Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCRegisterInfo.cpp
blob9e8da59615dfb3d43e6afc16ef71ceed70137c78
1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
45 using namespace llvm;
47 #define DEBUG_TYPE "reginfo"
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57 cl::desc("Enable use of a base pointer for complex stack frames"));
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61 cl::desc("Force the use of a base pointer in every function"));
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65 cl::desc("Enable spills from gpr to vsr rather than stack"));
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69 cl::desc("Consider R1 caller preserved so stack saves of "
70 "caller preserved registers can be LICM candidates"),
71 cl::init(true), cl::Hidden);
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75 cl::desc("Maximum search distance for definition of CR bit "
76 "spill on ppc"),
77 cl::Hidden, cl::init(100));
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89 cl::desc("Emit information about accumulator register spills "
90 "and copies"),
91 cl::Hidden, cl::init(false));
92 #endif
94 extern cl::opt<bool> DisableAutoPairedVecSt;
96 static unsigned offsetMinAlignForOpcode(unsigned OpC);
98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
99 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
100 TM.isPPC64() ? 0 : 1,
101 TM.isPPC64() ? 0 : 1),
102 TM(TM) {
103 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
104 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
105 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
106 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
107 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
108 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
109 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
110 ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
111 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
113 // 64-bit
114 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
115 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
116 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
117 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
118 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
119 ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
120 ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
122 // VSX
123 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
124 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
125 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
126 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
127 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
128 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
129 ImmToIdxMap[PPC::LXV] = PPC::LXVX;
130 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
131 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
132 ImmToIdxMap[PPC::STXV] = PPC::STXVX;
133 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
134 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
136 // SPE
137 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
138 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
139 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
140 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
142 // Power10
143 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8;
144 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8;
145 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8;
146 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8;
147 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX;
148 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX;
150 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8;
151 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8;
152 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8;
154 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX;
155 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX;
156 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
157 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX;
158 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX;
160 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX;
161 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX;
162 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX;
163 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
166 /// getPointerRegClass - Return the register class to use to hold pointers.
167 /// This is used for addressing modes.
168 const TargetRegisterClass *
169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
170 const {
171 // Note that PPCInstrInfo::foldImmediate also directly uses this Kind value
172 // when it checks for ZERO folding.
173 if (Kind == 1) {
174 if (TM.isPPC64())
175 return &PPC::G8RC_NOX0RegClass;
176 return &PPC::GPRC_NOR0RegClass;
179 if (TM.isPPC64())
180 return &PPC::G8RCRegClass;
181 return &PPC::GPRCRegClass;
184 const MCPhysReg*
185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
186 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
187 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
188 if (!TM.isPPC64() && Subtarget.isAIXABI())
189 report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
190 if (Subtarget.hasVSX()) {
191 if (Subtarget.pairedVectorMemops())
192 return CSR_64_AllRegs_VSRP_SaveList;
193 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
194 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
195 return CSR_64_AllRegs_VSX_SaveList;
197 if (Subtarget.hasAltivec()) {
198 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
199 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
200 return CSR_64_AllRegs_Altivec_SaveList;
202 return CSR_64_AllRegs_SaveList;
205 // On PPC64, we might need to save r2 (but only if it is not reserved).
206 // We do not need to treat R2 as callee-saved when using PC-Relative calls
207 // because any direct uses of R2 will cause it to be reserved. If the function
208 // is a leaf or the only uses of R2 are implicit uses for calls, the calls
209 // will use the @notoc relocation which will cause this function to set the
210 // st_other bit to 1, thereby communicating to its caller that it arbitrarily
211 // clobbers the TOC.
212 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
213 !Subtarget.isUsingPCRelativeCalls();
215 // Cold calling convention CSRs.
216 if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
217 if (Subtarget.isAIXABI())
218 report_fatal_error("Cold calling unimplemented on AIX.");
219 if (TM.isPPC64()) {
220 if (Subtarget.pairedVectorMemops())
221 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
222 : CSR_SVR64_ColdCC_VSRP_SaveList;
223 if (Subtarget.hasAltivec())
224 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
225 : CSR_SVR64_ColdCC_Altivec_SaveList;
226 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
227 : CSR_SVR64_ColdCC_SaveList;
229 // 32-bit targets.
230 if (Subtarget.pairedVectorMemops())
231 return CSR_SVR32_ColdCC_VSRP_SaveList;
232 else if (Subtarget.hasAltivec())
233 return CSR_SVR32_ColdCC_Altivec_SaveList;
234 else if (Subtarget.hasSPE())
235 return CSR_SVR32_ColdCC_SPE_SaveList;
236 return CSR_SVR32_ColdCC_SaveList;
238 // Standard calling convention CSRs.
239 if (TM.isPPC64()) {
240 if (Subtarget.pairedVectorMemops()) {
241 if (Subtarget.isAIXABI()) {
242 if (!TM.getAIXExtendedAltivecABI())
243 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
244 return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
246 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
248 if (Subtarget.hasAltivec() &&
249 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
250 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
251 : CSR_PPC64_Altivec_SaveList;
253 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
255 // 32-bit targets.
256 if (Subtarget.isAIXABI()) {
257 if (Subtarget.pairedVectorMemops())
258 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
259 : CSR_AIX32_SaveList;
260 if (Subtarget.hasAltivec())
261 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
262 : CSR_AIX32_SaveList;
263 return CSR_AIX32_SaveList;
265 if (Subtarget.pairedVectorMemops())
266 return CSR_SVR432_VSRP_SaveList;
267 if (Subtarget.hasAltivec())
268 return CSR_SVR432_Altivec_SaveList;
269 else if (Subtarget.hasSPE()) {
270 if (TM.isPositionIndependent() && !TM.isPPC64())
271 return CSR_SVR432_SPE_NO_S30_31_SaveList;
272 return CSR_SVR432_SPE_SaveList;
274 return CSR_SVR432_SaveList;
277 const uint32_t *
278 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
279 CallingConv::ID CC) const {
280 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
281 if (CC == CallingConv::AnyReg) {
282 if (Subtarget.hasVSX()) {
283 if (Subtarget.pairedVectorMemops())
284 return CSR_64_AllRegs_VSRP_RegMask;
285 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
286 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
287 return CSR_64_AllRegs_VSX_RegMask;
289 if (Subtarget.hasAltivec()) {
290 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
291 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
292 return CSR_64_AllRegs_Altivec_RegMask;
294 return CSR_64_AllRegs_RegMask;
297 if (Subtarget.isAIXABI()) {
298 if (Subtarget.pairedVectorMemops()) {
299 if (!TM.getAIXExtendedAltivecABI())
300 return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
301 return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
303 return TM.isPPC64()
304 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
305 ? CSR_PPC64_Altivec_RegMask
306 : CSR_PPC64_RegMask)
307 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
308 ? CSR_AIX32_Altivec_RegMask
309 : CSR_AIX32_RegMask);
312 if (CC == CallingConv::Cold) {
313 if (TM.isPPC64())
314 return Subtarget.pairedVectorMemops()
315 ? CSR_SVR64_ColdCC_VSRP_RegMask
316 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
317 : CSR_SVR64_ColdCC_RegMask);
318 else
319 return Subtarget.pairedVectorMemops()
320 ? CSR_SVR32_ColdCC_VSRP_RegMask
321 : (Subtarget.hasAltivec()
322 ? CSR_SVR32_ColdCC_Altivec_RegMask
323 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
324 : CSR_SVR32_ColdCC_RegMask));
327 if (TM.isPPC64())
328 return Subtarget.pairedVectorMemops()
329 ? CSR_SVR464_VSRP_RegMask
330 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
331 : CSR_PPC64_RegMask);
332 else
333 return Subtarget.pairedVectorMemops()
334 ? CSR_SVR432_VSRP_RegMask
335 : (Subtarget.hasAltivec()
336 ? CSR_SVR432_Altivec_RegMask
337 : (Subtarget.hasSPE()
338 ? (TM.isPositionIndependent()
339 ? CSR_SVR432_SPE_NO_S30_31_RegMask
340 : CSR_SVR432_SPE_RegMask)
341 : CSR_SVR432_RegMask));
344 const uint32_t*
345 PPCRegisterInfo::getNoPreservedMask() const {
346 return CSR_NoRegs_RegMask;
349 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
350 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
351 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
354 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
355 BitVector Reserved(getNumRegs());
356 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
357 const PPCFrameLowering *TFI = getFrameLowering(MF);
359 // The ZERO register is not really a register, but the representation of r0
360 // when used in instructions that treat r0 as the constant 0.
361 markSuperRegs(Reserved, PPC::ZERO);
363 // The FP register is also not really a register, but is the representation
364 // of the frame pointer register used by ISD::FRAMEADDR.
365 markSuperRegs(Reserved, PPC::FP);
367 // The BP register is also not really a register, but is the representation
368 // of the base pointer register used by setjmp.
369 markSuperRegs(Reserved, PPC::BP);
371 // The counter registers must be reserved so that counter-based loops can
372 // be correctly formed (and the mtctr instructions are not DCE'd).
373 markSuperRegs(Reserved, PPC::CTR);
374 markSuperRegs(Reserved, PPC::CTR8);
376 markSuperRegs(Reserved, PPC::R1);
377 markSuperRegs(Reserved, PPC::LR);
378 markSuperRegs(Reserved, PPC::LR8);
379 markSuperRegs(Reserved, PPC::RM);
381 markSuperRegs(Reserved, PPC::VRSAVE);
383 // The SVR4 ABI reserves r2 and r13
384 if (Subtarget.isSVR4ABI()) {
385 // We only reserve r2 if we need to use the TOC pointer. If we have no
386 // explicit uses of the TOC pointer (meaning we're a leaf function with
387 // no constant-pool loads, etc.) and we have no potential uses inside an
388 // inline asm block, then we can treat r2 has an ordinary callee-saved
389 // register.
390 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
391 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
392 markSuperRegs(Reserved, PPC::R2); // System-reserved register
393 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
396 // Always reserve r2 on AIX for now.
397 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
398 if (Subtarget.isAIXABI())
399 markSuperRegs(Reserved, PPC::R2); // System-reserved register
401 // On PPC64, r13 is the thread pointer. Never allocate this register.
402 if (TM.isPPC64())
403 markSuperRegs(Reserved, PPC::R13);
405 if (TFI->needsFP(MF))
406 markSuperRegs(Reserved, PPC::R31);
408 bool IsPositionIndependent = TM.isPositionIndependent();
409 if (hasBasePointer(MF)) {
410 if (Subtarget.is32BitELFABI() && IsPositionIndependent)
411 markSuperRegs(Reserved, PPC::R29);
412 else
413 markSuperRegs(Reserved, PPC::R30);
416 if (Subtarget.is32BitELFABI() && IsPositionIndependent)
417 markSuperRegs(Reserved, PPC::R30);
419 // Reserve Altivec registers when Altivec is unavailable.
420 if (!Subtarget.hasAltivec())
421 for (MCRegister Reg : PPC::VRRCRegClass)
422 markSuperRegs(Reserved, Reg);
424 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
425 !TM.getAIXExtendedAltivecABI()) {
426 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
427 // and cannot be used.
428 for (auto Reg : CSR_Altivec_SaveList) {
429 if (Reg == 0)
430 break;
431 markSuperRegs(Reserved, Reg);
432 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
433 Reserved.set(*AS);
438 assert(checkAllSuperRegsMarked(Reserved));
439 return Reserved;
442 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
443 MCRegister PhysReg) const {
444 // We cannot use getReservedRegs() to find the registers that are not asm
445 // clobberable because there are some reserved registers which can be
446 // clobbered by inline asm. For example, when LR is clobbered, the register is
447 // saved and restored. We will hardcode the registers that are not asm
448 // cloberable in this function.
450 // The stack pointer (R1/X1) is not clobberable by inline asm
451 return PhysReg != PPC::R1 && PhysReg != PPC::X1;
454 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
455 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
456 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo();
457 const MachineFrameInfo &MFI = MF.getFrameInfo();
458 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
460 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
461 << ".\n");
462 // If the callee saved info is invalid we have to default to true for safety.
463 if (!MFI.isCalleeSavedInfoValid()) {
464 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
465 return true;
468 // We will require the use of X-Forms because the frame is larger than what
469 // can be represented in signed 16 bits that fit in the immediate of a D-Form.
470 // If we need an X-Form then we need a register to store the address offset.
471 unsigned FrameSize = MFI.getStackSize();
472 // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
473 if (FrameSize & ~0x7FFF) {
474 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
475 return true;
478 // The callee saved info is valid so it can be traversed.
479 // Checking for registers that need saving that do not have load or store
480 // forms where the address offset is an immediate.
481 for (const CalleeSavedInfo &CSI : Info) {
482 // If the spill is to a register no scavenging is required.
483 if (CSI.isSpilledToReg())
484 continue;
486 int FrIdx = CSI.getFrameIdx();
487 Register Reg = CSI.getReg();
489 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
490 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
491 if (!MFI.isFixedObjectIndex(FrIdx)) {
492 // This is not a fixed object. If it requires alignment then we may still
493 // need to use the XForm.
494 if (offsetMinAlignForOpcode(Opcode) > 1) {
495 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
496 << " for register " << printReg(Reg, this) << ".\n");
497 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
498 << "alignment.\n");
499 return true;
503 // This is eiher:
504 // 1) A fixed frame index object which we know are aligned so
505 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
506 // need to consider the alignment here.
507 // 2) A not fixed object but in that case we now know that the min required
508 // alignment is no more than 1 based on the previous check.
509 if (InstrInfo->isXFormMemOp(Opcode)) {
510 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
511 << " for register " << printReg(Reg, this) << ".\n");
512 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
513 return true;
516 // This is a spill/restore of a quadword.
517 if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
518 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
519 << " for register " << printReg(Reg, this) << ".\n");
520 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
521 return true;
524 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
525 return false;
528 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
529 const MachineFunction &MF) const {
530 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
531 // Do not use virtual base registers when ROP protection is turned on.
532 // Virtual base registers break the layout of the local variable space and may
533 // push the ROP Hash location past the 512 byte range of the ROP store
534 // instruction.
535 return !Subtarget.hasROPProtect();
538 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
539 const MachineFunction &MF) const {
540 assert(Register::isPhysicalRegister(PhysReg));
541 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
542 const MachineFrameInfo &MFI = MF.getFrameInfo();
544 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
545 return false;
546 if (PhysReg == Subtarget.getTOCPointerRegister())
547 // X2/R2 is guaranteed to be preserved within a function if it is reserved.
548 // The reason it's reserved is that it's the TOC pointer (and the function
549 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
550 // with no TOC access), we can't claim that it is preserved.
551 return (getReservedRegs(MF).test(PhysReg));
552 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
553 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
554 // The value of the stack pointer does not change within a function after
555 // the prologue and before the epilogue if there are no dynamic allocations
556 // and no inline asm which clobbers X1/R1.
557 return true;
558 return false;
561 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
562 ArrayRef<MCPhysReg> Order,
563 SmallVectorImpl<MCPhysReg> &Hints,
564 const MachineFunction &MF,
565 const VirtRegMap *VRM,
566 const LiveRegMatrix *Matrix) const {
567 const MachineRegisterInfo *MRI = &MF.getRegInfo();
569 // Call the base implementation first to set any hints based on the usual
570 // heuristics and decide what the return value should be. We want to return
571 // the same value returned by the base implementation. If the base
572 // implementation decides to return true and force the allocation then we
573 // will leave it as such. On the other hand if the base implementation
574 // decides to return false the following code will not force the allocation
575 // as we are just looking to provide a hint.
576 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
577 VirtReg, Order, Hints, MF, VRM, Matrix);
579 // Don't use the allocation hints for ISAFuture.
580 // The WACC registers used in ISAFuture are unlike the ACC registers on
581 // Power 10 and so this logic to register allocation hints does not apply.
582 if (MF.getSubtarget<PPCSubtarget>().isISAFuture())
583 return BaseImplRetVal;
585 // We are interested in instructions that copy values to ACC/UACC.
586 // The copy into UACC will be simply a COPY to a subreg so we
587 // want to allocate the corresponding physical subreg for the source.
588 // The copy into ACC will be a BUILD_UACC so we want to allocate
589 // the same number UACC for the source.
590 const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
591 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
592 const MachineOperand *ResultOp = nullptr;
593 Register ResultReg;
594 switch (Use.getOpcode()) {
595 case TargetOpcode::COPY: {
596 ResultOp = &Use.getOperand(0);
597 ResultReg = ResultOp->getReg();
598 if (ResultReg.isVirtual() &&
599 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
600 VRM->hasPhys(ResultReg)) {
601 Register UACCPhys = VRM->getPhys(ResultReg);
602 Register HintReg;
603 if (RegClass->contains(PPC::VSRp0)) {
604 HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
605 // Ensure that the hint is a VSRp register.
606 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
607 Hints.push_back(HintReg);
608 } else if (RegClass->contains(PPC::ACC0)) {
609 HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
610 if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
611 Hints.push_back(HintReg);
614 break;
616 case PPC::BUILD_UACC: {
617 ResultOp = &Use.getOperand(0);
618 ResultReg = ResultOp->getReg();
619 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
620 VRM->hasPhys(ResultReg)) {
621 Register ACCPhys = VRM->getPhys(ResultReg);
622 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
623 "Expecting an ACC register for BUILD_UACC.");
624 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
625 Hints.push_back(HintReg);
627 break;
631 return BaseImplRetVal;
634 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
635 MachineFunction &MF) const {
636 const PPCFrameLowering *TFI = getFrameLowering(MF);
637 const unsigned DefaultSafety = 1;
639 switch (RC->getID()) {
640 default:
641 return 0;
642 case PPC::G8RC_NOX0RegClassID:
643 case PPC::GPRC_NOR0RegClassID:
644 case PPC::SPERCRegClassID:
645 case PPC::G8RCRegClassID:
646 case PPC::GPRCRegClassID: {
647 unsigned FP = TFI->hasFP(MF) ? 1 : 0;
648 return 32 - FP - DefaultSafety;
650 case PPC::F4RCRegClassID:
651 case PPC::F8RCRegClassID:
652 case PPC::VSLRCRegClassID:
653 return 32 - DefaultSafety;
654 case PPC::VFRCRegClassID:
655 case PPC::VRRCRegClassID: {
656 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
657 // Vector registers VR20-VR31 are reserved and cannot be used in the default
658 // Altivec ABI on AIX.
659 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
660 return 20 - DefaultSafety;
662 return 32 - DefaultSafety;
663 case PPC::VSFRCRegClassID:
664 case PPC::VSSRCRegClassID:
665 case PPC::VSRCRegClassID: {
666 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
667 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
668 // Vector registers VR20-VR31 are reserved and cannot be used in the
669 // default Altivec ABI on AIX.
670 return 52 - DefaultSafety;
672 return 64 - DefaultSafety;
673 case PPC::CRRCRegClassID:
674 return 8 - DefaultSafety;
678 const TargetRegisterClass *
679 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
680 const MachineFunction &MF) const {
681 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
682 const auto *DefaultSuperclass =
683 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
684 if (Subtarget.hasVSX()) {
685 // With VSX, we can inflate various sub-register classes to the full VSX
686 // register set.
688 // For Power9 we allow the user to enable GPR to vector spills.
689 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
690 // support to spill GPRC.
691 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
692 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
693 RC == &PPC::G8RCRegClass) {
694 InflateGP8RC++;
695 return &PPC::SPILLTOVSRRCRegClass;
697 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
698 InflateGPRC++;
701 for (const auto *I = RC->getSuperClasses(); *I; ++I) {
702 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
703 continue;
705 switch ((*I)->getID()) {
706 case PPC::VSSRCRegClassID:
707 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
708 case PPC::VSFRCRegClassID:
709 case PPC::VSRCRegClassID:
710 return *I;
711 case PPC::VSRpRCRegClassID:
712 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
713 case PPC::ACCRCRegClassID:
714 case PPC::UACCRCRegClassID:
715 return Subtarget.hasMMA() ? *I : DefaultSuperclass;
720 return DefaultSuperclass;
723 //===----------------------------------------------------------------------===//
724 // Stack Frame Processing methods
725 //===----------------------------------------------------------------------===//
727 /// lowerDynamicAlloc - Generate the code for allocating an object in the
728 /// current frame. The sequence of code will be in the general form
730 /// addi R0, SP, \#frameSize ; get the address of the previous frame
731 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
732 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
734 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
735 // Get the instruction.
736 MachineInstr &MI = *II;
737 // Get the instruction's basic block.
738 MachineBasicBlock &MBB = *MI.getParent();
739 // Get the basic block's function.
740 MachineFunction &MF = *MBB.getParent();
741 // Get the frame info.
742 MachineFrameInfo &MFI = MF.getFrameInfo();
743 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
744 // Get the instruction info.
745 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
746 // Determine whether 64-bit pointers are used.
747 bool LP64 = TM.isPPC64();
748 DebugLoc dl = MI.getDebugLoc();
750 // Get the maximum call stack size.
751 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
752 Align MaxAlign = MFI.getMaxAlign();
753 assert(isAligned(MaxAlign, maxCallFrameSize) &&
754 "Maximum call-frame size not sufficiently aligned");
755 (void)MaxAlign;
757 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
758 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
759 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
760 bool KillNegSizeReg = MI.getOperand(1).isKill();
761 Register NegSizeReg = MI.getOperand(1).getReg();
763 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
764 // Grow the stack and update the stack pointer link, then determine the
765 // address of new allocated space.
766 if (LP64) {
767 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
768 .addReg(Reg, RegState::Kill)
769 .addReg(PPC::X1)
770 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
771 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
772 .addReg(PPC::X1)
773 .addImm(maxCallFrameSize);
774 } else {
775 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
776 .addReg(Reg, RegState::Kill)
777 .addReg(PPC::R1)
778 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
779 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
780 .addReg(PPC::R1)
781 .addImm(maxCallFrameSize);
784 // Discard the DYNALLOC instruction.
785 MBB.erase(II);
788 /// To accomplish dynamic stack allocation, we have to calculate exact size
789 /// subtracted from the stack pointer according alignment information and get
790 /// previous frame pointer.
791 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
792 Register &NegSizeReg,
793 bool &KillNegSizeReg,
794 Register &FramePointer) const {
795 // Get the instruction.
796 MachineInstr &MI = *II;
797 // Get the instruction's basic block.
798 MachineBasicBlock &MBB = *MI.getParent();
799 // Get the basic block's function.
800 MachineFunction &MF = *MBB.getParent();
801 // Get the frame info.
802 MachineFrameInfo &MFI = MF.getFrameInfo();
803 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
804 // Get the instruction info.
805 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
806 // Determine whether 64-bit pointers are used.
807 bool LP64 = TM.isPPC64();
808 DebugLoc dl = MI.getDebugLoc();
809 // Get the total frame size.
810 unsigned FrameSize = MFI.getStackSize();
812 // Get stack alignments.
813 const PPCFrameLowering *TFI = getFrameLowering(MF);
814 Align TargetAlign = TFI->getStackAlign();
815 Align MaxAlign = MFI.getMaxAlign();
817 // Determine the previous frame's address. If FrameSize can't be
818 // represented as 16 bits or we need special alignment, then we load the
819 // previous frame's address from 0(SP). Why not do an addis of the hi?
820 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
821 // Constructing the constant and adding would take 3 instructions.
822 // Fortunately, a frame greater than 32K is rare.
823 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
824 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
826 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
827 if (LP64)
828 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
829 .addReg(PPC::X31)
830 .addImm(FrameSize);
831 else
832 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
833 .addReg(PPC::R31)
834 .addImm(FrameSize);
835 } else if (LP64) {
836 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
837 .addImm(0)
838 .addReg(PPC::X1);
839 } else {
840 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
841 .addImm(0)
842 .addReg(PPC::R1);
844 // Determine the actual NegSizeReg according to alignment info.
845 if (LP64) {
846 if (MaxAlign > TargetAlign) {
847 unsigned UnalNegSizeReg = NegSizeReg;
848 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
850 // Unfortunately, there is no andi, only andi., and we can't insert that
851 // here because we might clobber cr0 while it is live.
852 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
853 .addImm(~(MaxAlign.value() - 1));
855 unsigned NegSizeReg1 = NegSizeReg;
856 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
857 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
858 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
859 .addReg(NegSizeReg1, RegState::Kill);
860 KillNegSizeReg = true;
862 } else {
863 if (MaxAlign > TargetAlign) {
864 unsigned UnalNegSizeReg = NegSizeReg;
865 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
867 // Unfortunately, there is no andi, only andi., and we can't insert that
868 // here because we might clobber cr0 while it is live.
869 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
870 .addImm(~(MaxAlign.value() - 1));
872 unsigned NegSizeReg1 = NegSizeReg;
873 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
874 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
875 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
876 .addReg(NegSizeReg1, RegState::Kill);
877 KillNegSizeReg = true;
882 void PPCRegisterInfo::lowerPrepareProbedAlloca(
883 MachineBasicBlock::iterator II) const {
884 MachineInstr &MI = *II;
885 // Get the instruction's basic block.
886 MachineBasicBlock &MBB = *MI.getParent();
887 // Get the basic block's function.
888 MachineFunction &MF = *MBB.getParent();
889 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
890 // Get the instruction info.
891 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
892 // Determine whether 64-bit pointers are used.
893 bool LP64 = TM.isPPC64();
894 DebugLoc dl = MI.getDebugLoc();
895 Register FramePointer = MI.getOperand(0).getReg();
896 const Register ActualNegSizeReg = MI.getOperand(1).getReg();
897 bool KillNegSizeReg = MI.getOperand(2).isKill();
898 Register NegSizeReg = MI.getOperand(2).getReg();
899 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
900 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
901 if (FramePointer == NegSizeReg) {
902 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
903 "NegSizeReg should be killed");
904 // FramePointer is clobbered earlier than the use of NegSizeReg in
905 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
906 // misuse.
907 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
908 .addReg(NegSizeReg)
909 .addReg(NegSizeReg);
910 NegSizeReg = ActualNegSizeReg;
911 KillNegSizeReg = false;
913 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
914 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
915 // TargetAlign.
916 if (NegSizeReg != ActualNegSizeReg)
917 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
918 .addReg(NegSizeReg)
919 .addReg(NegSizeReg);
920 MBB.erase(II);
923 void PPCRegisterInfo::lowerDynamicAreaOffset(
924 MachineBasicBlock::iterator II) const {
925 // Get the instruction.
926 MachineInstr &MI = *II;
927 // Get the instruction's basic block.
928 MachineBasicBlock &MBB = *MI.getParent();
929 // Get the basic block's function.
930 MachineFunction &MF = *MBB.getParent();
931 // Get the frame info.
932 MachineFrameInfo &MFI = MF.getFrameInfo();
933 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
934 // Get the instruction info.
935 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
937 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
938 bool is64Bit = TM.isPPC64();
939 DebugLoc dl = MI.getDebugLoc();
940 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
941 MI.getOperand(0).getReg())
942 .addImm(maxCallFrameSize);
943 MBB.erase(II);
946 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
947 /// reserving a whole register (R0), we scrounge for one here. This generates
948 /// code like this:
950 /// mfcr rA ; Move the conditional register into GPR rA.
951 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
952 /// stw rA, FI ; Store rA to the frame.
954 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
955 unsigned FrameIndex) const {
956 // Get the instruction.
957 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
958 // Get the instruction's basic block.
959 MachineBasicBlock &MBB = *MI.getParent();
960 MachineFunction &MF = *MBB.getParent();
961 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
962 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
963 DebugLoc dl = MI.getDebugLoc();
965 bool LP64 = TM.isPPC64();
966 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
967 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
969 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
970 Register SrcReg = MI.getOperand(0).getReg();
972 // We need to store the CR in the low 4-bits of the saved value. First, issue
973 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
974 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
975 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
977 // If the saved register wasn't CR0, shift the bits left so that they are in
978 // CR0's slot.
979 if (SrcReg != PPC::CR0) {
980 Register Reg1 = Reg;
981 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
983 // rlwinm rA, rA, ShiftBits, 0, 31.
984 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
985 .addReg(Reg1, RegState::Kill)
986 .addImm(getEncodingValue(SrcReg) * 4)
987 .addImm(0)
988 .addImm(31);
991 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
992 .addReg(Reg, RegState::Kill),
993 FrameIndex);
995 // Discard the pseudo instruction.
996 MBB.erase(II);
999 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
1000 unsigned FrameIndex) const {
1001 // Get the instruction.
1002 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
1003 // Get the instruction's basic block.
1004 MachineBasicBlock &MBB = *MI.getParent();
1005 MachineFunction &MF = *MBB.getParent();
1006 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1007 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1008 DebugLoc dl = MI.getDebugLoc();
1010 bool LP64 = TM.isPPC64();
1011 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1012 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1014 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1015 Register DestReg = MI.getOperand(0).getReg();
1016 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1017 "RESTORE_CR does not define its destination");
1019 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1020 Reg), FrameIndex);
1022 // If the reloaded register isn't CR0, shift the bits right so that they are
1023 // in the right CR's slot.
1024 if (DestReg != PPC::CR0) {
1025 Register Reg1 = Reg;
1026 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1028 unsigned ShiftBits = getEncodingValue(DestReg)*4;
1029 // rlwinm r11, r11, 32-ShiftBits, 0, 31.
1030 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1031 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
1032 .addImm(31);
1035 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1036 .addReg(Reg, RegState::Kill);
1038 // Discard the pseudo instruction.
1039 MBB.erase(II);
1042 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1043 unsigned FrameIndex) const {
1044 // Get the instruction.
1045 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset>
1046 // Get the instruction's basic block.
1047 MachineBasicBlock &MBB = *MI.getParent();
1048 MachineFunction &MF = *MBB.getParent();
1049 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1050 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1051 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1052 DebugLoc dl = MI.getDebugLoc();
1054 bool LP64 = TM.isPPC64();
1055 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1056 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1058 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1059 Register SrcReg = MI.getOperand(0).getReg();
1061 // Search up the BB to find the definition of the CR bit.
1062 MachineBasicBlock::reverse_iterator Ins = MI;
1063 MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1064 ++Ins;
1065 unsigned CRBitSpillDistance = 0;
1066 bool SeenUse = false;
1067 for (; Ins != Rend; ++Ins) {
1068 // Definition found.
1069 if (Ins->modifiesRegister(SrcReg, TRI))
1070 break;
1071 // Use found.
1072 if (Ins->readsRegister(SrcReg, TRI))
1073 SeenUse = true;
1074 // Unable to find CR bit definition within maximum search distance.
1075 if (CRBitSpillDistance == MaxCRBitSpillDist) {
1076 Ins = MI;
1077 break;
1079 // Skip debug instructions when counting CR bit spill distance.
1080 if (!Ins->isDebugInstr())
1081 CRBitSpillDistance++;
1084 // Unable to find the definition of the CR bit in the MBB.
1085 if (Ins == MBB.rend())
1086 Ins = MI;
1088 bool SpillsKnownBit = false;
1089 // There is no need to extract the CR bit if its value is already known.
1090 switch (Ins->getOpcode()) {
1091 case PPC::CRUNSET:
1092 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1093 .addImm(0);
1094 SpillsKnownBit = true;
1095 break;
1096 case PPC::CRSET:
1097 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1098 .addImm(-32768);
1099 SpillsKnownBit = true;
1100 break;
1101 default:
1102 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1103 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1104 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1105 // register), and SETNBC will set this.
1106 if (Subtarget.isISA3_1()) {
1107 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1108 .addReg(SrcReg, RegState::Undef);
1109 break;
1112 // On Power9, we can use SETB to extract the LT bit. This only works for
1113 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1114 // of the bit we care about (32-bit sign bit) will be set to the value of
1115 // the LT bit (regardless of the other bits in the CR field).
1116 if (Subtarget.isISA3_0()) {
1117 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1118 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1119 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1120 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1121 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1122 .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1123 break;
1127 // We need to move the CR field that contains the CR bit we are spilling.
1128 // The super register may not be explicitly defined (i.e. it can be defined
1129 // by a CR-logical that only defines the subreg) so we state that the CR
1130 // field is undef. Also, in order to preserve the kill flag on the CR bit,
1131 // we add it as an implicit use.
1132 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1133 .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1134 .addReg(SrcReg,
1135 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1137 // If the saved register wasn't CR0LT, shift the bits left so that the bit
1138 // to store is the first one. Mask all but that bit.
1139 Register Reg1 = Reg;
1140 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1142 // rlwinm rA, rA, ShiftBits, 0, 0.
1143 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1144 .addReg(Reg1, RegState::Kill)
1145 .addImm(getEncodingValue(SrcReg))
1146 .addImm(0).addImm(0);
1148 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1149 .addReg(Reg, RegState::Kill),
1150 FrameIndex);
1152 bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1153 // Discard the pseudo instruction.
1154 MBB.erase(II);
1155 if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1156 Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1157 Ins->removeOperand(0);
1161 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1162 unsigned FrameIndex) const {
1163 // Get the instruction.
1164 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset>
1165 // Get the instruction's basic block.
1166 MachineBasicBlock &MBB = *MI.getParent();
1167 MachineFunction &MF = *MBB.getParent();
1168 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1169 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1170 DebugLoc dl = MI.getDebugLoc();
1172 bool LP64 = TM.isPPC64();
1173 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1174 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1176 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1177 Register DestReg = MI.getOperand(0).getReg();
1178 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1179 "RESTORE_CRBIT does not define its destination");
1181 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1182 Reg), FrameIndex);
1184 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1186 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1187 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1188 .addReg(getCRFromCRBit(DestReg));
1190 unsigned ShiftBits = getEncodingValue(DestReg);
1191 // rlwimi r11, r10, 32-ShiftBits, ..., ...
1192 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1193 .addReg(RegO, RegState::Kill)
1194 .addReg(Reg, RegState::Kill)
1195 .addImm(ShiftBits ? 32 - ShiftBits : 0)
1196 .addImm(ShiftBits)
1197 .addImm(ShiftBits);
1199 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1200 getCRFromCRBit(DestReg))
1201 .addReg(RegO, RegState::Kill)
1202 // Make sure we have a use dependency all the way through this
1203 // sequence of instructions. We can't have the other bits in the CR
1204 // modified in between the mfocrf and the mtocrf.
1205 .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1207 // Discard the pseudo instruction.
1208 MBB.erase(II);
1211 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1212 MCRegister DestReg, MCRegister SrcReg) {
1213 #ifdef NDEBUG
1214 return;
1215 #else
1216 if (ReportAccMoves) {
1217 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1218 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1219 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1220 MBB.dump();
1222 #endif
1225 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1226 bool IsRestore) {
1227 #ifdef NDEBUG
1228 return;
1229 #else
1230 if (ReportAccMoves) {
1231 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1232 << (IsRestore ? "restore" : "spill") << ":\n";
1233 MBB.dump();
1235 #endif
1238 static void spillRegPairs(MachineBasicBlock &MBB,
1239 MachineBasicBlock::iterator II, DebugLoc DL,
1240 const TargetInstrInfo &TII, Register SrcReg,
1241 unsigned FrameIndex, bool IsLittleEndian,
1242 bool IsKilled, bool TwoPairs) {
1243 unsigned Offset = 0;
1244 // The register arithmetic in this function does not support virtual
1245 // registers.
1246 assert(!SrcReg.isVirtual() &&
1247 "Spilling register pairs does not support virtual registers.");
1249 if (TwoPairs)
1250 Offset = IsLittleEndian ? 48 : 0;
1251 else
1252 Offset = IsLittleEndian ? 16 : 0;
1253 Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1254 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1255 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1256 .addReg(Reg, getKillRegState(IsKilled)),
1257 FrameIndex, Offset);
1258 Offset += IsLittleEndian ? -16 : 16;
1259 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1260 .addReg(Reg + 1, getKillRegState(IsKilled)),
1261 FrameIndex, Offset);
1262 if (TwoPairs) {
1263 Offset += IsLittleEndian ? -16 : 16;
1264 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1265 .addReg(Reg + 2, getKillRegState(IsKilled)),
1266 FrameIndex, Offset);
1267 Offset += IsLittleEndian ? -16 : 16;
1268 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1269 .addReg(Reg + 3, getKillRegState(IsKilled)),
1270 FrameIndex, Offset);
1274 /// Remove any STXVP[X] instructions and split them out into a pair of
1275 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1276 /// the command line.
1277 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1278 unsigned FrameIndex) const {
1279 assert(DisableAutoPairedVecSt &&
1280 "Expecting to do this only if paired vector stores are disabled.");
1281 MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1282 MachineBasicBlock &MBB = *MI.getParent();
1283 MachineFunction &MF = *MBB.getParent();
1284 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1285 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1286 DebugLoc DL = MI.getDebugLoc();
1287 Register SrcReg = MI.getOperand(0).getReg();
1288 bool IsLittleEndian = Subtarget.isLittleEndian();
1289 bool IsKilled = MI.getOperand(0).isKill();
1290 spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1291 /* TwoPairs */ false);
1292 // Discard the original instruction.
1293 MBB.erase(II);
1296 static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) {
1297 #ifdef NDEBUG
1298 return;
1299 #else
1300 if (ReportAccMoves) {
1301 dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill")
1302 << ":\n";
1303 MBB.dump();
1305 #endif
1308 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1309 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1310 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1311 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1312 /// handle the FI elimination.
1313 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1314 unsigned FrameIndex) const {
1315 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1316 MachineBasicBlock &MBB = *MI.getParent();
1317 MachineFunction &MF = *MBB.getParent();
1318 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1319 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1320 DebugLoc DL = MI.getDebugLoc();
1321 Register SrcReg = MI.getOperand(0).getReg();
1322 bool IsKilled = MI.getOperand(0).isKill();
1324 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1325 Register Reg =
1326 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1327 bool IsLittleEndian = Subtarget.isLittleEndian();
1329 emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1331 // De-prime the register being spilled, create two stores for the pair
1332 // subregisters accounting for endianness and then re-prime the register if
1333 // it isn't killed. This uses the Offset parameter to addFrameReference() to
1334 // adjust the offset of the store that is within the 64-byte stack slot.
1335 if (IsPrimed)
1336 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1337 if (DisableAutoPairedVecSt)
1338 spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1339 /* TwoPairs */ true);
1340 else {
1341 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1342 .addReg(Reg, getKillRegState(IsKilled)),
1343 FrameIndex, IsLittleEndian ? 32 : 0);
1344 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1345 .addReg(Reg + 1, getKillRegState(IsKilled)),
1346 FrameIndex, IsLittleEndian ? 0 : 32);
1348 if (IsPrimed && !IsKilled)
1349 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1351 // Discard the pseudo instruction.
1352 MBB.erase(II);
1355 /// lowerACCRestore - Generate the code to restore the accumulator register.
1356 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1357 unsigned FrameIndex) const {
1358 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1359 MachineBasicBlock &MBB = *MI.getParent();
1360 MachineFunction &MF = *MBB.getParent();
1361 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1362 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1363 DebugLoc DL = MI.getDebugLoc();
1365 Register DestReg = MI.getOperand(0).getReg();
1366 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1367 "RESTORE_ACC does not define its destination");
1369 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1370 Register Reg =
1371 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1372 bool IsLittleEndian = Subtarget.isLittleEndian();
1374 emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1376 // Create two loads for the pair subregisters accounting for endianness and
1377 // then prime the accumulator register being restored.
1378 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1379 FrameIndex, IsLittleEndian ? 32 : 0);
1380 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1381 FrameIndex, IsLittleEndian ? 0 : 32);
1382 if (IsPrimed)
1383 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1385 // Discard the pseudo instruction.
1386 MBB.erase(II);
1389 /// lowerWACCSpilling - Generate the code for spilling the wide accumulator
1390 /// register.
1391 void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II,
1392 unsigned FrameIndex) const {
1393 MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset>
1394 MachineBasicBlock &MBB = *MI.getParent();
1395 MachineFunction &MF = *MBB.getParent();
1396 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1397 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1398 DebugLoc DL = MI.getDebugLoc();
1399 bool IsLittleEndian = Subtarget.isLittleEndian();
1401 emitWAccSpillRestoreInfo(MBB, false);
1403 const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1404 Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1405 Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1406 Register SrcReg = MI.getOperand(0).getReg();
1408 BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0)
1409 .addDef(VSRpReg1)
1410 .addReg(SrcReg);
1412 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1413 .addReg(VSRpReg0, RegState::Kill),
1414 FrameIndex, IsLittleEndian ? 32 : 0);
1415 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1416 .addReg(VSRpReg1, RegState::Kill),
1417 FrameIndex, IsLittleEndian ? 0 : 32);
1419 // Discard the pseudo instruction.
1420 MBB.erase(II);
1423 /// lowerWACCRestore - Generate the code to restore the wide accumulator
1424 /// register.
1425 void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II,
1426 unsigned FrameIndex) const {
1427 MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset>
1428 MachineBasicBlock &MBB = *MI.getParent();
1429 MachineFunction &MF = *MBB.getParent();
1430 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1431 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1432 DebugLoc DL = MI.getDebugLoc();
1433 bool IsLittleEndian = Subtarget.isLittleEndian();
1435 emitWAccSpillRestoreInfo(MBB, true);
1437 const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1438 Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1439 Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1440 Register DestReg = MI.getOperand(0).getReg();
1442 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0),
1443 FrameIndex, IsLittleEndian ? 32 : 0);
1444 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1),
1445 FrameIndex, IsLittleEndian ? 0 : 32);
1447 // Kill VSRpReg0, VSRpReg1 (killedRegState::Killed)
1448 BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg)
1449 .addReg(VSRpReg0, RegState::Kill)
1450 .addReg(VSRpReg1, RegState::Kill);
1452 // Discard the pseudo instruction.
1453 MBB.erase(II);
1456 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1457 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1458 unsigned FrameIndex) const {
1459 MachineInstr &MI = *II;
1460 MachineBasicBlock &MBB = *MI.getParent();
1461 MachineFunction &MF = *MBB.getParent();
1462 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1463 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1464 DebugLoc DL = MI.getDebugLoc();
1466 Register SrcReg = MI.getOperand(0).getReg();
1467 bool IsKilled = MI.getOperand(0).isKill();
1469 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1470 bool IsLittleEndian = Subtarget.isLittleEndian();
1472 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1473 .addReg(Reg, getKillRegState(IsKilled)),
1474 FrameIndex, IsLittleEndian ? 8 : 0);
1475 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1476 .addReg(Reg + 1, getKillRegState(IsKilled)),
1477 FrameIndex, IsLittleEndian ? 0 : 8);
1479 // Discard the pseudo instruction.
1480 MBB.erase(II);
1483 /// lowerQuadwordRestore - Generate code to restore paired general register.
1484 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1485 unsigned FrameIndex) const {
1486 MachineInstr &MI = *II;
1487 MachineBasicBlock &MBB = *MI.getParent();
1488 MachineFunction &MF = *MBB.getParent();
1489 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1490 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1491 DebugLoc DL = MI.getDebugLoc();
1493 Register DestReg = MI.getOperand(0).getReg();
1494 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1495 "RESTORE_QUADWORD does not define its destination");
1497 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1498 bool IsLittleEndian = Subtarget.isLittleEndian();
1500 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1501 IsLittleEndian ? 8 : 0);
1502 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1503 IsLittleEndian ? 0 : 8);
1505 // Discard the pseudo instruction.
1506 MBB.erase(II);
1509 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1510 Register Reg, int &FrameIdx) const {
1511 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1512 // prevent allocating an additional frame slot.
1513 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1514 // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1515 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1516 // valid.
1517 // For 32-bit ELF, we have previously created the stack slot if needed, so
1518 // return its FrameIdx.
1519 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1520 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1521 return true;
1523 return false;
1526 // If the offset must be a multiple of some value, return what that value is.
1527 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1528 switch (OpC) {
1529 default:
1530 return 1;
1531 case PPC::LWA:
1532 case PPC::LWA_32:
1533 case PPC::LD:
1534 case PPC::LDU:
1535 case PPC::STD:
1536 case PPC::STDU:
1537 case PPC::DFLOADf32:
1538 case PPC::DFLOADf64:
1539 case PPC::DFSTOREf32:
1540 case PPC::DFSTOREf64:
1541 case PPC::LXSD:
1542 case PPC::LXSSP:
1543 case PPC::STXSD:
1544 case PPC::STXSSP:
1545 case PPC::STQ:
1546 return 4;
1547 case PPC::EVLDD:
1548 case PPC::EVSTDD:
1549 return 8;
1550 case PPC::LXV:
1551 case PPC::STXV:
1552 case PPC::LQ:
1553 case PPC::LXVP:
1554 case PPC::STXVP:
1555 return 16;
1559 // If the offset must be a multiple of some value, return what that value is.
1560 static unsigned offsetMinAlign(const MachineInstr &MI) {
1561 unsigned OpC = MI.getOpcode();
1562 return offsetMinAlignForOpcode(OpC);
1565 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1566 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1567 unsigned FIOperandNum) {
1568 // Take into account whether it's an add or mem instruction
1569 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1570 if (MI.isInlineAsm())
1571 OffsetOperandNo = FIOperandNum - 1;
1572 else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1573 MI.getOpcode() == TargetOpcode::PATCHPOINT)
1574 OffsetOperandNo = FIOperandNum + 1;
1576 return OffsetOperandNo;
1579 bool
1580 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1581 int SPAdj, unsigned FIOperandNum,
1582 RegScavenger *RS) const {
1583 assert(SPAdj == 0 && "Unexpected");
1585 // Get the instruction.
1586 MachineInstr &MI = *II;
1587 // Get the instruction's basic block.
1588 MachineBasicBlock &MBB = *MI.getParent();
1589 // Get the basic block's function.
1590 MachineFunction &MF = *MBB.getParent();
1591 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1592 // Get the instruction info.
1593 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1594 // Get the frame info.
1595 MachineFrameInfo &MFI = MF.getFrameInfo();
1596 DebugLoc dl = MI.getDebugLoc();
1598 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1600 // Get the frame index.
1601 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1603 // Get the frame pointer save index. Users of this index are primarily
1604 // DYNALLOC instructions.
1605 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1606 int FPSI = FI->getFramePointerSaveIndex();
1607 // Get the instruction opcode.
1608 unsigned OpC = MI.getOpcode();
1610 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1611 lowerDynamicAreaOffset(II);
1612 // lowerDynamicAreaOffset erases II
1613 return true;
1616 // Special case for dynamic alloca.
1617 if (FPSI && FrameIndex == FPSI &&
1618 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1619 lowerDynamicAlloc(II);
1620 // lowerDynamicAlloc erases II
1621 return true;
1624 if (FPSI && FrameIndex == FPSI &&
1625 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1626 OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1627 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1628 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1629 lowerPrepareProbedAlloca(II);
1630 // lowerPrepareProbedAlloca erases II
1631 return true;
1634 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1635 if (OpC == PPC::SPILL_CR) {
1636 lowerCRSpilling(II, FrameIndex);
1637 return true;
1638 } else if (OpC == PPC::RESTORE_CR) {
1639 lowerCRRestore(II, FrameIndex);
1640 return true;
1641 } else if (OpC == PPC::SPILL_CRBIT) {
1642 lowerCRBitSpilling(II, FrameIndex);
1643 return true;
1644 } else if (OpC == PPC::RESTORE_CRBIT) {
1645 lowerCRBitRestore(II, FrameIndex);
1646 return true;
1647 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1648 lowerACCSpilling(II, FrameIndex);
1649 return true;
1650 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1651 lowerACCRestore(II, FrameIndex);
1652 return true;
1653 } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1654 lowerOctWordSpilling(II, FrameIndex);
1655 return true;
1656 } else if (OpC == PPC::SPILL_WACC) {
1657 lowerWACCSpilling(II, FrameIndex);
1658 return true;
1659 } else if (OpC == PPC::RESTORE_WACC) {
1660 lowerWACCRestore(II, FrameIndex);
1661 return true;
1662 } else if (OpC == PPC::SPILL_QUADWORD) {
1663 lowerQuadwordSpilling(II, FrameIndex);
1664 return true;
1665 } else if (OpC == PPC::RESTORE_QUADWORD) {
1666 lowerQuadwordRestore(II, FrameIndex);
1667 return true;
1670 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1671 MI.getOperand(FIOperandNum).ChangeToRegister(
1672 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1674 // If the instruction is not present in ImmToIdxMap, then it has no immediate
1675 // form (and must be r+r).
1676 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1677 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1679 // Now add the frame object offset to the offset from r1.
1680 int64_t Offset = MFI.getObjectOffset(FrameIndex);
1681 Offset += MI.getOperand(OffsetOperandNo).getImm();
1683 // If we're not using a Frame Pointer that has been set to the value of the
1684 // SP before having the stack size subtracted from it, then add the stack size
1685 // to Offset to get the correct offset.
1686 // Naked functions have stack size 0, although getStackSize may not reflect
1687 // that because we didn't call all the pieces that compute it for naked
1688 // functions.
1689 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1690 if (!(hasBasePointer(MF) && FrameIndex < 0))
1691 Offset += MFI.getStackSize();
1694 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1695 // transform it to the prefixed version so we don't have to use the XForm.
1696 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1697 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1698 Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) {
1699 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1700 MI.setDesc(TII.get(NewOpc));
1701 OpC = NewOpc;
1704 // If we can, encode the offset directly into the instruction. If this is a
1705 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
1706 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1707 // clear can be encoded. This is extremely uncommon, because normally you
1708 // only "std" to a stack slot that is at least 4-byte aligned, but it can
1709 // happen in invalid code.
1710 assert(OpC != PPC::DBG_VALUE &&
1711 "This should be handled in a target-independent way");
1712 // FIXME: This should be factored out to a separate function as prefixed
1713 // instructions add a number of opcodes for which we can use 34-bit imm.
1714 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1715 isUInt<8>(Offset) :
1716 isInt<16>(Offset);
1717 if (TII.isPrefixed(MI.getOpcode()))
1718 OffsetFitsMnemonic = isInt<34>(Offset);
1719 if (!noImmForm && ((OffsetFitsMnemonic &&
1720 ((Offset % offsetMinAlign(MI)) == 0)) ||
1721 OpC == TargetOpcode::STACKMAP ||
1722 OpC == TargetOpcode::PATCHPOINT)) {
1723 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1724 return false;
1727 // The offset doesn't fit into a single register, scavenge one to build the
1728 // offset in.
1730 bool is64Bit = TM.isPPC64();
1731 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1732 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1733 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1734 unsigned NewOpcode = 0u;
1735 bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() &&
1736 RS->getRegsAvailable(&PPC::VSFRCRegClass).any();
1737 Register SRegHi, SReg, VSReg;
1739 // The register scavenger is unable to get a GPR but can get a VSR. We
1740 // need to stash a GPR into a VSR so that we can free one up.
1741 if (ScavengingFailed && Subtarget.hasDirectMove()) {
1742 // Pick a volatile register and if we are spilling/restoring that
1743 // particular one, pick the next one.
1744 SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4;
1745 if (MI.getOperand(0).getReg() == SReg)
1746 SRegHi = SReg = SReg + 1;
1747 VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass);
1748 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg)
1749 .addReg(SReg);
1750 } else {
1751 SRegHi = MF.getRegInfo().createVirtualRegister(RC);
1752 SReg = MF.getRegInfo().createVirtualRegister(RC);
1755 // Insert a set of rA with the full offset value before the ld, st, or add
1756 if (isInt<16>(Offset))
1757 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1758 .addImm(Offset);
1759 else if (isInt<32>(Offset)) {
1760 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1761 .addImm(Offset >> 16);
1762 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1763 .addReg(SRegHi, RegState::Kill)
1764 .addImm(Offset);
1765 } else {
1766 assert(is64Bit && "Huge stack is only supported on PPC64");
1767 TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1770 // Convert into indexed form of the instruction:
1772 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1773 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1774 unsigned OperandBase;
1776 if (noImmForm)
1777 OperandBase = 1;
1778 else if (OpC != TargetOpcode::INLINEASM &&
1779 OpC != TargetOpcode::INLINEASM_BR) {
1780 assert(ImmToIdxMap.count(OpC) &&
1781 "No indexed form of load or store available!");
1782 NewOpcode = ImmToIdxMap.find(OpC)->second;
1783 MI.setDesc(TII.get(NewOpcode));
1784 OperandBase = 1;
1785 } else {
1786 OperandBase = OffsetOperandNo;
1789 Register StackReg = MI.getOperand(FIOperandNum).getReg();
1790 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1791 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1793 // If we stashed a value from a GPR into a VSR, we need to get it back after
1794 // spilling the register.
1795 if (ScavengingFailed && Subtarget.hasDirectMove())
1796 BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg)
1797 .addReg(VSReg);
1799 // Since these are not real X-Form instructions, we must
1800 // add the registers and access 0(NewReg) rather than
1801 // emitting the X-Form pseudo.
1802 if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1803 assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1804 Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1805 BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1806 .addReg(SReg, RegState::Kill)
1807 .addReg(StackReg);
1808 MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1809 MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1810 MI.getOperand(OperandBase).ChangeToImmediate(0);
1812 return false;
1815 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1816 const PPCFrameLowering *TFI = getFrameLowering(MF);
1818 if (!TM.isPPC64())
1819 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1820 else
1821 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1824 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1825 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1826 if (!hasBasePointer(MF))
1827 return getFrameRegister(MF);
1829 if (TM.isPPC64())
1830 return PPC::X30;
1832 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1833 return PPC::R29;
1835 return PPC::R30;
1838 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1839 if (!EnableBasePointer)
1840 return false;
1841 if (AlwaysBasePointer)
1842 return true;
1844 // If we need to realign the stack, then the stack pointer can no longer
1845 // serve as an offset into the caller's stack space. As a result, we need a
1846 // base pointer.
1847 return hasStackRealignment(MF);
1850 /// Returns true if the instruction's frame index
1851 /// reference would be better served by a base register other than FP
1852 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1853 /// references it should create new base registers for.
1854 bool PPCRegisterInfo::
1855 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1856 assert(Offset < 0 && "Local offset must be negative");
1858 // It's the load/store FI references that cause issues, as it can be difficult
1859 // to materialize the offset if it won't fit in the literal field. Estimate
1860 // based on the size of the local frame and some conservative assumptions
1861 // about the rest of the stack frame (note, this is pre-regalloc, so
1862 // we don't know everything for certain yet) whether this offset is likely
1863 // to be out of range of the immediate. Return true if so.
1865 // We only generate virtual base registers for loads and stores that have
1866 // an r+i form. Return false for everything else.
1867 unsigned OpC = MI->getOpcode();
1868 if (!ImmToIdxMap.count(OpC))
1869 return false;
1871 // Don't generate a new virtual base register just to add zero to it.
1872 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1873 MI->getOperand(2).getImm() == 0)
1874 return false;
1876 MachineBasicBlock &MBB = *MI->getParent();
1877 MachineFunction &MF = *MBB.getParent();
1878 const PPCFrameLowering *TFI = getFrameLowering(MF);
1879 unsigned StackEst = TFI->determineFrameLayout(MF, true);
1881 // If we likely don't need a stack frame, then we probably don't need a
1882 // virtual base register either.
1883 if (!StackEst)
1884 return false;
1886 // Estimate an offset from the stack pointer.
1887 // The incoming offset is relating to the SP at the start of the function,
1888 // but when we access the local it'll be relative to the SP after local
1889 // allocation, so adjust our SP-relative offset by that allocation size.
1890 Offset += StackEst;
1892 // The frame pointer will point to the end of the stack, so estimate the
1893 // offset as the difference between the object offset and the FP location.
1894 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1897 /// Insert defining instruction(s) for BaseReg to
1898 /// be a pointer to FrameIdx at the beginning of the basic block.
1899 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1900 int FrameIdx,
1901 int64_t Offset) const {
1902 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1904 MachineBasicBlock::iterator Ins = MBB->begin();
1905 DebugLoc DL; // Defaults to "unknown"
1906 if (Ins != MBB->end())
1907 DL = Ins->getDebugLoc();
1909 const MachineFunction &MF = *MBB->getParent();
1910 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1911 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1912 const MCInstrDesc &MCID = TII.get(ADDriOpc);
1913 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1914 const TargetRegisterClass *RC = getPointerRegClass(MF);
1915 Register BaseReg = MRI.createVirtualRegister(RC);
1916 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1918 BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1919 .addFrameIndex(FrameIdx).addImm(Offset);
1921 return BaseReg;
1924 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1925 int64_t Offset) const {
1926 unsigned FIOperandNum = 0;
1927 while (!MI.getOperand(FIOperandNum).isFI()) {
1928 ++FIOperandNum;
1929 assert(FIOperandNum < MI.getNumOperands() &&
1930 "Instr doesn't have FrameIndex operand!");
1933 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1934 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1935 Offset += MI.getOperand(OffsetOperandNo).getImm();
1936 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1938 MachineBasicBlock &MBB = *MI.getParent();
1939 MachineFunction &MF = *MBB.getParent();
1940 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1941 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1942 const MCInstrDesc &MCID = MI.getDesc();
1943 MachineRegisterInfo &MRI = MF.getRegInfo();
1944 MRI.constrainRegClass(BaseReg,
1945 TII.getRegClass(MCID, FIOperandNum, this, MF));
1948 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1949 Register BaseReg,
1950 int64_t Offset) const {
1951 unsigned FIOperandNum = 0;
1952 while (!MI->getOperand(FIOperandNum).isFI()) {
1953 ++FIOperandNum;
1954 assert(FIOperandNum < MI->getNumOperands() &&
1955 "Instr doesn't have FrameIndex operand!");
1958 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1959 Offset += MI->getOperand(OffsetOperandNo).getImm();
1961 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1962 MI->getOpcode() == TargetOpcode::STACKMAP ||
1963 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1964 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);