576 unsigned int VCmpInst =
4577 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4578 if (Swap)
4579 std::swap(LHS, RHS);
4581 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4582 if (Negate) {
4583 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4584 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4585 ResVT, VCmp, VCmp);
4586 return true;
4589 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4590 return true;
4593 if (Subtarget->useCRBits())
4594 return false;
4596 bool Inv;
4597 unsigned Idx = getCRIdxForSetCC(CC, Inv);
4598 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4599 if (IsStrict)
4600 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4601 SDValue IntCR;
4603 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4604 // The correct compare instruction is already set by SelectCC()
4605 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4606 Idx = 1;
4609 // Force the ccreg into CR7.
4610 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4612 SDValue InGlue; // Null incoming flag value.
4613 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4614 InGlue).getValue(1);
4616 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4617 CCReg), 0);
4619 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4620 getI32Imm(31, dl), getI32Imm(31, dl) };
4621 if (!Inv) {
4622 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4623 return true;
4626 // Get the specified bit.
4627 SDValue Tmp =
4628 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4629 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4630 return true;
4633 /// Does this node represent a load/store node whose address can be represented
4634 /// with a register plus an immediate that's a multiple of \p Val:
4635 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4636 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4637 StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4638 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4639 SDValue AddrOp;
4640 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4641 AddrOp = N->getOperand(1);
4642 else if (STN)
4643 AddrOp = STN->getOperand(2);
4645 // If the address points a frame object or a frame object with an offset,
4646 // we need to check the object alignment.
4647 short Imm = 0;
4648 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4649 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4650 AddrOp)) {
4651 // If op0 is a frame index that is under aligned, we can't do it either,
4652 // because it is translated to r31 or r1 + slot + offset. We won't know the
4653 // slot number until the stack frame is finalized.
4654 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4655 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4656 if ((SlotAlign % Val) != 0)
4657 return false;
4659 // If we have an offset, we need further check on the offset.
4660 if (AddrOp.getOpcode() != ISD::ADD)
4661 return true;
4664 if (AddrOp.getOpcode() == ISD::ADD)
4665 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4667 // If the address comes from the outside, the offset will be zero.
4668 return AddrOp.getOpcode() == ISD::CopyFromReg;
4671 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4672 // Transfer memoperands.
4673 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4674 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4677 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4678 bool &NeedSwapOps, bool &IsUnCmp) {
4680 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4682 SDValue LHS = N->getOperand(0);
4683 SDValue RHS = N->getOperand(1);
4684 SDValue TrueRes = N->getOperand(2);
4685 SDValue FalseRes = N->getOperand(3);
4686 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4687 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4688 N->getSimpleValueType(0) != MVT::i32))
4689 return false;
4691 // We are looking for any of:
4692 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4693 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4694 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq)
4695 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq)
4696 int64_t TrueResVal = TrueConst->getSExtValue();
4697 if ((TrueResVal < -1 || TrueResVal > 1) ||
4698 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4699 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4700 (TrueResVal == 0 &&
4701 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4702 return false;
4704 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4705 ? FalseRes
4706 : FalseRes.getOperand(0);
4707 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4708 if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4709 SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4710 return false;
4712 // Without this setb optimization, the outer SELECT_CC will be manually
4713 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4714 // transforms pseudo instruction to isel instruction. When there are more than
4715 // one use for result like zext/sext, with current optimization we only see
4716 // isel is replaced by setb but can't see any significant gain. Since
4717 // setb has longer latency than original isel, we should avoid this. Another
4718 // point is that setb requires comparison always kept, it can break the
4719 // opportunity to get the comparison away if we have in future.
4720 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4721 return false;
4723 SDValue InnerLHS = SetOrSelCC.getOperand(0);
4724 SDValue InnerRHS = SetOrSelCC.getOperand(1);
4725 ISD::CondCode InnerCC =
4726 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4727 // If the inner comparison is a select_cc, make sure the true/false values are
4728 // 1/-1 and canonicalize it if needed.
4729 if (InnerIsSel) {
4730 ConstantSDNode *SelCCTrueConst =
4731 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4732 ConstantSDNode *SelCCFalseConst =
4733 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4734 if (!SelCCTrueConst || !SelCCFalseConst)
4735 return false;
4736 int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4737 int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4738 // The values must be -1/1 (requiring a swap) or 1/-1.
4739 if (SelCCTVal == -1 && SelCCFVal == 1) {
4740 std::swap(InnerLHS, InnerRHS);
4741 } else if (SelCCTVal != 1 || SelCCFVal != -1)
4742 return false;
4745 // Canonicalize unsigned case
4746 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4747 IsUnCmp = true;
4748 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4751 bool InnerSwapped = false;
4752 if (LHS == InnerRHS && RHS == InnerLHS)
4753 InnerSwapped = true;
4754 else if (LHS != InnerLHS || RHS != InnerRHS)
4755 return false;
4757 switch (CC) {
4758 // (select_cc lhs, rhs, 0, \
4759 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4760 case ISD::SETEQ:
4761 if (!InnerIsSel)
4762 return false;
4763 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4764 return false;
4765 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4766 break;
4768 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4769 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4770 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4771 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4772 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4773 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4774 case ISD::SETULT:
4775 if (!IsUnCmp && InnerCC != ISD::SETNE)
4776 return false;
4777 IsUnCmp = true;
4778 [[fallthrough]];
4779 case ISD::SETLT:
4780 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4781 (InnerCC == ISD::SETLT && InnerSwapped))
4782 NeedSwapOps = (TrueResVal == 1);
4783 else
4784 return false;
4785 break;
4787 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4788 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4789 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4790 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4791 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4792 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4793 case ISD::SETUGT:
4794 if (!IsUnCmp && InnerCC != ISD::SETNE)
4795 return false;
4796 IsUnCmp = true;
4797 [[fallthrough]];
4798 case ISD::SETGT:
4799 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4800 (InnerCC == ISD::SETGT && InnerSwapped))
4801 NeedSwapOps = (TrueResVal == -1);
4802 else
4803 return false;
4804 break;
4806 default:
4807 return false;
4810 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4811 LLVM_DEBUG(N->dump());
4813 return true;
4816 // Return true if it's a software square-root/divide operand.
4817 static bool isSWTestOp(SDValue N) {
4818 if (N.getOpcode() == PPCISD::FTSQRT)
4819 return true;
4820 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4821 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4822 return false;
4823 switch (N.getConstantOperandVal(0)) {
4824 case Intrinsic::ppc_vsx_xvtdivdp:
4825 case Intrinsic::ppc_vsx_xvtdivsp:
4826 case Intrinsic::ppc_vsx_xvtsqrtdp:
4827 case Intrinsic::ppc_vsx_xvtsqrtsp:
4828 return true;
4830 return false;
4833 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4834 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4835 // We are looking for following patterns, where `truncate to i1` actually has
4836 // the same semantic with `and 1`.
4837 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4838 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4839 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4840 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4841 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4842 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4843 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4844 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4845 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4846 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4847 return false;
4849 SDValue CmpRHS = N->getOperand(3);
4850 if (!isNullConstant(CmpRHS))
4851 return false;
4853 SDValue CmpLHS = N->getOperand(2);
4854 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4855 return false;
4857 unsigned PCC = 0;
4858 bool IsCCNE = CC == ISD::SETNE;
4859 if (CmpLHS.getOpcode() == ISD::AND &&
4860 isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4861 switch (CmpLHS.getConstantOperandVal(1)) {
4862 case 1:
4863 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4864 break;
4865 case 2:
4866 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4867 break;
4868 case 4:
4869 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4870 break;
4871 case 8:
4872 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4873 break;
4874 default:
4875 return false;
4877 else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4878 CmpLHS.getValueType() == MVT::i1)
4879 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4881 if (PCC) {
4882 SDLoc dl(N);
4883 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4884 N->getOperand(0)};
4885 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4886 return true;
4888 return false;
4891 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4892 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4893 // value, for example when crbits is disabled. If so, select the
4894 // loop_decrement intrinsics now.
4895 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4896 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4898 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4899 isNullConstant(LHS.getOperand(1)))
4900 return false;
4902 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4903 LHS.getOperand(0).getConstantOperandVal(1) != Intrinsic::loop_decrement)
4904 return false;
4906 if (!isa<ConstantSDNode>(RHS))
4907 return false;
4909 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4910 "Counter decrement comparison is not EQ or NE");
4912 SDValue OldDecrement = LHS.getOperand(0);
4913 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4915 SDLoc DecrementLoc(OldDecrement);
4916 SDValue ChainInput = OldDecrement.getOperand(0);
4917 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4918 : getI32Imm(1, DecrementLoc)};
4919 unsigned DecrementOpcode =
4920 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4921 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4922 MVT::i1, DecrementOps);
4924 unsigned Val = RHS->getAsZExtVal();
4925 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4926 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4928 ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4929 CurDAG->RemoveDeadNode(LHS.getNode());
4931 // Mark the old loop_decrement intrinsic as dead.
4932 ReplaceUses(OldDecrement.getValue(1), ChainInput);
4933 CurDAG->RemoveDeadNode(OldDecrement.getNode());
4935 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4936 ChainInput, N->getOperand(0));
4938 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4939 N->getOperand(4), Chain);
4940 return true;
4943 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4944 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4945 unsigned Imm;
4946 if (!isInt32Immediate(N->getOperand(1), Imm))
4947 return false;
4949 SDLoc dl(N);
4950 SDValue Val = N->getOperand(0);
4951 unsigned SH, MB, ME;
4952 // If this is an and of a value rotated between 0 and 31 bits and then and'd
4953 // with a mask, emit rlwinm
4954 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4955 Val = Val.getOperand(0);
4956 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4957 getI32Imm(ME, dl)};
4958 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4959 return true;
4962 // If this is just a masked value where the input is not handled, and
4963 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4964 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4965 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4966 getI32Imm(ME, dl)};
4967 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4968 return true;
4971 // AND X, 0 -> 0, not "rlwinm 32".
4972 if (Imm == 0) {
4973 ReplaceUses(SDValue(N, 0), N->getOperand(1));
4974 return true;
4977 return false;
4980 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4981 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4982 uint64_t Imm64;
4983 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4984 return false;
4986 unsigned MB, ME;
4987 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4988 // MB ME
4989 // +----------------------+
4990 // |xxxxxxxxxxx00011111000|
4991 // +----------------------+
4992 // 0 32 64
4993 // We can only do it if the MB is larger than 32 and MB <= ME
4994 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4995 // we didn't rotate it.
4996 SDLoc dl(N);
4997 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4998 getI64Imm(ME - 32, dl)};
4999 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
5000 return true;
5003 return false;
5006 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
5007 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5008 uint64_t Imm64;
5009 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
5010 return false;
5012 // Do nothing if it is 16-bit imm as the pattern in the .td file handle
5013 // it well with "andi.".
5014 if (isUInt<16>(Imm64))
5015 return false;
5017 SDLoc Loc(N);
5018 SDValue Val = N->getOperand(0);
5020 // Optimized with two rldicl's as follows:
5021 // Add missing bits on left to the mask and check that the mask is a
5022 // wrapped run of ones, i.e.
5023 // Change pattern |0001111100000011111111|
5024 // to |1111111100000011111111|.
5025 unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64);
5026 if (NumOfLeadingZeros != 0)
5027 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
5029 unsigned MB, ME;
5030 if (!isRunOfOnes64(Imm64, MB, ME))
5031 return false;
5033 // ME MB MB-ME+63
5034 // +----------------------+ +----------------------+
5035 // |1111111100000011111111| -> |0000001111111111111111|
5036 // +----------------------+ +----------------------+
5037 // 0 63 0 63
5038 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
5039 unsigned OnesOnLeft = ME + 1;
5040 unsigned ZerosInBetween = (MB - ME + 63) & 63;
5041 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
5042 // on the left the bits that are already zeros in the mask.
5043 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
5044 getI64Imm(OnesOnLeft, Loc),
5045 getI64Imm(ZerosInBetween, Loc)),
5047 // MB-ME+63 ME MB
5048 // +----------------------+ +----------------------+
5049 // |0000001111111111111111| -> |0001111100000011111111|
5050 // +----------------------+ +----------------------+
5051 // 0 63 0 63
5052 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
5053 // left the number of ones we previously added.
5054 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
5055 getI64Imm(NumOfLeadingZeros, Loc)};
5056 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5057 return true;
5060 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
5061 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5062 unsigned Imm;
5063 if (!isInt32Immediate(N->getOperand(1), Imm))
5064 return false;
5066 SDValue Val = N->getOperand(0);
5067 unsigned Imm2;
5068 // ISD::OR doesn't get all the bitfield insertion fun.
5069 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
5070 // bitfield insert.
5071 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
5072 return false;
5074 // The idea here is to check whether this is equivalent to:
5075 // (c1 & m) | (x & ~m)
5076 // where m is a run-of-ones mask. The logic here is that, for each bit in
5077 // c1 and c2:
5078 // - if both are 1, then the output will be 1.
5079 // - if both are 0, then the output will be 0.
5080 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
5081 // come from x.
5082 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
5083 // be 0.
5084 // If that last condition is never the case, then we can form m from the
5085 // bits that are the same between c1 and c2.
5086 unsigned MB, ME;
5087 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
5088 SDLoc dl(N);
5089 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
5090 getI32Imm(MB, dl), getI32Imm(ME, dl)};
5091 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
5092 return true;
5095 return false;
5098 bool PPCDAGToDAGISel::tryAsSingleRLDCL(SDNode *N) {
5099 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5101 uint64_t Imm64;
5102 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5103 return false;
5105 SDValue Val = N->getOperand(0);
5107 if (Val.getOpcode() != ISD::ROTL)
5108 return false;
5110 // Looking to try to avoid a situation like this one:
5111 // %2 = tail call i64 @llvm.fshl.i64(i64 %word, i64 %word, i64 23)
5112 // %and1 = and i64 %2, 9223372036854775807
5113 // In this function we are looking to try to match RLDCL. However, the above
5114 // DAG would better match RLDICL instead which is not what we are looking
5115 // for here.
5116 SDValue RotateAmt = Val.getOperand(1);
5117 if (RotateAmt.getOpcode() == ISD::Constant)
5118 return false;
5120 unsigned MB = 64 - llvm::countr_one(Imm64);
5121 SDLoc dl(N);
5122 SDValue Ops[] = {Val.getOperand(0), RotateAmt, getI32Imm(MB, dl)};
5123 CurDAG->SelectNodeTo(N, PPC::RLDCL, MVT::i64, Ops);
5124 return true;
5127 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
5128 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5129 uint64_t Imm64;
5130 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5131 return false;
5133 // If this is a 64-bit zero-extension mask, emit rldicl.
5134 unsigned MB = 64 - llvm::countr_one(Imm64);
5135 unsigned SH = 0;
5136 unsigned Imm;
5137 SDValue Val = N->getOperand(0);
5138 SDLoc dl(N);
5140 if (Val.getOpcode() == ISD::ANY_EXTEND) {
5141 auto Op0 = Val.getOperand(0);
5142 if (Op0.getOpcode() == ISD::SRL &&
5143 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
5145 auto ResultType = Val.getNode()->getValueType(0);
5146 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
5147 SDValue IDVal(ImDef, 0);
5149 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
5150 IDVal, Op0.getOperand(0),
5151 getI32Imm(1, dl)),
5153 SH = 64 - Imm;
5157 // If the operand is a logical right shift, we can fold it into this
5158 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
5159 // for n <= mb. The right shift is really a left rotate followed by a
5160 // mask, and this mask is a more-restrictive sub-mask of the mask implied
5161 // by the shift.
5162 if (Val.getOpcode() == ISD::SRL &&
5163 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
5164 assert(Imm < 64 && "Illegal shift amount");
5165 Val = Val.getOperand(0);
5166 SH = 64 - Imm;
5169 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
5170 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5171 return true;
5174 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
5175 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5176 uint64_t Imm64;
5177 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5178 !isMask_64(~Imm64))
5179 return false;
5181 // If this is a negated 64-bit zero-extension mask,
5182 // i.e. the immediate is a sequence of ones from most significant side
5183 // and all zero for reminder, we should use rldicr.
5184 unsigned MB = 63 - llvm::countr_one(~Imm64);
5185 unsigned SH = 0;
5186 SDLoc dl(N);
5187 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5188 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5189 return true;
5192 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5193 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5194 uint64_t Imm64;
5195 unsigned MB, ME;
5196 SDValue N0 = N->getOperand(0);
5198 // We won't get fewer instructions if the imm is 32-bit integer.
5199 // rldimi requires the imm to have consecutive ones with both sides zero.
5200 // Also, make sure the first Op has only one use, otherwise this may increase
5201 // register pressure since rldimi is destructive.
5202 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5203 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5204 return false;
5206 unsigned SH = 63 - ME;
5207 SDLoc Dl(N);
5208 // Use select64Imm for making LI instr instead of directly putting Imm64
5209 SDValue Ops[] = {
5210 N->getOperand(0),
5211 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5212 getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5213 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5214 return true;
5217 // Select - Convert the specified operand from a target-independent to a
5218 // target-specific node if it hasn't already been changed.
5219 void PPCDAGToDAGISel::Select(SDNode *N) {
5220 SDLoc dl(N);
5221 if (N->isMachineOpcode()) {
5222 N->setNodeId(-1);
5223 return; // Already selected.
5226 // In case any misguided DAG-level optimizations form an ADD with a
5227 // TargetConstant operand, crash here instead of miscompiling (by selecting
5228 // an r+r add instead of some kind of r+i add).
5229 if (N->getOpcode() == ISD::ADD &&
5230 N->getOperand(1).getOpcode() == ISD::TargetConstant)
5231 llvm_unreachable("Invalid ADD with TargetConstant operand");
5233 // Try matching complex bit permutations before doing anything else.
5234 if (tryBitPermutation(N))
5235 return;
5237 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5238 if (tryIntCompareInGPR(N))
5239 return;
5241 switch (N->getOpcode()) {
5242 default: break;
5244 case ISD::Constant:
5245 if (N->getValueType(0) == MVT::i64) {
5246 ReplaceNode(N, selectI64Imm(CurDAG, N));
5247 return;
5249 break;
5251 case ISD::INTRINSIC_VOID: {
5252 auto IntrinsicID = N->getConstantOperandVal(1);
5253 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5254 IntrinsicID != Intrinsic::ppc_trapd &&
5255 IntrinsicID != Intrinsic::ppc_trap)
5256 break;
5257 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5258 IntrinsicID == Intrinsic::ppc_trapd)
5259 ? PPC::TDI
5260 : PPC::TWI;
5261 SmallVector<SDValue, 4> OpsWithMD;
5262 unsigned MDIndex;
5263 if (IntrinsicID == Intrinsic::ppc_tdw ||
5264 IntrinsicID == Intrinsic::ppc_tw) {
5265 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5266 int16_t SImmOperand2;
5267 int16_t SImmOperand3;
5268 int16_t SImmOperand4;
5269 bool isOperand2IntS16Immediate =
5270 isIntS16Immediate(N->getOperand(2), SImmOperand2);
5271 bool isOperand3IntS16Immediate =
5272 isIntS16Immediate(N->getOperand(3), SImmOperand3);
5273 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5274 // reg or imm + imm. The imm + imm form will be optimized to either an
5275 // unconditional trap or a nop in a later pass.
5276 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5277 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5278 else if (isOperand3IntS16Immediate)
5279 // The 2nd and 3rd operands are reg + imm.
5280 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5281 else {
5282 // The 2nd and 3rd operands are imm + reg.
5283 bool isOperand4IntS16Immediate =
5284 isIntS16Immediate(N->getOperand(4), SImmOperand4);
5285 (void)isOperand4IntS16Immediate;
5286 assert(isOperand4IntS16Immediate &&
5287 "The 4th operand is not an Immediate");
5288 // We need to flip the condition immediate TO.
5289 int16_t TO = int(SImmOperand4) & 0x1F;
5290 // We swap the first and second bit of TO if they are not same.
5291 if ((TO & 0x1) != ((TO & 0x2) >> 1))
5292 TO = (TO & 0x1) ? TO + 1 : TO - 1;
5293 // We swap the fourth and fifth bit of TO if they are not same.
5294 if ((TO & 0x8) != ((TO & 0x10) >> 1))
5295 TO = (TO & 0x8) ? TO + 8 : TO - 8;
5296 Ops[0] = getI32Imm(TO, dl);
5297 Ops[1] = N->getOperand(3);
5298 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5300 OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5301 MDIndex = 5;
5302 } else {
5303 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5304 MDIndex = 3;
5307 if (N->getNumOperands() > MDIndex) {
5308 SDValue MDV = N->getOperand(MDIndex);
5309 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5310 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5311 assert((isa<MDString>(MD->getOperand(0)) &&
5312 cast<MDString>(MD->getOperand(0))->getString() ==
5313 "ppc-trap-reason") &&
5314 "Unsupported annotation data type!");
5315 for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5316 assert(isa<MDString>(MD->getOperand(i)) &&
5317 "Invalid data type for annotation ppc-trap-reason!");
5318 OpsWithMD.push_back(
5319 getI32Imm(std::stoi(cast<MDString>(
5320 MD->getOperand(i))->getString().str()), dl));
5323 OpsWithMD.push_back(N->getOperand(0)); // chain
5324 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5325 return;
5328 case ISD::INTRINSIC_WO_CHAIN: {
5329 // We emit the PPC::FSELS instruction here because of type conflicts with
5330 // the comparison operand. The FSELS instruction is defined to use an 8-byte
5331 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5332 // value for the comparison. When selecting through a .td file, a type
5333 // error is raised. Must check this first so we never break on the
5334 // !Subtarget->isISA3_1() check.
5335 auto IntID = N->getConstantOperandVal(0);
5336 if (IntID == Intrinsic::ppc_fsels) {
5337 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5338 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5339 return;
5342 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5343 auto Pred = N->getConstantOperandVal(1);
5344 unsigned Opcode =
5345 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5346 unsigned SubReg = 0;
5347 unsigned ShiftVal = 0;
5348 bool Reverse = false;
5349 switch (Pred) {
5350 case 0:
5351 SubReg = PPC::sub_eq;
5352 ShiftVal = 1;
5353 break;
5354 case 1:
5355 SubReg = PPC::sub_eq;
5356 ShiftVal = 1;
5357 Reverse = true;
5358 break;
5359 case 2:
5360 SubReg = PPC::sub_lt;
5361 ShiftVal = 3;
5362 break;
5363 case 3:
5364 SubReg = PPC::sub_lt;
5365 ShiftVal = 3;
5366 Reverse = true;
5367 break;
5368 case 4:
5369 SubReg = PPC::sub_gt;
5370 ShiftVal = 2;
5371 break;
5372 case 5:
5373 SubReg = PPC::sub_gt;
5374 ShiftVal = 2;
5375 Reverse = true;
5376 break;
5377 case 6:
5378 SubReg = PPC::sub_un;
5379 break;
5380 case 7:
5381 SubReg = PPC::sub_un;
5382 Reverse = true;
5383 break;
5386 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5387 SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5388 CurDAG->getTargetConstant(0, dl, MVT::i32)};
5389 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5390 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5391 // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5392 // MFOCRF and shift/negate the value.
5393 if (Subtarget->isISA3_1()) {
5394 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5395 SDValue CRBit = SDValue(
5396 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5397 CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5399 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5400 CRBit);
5401 } else {
5402 SDValue Move =
5403 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5404 BCDOp.getValue(1)),
5406 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5407 getI32Imm(31, dl), getI32Imm(31, dl)};
5408 if (!Reverse)
5409 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5410 else {
5411 SDValue Shift = SDValue(
5412 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5413 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5416 return;
5419 if (!Subtarget->isISA3_1())
5420 break;
5421 unsigned Opcode = 0;
5422 switch (IntID) {
5423 default:
5424 break;
5425 case Intrinsic::ppc_altivec_vstribr_p:
5426 Opcode = PPC::VSTRIBR_rec;
5427 break;
5428 case Intrinsic::ppc_altivec_vstribl_p:
5429 Opcode = PPC::VSTRIBL_rec;
5430 break;
5431 case Intrinsic::ppc_altivec_vstrihr_p:
5432 Opcode = PPC::VSTRIHR_rec;
5433 break;
5434 case Intrinsic::ppc_altivec_vstrihl_p:
5435 Opcode = PPC::VSTRIHL_rec;
5436 break;
5438 if (!Opcode)
5439 break;
5441 // Generate the appropriate vector string isolate intrinsic to match.
5442 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5443 SDValue VecStrOp =
5444 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5445 // Vector string isolate instructions update the EQ bit of CR6.
5446 // Generate a SETBC instruction to extract the bit and place it in a GPR.
5447 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5448 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5449 SDValue CRBit = SDValue(
5450 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5451 CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5453 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5454 return;
5457 case ISD::SETCC:
5458 case ISD::STRICT_FSETCC:
5459 case ISD::STRICT_FSETCCS:
5460 if (trySETCC(N))
5461 return;
5462 break;
5463 // These nodes will be transformed into GETtlsADDR32 node, which
5464 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5465 case PPCISD::ADDI_TLSLD_L_ADDR:
5466 case PPCISD::ADDI_TLSGD_L_ADDR: {
5467 const Module *Mod = MF->getFunction().getParent();
5468 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5469 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5470 Mod->getPICLevel() == PICLevel::SmallPIC)
5471 break;
5472 // Attach global base pointer on GETtlsADDR32 node in order to
5473 // generate secure plt code for TLS symbols.
5474 getGlobalBaseReg();
5475 } break;
5476 case PPCISD::CALL: {
5477 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5478 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5479 !Subtarget->isTargetELF())
5480 break;
5482 SDValue Op = N->getOperand(1);
5484 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5485 if (GA->getTargetFlags() == PPCII::MO_PLT)
5486 getGlobalBaseReg();
5488 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5489 if (ES->getTargetFlags() == PPCII::MO_PLT)
5490 getGlobalBaseReg();
5493 break;
5495 case PPCISD::GlobalBaseReg:
5496 ReplaceNode(N, getGlobalBaseReg());
5497 return;
5499 case ISD::FrameIndex:
5500 selectFrameIndex(N, N);
5501 return;
5503 case PPCISD::MFOCRF: {
5504 SDValue InGlue = N->getOperand(1);
5505 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5506 N->getOperand(0), InGlue));
5507 return;
5510 case PPCISD::READ_TIME_BASE:
5511 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5512 MVT::Other, N->getOperand(0)));
5513 return;
5515 case PPCISD::SRA_ADDZE: {
5516 SDValue N0 = N->getOperand(0);
5517 SDValue ShiftAmt =
5518 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5519 getConstantIntValue(), dl,
5520 N->getValueType(0));
5521 if (N->getValueType(0) == MVT::i64) {
5522 SDNode *Op =
5523 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5524 N0, ShiftAmt);
5525 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5526 SDValue(Op, 1));
5527 return;
5528 } else {
5529 assert(N->getValueType(0) == MVT::i32 &&
5530 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5531 SDNode *Op =
5532 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5533 N0, ShiftAmt);
5534 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5535 SDValue(Op, 1));
5536 return;
5540 case ISD::STORE: {
5541 // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to
5542 // X-form stores.
5543 StoreSDNode *ST = cast<StoreSDNode>(N);
5544 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) &&
5545 ST->getAddressingMode() != ISD::PRE_INC)
5546 if (tryTLSXFormStore(ST))
5547 return;
5548 break;
5550 case ISD::LOAD: {
5551 // Handle preincrement loads.
5552 LoadSDNode *LD = cast<LoadSDNode>(N);
5553 EVT LoadedVT = LD->getMemoryVT();
5555 // Normal loads are handled by code generated from the .td file.
5556 if (LD->getAddressingMode() != ISD::PRE_INC) {
5557 // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to
5558 // X-form loads.
5559 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()))
5560 if (tryTLSXFormLoad(LD))
5561 return;
5562 break;
5565 SDValue Offset = LD->getOffset();
5566 if (Offset.getOpcode() == ISD::TargetConstant ||
5567 Offset.getOpcode() == ISD::TargetGlobalAddress) {
5569 unsigned Opcode;
5570 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5571 if (LD->getValueType(0) != MVT::i64) {
5572 // Handle PPC32 integer and normal FP loads.
5573 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5574 switch (LoadedVT.getSimpleVT().SimpleTy) {
5575 default: llvm_unreachable("Invalid PPC load type!");
5576 case MVT::f64: Opcode = PPC::LFDU; break;
5577 case MVT::f32: Opcode = PPC::LFSU; break;
5578 case MVT::i32: Opcode = PPC::LWZU; break;
5579 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5580 case MVT::i1:
5581 case MVT::i8: Opcode = PPC::LBZU; break;
5583 } else {
5584 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5585 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5586 switch (LoadedVT.getSimpleVT().SimpleTy) {
5587 default: llvm_unreachable("Invalid PPC load type!");
5588 case MVT::i64: Opcode = PPC::LDU; break;
5589 case MVT::i32: Opcode = PPC::LWZU8; break;
5590 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5591 case MVT::i1:
5592 case MVT::i8: Opcode = PPC::LBZU8; break;
5596 SDValue Chain = LD->getChain();
5597 SDValue Base = LD->getBasePtr();
5598 SDValue Ops[] = { Offset, Base, Chain };
5599 SDNode *MN = CurDAG->getMachineNode(
5600 Opcode, dl, LD->getValueType(0),
5601 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5602 transferMemOperands(N, MN);
5603 ReplaceNode(N, MN);
5604 return;
5605 } else {
5606 unsigned Opcode;
5607 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5608 if (LD->getValueType(0) != MVT::i64) {
5609 // Handle PPC32 integer and normal FP loads.
5610 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5611 switch (LoadedVT.getSimpleVT().SimpleTy) {
5612 default: llvm_unreachable("Invalid PPC load type!");
5613 case MVT::f64: Opcode = PPC::LFDUX; break;
5614 case MVT::f32: Opcode = PPC::LFSUX; break;
5615 case MVT::i32: Opcode = PPC::LWZUX; break;
5616 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5617 case MVT::i1:
5618 case MVT::i8: Opcode = PPC::LBZUX; break;
5620 } else {
5621 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5622 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5623 "Invalid sext update load");
5624 switch (LoadedVT.getSimpleVT().SimpleTy) {
5625 default: llvm_unreachable("Invalid PPC load type!");
5626 case MVT::i64: Opcode = PPC::LDUX; break;
5627 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
5628 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5629 case MVT::i1:
5630 case MVT::i8: Opcode = PPC::LBZUX8; break;
5634 SDValue Chain = LD->getChain();
5635 SDValue Base = LD->getBasePtr();
5636 SDValue Ops[] = { Base, Offset, Chain };
5637 SDNode *MN = CurDAG->getMachineNode(
5638 Opcode, dl, LD->getValueType(0),
5639 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5640 transferMemOperands(N, MN);
5641 ReplaceNode(N, MN);
5642 return;
5646 case ISD::AND:
5647 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5648 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDCL(N) ||
5649 tryAsSingleRLDICL(N) || tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) ||
5650 tryAsPairOfRLDICL(N))
5651 return;
5653 // Other cases are autogenerated.
5654 break;
5655 case ISD::OR: {
5656 if (N->getValueType(0) == MVT::i32)
5657 if (tryBitfieldInsert(N))
5658 return;
5660 int16_t Imm;
5661 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5662 isIntS16Immediate(N->getOperand(1), Imm)) {
5663 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5665 // If this is equivalent to an add, then we can fold it with the
5666 // FrameIndex calculation.
5667 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5668 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5669 return;
5673 // If this is 'or' against an imm with consecutive ones and both sides zero,
5674 // try to emit rldimi
5675 if (tryAsSingleRLDIMI(N))
5676 return;
5678 // OR with a 32-bit immediate can be handled by ori + oris
5679 // without creating an immediate in a GPR.
5680 uint64_t Imm64 = 0;
5681 bool IsPPC64 = Subtarget->isPPC64();
5682 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5683 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5684 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5685 uint64_t ImmHi = Imm64 >> 16;
5686 uint64_t ImmLo = Imm64 & 0xFFFF;
5687 if (ImmHi != 0 && ImmLo != 0) {
5688 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5689 N->getOperand(0),
5690 getI16Imm(ImmLo, dl));
5691 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5692 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5693 return;
5697 // Other cases are autogenerated.
5698 break;
5700 case ISD::XOR: {
5701 // XOR with a 32-bit immediate can be handled by xori + xoris
5702 // without creating an immediate in a GPR.
5703 uint64_t Imm64 = 0;
5704 bool IsPPC64 = Subtarget->isPPC64();
5705 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5706 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5707 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5708 uint64_t ImmHi = Imm64 >> 16;
5709 uint64_t ImmLo = Imm64 & 0xFFFF;
5710 if (ImmHi != 0 && ImmLo != 0) {
5711 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5712 N->getOperand(0),
5713 getI16Imm(ImmLo, dl));
5714 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5715 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5716 return;
5720 break;
5722 case ISD::ADD: {
5723 int16_t Imm;
5724 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5725 isIntS16Immediate(N->getOperand(1), Imm)) {
5726 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5727 return;
5730 break;
5732 case ISD::SHL: {
5733 unsigned Imm, SH, MB, ME;
5734 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5735 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5736 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5737 getI32Imm(SH, dl), getI32Imm(MB, dl),
5738 getI32Imm(ME, dl) };
5739 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5740 return;
5743 // Other cases are autogenerated.
5744 break;
5746 case ISD::SRL: {
5747 unsigned Imm, SH, MB, ME;
5748 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5749 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5750 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5751 getI32Imm(SH, dl), getI32Imm(MB, dl),
5752 getI32Imm(ME, dl) };
5753 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5754 return;
5757 // Other cases are autogenerated.
5758 break;
5760 case ISD::MUL: {
5761 SDValue Op1 = N->getOperand(1);
5762 if (Op1.getOpcode() != ISD::Constant ||
5763 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5764 break;
5766 // If the multiplier fits int16, we can handle it with mulli.
5767 int64_t Imm = Op1->getAsZExtVal();
5768 unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
5769 if (isInt<16>(Imm) || !Shift)
5770 break;
5772 // If the shifted value fits int16, we can do this transformation:
5773 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5774 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5775 uint64_t ImmSh = Imm >> Shift;
5776 if (!isInt<16>(ImmSh))
5777 break;
5779 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5780 if (Op1.getValueType() == MVT::i64) {
5781 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5782 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5783 N->getOperand(0), SDImm);
5785 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5786 getI32Imm(63 - Shift, dl)};
5787 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5788 return;
5789 } else {
5790 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5791 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5792 N->getOperand(0), SDImm);
5794 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5795 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5796 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5797 return;
5799 break;
5801 // FIXME: Remove this once the ANDI glue bug is fixed:
5802 case PPCISD::ANDI_rec_1_EQ_BIT:
5803 case PPCISD::ANDI_rec_1_GT_BIT: {
5804 if (!ANDIGlueBug)
5805 break;
5807 EVT InVT = N->getOperand(0).getValueType();
5808 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5809 "Invalid input type for ANDI_rec_1_EQ_BIT");
5811 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5812 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5813 N->getOperand(0),
5814 CurDAG->getTargetConstant(1, dl, InVT)),
5816 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5817 SDValue SRIdxVal = CurDAG->getTargetConstant(
5818 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5819 dl, MVT::i32);
5821 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5822 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5823 return;
5825 case ISD::SELECT_CC: {
5826 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5827 EVT PtrVT =
5828 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5829 bool isPPC64 = (PtrVT == MVT::i64);
5831 // If this is a select of i1 operands, we'll pattern match it.
5832 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5833 break;
5835 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5836 bool NeedSwapOps = false;
5837 bool IsUnCmp = false;
5838 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5839 SDValue LHS = N->getOperand(0);
5840 SDValue RHS = N->getOperand(1);
5841 if (NeedSwapOps)
5842 std::swap(LHS, RHS);
5844 // Make use of SelectCC to generate the comparison to set CR bits, for
5845 // equality comparisons having one literal operand, SelectCC probably
5846 // doesn't need to materialize the whole literal and just use xoris to
5847 // check it first, it leads the following comparison result can't
5848 // exactly represent GT/LT relationship. So to avoid this we specify
5849 // SETGT/SETUGT here instead of SETEQ.
5850 SDValue GenCC =
5851 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5852 CurDAG->SelectNodeTo(
5853 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5854 N->getValueType(0), GenCC);
5855 NumP9Setb++;
5856 return;
5860 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
5861 if (!isPPC64 && isNullConstant(N->getOperand(1)) &&
5862 isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) &&
5863 CC == ISD::SETNE &&
5864 // FIXME: Implement this optzn for PPC64.
5865 N->getValueType(0) == MVT::i32) {
5866 SDNode *Tmp =
5867 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5868 N->getOperand(0), getI32Imm(~0U, dl));
5869 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5870 N->getOperand(0), SDValue(Tmp, 1));
5871 return;
5874 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5876 if (N->getValueType(0) == MVT::i1) {
5877 // An i1 select is: (c & t) | (!c & f).
5878 bool Inv;
5879 unsigned Idx = getCRIdxForSetCC(CC, Inv);
5881 unsigned SRI;
5882 switch (Idx) {
5883 default: llvm_unreachable("Invalid CC index");
5884 case 0: SRI = PPC::sub_lt; break;
5885 case 1: SRI = PPC::sub_gt; break;
5886 case 2: SRI = PPC::sub_eq; break;
5887 case 3: SRI = PPC::sub_un; break;
5890 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5892 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5893 CCBit, CCBit), 0);
5894 SDValue C = Inv ? NotCCBit : CCBit,
5895 NotC = Inv ? CCBit : NotCCBit;
5897 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5898 C, N->getOperand(2)), 0);
5899 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5900 NotC, N->getOperand(3)), 0);
5902 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5903 return;
5906 unsigned BROpc =
5907 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5909 unsigned SelectCCOp;
5910 if (N->getValueType(0) == MVT::i32)
5911 SelectCCOp = PPC::SELECT_CC_I4;
5912 else if (N->getValueType(0) == MVT::i64)
5913 SelectCCOp = PPC::SELECT_CC_I8;
5914 else if (N->getValueType(0) == MVT::f32) {
5915 if (Subtarget->hasP8Vector())
5916 SelectCCOp = PPC::SELECT_CC_VSSRC;
5917 else if (Subtarget->hasSPE())
5918 SelectCCOp = PPC::SELECT_CC_SPE4;
5919 else
5920 SelectCCOp = PPC::SELECT_CC_F4;
5921 } else if (N->getValueType(0) == MVT::f64) {
5922 if (Subtarget->hasVSX())
5923 SelectCCOp = PPC::SELECT_CC_VSFRC;
5924 else if (Subtarget->hasSPE())
5925 SelectCCOp = PPC::SELECT_CC_SPE;
5926 else
5927 SelectCCOp = PPC::SELECT_CC_F8;
5928 } else if (N->getValueType(0) == MVT::f128)
5929 SelectCCOp = PPC::SELECT_CC_F16;
5930 else if (Subtarget->hasSPE())
5931 SelectCCOp = PPC::SELECT_CC_SPE;
5932 else if (N->getValueType(0) == MVT::v2f64 ||
5933 N->getValueType(0) == MVT::v2i64)
5934 SelectCCOp = PPC::SELECT_CC_VSRC;
5935 else
5936 SelectCCOp = PPC::SELECT_CC_VRRC;
5938 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5939 getI32Imm(BROpc, dl) };
5940 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5941 return;
5943 case ISD::VECTOR_SHUFFLE:
5944 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5945 N->getValueType(0) == MVT::v2i64)) {
5946 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5948 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5949 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5950 unsigned DM[2];
5952 for (int i = 0; i < 2; ++i)
5953 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5954 DM[i] = 0;
5955 else
5956 DM[i] = 1;
5958 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5959 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5960 isa<LoadSDNode>(Op1.getOperand(0))) {
5961 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5962 SDValue Base, Offset;
5964 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5965 (LD->getMemoryVT() == MVT::f64 ||
5966 LD->getMemoryVT() == MVT::i64) &&
5967 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5968 SDValue Chain = LD->getChain();
5969 SDValue Ops[] = { Base, Offset, Chain };
5970 MachineMemOperand *MemOp = LD->getMemOperand();
5971 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5972 N->getValueType(0), Ops);
5973 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5974 return;
5978 // For little endian, we must swap the input operands and adjust
5979 // the mask elements (reverse and invert them).
5980 if (Subtarget->isLittleEndian()) {
5981 std::swap(Op1, Op2);
5982 unsigned tmp = DM[0];
5983 DM[0] = 1 - DM[1];
5984 DM[1] = 1 - tmp;
5987 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5988 MVT::i32);
5989 SDValue Ops[] = { Op1, Op2, DMV };
5990 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5991 return;
5994 break;
5995 case PPCISD::BDNZ:
5996 case PPCISD::BDZ: {
5997 bool IsPPC64 = Subtarget->isPPC64();
5998 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5999 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
6000 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
6001 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
6002 MVT::Other, Ops);
6003 return;
6005 case PPCISD::COND_BRANCH: {
6006 // Op #0 is the Chain.
6007 // Op #1 is the PPC::PRED_* number.
6008 // Op #2 is the CR#
6009 // Op #3 is the Dest MBB
6010 // Op #4 is the Flag.
6011 // Prevent PPC::PRED_* from being selected into LI.
6012 unsigned PCC = N->getConstantOperandVal(1);
6013 if (EnableBranchHint)
6014 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
6016 SDValue Pred = getI32Imm(PCC, dl);
6017 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
6018 N->getOperand(0), N->getOperand(4) };
6019 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6020 return;
6022 case ISD::BR_CC: {
6023 if (tryFoldSWTestBRCC(N))
6024 return;
6025 if (trySelectLoopCountIntrinsic(N))
6026 return;
6027 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6028 unsigned PCC =
6029 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
6031 if (N->getOperand(2).getValueType() == MVT::i1) {
6032 unsigned Opc;
6033 bool Swap;
6034 switch (PCC) {
6035 default: llvm_unreachable("Unexpected Boolean-operand predicate");
6036 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
6037 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
6038 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
6039 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
6040 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
6041 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
6044 // A signed comparison of i1 values produces the opposite result to an
6045 // unsigned one if the condition code includes less-than or greater-than.
6046 // This is because 1 is the most negative signed i1 number and the most
6047 // positive unsigned i1 number. The CR-logical operations used for such
6048 // comparisons are non-commutative so for signed comparisons vs. unsigned
6049 // ones, the input operands just need to be swapped.
6050 if (ISD::isSignedIntSetCC(CC))
6051 Swap = !Swap;
6053 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
6054 N->getOperand(Swap ? 3 : 2),
6055 N->getOperand(Swap ? 2 : 3)), 0);
6056 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
6057 N->getOperand(0));
6058 return;
6061 if (EnableBranchHint)
6062 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
6064 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
6065 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
6066 N->getOperand(4), N->getOperand(0) };
6067 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6068 return;
6070 case ISD::BRIND: {
6071 // FIXME: Should custom lower this.
6072 SDValue Chain = N->getOperand(0);
6073 SDValue Target = N->getOperand(1);
6074 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
6075 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
6076 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
6077 Chain), 0);
6078 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
6079 return;
6081 case PPCISD::TOC_ENTRY: {
6082 const bool isPPC64 = Subtarget->isPPC64();
6083 const bool isELFABI = Subtarget->isSVR4ABI();
6084 const bool isAIXABI = Subtarget->isAIXABI();
6086 // PowerPC only support small, medium and large code model.
6087 const CodeModel::Model CModel = getCodeModel(*Subtarget, TM, N);
6089 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
6090 "PowerPC doesn't support tiny or kernel code models.");
6092 if (isAIXABI && CModel == CodeModel::Medium)
6093 report_fatal_error("Medium code model is not supported on AIX.");
6095 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
6096 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
6097 // small code model, we need to check for a toc-data attribute.
6098 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
6099 break;
6101 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
6102 EVT OperandTy) {
6103 SDValue GA = TocEntry->getOperand(0);
6104 SDValue TocBase = TocEntry->getOperand(1);
6105 SDNode *MN = nullptr;
6106 if (OpCode == PPC::ADDItoc || OpCode == PPC::ADDItoc8)
6107 // toc-data access doesn't involve in loading from got, no need to
6108 // keep memory operands.
6109 MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, TocBase, GA);
6110 else {
6111 MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
6112 transferMemOperands(TocEntry, MN);
6114 ReplaceNode(TocEntry, MN);
6117 // Handle 32-bit small code model.
6118 if (!isPPC64 && CModel == CodeModel::Small) {
6119 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
6120 // PPC::ADDItoc, or PPC::LWZtoc
6121 if (isELFABI) {
6122 assert(TM.isPositionIndependent() &&
6123 "32-bit ELF can only have TOC entries in position independent"
6124 " code.");
6125 // 32-bit ELF always uses a small code model toc access.
6126 replaceWith(PPC::LWZtoc, N, MVT::i32);
6127 return;
6130 assert(isAIXABI && "ELF ABI already handled");
6132 if (hasTocDataAttr(N->getOperand(0))) {
6133 replaceWith(PPC::ADDItoc, N, MVT::i32);
6134 return;
6137 replaceWith(PPC::LWZtoc, N, MVT::i32);
6138 return;
6141 if (isPPC64 && CModel == CodeModel::Small) {
6142 assert(isAIXABI && "ELF ABI handled in common SelectCode");
6144 if (hasTocDataAttr(N->getOperand(0))) {
6145 replaceWith(PPC::ADDItoc8, N, MVT::i64);
6146 return;
6148 // Break if it doesn't have toc data attribute. Proceed with common
6149 // SelectCode.
6150 break;
6153 assert(CModel != CodeModel::Small && "All small code models handled.");
6155 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
6156 " ELF/AIX or 32-bit AIX in the following.");
6158 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode,
6159 // 64-bit medium (ELF-only), or 64-bit large (ELF and AIX) code model code
6160 // that does not contain TOC data symbols. We generate two instructions as
6161 // described below. The first source operand is a symbol reference. If it
6162 // must be referenced via the TOC according to Subtarget, we generate:
6163 // [32-bit AIX]
6164 // LWZtocL(@sym, ADDIStocHA(%r2, @sym))
6165 // [64-bit ELF/AIX]
6166 // LDtocL(@sym, ADDIStocHA8(%x2, @sym))
6167 // Otherwise for medium code model ELF we generate:
6168 // ADDItocL8(ADDIStocHA8(%x2, @sym), @sym)
6170 // And finally for AIX with toc-data we generate:
6171 // [32-bit AIX]
6172 // ADDItocL(ADDIStocHA(%x2, @sym), @sym)
6173 // [64-bit AIX]
6174 // ADDItocL8(ADDIStocHA8(%x2, @sym), @sym)
6176 SDValue GA = N->getOperand(0);
6177 SDValue TOCbase = N->getOperand(1);
6179 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
6180 SDNode *Tmp = CurDAG->getMachineNode(
6181 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
6183 // On AIX, if the symbol has the toc-data attribute it will be defined
6184 // in the TOC entry, so we use an ADDItocL/ADDItocL8.
6185 if (isAIXABI && hasTocDataAttr(GA)) {
6186 ReplaceNode(
6187 N, CurDAG->getMachineNode(isPPC64 ? PPC::ADDItocL8 : PPC::ADDItocL,
6188 dl, VT, SDValue(Tmp, 0), GA));
6189 return;
6192 if (PPCLowering->isAccessedAsGotIndirect(GA)) {
6193 // If it is accessed as got-indirect, we need an extra LWZ/LD to load
6194 // the address.
6195 SDNode *MN = CurDAG->getMachineNode(
6196 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
6198 transferMemOperands(N, MN);
6199 ReplaceNode(N, MN);
6200 return;
6203 assert(isPPC64 && "TOC_ENTRY already handled for 32-bit.");
6204 // Build the address relative to the TOC-pointer.
6205 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL8, dl, MVT::i64,
6206 SDValue(Tmp, 0), GA));
6207 return;
6209 case PPCISD::PPC32_PICGOT:
6210 // Generate a PIC-safe GOT reference.
6211 assert(Subtarget->is32BitELFABI() &&
6212 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6213 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6214 PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6215 MVT::i32);
6216 return;
6218 case PPCISD::VADD_SPLAT: {
6219 // This expands into one of three sequences, depending on whether
6220 // the first operand is odd or even, positive or negative.
6221 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6222 isa<ConstantSDNode>(N->getOperand(1)) &&
6223 "Invalid operand on VADD_SPLAT!");
6225 int Elt = N->getConstantOperandVal(0);
6226 int EltSize = N->getConstantOperandVal(1);
6227 unsigned Opc1, Opc2, Opc3;
6228 EVT VT;
6230 if (EltSize == 1) {
6231 Opc1 = PPC::VSPLTISB;
6232 Opc2 = PPC::VADDUBM;
6233 Opc3 = PPC::VSUBUBM;
6234 VT = MVT::v16i8;
6235 } else if (EltSize == 2) {
6236 Opc1 = PPC::VSPLTISH;
6237 Opc2 = PPC::VADDUHM;
6238 Opc3 = PPC::VSUBUHM;
6239 VT = MVT::v8i16;
6240 } else {
6241 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6242 Opc1 = PPC::VSPLTISW;
6243 Opc2 = PPC::VADDUWM;
6244 Opc3 = PPC::VSUBUWM;
6245 VT = MVT::v4i32;
6248 if ((Elt & 1) == 0) {
6249 // Elt is even, in the range [-32,-18] + [16,30].
6251 // Convert: VADD_SPLAT elt, size
6252 // Into: tmp = VSPLTIS[BHW] elt
6253 // VADDU[BHW]M tmp, tmp
6254 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
6255 SDValue EltVal = getI32Imm(Elt >> 1, dl);
6256 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6257 SDValue TmpVal = SDValue(Tmp, 0);
6258 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6259 return;
6260 } else if (Elt > 0) {
6261 // Elt is odd and positive, in the range [17,31].
6263 // Convert: VADD_SPLAT elt, size
6264 // Into: tmp1 = VSPLTIS[BHW] elt-16
6265 // tmp2 = VSPLTIS[BHW] -16
6266 // VSUBU[BHW]M tmp1, tmp2
6267 SDValue EltVal = getI32Imm(Elt - 16, dl);
6268 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6269 EltVal = getI32Imm(-16, dl);
6270 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6271 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6272 SDValue(Tmp2, 0)));
6273 return;
6274 } else {
6275 // Elt is odd and negative, in the range [-31,-17].
6277 // Convert: VADD_SPLAT elt, size
6278 // Into: tmp1 = VSPLTIS[BHW] elt+16
6279 // tmp2 = VSPLTIS[BHW] -16
6280 // VADDU[BHW]M tmp1, tmp2
6281 SDValue EltVal = getI32Imm(Elt + 16, dl);
6282 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6283 EltVal = getI32Imm(-16, dl);
6284 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6285 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6286 SDValue(Tmp2, 0)));
6287 return;
6290 case PPCISD::LD_SPLAT: {
6291 // Here we want to handle splat load for type v16i8 and v8i16 when there is
6292 // no direct move, we don't need to use stack for this case. If target has
6293 // direct move, we should be able to get the best selection in the .td file.
6294 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6295 break;
6297 EVT Type = N->getValueType(0);
6298 if (Type != MVT::v16i8 && Type != MVT::v8i16)
6299 break;
6301 // If the alignment for the load is 16 or bigger, we don't need the
6302 // permutated mask to get the required value. The value must be the 0
6303 // element in big endian target or 7/15 in little endian target in the
6304 // result vsx register of lvx instruction.
6305 // Select the instruction in the .td file.
6306 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6307 isOffsetMultipleOf(N, 16))
6308 break;
6310 SDValue ZeroReg =
6311 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6312 Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6313 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6314 // v16i8 LD_SPLAT addr
6315 // ======>
6316 // Mask = LVSR/LVSL 0, addr
6317 // LoadLow = LVX 0, addr
6318 // Perm = VPERM LoadLow, LoadLow, Mask
6319 // Splat = VSPLTB 15/0, Perm
6321 // v8i16 LD_SPLAT addr
6322 // ======>
6323 // Mask = LVSR/LVSL 0, addr
6324 // LoadLow = LVX 0, addr
6325 // LoadHigh = LVX (LI, 1), addr
6326 // Perm = VPERM LoadLow, LoadHigh, Mask
6327 // Splat = VSPLTH 7/0, Perm
6328 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6329 unsigned SplatElemIndex =
6330 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6332 SDNode *Mask = CurDAG->getMachineNode(
6333 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6334 N->getOperand(1));
6336 SDNode *LoadLow =
6337 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6338 {ZeroReg, N->getOperand(1), N->getOperand(0)});
6340 SDNode *LoadHigh = LoadLow;
6341 if (Type == MVT::v8i16) {
6342 LoadHigh = CurDAG->getMachineNode(
6343 PPC::LVX, dl, MVT::v16i8, MVT::Other,
6344 {SDValue(CurDAG->getMachineNode(
6345 LIOpcode, dl, MVT::i32,
6346 CurDAG->getTargetConstant(1, dl, MVT::i8)),
6348 N->getOperand(1), SDValue(LoadLow, 1)});
6351 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6352 transferMemOperands(N, LoadHigh);
6354 SDNode *Perm =
6355 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6356 SDValue(LoadHigh, 0), SDValue(Mask, 0));
6357 CurDAG->SelectNodeTo(N, SplatOp, Type,
6358 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6359 SDValue(Perm, 0));
6360 return;
6364 SelectCode(N);
6367 // If the target supports the cmpb instruction, do the idiom recognition here.
6368 // We don't do this as a DAG combine because we don't want to do it as nodes
6369 // are being combined (because we might miss part of the eventual idiom). We
6370 // don't want to do it during instruction selection because we want to reuse
6371 // the logic for lowering the masking operations already part of the
6372 // instruction selector.
6373 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6374 SDLoc dl(N);
6376 assert(N->getOpcode() == ISD::OR &&
6377 "Only OR nodes are supported for CMPB");
6379 SDValue Res;
6380 if (!Subtarget->hasCMPB())
6381 return Res;
6383 if (N->getValueType(0) != MVT::i32 &&
6384 N->getValueType(0) != MVT::i64)
6385 return Res;
6387 EVT VT = N->getValueType(0);
6389 SDValue RHS, LHS;
6390 bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6391 uint64_t Mask = 0, Alt = 0;
6393 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6394 uint64_t &Mask, uint64_t &Alt,
6395 SDValue &LHS, SDValue &RHS) {
6396 if (O.getOpcode() != ISD::SELECT_CC)
6397 return false;
6398 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6400 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6401 !isa<ConstantSDNode>(O.getOperand(3)))
6402 return false;
6404 uint64_t PM = O.getConstantOperandVal(2);
6405 uint64_t PAlt = O.getConstantOperandVal(3);
6406 for (b = 0; b < 8; ++b) {
6407 uint64_t Mask = UINT64_C(0xFF) << (8*b);
6408 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6409 break;
6412 if (b == 8)
6413 return false;
6414 Mask |= PM;
6415 Alt |= PAlt;
6417 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6418 O.getConstantOperandVal(1) != 0) {
6419 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6420 if (Op0.getOpcode() == ISD::TRUNCATE)
6421 Op0 = Op0.getOperand(0);
6422 if (Op1.getOpcode() == ISD::TRUNCATE)
6423 Op1 = Op1.getOperand(0);
6425 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6426 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6427 isa<ConstantSDNode>(Op0.getOperand(1))) {
6429 unsigned Bits = Op0.getValueSizeInBits();
6430 if (b != Bits/8-1)
6431 return false;
6432 if (Op0.getConstantOperandVal(1) != Bits-8)
6433 return false;
6435 LHS = Op0.getOperand(0);
6436 RHS = Op1.getOperand(0);
6437 return true;
6440 // When we have small integers (i16 to be specific), the form present
6441 // post-legalization uses SETULT in the SELECT_CC for the
6442 // higher-order byte, depending on the fact that the
6443 // even-higher-order bytes are known to all be zero, for example:
6444 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6445 // (so when the second byte is the same, because all higher-order
6446 // bits from bytes 3 and 4 are known to be zero, the result of the
6447 // xor can be at most 255)
6448 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6449 isa<ConstantSDNode>(O.getOperand(1))) {
6451 uint64_t ULim = O.getConstantOperandVal(1);
6452 if (ULim != (UINT64_C(1) << b*8))
6453 return false;
6455 // Now we need to make sure that the upper bytes are known to be
6456 // zero.
6457 unsigned Bits = Op0.getValueSizeInBits();
6458 if (!CurDAG->MaskedValueIsZero(
6459 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6460 return false;
6462 LHS = Op0.getOperand(0);
6463 RHS = Op0.getOperand(1);
6464 return true;
6467 return false;
6470 if (CC != ISD::SETEQ)
6471 return false;
6473 SDValue Op = O.getOperand(0);
6474 if (Op.getOpcode() == ISD::AND) {
6475 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6476 return false;
6477 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6478 return false;
6480 SDValue XOR = Op.getOperand(0);
6481 if (XOR.getOpcode() == ISD::TRUNCATE)
6482 XOR = XOR.getOperand(0);
6483 if (XOR.getOpcode() != ISD::XOR)
6484 return false;
6486 LHS = XOR.getOperand(0);
6487 RHS = XOR.getOperand(1);
6488 return true;
6489 } else if (Op.getOpcode() == ISD::SRL) {
6490 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6491 return false;
6492 unsigned Bits = Op.getValueSizeInBits();
6493 if (b != Bits/8-1)
6494 return false;
6495 if (Op.getConstantOperandVal(1) != Bits-8)
6496 return false;
6498 SDValue XOR = Op.getOperand(0);
6499 if (XOR.getOpcode() == ISD::TRUNCATE)
6500 XOR = XOR.getOperand(0);
6501 if (XOR.getOpcode() != ISD::XOR)
6502 return false;
6504 LHS = XOR.getOperand(0);
6505 RHS = XOR.getOperand(1);
6506 return true;
6509 return false;
6512 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6513 while (!Queue.empty()) {
6514 SDValue V = Queue.pop_back_val();
6516 for (const SDValue &O : V.getNode()->ops()) {
6517 unsigned b = 0;
6518 uint64_t M = 0, A = 0;
6519 SDValue OLHS, ORHS;
6520 if (O.getOpcode() == ISD::OR) {
6521 Queue.push_back(O);
6522 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6523 if (!LHS) {
6524 LHS = OLHS;
6525 RHS = ORHS;
6526 BytesFound[b] = true;
6527 Mask |= M;
6528 Alt |= A;
6529 } else if ((LHS == ORHS && RHS == OLHS) ||
6530 (RHS == ORHS && LHS == OLHS)) {
6531 BytesFound[b] = true;
6532 Mask |= M;
6533 Alt |= A;
6534 } else {
6535 return Res;
6537 } else {
6538 return Res;
6543 unsigned LastB = 0, BCnt = 0;
6544 for (unsigned i = 0; i < 8; ++i)
6545 if (BytesFound[LastB]) {
6546 ++BCnt;
6547 LastB = i;
6550 if (!LastB || BCnt < 2)
6551 return Res;
6553 // Because we'll be zero-extending the output anyway if don't have a specific
6554 // value for each input byte (via the Mask), we can 'anyext' the inputs.
6555 if (LHS.getValueType() != VT) {
6556 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6557 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6560 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6562 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6563 if (NonTrivialMask && !Alt) {
6564 // Res = Mask & CMPB
6565 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6566 CurDAG->getConstant(Mask, dl, VT));
6567 } else if (Alt) {
6568 // Res = (CMPB & Mask) | (~CMPB & Alt)
6569 // Which, as suggested here:
6570 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6571 // can be written as:
6572 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6573 // useful because the (Alt ^ Mask) can be pre-computed.
6574 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6575 CurDAG->getConstant(Mask ^ Alt, dl, VT));
6576 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6577 CurDAG->getConstant(Alt, dl, VT));
6580 return Res;
6583 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6584 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6585 // involves constant materialization of a 0 or a 1 or both. If the result of
6586 // the extension is then operated upon by some operator that can be constant
6587 // folded with a constant 0 or 1, and that constant can be materialized using
6588 // only one instruction (like a zero or one), then we should fold in those
6589 // operations with the select.
6590 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6591 if (!Subtarget->useCRBits())
6592 return;
6594 if (N->getOpcode() != ISD::ZERO_EXTEND &&
6595 N->getOpcode() != ISD::SIGN_EXTEND &&
6596 N->getOpcode() != ISD::ANY_EXTEND)
6597 return;
6599 if (N->getOperand(0).getValueType() != MVT::i1)
6600 return;
6602 if (!N->hasOneUse())
6603 return;
6605 SDLoc dl(N);
6606 EVT VT = N->getValueType(0);
6607 SDValue Cond = N->getOperand(0);
6608 SDValue ConstTrue =
6609 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6610 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6612 do {
6613 SDNode *User = *N->use_begin();
6614 if (User->getNumOperands() != 2)
6615 break;
6617 auto TryFold = [this, N, User, dl](SDValue Val) {
6618 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6619 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6620 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6622 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6623 User->getValueType(0), {O0, O1});
6626 // FIXME: When the semantics of the interaction between select and undef
6627 // are clearly defined, it may turn out to be unnecessary to break here.
6628 SDValue TrueRes = TryFold(ConstTrue);
6629 if (!TrueRes || TrueRes.isUndef())
6630 break;
6631 SDValue FalseRes = TryFold(ConstFalse);
6632 if (!FalseRes || FalseRes.isUndef())
6633 break;
6635 // For us to materialize these using one instruction, we must be able to
6636 // represent them as signed 16-bit integers.
6637 uint64_t True = TrueRes->getAsZExtVal(), False = FalseRes->getAsZExtVal();
6638 if (!isInt<16>(True) || !isInt<16>(False))
6639 break;
6641 // We can replace User with a new SELECT node, and try again to see if we
6642 // can fold the select with its user.
6643 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6644 N = User;
6645 ConstTrue = TrueRes;
6646 ConstFalse = FalseRes;
6647 } while (N->hasOneUse());
6650 void PPCDAGToDAGISel::PreprocessISelDAG() {
6651 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6653 bool MadeChange = false;
6654 while (Position != CurDAG->allnodes_begin()) {
6655 SDNode *N = &*--Position;
6656 if (N->use_empty())
6657 continue;
6659 SDValue Res;
6660 switch (N->getOpcode()) {
6661 default: break;
6662 case ISD::OR:
6663 Res = combineToCMPB(N);
6664 break;
6667 if (!Res)
6668 foldBoolExts(Res, N);
6670 if (Res) {
6671 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
6672 LLVM_DEBUG(N->dump(CurDAG));
6673 LLVM_DEBUG(dbgs() << "\nNew: ");
6674 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6675 LLVM_DEBUG(dbgs() << "\n");
6677 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6678 MadeChange = true;
6682 if (MadeChange)
6683 CurDAG->RemoveDeadNodes();
6686 /// PostprocessISelDAG - Perform some late peephole optimizations
6687 /// on the DAG representation.
6688 void PPCDAGToDAGISel::PostprocessISelDAG() {
6689 // Skip peepholes at -O0.
6690 if (TM.getOptLevel() == CodeGenOptLevel::None)
6691 return;
6693 PeepholePPC64();
6694 PeepholeCROps();
6695 PeepholePPC64ZExt();
6698 // Check if all users of this node will become isel where the second operand
6699 // is the constant zero. If this is so, and if we can negate the condition,
6700 // then we can flip the true and false operands. This will allow the zero to
6701 // be folded with the isel so that we don't need to materialize a register
6702 // containing zero.
6703 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6704 for (const SDNode *User : N->uses()) {
6705 if (!User->isMachineOpcode())
6706 return false;
6707 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6708 User->getMachineOpcode() != PPC::SELECT_I8)
6709 return false;
6711 SDNode *Op1 = User->getOperand(1).getNode();
6712 SDNode *Op2 = User->getOperand(2).getNode();
6713 // If we have a degenerate select with two equal operands, swapping will
6714 // not do anything, and we may run into an infinite loop.
6715 if (Op1 == Op2)
6716 return false;
6718 if (!Op2->isMachineOpcode())
6719 return false;
6721 if (Op2->getMachineOpcode() != PPC::LI &&
6722 Op2->getMachineOpcode() != PPC::LI8)
6723 return false;
6725 if (!isNullConstant(Op2->getOperand(0)))
6726 return false;
6729 return true;
6732 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6733 SmallVector<SDNode *, 4> ToReplace;
6734 for (SDNode *User : N->uses()) {
6735 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6736 User->getMachineOpcode() == PPC::SELECT_I8) &&
6737 "Must have all select users");
6738 ToReplace.push_back(User);
6741 for (SDNode *User : ToReplace) {
6742 SDNode *ResNode =
6743 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6744 User->getValueType(0), User->getOperand(0),
6745 User->getOperand(2),
6746 User->getOperand(1));
6748 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
6749 LLVM_DEBUG(User->dump(CurDAG));
6750 LLVM_DEBUG(dbgs() << "\nNew: ");
6751 LLVM_DEBUG(ResNode->dump(CurDAG));
6752 LLVM_DEBUG(dbgs() << "\n");
6754 ReplaceUses(User, ResNode);
6758 void PPCDAGToDAGISel::PeepholeCROps() {
6759 bool IsModified;
6760 do {
6761 IsModified = false;
6762 for (SDNode &Node : CurDAG->allnodes()) {
6763 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6764 if (!MachineNode || MachineNode->use_empty())
6765 continue;
6766 SDNode *ResNode = MachineNode;
6768 bool Op1Set = false, Op1Unset = false,
6769 Op1Not = false,
6770 Op2Set = false, Op2Unset = false,
6771 Op2Not = false;
6773 unsigned Opcode = MachineNode->getMachineOpcode();
6774 switch (Opcode) {
6775 default: break;
6776 case PPC::CRAND:
6777 case PPC::CRNAND:
6778 case PPC::CROR:
6779 case PPC::CRXOR:
6780 case PPC::CRNOR:
6781 case PPC::CREQV:
6782 case PPC::CRANDC:
6783 case PPC::CRORC: {
6784 SDValue Op = MachineNode->getOperand(1);
6785 if (Op.isMachineOpcode()) {
6786 if (Op.getMachineOpcode() == PPC::CRSET)
6787 Op2Set = true;
6788 else if (Op.getMachineOpcode() == PPC::CRUNSET)
6789 Op2Unset = true;
6790 else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6791 Op.getOperand(0) == Op.getOperand(1)) ||
6792 Op.getMachineOpcode() == PPC::CRNOT)
6793 Op2Not = true;
6795 [[fallthrough]];
6797 case PPC::BC:
6798 case PPC::BCn:
6799 case PPC::SELECT_I4:
6800 case PPC::SELECT_I8:
6801 case PPC::SELECT_F4:
6802 case PPC::SELECT_F8:
6803 case PPC::SELECT_SPE:
6804 case PPC::SELECT_SPE4:
6805 case PPC::SELECT_VRRC:
6806 case PPC::SELECT_VSFRC:
6807 case PPC::SELECT_VSSRC:
6808 case PPC::SELECT_VSRC: {
6809 SDValue Op = MachineNode->getOperand(0);
6810 if (Op.isMachineOpcode()) {
6811 if (Op.getMachineOpcode() == PPC::CRSET)
6812 Op1Set = true;
6813 else if (Op.getMachineOpcode() == PPC::CRUNSET)
6814 Op1Unset = true;
6815 else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6816 Op.getOperand(0) == Op.getOperand(1)) ||
6817 Op.getMachineOpcode() == PPC::CRNOT)
6818 Op1Not = true;
6821 break;
6824 bool SelectSwap = false;
6825 switch (Opcode) {
6826 default: break;
6827 case PPC::CRAND:
6828 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6829 // x & x = x
6830 ResNode = MachineNode->getOperand(0).getNode();
6831 else if (Op1Set)
6832 // 1 & y = y
6833 ResNode = MachineNode->getOperand(1).getNode();
6834 else if (Op2Set)
6835 // x & 1 = x
6836 ResNode = MachineNode->getOperand(0).getNode();
6837 else if (Op1Unset || Op2Unset)
6838 // x & 0 = 0 & y = 0
6839 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6840 MVT::i1);
6841 else if (Op1Not)
6842 // ~x & y = andc(y, x)
6843 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6844 MVT::i1, MachineNode->getOperand(1),
6845 MachineNode->getOperand(0).
6846 getOperand(0));
6847 else if (Op2Not)
6848 // x & ~y = andc(x, y)
6849 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6850 MVT::i1, MachineNode->getOperand(0),
6851 MachineNode->getOperand(1).
6852 getOperand(0));
6853 else if (AllUsersSelectZero(MachineNode)) {
6854 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6855 MVT::i1, MachineNode->getOperand(0),
6856 MachineNode->getOperand(1));
6857 SelectSwap = true;
6859 break;
6860 case PPC::CRNAND:
6861 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6862 // nand(x, x) -> nor(x, x)
6863 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6864 MVT::i1, MachineNode->getOperand(0),
6865 MachineNode->getOperand(0));
6866 else if (Op1Set)
6867 // nand(1, y) -> nor(y, y)
6868 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6869 MVT::i1, MachineNode->getOperand(1),
6870 MachineNode->getOperand(1));
6871 else if (Op2Set)
6872 // nand(x, 1) -> nor(x, x)
6873 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6874 MVT::i1, MachineNode->getOperand(0),
6875 MachineNode->getOperand(0));
6876 else if (Op1Unset || Op2Unset)
6877 // nand(x, 0) = nand(0, y) = 1
6878 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6879 MVT::i1);
6880 else if (Op1Not)
6881 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6882 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6883 MVT::i1, MachineNode->getOperand(0).
6884 getOperand(0),
6885 MachineNode->getOperand(1));
6886 else if (Op2Not)
6887 // nand(x, ~y) = ~x | y = orc(y, x)
6888 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6889 MVT::i1, MachineNode->getOperand(1).
6890 getOperand(0),
6891 MachineNode->getOperand(0));
6892 else if (AllUsersSelectZero(MachineNode)) {
6893 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6894 MVT::i1, MachineNode->getOperand(0),
6895 MachineNode->getOperand(1));
6896 SelectSwap = true;
6898 break;
6899 case PPC::CROR:
6900 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6901 // x | x = x
6902 ResNode = MachineNode->getOperand(0).getNode();
6903 else if (Op1Set || Op2Set)
6904 // x | 1 = 1 | y = 1
6905 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6906 MVT::i1);
6907 else if (Op1Unset)
6908 // 0 | y = y
6909 ResNode = MachineNode->getOperand(1).getNode();
6910 else if (Op2Unset)
6911 // x | 0 = x
6912 ResNode = MachineNode->getOperand(0).getNode();
6913 else if (Op1Not)
6914 // ~x | y = orc(y, x)
6915 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6916 MVT::i1, MachineNode->getOperand(1),
6917 MachineNode->getOperand(0).
6918 getOperand(0));
6919 else if (Op2Not)
6920 // x | ~y = orc(x, y)
6921 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6922 MVT::i1, MachineNode->getOperand(0),
6923 MachineNode->getOperand(1).
6924 getOperand(0));
6925 else if (AllUsersSelectZero(MachineNode)) {
6926 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6927 MVT::i1, MachineNode->getOperand(0),
6928 MachineNode->getOperand(1));
6929 SelectSwap = true;
6931 break;
6932 case PPC::CRXOR:
6933 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6934 // xor(x, x) = 0
6935 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6936 MVT::i1);
6937 else if (Op1Set)
6938 // xor(1, y) -> nor(y, y)
6939 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6940 MVT::i1, MachineNode->getOperand(1),
6941 MachineNode->getOperand(1));
6942 else if (Op2Set)
6943 // xor(x, 1) -> nor(x, x)
6944 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6945 MVT::i1, MachineNode->getOperand(0),
6946 MachineNode->getOperand(0));
6947 else if (Op1Unset)
6948 // xor(0, y) = y
6949 ResNode = MachineNode->getOperand(1).getNode();
6950 else if (Op2Unset)
6951 // xor(x, 0) = x
6952 ResNode = MachineNode->getOperand(0).getNode();
6953 else if (Op1Not)
6954 // xor(~x, y) = eqv(x, y)
6955 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6956 MVT::i1, MachineNode->getOperand(0).
6957 getOperand(0),
6958 MachineNode->getOperand(1));
6959 else if (Op2Not)
6960 // xor(x, ~y) = eqv(x, y)
6961 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6962 MVT::i1, MachineNode->getOperand(0),
6963 MachineNode->getOperand(1).
6964 getOperand(0));
6965 else if (AllUsersSelectZero(MachineNode)) {
6966 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6967 MVT::i1, MachineNode->getOperand(0),
6968 MachineNode->getOperand(1));
6969 SelectSwap = true;
6971 break;
6972 case PPC::CRNOR:
6973 if (Op1Set || Op2Set)
6974 // nor(1, y) -> 0
6975 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6976 MVT::i1);
6977 else if (Op1Unset)
6978 // nor(0, y) = ~y -> nor(y, y)
6979 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6980 MVT::i1, MachineNode->getOperand(1),
6981 MachineNode->getOperand(1));
6982 else if (Op2Unset)
6983 // nor(x, 0) = ~x
6984 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6985 MVT::i1, MachineNode->getOperand(0),
6986 MachineNode->getOperand(0));
6987 else if (Op1Not)
6988 // nor(~x, y) = andc(x, y)
6989 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6990 MVT::i1, MachineNode->getOperand(0).
6991 getOperand(0),
6992 MachineNode->getOperand(1));
6993 else if (Op2Not)
6994 // nor(x, ~y) = andc(y, x)
6995 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6996 MVT::i1, MachineNode->getOperand(1).
6997 getOperand(0),
6998 MachineNode->getOperand(0));
6999 else if (AllUsersSelectZero(MachineNode)) {
7000 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7001 MVT::i1, MachineNode->getOperand(0),
7002 MachineNode->getOperand(1));
7003 SelectSwap = true;
7005 break;
7006 case PPC::CREQV:
7007 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7008 // eqv(x, x) = 1
7009 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7010 MVT::i1);
7011 else if (Op1Set)
7012 // eqv(1, y) = y
7013 ResNode = MachineNode->getOperand(1).getNode();
7014 else if (Op2Set)
7015 // eqv(x, 1) = x
7016 ResNode = MachineNode->getOperand(0).getNode();
7017 else if (Op1Unset)
7018 // eqv(0, y) = ~y -> nor(y, y)
7019 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7020 MVT::i1, MachineNode->getOperand(1),
7021 MachineNode->getOperand(1));
7022 else if (Op2Unset)
7023 // eqv(x, 0) = ~x
7024 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7025 MVT::i1, MachineNode->getOperand(0),
7026 MachineNode->getOperand(0));
7027 else if (Op1Not)
7028 // eqv(~x, y) = xor(x, y)
7029 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7030 MVT::i1, MachineNode->getOperand(0).
7031 getOperand(0),
7032 MachineNode->getOperand(1));
7033 else if (Op2Not)
7034 // eqv(x, ~y) = xor(x, y)
7035 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7036 MVT::i1, MachineNode->getOperand(0),
7037 MachineNode->getOperand(1).
7038 getOperand(0));
7039 else if (AllUsersSelectZero(MachineNode)) {
7040 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7041 MVT::i1, MachineNode->getOperand(0),
7042 MachineNode->getOperand(1));
7043 SelectSwap = true;
7045 break;
7046 case PPC::CRANDC:
7047 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7048 // andc(x, x) = 0
7049 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7050 MVT::i1);
7051 else if (Op1Set)
7052 // andc(1, y) = ~y
7053 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7054 MVT::i1, MachineNode->getOperand(1),
7055 MachineNode->getOperand(1));
7056 else if (Op1Unset || Op2Set)
7057 // andc(0, y) = andc(x, 1) = 0
7058 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7059 MVT::i1);
7060 else if (Op2Unset)
7061 // andc(x, 0) = x
7062 ResNode = MachineNode->getOperand(0).getNode();
7063 else if (Op1Not)
7064 // andc(~x, y) = ~(x | y) = nor(x, y)
7065 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7066 MVT::i1, MachineNode->getOperand(0).
7067 getOperand(0),
7068 MachineNode->getOperand(1));
7069 else if (Op2Not)
7070 // andc(x, ~y) = x & y
7071 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
7072 MVT::i1, MachineNode->getOperand(0),
7073 MachineNode->getOperand(1).
7074 getOperand(0));
7075 else if (AllUsersSelectZero(MachineNode)) {
7076 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
7077 MVT::i1, MachineNode->getOperand(1),
7078 MachineNode->getOperand(0));
7079 SelectSwap = true;
7081 break;
7082 case PPC::CRORC:
7083 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7084 // orc(x, x) = 1
7085 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7086 MVT::i1);
7087 else if (Op1Set || Op2Unset)
7088 // orc(1, y) = orc(x, 0) = 1
7089 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7090 MVT::i1);
7091 else if (Op2Set)
7092 // orc(x, 1) = x
7093 ResNode = MachineNode->getOperand(0).getNode();
7094 else if (Op1Unset)
7095 // orc(0, y) = ~y
7096 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7097 MVT::i1, MachineNode->getOperand(1),
7098 MachineNode->getOperand(1));
7099 else if (Op1Not)
7100 // orc(~x, y) = ~(x & y) = nand(x, y)
7101 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
7102 MVT::i1, MachineNode->getOperand(0).
7103 getOperand(0),
7104 MachineNode->getOperand(1));
7105 else if (Op2Not)
7106 // orc(x, ~y) = x | y
7107 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7108 MVT::i1, MachineNode->getOperand(0),
7109 MachineNode->getOperand(1).
7110 getOperand(0));
7111 else if (AllUsersSelectZero(MachineNode)) {
7112 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
7113 MVT::i1, MachineNode->getOperand(1),
7114 MachineNode->getOperand(0));
7115 SelectSwap = true;
7117 break;
7118 case PPC::SELECT_I4:
7119 case PPC::SELECT_I8:
7120 case PPC::SELECT_F4:
7121 case PPC::SELECT_F8:
7122 case PPC::SELECT_SPE:
7123 case PPC::SELECT_SPE4:
7124 case PPC::SELECT_VRRC:
7125 case PPC::SELECT_VSFRC:
7126 case PPC::SELECT_VSSRC:
7127 case PPC::SELECT_VSRC:
7128 if (Op1Set)
7129 ResNode = MachineNode->getOperand(1).getNode();
7130 else if (Op1Unset)
7131 ResNode = MachineNode->getOperand(2).getNode();
7132 else if (Op1Not)
7133 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
7134 SDLoc(MachineNode),
7135 MachineNode->getValueType(0),
7136 MachineNode->getOperand(0).
7137 getOperand(0),
7138 MachineNode->getOperand(2),
7139 MachineNode->getOperand(1));
7140 break;
7141 case PPC::BC:
7142 case PPC::BCn:
7143 if (Op1Not)
7144 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
7145 PPC::BC,
7146 SDLoc(MachineNode),
7147 MVT::Other,
7148 MachineNode->getOperand(0).
7149 getOperand(0),
7150 MachineNode->getOperand(1),
7151 MachineNode->getOperand(2));
7152 // FIXME: Handle Op1Set, Op1Unset here too.
7153 break;
7156 // If we're inverting this node because it is used only by selects that
7157 // we'd like to swap, then swap the selects before the node replacement.
7158 if (SelectSwap)
7159 SwapAllSelectUsers(MachineNode);
7161 if (ResNode != MachineNode) {
7162 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
7163 LLVM_DEBUG(MachineNode->dump(CurDAG));
7164 LLVM_DEBUG(dbgs() << "\nNew: ");
7165 LLVM_DEBUG(ResNode->dump(CurDAG));
7166 LLVM_DEBUG(dbgs() << "\n");
7168 ReplaceUses(MachineNode, ResNode);
7169 IsModified = true;
7172 if (IsModified)
7173 CurDAG->RemoveDeadNodes();
7174 } while (IsModified);
7177 // Gather the set of 32-bit operations that are known to have their
7178 // higher-order 32 bits zero, where ToPromote contains all such operations.
7179 static bool PeepholePPC64ZExtGather(SDValue Op32,
7180 SmallPtrSetImpl<SDNode *> &ToPromote) {
7181 if (!Op32.isMachineOpcode())
7182 return false;
7184 // First, check for the "frontier" instructions (those that will clear the
7185 // higher-order 32 bits.
7187 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
7188 // around. If it does not, then these instructions will clear the
7189 // higher-order bits.
7190 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
7191 Op32.getMachineOpcode() == PPC::RLWNM) &&
7192 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
7193 ToPromote.insert(Op32.getNode());
7194 return true;
7197 // SLW and SRW always clear the higher-order bits.
7198 if (Op32.getMachineOpcode() == PPC::SLW ||
7199 Op32.getMachineOpcode() == PPC::SRW) {
7200 ToPromote.insert(Op32.getNode());
7201 return true;
7204 // For LI and LIS, we need the immediate to be positive (so that it is not
7205 // sign extended).
7206 if (Op32.getMachineOpcode() == PPC::LI ||
7207 Op32.getMachineOpcode() == PPC::LIS) {
7208 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7209 return false;
7211 ToPromote.insert(Op32.getNode());
7212 return true;
7215 // LHBRX and LWBRX always clear the higher-order bits.
7216 if (Op32.getMachineOpcode() == PPC::LHBRX ||
7217 Op32.getMachineOpcode() == PPC::LWBRX) {
7218 ToPromote.insert(Op32.getNode());
7219 return true;
7222 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7223 if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7224 Op32.getMachineOpcode() == PPC::CNTTZW) {
7225 ToPromote.insert(Op32.getNode());
7226 return true;
7229 // Next, check for those instructions we can look through.
7231 // Assuming the mask does not wrap around, then the higher-order bits are
7232 // taken directly from the first operand.
7233 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7234 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7235 SmallPtrSet<SDNode *, 16> ToPromote1;
7236 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7237 return false;
7239 ToPromote.insert(Op32.getNode());
7240 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7241 return true;
7244 // For OR, the higher-order bits are zero if that is true for both operands.
7245 // For SELECT_I4, the same is true (but the relevant operand numbers are
7246 // shifted by 1).
7247 if (Op32.getMachineOpcode() == PPC::OR ||
7248 Op32.getMachineOpcode() == PPC::SELECT_I4) {
7249 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7250 SmallPtrSet<SDNode *, 16> ToPromote1;
7251 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7252 return false;
7253 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7254 return false;
7256 ToPromote.insert(Op32.getNode());
7257 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7258 return true;
7261 // For ORI and ORIS, we need the higher-order bits of the first operand to be
7262 // zero, and also for the constant to be positive (so that it is not sign
7263 // extended).
7264 if (Op32.getMachineOpcode() == PPC::ORI ||
7265 Op32.getMachineOpcode() == PPC::ORIS) {
7266 SmallPtrSet<SDNode *, 16> ToPromote1;
7267 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7268 return false;
7269 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7270 return false;
7272 ToPromote.insert(Op32.getNode());
7273 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7274 return true;
7277 // The higher-order bits of AND are zero if that is true for at least one of
7278 // the operands.
7279 if (Op32.getMachineOpcode() == PPC::AND) {
7280 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7281 bool Op0OK =
7282 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7283 bool Op1OK =
7284 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7285 if (!Op0OK && !Op1OK)
7286 return false;
7288 ToPromote.insert(Op32.getNode());
7290 if (Op0OK)
7291 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7293 if (Op1OK)
7294 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7296 return true;
7299 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7300 // of the first operand, or if the second operand is positive (so that it is
7301 // not sign extended).
7302 if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7303 Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7304 SmallPtrSet<SDNode *, 16> ToPromote1;
7305 bool Op0OK =
7306 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7307 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7308 if (!Op0OK && !Op1OK)
7309 return false;
7311 ToPromote.insert(Op32.getNode());
7313 if (Op0OK)
7314 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7316 return true;
7319 return false;
7322 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7323 if (!Subtarget->isPPC64())
7324 return;
7326 // When we zero-extend from i32 to i64, we use a pattern like this:
7327 // def : Pat<(i64 (zext i32:$in)),
7328 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7329 // 0, 32)>;
7330 // There are several 32-bit shift/rotate instructions, however, that will
7331 // clear the higher-order bits of their output, rendering the RLDICL
7332 // unnecessary. When that happens, we remove it here, and redefine the
7333 // relevant 32-bit operation to be a 64-bit operation.
7335 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7337 bool MadeChange = false;
7338 while (Position != CurDAG->allnodes_begin()) {
7339 SDNode *N = &*--Position;
7340 // Skip dead nodes and any non-machine opcodes.
7341 if (N->use_empty() || !N->isMachineOpcode())
7342 continue;
7344 if (N->getMachineOpcode() != PPC::RLDICL)
7345 continue;
7347 if (N->getConstantOperandVal(1) != 0 ||
7348 N->getConstantOperandVal(2) != 32)
7349 continue;
7351 SDValue ISR = N->getOperand(0);
7352 if (!ISR.isMachineOpcode() ||
7353 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7354 continue;
7356 if (!ISR.hasOneUse())
7357 continue;
7359 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7360 continue;
7362 SDValue IDef = ISR.getOperand(0);
7363 if (!IDef.isMachineOpcode() ||
7364 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7365 continue;
7367 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7368 // can get rid of it.
7370 SDValue Op32 = ISR->getOperand(1);
7371 if (!Op32.isMachineOpcode())
7372 continue;
7374 // There are some 32-bit instructions that always clear the high-order 32
7375 // bits, there are also some instructions (like AND) that we can look
7376 // through.
7377 SmallPtrSet<SDNode *, 16> ToPromote;
7378 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7379 continue;
7381 // If the ToPromote set contains nodes that have uses outside of the set
7382 // (except for the original INSERT_SUBREG), then abort the transformation.
7383 bool OutsideUse = false;
7384 for (SDNode *PN : ToPromote) {
7385 for (SDNode *UN : PN->uses()) {
7386 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7387 OutsideUse = true;
7388 break;
7392 if (OutsideUse)
7393 break;
7395 if (OutsideUse)
7396 continue;
7398 MadeChange = true;
7400 // We now know that this zero extension can be removed by promoting to
7401 // nodes in ToPromote to 64-bit operations, where for operations in the
7402 // frontier of the set, we need to insert INSERT_SUBREGs for their
7403 // operands.
7404 for (SDNode *PN : ToPromote) {
7405 unsigned NewOpcode;
7406 switch (PN->getMachineOpcode()) {
7407 default:
7408 llvm_unreachable("Don't know the 64-bit variant of this instruction");
7409 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
7410 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
7411 case PPC::SLW: NewOpcode = PPC::SLW8; break;
7412 case PPC::SRW: NewOpcode = PPC::SRW8; break;
7413 case PPC::LI: NewOpcode = PPC::LI8; break;
7414 case PPC::LIS: NewOpcode = PPC::LIS8; break;
7415 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
7416 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
7417 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
7418 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
7419 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
7420 case PPC::OR: NewOpcode = PPC::OR8; break;
7421 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7422 case PPC::ORI: NewOpcode = PPC::ORI8; break;
7423 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
7424 case PPC::AND: NewOpcode = PPC::AND8; break;
7425 case PPC::ANDI_rec:
7426 NewOpcode = PPC::ANDI8_rec;
7427 break;
7428 case PPC::ANDIS_rec:
7429 NewOpcode = PPC::ANDIS8_rec;
7430 break;
7433 // Note: During the replacement process, the nodes will be in an
7434 // inconsistent state (some instructions will have operands with values
7435 // of the wrong type). Once done, however, everything should be right
7436 // again.
7438 SmallVector<SDValue, 4> Ops;
7439 for (const SDValue &V : PN->ops()) {
7440 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7441 !isa<ConstantSDNode>(V)) {
7442 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7443 SDNode *ReplOp =
7444 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7445 ISR.getNode()->getVTList(), ReplOpOps);
7446 Ops.push_back(SDValue(ReplOp, 0));
7447 } else {
7448 Ops.push_back(V);
7452 // Because all to-be-promoted nodes only have users that are other
7453 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7454 // the i32 result value type with i64.
7456 SmallVector<EVT, 2> NewVTs;
7457 SDVTList VTs = PN->getVTList();
7458 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7459 if (VTs.VTs[i] == MVT::i32)
7460 NewVTs.push_back(MVT::i64);
7461 else
7462 NewVTs.push_back(VTs.VTs[i]);
7464 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
7465 LLVM_DEBUG(PN->dump(CurDAG));
7467 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7469 LLVM_DEBUG(dbgs() << "\nNew: ");
7470 LLVM_DEBUG(PN->dump(CurDAG));
7471 LLVM_DEBUG(dbgs() << "\n");
7474 // Now we replace the original zero extend and its associated INSERT_SUBREG
7475 // with the value feeding the INSERT_SUBREG (which has now been promoted to
7476 // return an i64).
7478 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
7479 LLVM_DEBUG(N->dump(CurDAG));
7480 LLVM_DEBUG(dbgs() << "\nNew: ");
7481 LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7482 LLVM_DEBUG(dbgs() << "\n");
7484 ReplaceUses(N, Op32.getNode());
7487 if (MadeChange)
7488 CurDAG->RemoveDeadNodes();
7491 static bool isVSXSwap(SDValue N) {
7492 if (!N->isMachineOpcode())
7493 return false;
7494 unsigned Opc = N->getMachineOpcode();
7496 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7497 // operand is 2.
7498 if (Opc == PPC::XXPERMDIs) {
7499 return isa<ConstantSDNode>(N->getOperand(1)) &&
7500 N->getConstantOperandVal(1) == 2;
7501 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7502 return N->getOperand(0) == N->getOperand(1) &&
7503 isa<ConstantSDNode>(N->getOperand(2)) &&
7504 N->getConstantOperandVal(2) == 2;
7507 return false;
7510 // TODO: Make this complete and replace with a table-gen bit.
7511 static bool isLaneInsensitive(SDValue N) {
7512 if (!N->isMachineOpcode())
7513 return false;
7514 unsigned Opc = N->getMachineOpcode();
7516 switch (Opc) {
7517 default:
7518 return false;
7519 case PPC::VAVGSB:
7520 case PPC::VAVGUB:
7521 case PPC::VAVGSH:
7522 case PPC::VAVGUH:
7523 case PPC::VAVGSW:
7524 case PPC::VAVGUW:
7525 case PPC::VMAXFP:
7526 case PPC::VMAXSB:
7527 case PPC::VMAXUB:
7528 case PPC::VMAXSH:
7529 case PPC::VMAXUH:
7530 case PPC::VMAXSW:
7531 case PPC::VMAXUW:
7532 case PPC::VMINFP:
7533 case PPC::VMINSB:
7534 case PPC::VMINUB:
7535 case PPC::VMINSH:
7536 case PPC::VMINUH:
7537 case PPC::VMINSW:
7538 case PPC::VMINUW:
7539 case PPC::VADDFP:
7540 case PPC::VADDUBM:
7541 case PPC::VADDUHM:
7542 case PPC::VADDUWM:
7543 case PPC::VSUBFP:
7544 case PPC::VSUBUBM:
7545 case PPC::VSUBUHM:
7546 case PPC::VSUBUWM:
7547 case PPC::VAND:
7548 case PPC::VANDC:
7549 case PPC::VOR:
7550 case PPC::VORC:
7551 case PPC::VXOR:
7552 case PPC::VNOR:
7553 case PPC::VMULUWM:
7554 return true;
7558 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7559 // lane-insensitive.
7560 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7561 // Our desired xxswap might be source of COPY_TO_REGCLASS.
7562 // TODO: Can we put this a common method for DAG?
7563 auto SkipRCCopy = [](SDValue V) {
7564 while (V->isMachineOpcode() &&
7565 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7566 // All values in the chain should have single use.
7567 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7568 return SDValue();
7569 V = V->getOperand(0);
7571 return V.hasOneUse() ? V : SDValue();
7574 SDValue VecOp = SkipRCCopy(N->getOperand(0));
7575 if (!VecOp || !isLaneInsensitive(VecOp))
7576 return;
7578 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7579 RHS = SkipRCCopy(VecOp.getOperand(1));
7580 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7581 return;
7583 // These swaps may still have chain-uses here, count on dead code elimination
7584 // in following passes to remove them.
7585 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7586 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7587 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7590 // Check if an SDValue has the 'aix-small-tls' global variable attribute.
7591 static bool hasAIXSmallTLSAttr(SDValue Val) {
7592 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val))
7593 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal()))
7594 if (GV->hasAttribute("aix-small-tls"))
7595 return true;
7597 return false;
7600 // Is an ADDI eligible for folding for non-TOC-based local-[exec|dynamic]
7601 // accesses?
7602 static bool isEligibleToFoldADDIForFasterLocalAccesses(SelectionDAG *DAG,
7603 SDValue ADDIToFold) {
7604 // Check if ADDIToFold (the ADDI that we want to fold into local-exec
7605 // accesses), is truly an ADDI.
7606 if (!ADDIToFold.isMachineOpcode() ||
7607 (ADDIToFold.getMachineOpcode() != PPC::ADDI8))
7608 return false;
7610 // Folding is only allowed for the AIX small-local-[exec|dynamic] TLS target
7611 // attribute or when the 'aix-small-tls' global variable attribute is present.
7612 const PPCSubtarget &Subtarget =
7613 DAG->getMachineFunction().getSubtarget<PPCSubtarget>();
7614 SDValue TLSVarNode = ADDIToFold.getOperand(1);
7615 if (!(Subtarget.hasAIXSmallLocalDynamicTLS() ||
7616 Subtarget.hasAIXSmallLocalExecTLS() || hasAIXSmallTLSAttr(TLSVarNode)))
7617 return false;
7619 // The second operand of the ADDIToFold should be the global TLS address
7620 // (the local-exec TLS variable). We only perform the folding if the TLS
7621 // variable is the second operand.
7622 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode);
7623 if (!GA)
7624 return false;
7626 if (DAG->getTarget().getTLSModel(GA->getGlobal()) == TLSModel::LocalExec) {
7627 // The first operand of the ADDIToFold should be the thread pointer.
7628 // This transformation is only performed if the first operand of the
7629 // addi is the thread pointer.
7630 SDValue TPRegNode = ADDIToFold.getOperand(0);
7631 RegisterSDNode *TPReg = dyn_cast<RegisterSDNode>(TPRegNode.getNode());
7632 if (!TPReg || (TPReg->getReg() != Subtarget.getThreadPointerRegister()))
7633 return false;
7636 // The local-[exec|dynamic] TLS variable should only have the
7637 // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flags, so this optimization is not
7638 // performed otherwise if the flag is not set.
7639 unsigned TargetFlags = GA->getTargetFlags();
7640 if (!(TargetFlags == PPCII::MO_TPREL_FLAG ||
7641 TargetFlags == PPCII::MO_TLSLD_FLAG))
7642 return false;
7644 // If all conditions are satisfied, the ADDI is valid for folding.
7645 return true;
7648 // For non-TOC-based local-[exec|dynamic] access where an addi is feeding into
7649 // another addi, fold this sequence into a single addi if possible. Before this
7650 // optimization, the sequence appears as:
7651 // addi rN, r13, sym@[le|ld]
7652 // addi rM, rN, imm
7653 // After this optimization, we can fold the two addi into a single one:
7654 // addi rM, r13, sym@[le|ld] + imm
7655 static void foldADDIForFasterLocalAccesses(SDNode *N, SelectionDAG *DAG) {
7656 if (N->getMachineOpcode() != PPC::ADDI8)
7657 return;
7659 // InitialADDI is the addi feeding into N (also an addi), and the addi that
7660 // we want optimized out.
7661 SDValue InitialADDI = N->getOperand(0);
7663 if (!isEligibleToFoldADDIForFasterLocalAccesses(DAG, InitialADDI))
7664 return;
7666 // The second operand of the InitialADDI should be the global TLS address
7667 // (the local-[exec|dynamic] TLS variable), with the
7668 // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flag. This has been checked in
7669 // isEligibleToFoldADDIForFasterLocalAccesses().
7670 SDValue TLSVarNode = InitialADDI.getOperand(1);
7671 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode);
7672 assert(GA && "Expecting a valid GlobalAddressSDNode when folding addi into "
7673 "local-[exec|dynamic] accesses!");
7674 unsigned TargetFlags = GA->getTargetFlags();
7676 // The second operand of the addi that we want to preserve will be an
7677 // immediate. We add this immediate, together with the address of the TLS
7678 // variable found in InitialADDI, in order to preserve the correct TLS address
7679 // information during assembly printing. The offset is likely to be non-zero
7680 // when we end up in this case.
7681 int Offset = N->getConstantOperandVal(1);
7682 TLSVarNode = DAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), MVT::i64,
7683 Offset, TargetFlags);
7685 (void)DAG->UpdateNodeOperands(N, InitialADDI.getOperand(0), TLSVarNode);
7686 if (InitialADDI.getNode()->use_empty())
7687 DAG->RemoveDeadNode(InitialADDI.getNode());
7690 void PPCDAGToDAGISel::PeepholePPC64() {
7691 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7693 while (Position != CurDAG->allnodes_begin()) {
7694 SDNode *N = &*--Position;
7695 // Skip dead nodes and any non-machine opcodes.
7696 if (N->use_empty() || !N->isMachineOpcode())
7697 continue;
7699 if (isVSXSwap(SDValue(N, 0)))
7700 reduceVSXSwap(N, CurDAG);
7702 // This optimization is performed for non-TOC-based local-[exec|dynamic]
7703 // accesses.
7704 foldADDIForFasterLocalAccesses(N, CurDAG);
7706 unsigned FirstOp;
7707 unsigned StorageOpcode = N->getMachineOpcode();
7708 bool RequiresMod4Offset = false;
7710 switch (StorageOpcode) {
7711 default: continue;
7713 case PPC::LWA:
7714 case PPC::LD:
7715 case PPC::DFLOADf64:
7716 case PPC::DFLOADf32:
7717 RequiresMod4Offset = true;
7718 [[fallthrough]];
7719 case PPC::LBZ:
7720 case PPC::LBZ8:
7721 case PPC::LFD:
7722 case PPC::LFS:
7723 case PPC::LHA:
7724 case PPC::LHA8:
7725 case PPC::LHZ:
7726 case PPC::LHZ8:
7727 case PPC::LWZ:
7728 case PPC::LWZ8:
7729 FirstOp = 0;
7730 break;
7732 case PPC::STD:
7733 case PPC::DFSTOREf64:
7734 case PPC::DFSTOREf32:
7735 RequiresMod4Offset = true;
7736 [[fallthrough]];
7737 case PPC::STB:
7738 case PPC::STB8:
7739 case PPC::STFD:
7740 case PPC::STFS:
7741 case PPC::STH:
7742 case PPC::STH8:
7743 case PPC::STW:
7744 case PPC::STW8:
7745 FirstOp = 1;
7746 break;
7749 // If this is a load or store with a zero offset, or within the alignment,
7750 // we may be able to fold an add-immediate into the memory operation.
7751 // The check against alignment is below, as it can't occur until we check
7752 // the arguments to N
7753 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7754 continue;
7756 SDValue Base = N->getOperand(FirstOp + 1);
7757 if (!Base.isMachineOpcode())
7758 continue;
7760 unsigned Flags = 0;
7761 bool ReplaceFlags = true;
7763 // When the feeding operation is an add-immediate of some sort,
7764 // determine whether we need to add relocation information to the
7765 // target flags on the immediate operand when we fold it into the
7766 // load instruction.
7768 // For something like ADDItocL8, the relocation information is
7769 // inferred from the opcode; when we process it in the AsmPrinter,
7770 // we add the necessary relocation there. A load, though, can receive
7771 // relocation from various flavors of ADDIxxx, so we need to carry
7772 // the relocation information in the target flags.
7773 switch (Base.getMachineOpcode()) {
7774 default: continue;
7776 case PPC::ADDI8:
7777 case PPC::ADDI:
7778 // In some cases (such as TLS) the relocation information
7779 // is already in place on the operand, so copying the operand
7780 // is sufficient.
7781 ReplaceFlags = false;
7782 break;
7783 case PPC::ADDIdtprelL:
7784 Flags = PPCII::MO_DTPREL_LO;
7785 break;
7786 case PPC::ADDItlsldL:
7787 Flags = PPCII::MO_TLSLD_LO;
7788 break;
7789 case PPC::ADDItocL8:
7790 // Skip the following peephole optimizations for ADDItocL8 on AIX which
7791 // is used for toc-data access.
7792 if (Subtarget->isAIXABI())
7793 continue;
7794 Flags = PPCII::MO_TOC_LO;
7795 break;
7798 SDValue ImmOpnd = Base.getOperand(1);
7800 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7801 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7802 // we might have needed different @ha relocation values for the offset
7803 // pointers).
7804 int MaxDisplacement = 7;
7805 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7806 const GlobalValue *GV = GA->getGlobal();
7807 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7808 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7811 bool UpdateHBase = false;
7812 SDValue HBase = Base.getOperand(0);
7814 int Offset = N->getConstantOperandVal(FirstOp);
7815 if (ReplaceFlags) {
7816 if (Offset < 0 || Offset > MaxDisplacement) {
7817 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7818 // one use, then we can do this for any offset, we just need to also
7819 // update the offset (i.e. the symbol addend) on the addis also.
7820 if (Base.getMachineOpcode() != PPC::ADDItocL8)
7821 continue;
7823 if (!HBase.isMachineOpcode() ||
7824 HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7825 continue;
7827 if (!Base.hasOneUse() || !HBase.hasOneUse())
7828 continue;
7830 SDValue HImmOpnd = HBase.getOperand(1);
7831 if (HImmOpnd != ImmOpnd)
7832 continue;
7834 UpdateHBase = true;
7836 } else {
7837 // Global addresses can be folded, but only if they are sufficiently
7838 // aligned.
7839 if (RequiresMod4Offset) {
7840 if (GlobalAddressSDNode *GA =
7841 dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7842 const GlobalValue *GV = GA->getGlobal();
7843 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7844 if (Alignment < 4)
7845 continue;
7849 // If we're directly folding the addend from an addi instruction, then:
7850 // 1. In general, the offset on the memory access must be zero.
7851 // 2. If the addend is a constant, then it can be combined with a
7852 // non-zero offset, but only if the result meets the encoding
7853 // requirements.
7854 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7855 Offset += C->getSExtValue();
7857 if (RequiresMod4Offset && (Offset % 4) != 0)
7858 continue;
7860 if (!isInt<16>(Offset))
7861 continue;
7863 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7864 ImmOpnd.getValueType());
7865 } else if (Offset != 0) {
7866 // This optimization is performed for non-TOC-based local-[exec|dynamic]
7867 // accesses.
7868 if (isEligibleToFoldADDIForFasterLocalAccesses(CurDAG, Base)) {
7869 // Add the non-zero offset information into the load or store
7870 // instruction to be used for non-TOC-based local-[exec|dynamic]
7871 // accesses.
7872 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd);
7873 assert(GA && "Expecting a valid GlobalAddressSDNode when folding "
7874 "addi into local-[exec|dynamic] accesses!");
7875 ImmOpnd = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
7876 MVT::i64, Offset,
7877 GA->getTargetFlags());
7878 } else
7879 continue;
7883 // We found an opportunity. Reverse the operands from the add
7884 // immediate and substitute them into the load or store. If
7885 // needed, update the target flags for the immediate operand to
7886 // reflect the necessary relocation information.
7887 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
7888 LLVM_DEBUG(Base->dump(CurDAG));
7889 LLVM_DEBUG(dbgs() << "\nN: ");
7890 LLVM_DEBUG(N->dump(CurDAG));
7891 LLVM_DEBUG(dbgs() << "\n");
7893 // If the relocation information isn't already present on the
7894 // immediate operand, add it now.
7895 if (ReplaceFlags) {
7896 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7897 SDLoc dl(GA);
7898 const GlobalValue *GV = GA->getGlobal();
7899 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7900 // We can't perform this optimization for data whose alignment
7901 // is insufficient for the instruction encoding.
7902 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7903 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7904 continue;
7906 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7907 } else if (ConstantPoolSDNode *CP =
7908 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7909 const Constant *C = CP->getConstVal();
7910 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7911 Offset, Flags);
7915 if (FirstOp == 1) // Store
7916 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7917 Base.getOperand(0), N->getOperand(3));
7918 else // Load
7919 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7920 N->getOperand(2));
7922 if (UpdateHBase)
7923 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7924 ImmOpnd);
7926 // The add-immediate may now be dead, in which case remove it.
7927 if (Base.getNode()->use_empty())
7928 CurDAG->RemoveDeadNode(Base.getNode());
7932 /// createPPCISelDag - This pass converts a legalized DAG into a
7933 /// PowerPC-specific DAG, ready for instruction scheduling.
7935 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7936 CodeGenOptLevel OptLevel) {
7937 return new PPCDAGToDAGISelLegacy(TM, OptLevel);