Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyLowerEmscriptenEHSjLj.cpp
blob7cc030460e30f872985d3c2698a1b43b2a5ec692
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 /// These variables are used for both exceptions and setjmp/longjmps.
45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 /// means nothing occurred, 1 means an exception occurred, and other numbers
47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 /// longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 /// at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 /// void setThrew(uintptr_t threw, int value) {
58 /// if (__THREW__ == 0) {
59 /// __THREW__ = threw;
60 /// __threwValue = value;
61 /// }
62 /// }
64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 /// In exception handling, getTempRet0 indicates the type of an exception
66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
67 /// function.
68 ///
69 /// 3) Lower
70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 /// into
72 /// __THREW__ = 0;
73 /// call @__invoke_SIG(func, arg1, arg2)
74 /// %__THREW__.val = __THREW__;
75 /// __THREW__ = 0;
76 /// if (%__THREW__.val == 1)
77 /// goto %lpad
78 /// else
79 /// goto %invoke.cont
80 /// SIG is a mangled string generated based on the LLVM IR-level function
81 /// signature. After LLVM IR types are lowered to the target wasm types,
82 /// the names for these wrappers will change based on wasm types as well,
83 /// as in invoke_vi (function takes an int and returns void). The bodies of
84 /// these wrappers will be generated in JS glue code, and inside those
85 /// wrappers we use JS try-catch to generate actual exception effects. It
86 /// also calls the original callee function. An example wrapper in JS code
87 /// would look like this:
88 /// function invoke_vi(index,a1) {
89 /// try {
90 /// Module["dynCall_vi"](index,a1); // This calls original callee
91 /// } catch(e) {
92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 /// _setThrew(1, 0); // setThrew is called here
94 /// }
95 /// }
96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 /// so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 /// %val = landingpad catch c1 catch c2 catch c3 ...
101 /// ... use %val ...
102 /// into
103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 /// %val = {%fmc, getTempRet0()}
105 /// ... use %val ...
106 /// Here N is a number calculated based on the number of clauses.
107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
109 /// 5) Lower
110 /// resume {%a, %b}
111 /// into
112 /// call @__resumeException(%a)
113 /// where __resumeException() is a function in JS glue code.
115 /// 6) Lower
116 /// call @llvm.eh.typeid.for(type) (intrinsic)
117 /// into
118 /// call @llvm_eh_typeid_for(type)
119 /// llvm_eh_typeid_for function will be generated in JS glue code.
121 /// * Emscripten setjmp / longjmp handling
123 /// If there are calls to longjmp()
125 /// 1) Lower
126 /// longjmp(env, val)
127 /// into
128 /// emscripten_longjmp(env, val)
130 /// If there are calls to setjmp()
132 /// 2) In the function entry that calls setjmp, initialize
133 /// functionInvocationId as follows:
135 /// functionInvocationId = alloca(4)
137 /// Note: the alloca size is not important as this pointer is
138 /// merely used for pointer comparisions.
140 /// 3) Lower
141 /// setjmp(env)
142 /// into
143 /// __wasm_setjmp(env, label, functionInvocationId)
145 /// __wasm_setjmp records the necessary info (the label and
146 /// functionInvocationId) to the "env".
147 /// A BB with setjmp is split into two after setjmp call in order to
148 /// make the post-setjmp BB the possible destination of longjmp BB.
150 /// 4) Lower every call that might longjmp into
151 /// __THREW__ = 0;
152 /// call @__invoke_SIG(func, arg1, arg2)
153 /// %__THREW__.val = __THREW__;
154 /// __THREW__ = 0;
155 /// %__threwValue.val = __threwValue;
156 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
157 /// %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
158 /// if (%label == 0)
159 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
160 /// setTempRet0(%__threwValue.val);
161 /// } else {
162 /// %label = -1;
163 /// }
164 /// longjmp_result = getTempRet0();
165 /// switch %label {
166 /// label 1: goto post-setjmp BB 1
167 /// label 2: goto post-setjmp BB 2
168 /// ...
169 /// default: goto splitted next BB
170 /// }
172 /// __wasm_setjmp_test examines the jmp buf to see if it was for a matching
173 /// setjmp call. After calling an invoke wrapper, if a longjmp occurred,
174 /// __THREW__ will be the address of matching jmp_buf buffer and
175 /// __threwValue be the second argument to longjmp.
176 /// __wasm_setjmp_test returns a setjmp label, a unique ID to each setjmp
177 /// callsite. Label 0 means this longjmp buffer does not correspond to one
178 /// of the setjmp callsites in this function, so in this case we just chain
179 /// the longjmp to the caller. Label -1 means no longjmp occurred.
180 /// Otherwise we jump to the right post-setjmp BB based on the label.
182 /// * Wasm setjmp / longjmp handling
183 /// This mode still uses some Emscripten library functions but not JavaScript's
184 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
185 /// which will be lowered to exception handling instructions.
187 /// If there are calls to longjmp()
189 /// 1) Lower
190 /// longjmp(env, val)
191 /// into
192 /// __wasm_longjmp(env, val)
194 /// If there are calls to setjmp()
196 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
197 /// (functionInvocationId initialization + setjmp callsite transformation)
199 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
200 /// thrown by __wasm_longjmp function. In the runtime library, we have an
201 /// equivalent of the following struct:
203 /// struct __WasmLongjmpArgs {
204 /// void *env;
205 /// int val;
206 /// };
208 /// The thrown value here is a pointer to the struct. We use this struct to
209 /// transfer two values by throwing a single value. Wasm throw and catch
210 /// instructions are capable of throwing and catching multiple values, but
211 /// it also requires multivalue support that is currently not very reliable.
212 /// TODO Switch to throwing and catching two values without using the struct
214 /// All longjmpable function calls will be converted to an invoke that will
215 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
216 /// test the thrown values using __wasm_setjmp_test function as we do for
217 /// Emscripten SjLj. The main difference is, in Emscripten SjLj, we need to
218 /// transform every longjmpable callsite into a sequence of code including
219 /// __wasm_setjmp_test() call; in Wasm SjLj we do the testing in only one
220 /// place, in this catchpad.
222 /// After testing calling __wasm_setjmp_test(), if the longjmp does not
223 /// correspond to one of the setjmps within the current function, it rethrows
224 /// the longjmp by calling __wasm_longjmp(). If it corresponds to one of
225 /// setjmps in the function, we jump to the beginning of the function, which
226 /// contains a switch to each post-setjmp BB. Again, in Emscripten SjLj, this
227 /// switch is added for every longjmpable callsite; in Wasm SjLj we do this
228 /// only once at the top of the function. (after functionInvocationId
229 /// initialization)
231 /// The below is the pseudocode for what we have described
233 /// entry:
234 /// Initialize functionInvocationId
236 /// setjmp.dispatch:
237 /// switch %label {
238 /// label 1: goto post-setjmp BB 1
239 /// label 2: goto post-setjmp BB 2
240 /// ...
241 /// default: goto splitted next BB
242 /// }
243 /// ...
245 /// bb:
246 /// invoke void @foo() ;; foo is a longjmpable function
247 /// to label %next unwind label %catch.dispatch.longjmp
248 /// ...
250 /// catch.dispatch.longjmp:
251 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller
253 /// catch.longjmp:
254 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
255 /// %env = load 'env' field from __WasmLongjmpArgs
256 /// %val = load 'val' field from __WasmLongjmpArgs
257 /// %label = __wasm_setjmp_test(%env, functionInvocationId);
258 /// if (%label == 0)
259 /// __wasm_longjmp(%env, %val)
260 /// catchret to %setjmp.dispatch
262 ///===----------------------------------------------------------------------===//
264 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
265 #include "WebAssembly.h"
266 #include "WebAssemblyTargetMachine.h"
267 #include "llvm/ADT/StringExtras.h"
268 #include "llvm/CodeGen/TargetPassConfig.h"
269 #include "llvm/CodeGen/WasmEHFuncInfo.h"
270 #include "llvm/IR/DebugInfoMetadata.h"
271 #include "llvm/IR/Dominators.h"
272 #include "llvm/IR/IRBuilder.h"
273 #include "llvm/IR/IntrinsicsWebAssembly.h"
274 #include "llvm/IR/Module.h"
275 #include "llvm/Support/CommandLine.h"
276 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
277 #include "llvm/Transforms/Utils/Local.h"
278 #include "llvm/Transforms/Utils/SSAUpdater.h"
279 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
280 #include <set>
282 using namespace llvm;
284 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
286 static cl::list<std::string>
287 EHAllowlist("emscripten-cxx-exceptions-allowed",
288 cl::desc("The list of function names in which Emscripten-style "
289 "exception handling is enabled (see emscripten "
290 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
291 cl::CommaSeparated);
293 namespace {
294 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
295 bool EnableEmEH; // Enable Emscripten exception handling
296 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
297 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
298 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
300 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten)
301 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
302 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten)
303 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten)
304 Function *ResumeF = nullptr; // __resumeException() (Emscripten)
305 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic)
306 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten)
307 Function *WasmSetjmpF = nullptr; // __wasm_setjmp() (Emscripten)
308 Function *WasmSetjmpTestF = nullptr; // __wasm_setjmp_test() (Emscripten)
309 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten)
310 Function *CatchF = nullptr; // wasm.catch() (intrinsic)
312 // type of 'struct __WasmLongjmpArgs' defined in emscripten
313 Type *LongjmpArgsTy = nullptr;
315 // __cxa_find_matching_catch_N functions.
316 // Indexed by the number of clauses in an original landingpad instruction.
317 DenseMap<int, Function *> FindMatchingCatches;
318 // Map of <function signature string, invoke_ wrappers>
319 StringMap<Function *> InvokeWrappers;
320 // Set of allowed function names for exception handling
321 std::set<std::string> EHAllowlistSet;
322 // Functions that contains calls to setjmp
323 SmallPtrSet<Function *, 8> SetjmpUsers;
325 StringRef getPassName() const override {
326 return "WebAssembly Lower Emscripten Exceptions";
329 using InstVector = SmallVectorImpl<Instruction *>;
330 bool runEHOnFunction(Function &F);
331 bool runSjLjOnFunction(Function &F);
332 void handleLongjmpableCallsForEmscriptenSjLj(
333 Function &F, Instruction *FunctionInvocationId,
334 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
335 void
336 handleLongjmpableCallsForWasmSjLj(Function &F,
337 Instruction *FunctionInvocationId,
338 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
339 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
341 Value *wrapInvoke(CallBase *CI);
342 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
343 Value *FunctionInvocationId, Value *&Label,
344 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
345 PHINode *&CallEmLongjmpBBThrewPHI,
346 PHINode *&CallEmLongjmpBBThrewValuePHI,
347 BasicBlock *&EndBB);
348 Function *getInvokeWrapper(CallBase *CI);
350 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
351 bool supportsException(const Function *F) const {
352 return EnableEmEH && (areAllExceptionsAllowed() ||
353 EHAllowlistSet.count(std::string(F->getName())));
355 void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
357 void rebuildSSA(Function &F);
359 public:
360 static char ID;
362 WebAssemblyLowerEmscriptenEHSjLj()
363 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
364 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
365 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
366 assert(!(EnableEmSjLj && EnableWasmSjLj) &&
367 "Two SjLj modes cannot be turned on at the same time");
368 assert(!(EnableEmEH && EnableWasmSjLj) &&
369 "Wasm SjLj should be only used with Wasm EH");
370 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
372 bool runOnModule(Module &M) override;
374 void getAnalysisUsage(AnalysisUsage &AU) const override {
375 AU.addRequired<DominatorTreeWrapperPass>();
378 } // End anonymous namespace
380 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
381 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
382 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
383 false, false)
385 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
386 return new WebAssemblyLowerEmscriptenEHSjLj();
389 static bool canThrow(const Value *V) {
390 if (const auto *F = dyn_cast<const Function>(V)) {
391 // Intrinsics cannot throw
392 if (F->isIntrinsic())
393 return false;
394 StringRef Name = F->getName();
395 // leave setjmp and longjmp (mostly) alone, we process them properly later
396 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
397 return false;
398 return !F->doesNotThrow();
400 // not a function, so an indirect call - can throw, we can't tell
401 return true;
404 // Get a thread-local global variable with the given name. If it doesn't exist
405 // declare it, which will generate an import and assume that it will exist at
406 // link time.
407 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
408 WebAssemblyTargetMachine &TM,
409 const char *Name) {
410 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
411 if (!GV)
412 report_fatal_error(Twine("unable to create global: ") + Name);
414 // Variables created by this function are thread local. If the target does not
415 // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
416 // to non-thread-local ones, in which case we don't allow this object to be
417 // linked with other objects using shared memory.
418 GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
419 return GV;
422 // Simple function name mangler.
423 // This function simply takes LLVM's string representation of parameter types
424 // and concatenate them with '_'. There are non-alphanumeric characters but llc
425 // is ok with it, and we need to postprocess these names after the lowering
426 // phase anyway.
427 static std::string getSignature(FunctionType *FTy) {
428 std::string Sig;
429 raw_string_ostream OS(Sig);
430 OS << *FTy->getReturnType();
431 for (Type *ParamTy : FTy->params())
432 OS << "_" << *ParamTy;
433 if (FTy->isVarArg())
434 OS << "_...";
435 Sig = OS.str();
436 erase_if(Sig, isSpace);
437 // When s2wasm parses .s file, a comma means the end of an argument. So a
438 // mangled function name can contain any character but a comma.
439 std::replace(Sig.begin(), Sig.end(), ',', '.');
440 return Sig;
443 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
444 Module *M) {
445 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
446 // Tell the linker that this function is expected to be imported from the
447 // 'env' module.
448 if (!F->hasFnAttribute("wasm-import-module")) {
449 llvm::AttrBuilder B(M->getContext());
450 B.addAttribute("wasm-import-module", "env");
451 F->addFnAttrs(B);
453 if (!F->hasFnAttribute("wasm-import-name")) {
454 llvm::AttrBuilder B(M->getContext());
455 B.addAttribute("wasm-import-name", F->getName());
456 F->addFnAttrs(B);
458 return F;
461 // Returns an integer type for the target architecture's address space.
462 // i32 for wasm32 and i64 for wasm64.
463 static Type *getAddrIntType(Module *M) {
464 IRBuilder<> IRB(M->getContext());
465 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
468 // Returns an integer pointer type for the target architecture's address space.
469 // i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr
470 // in address space zero.
471 static Type *getAddrPtrType(Module *M) {
472 return PointerType::getUnqual(M->getContext());
475 // Returns an integer whose type is the integer type for the target's address
476 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
477 // integer.
478 static Value *getAddrSizeInt(Module *M, uint64_t C) {
479 IRBuilder<> IRB(M->getContext());
480 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
483 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
484 // This is because a landingpad instruction contains two more arguments, a
485 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
486 // functions are named after the number of arguments in the original landingpad
487 // instruction.
488 Function *
489 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
490 unsigned NumClauses) {
491 if (FindMatchingCatches.count(NumClauses))
492 return FindMatchingCatches[NumClauses];
493 PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext());
494 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
495 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
496 Function *F = getEmscriptenFunction(
497 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
498 FindMatchingCatches[NumClauses] = F;
499 return F;
502 // Generate invoke wrapper seqence with preamble and postamble
503 // Preamble:
504 // __THREW__ = 0;
505 // Postamble:
506 // %__THREW__.val = __THREW__; __THREW__ = 0;
507 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
508 // whether longjmp occurred), for future use.
509 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
510 Module *M = CI->getModule();
511 LLVMContext &C = M->getContext();
513 IRBuilder<> IRB(C);
514 IRB.SetInsertPoint(CI);
516 // Pre-invoke
517 // __THREW__ = 0;
518 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
520 // Invoke function wrapper in JavaScript
521 SmallVector<Value *, 16> Args;
522 // Put the pointer to the callee as first argument, so it can be called
523 // within the invoke wrapper later
524 Args.push_back(CI->getCalledOperand());
525 Args.append(CI->arg_begin(), CI->arg_end());
526 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
527 NewCall->takeName(CI);
528 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
529 NewCall->setDebugLoc(CI->getDebugLoc());
531 // Because we added the pointer to the callee as first argument, all
532 // argument attribute indices have to be incremented by one.
533 SmallVector<AttributeSet, 8> ArgAttributes;
534 const AttributeList &InvokeAL = CI->getAttributes();
536 // No attributes for the callee pointer.
537 ArgAttributes.push_back(AttributeSet());
538 // Copy the argument attributes from the original
539 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
540 ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
542 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
543 if (auto Args = FnAttrs.getAllocSizeArgs()) {
544 // The allocsize attribute (if any) referes to parameters by index and needs
545 // to be adjusted.
546 auto [SizeArg, NEltArg] = *Args;
547 SizeArg += 1;
548 if (NEltArg)
549 NEltArg = *NEltArg + 1;
550 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
552 // In case the callee has 'noreturn' attribute, We need to remove it, because
553 // we expect invoke wrappers to return.
554 FnAttrs.removeAttribute(Attribute::NoReturn);
556 // Reconstruct the AttributesList based on the vector we constructed.
557 AttributeList NewCallAL = AttributeList::get(
558 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
559 NewCall->setAttributes(NewCallAL);
561 CI->replaceAllUsesWith(NewCall);
563 // Post-invoke
564 // %__THREW__.val = __THREW__; __THREW__ = 0;
565 Value *Threw =
566 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
567 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
568 return Threw;
571 // Get matching invoke wrapper based on callee signature
572 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
573 Module *M = CI->getModule();
574 SmallVector<Type *, 16> ArgTys;
575 FunctionType *CalleeFTy = CI->getFunctionType();
577 std::string Sig = getSignature(CalleeFTy);
578 if (InvokeWrappers.contains(Sig))
579 return InvokeWrappers[Sig];
581 // Put the pointer to the callee as first argument
582 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
583 // Add argument types
584 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
586 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
587 CalleeFTy->isVarArg());
588 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
589 InvokeWrappers[Sig] = F;
590 return F;
593 static bool canLongjmp(const Value *Callee) {
594 if (auto *CalleeF = dyn_cast<Function>(Callee))
595 if (CalleeF->isIntrinsic())
596 return false;
598 // Attempting to transform inline assembly will result in something like:
599 // call void @__invoke_void(void ()* asm ...)
600 // which is invalid because inline assembly blocks do not have addresses
601 // and can't be passed by pointer. The result is a crash with illegal IR.
602 if (isa<InlineAsm>(Callee))
603 return false;
604 StringRef CalleeName = Callee->getName();
606 // TODO Include more functions or consider checking with mangled prefixes
608 // The reason we include malloc/free here is to exclude the malloc/free
609 // calls generated in setjmp prep / cleanup routines.
610 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
611 return false;
613 // There are functions in Emscripten's JS glue code or compiler-rt
614 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
615 CalleeName == "__wasm_setjmp" || CalleeName == "__wasm_setjmp_test" ||
616 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
617 return false;
619 // __cxa_find_matching_catch_N functions cannot longjmp
620 if (Callee->getName().starts_with("__cxa_find_matching_catch_"))
621 return false;
623 // Exception-catching related functions
625 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
626 // it surely cannot longjmp, in order to maintain the unwind relationship from
627 // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
629 // In Wasm EH + Wasm SjLj, we
630 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
631 // catch.dispatch.longjmp instead
632 // 2. Convert all longjmpable calls to invokes that unwind to
633 // catch.dispatch.longjmp
634 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
635 // from an exception)'s catchpad does not contain any calls that are converted
636 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
637 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
638 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
639 // CFGSort.
640 // int ret = setjmp(buf);
641 // try {
642 // foo(); // longjmps
643 // } catch (...) {
644 // }
645 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
646 // catchswitch, and is not caught by that catchswitch because it is a longjmp,
647 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
648 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
649 // it will not unwind to catch.dispatch.longjmp, producing an incorrect
650 // result.
652 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
653 // intentionally treat it as longjmpable to work around this problem. This is
654 // a hacky fix but an easy one.
656 // The comment block in findWasmUnwindDestinations() in
657 // SelectionDAGBuilder.cpp is addressing a similar problem.
658 if (CalleeName == "__cxa_end_catch")
659 return WebAssembly::WasmEnableSjLj;
660 if (CalleeName == "__cxa_begin_catch" ||
661 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
662 CalleeName == "__clang_call_terminate")
663 return false;
665 // std::terminate, which is generated when another exception occurs while
666 // handling an exception, cannot longjmp.
667 if (CalleeName == "_ZSt9terminatev")
668 return false;
670 // Otherwise we don't know
671 return true;
674 static bool isEmAsmCall(const Value *Callee) {
675 StringRef CalleeName = Callee->getName();
676 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
677 return CalleeName == "emscripten_asm_const_int" ||
678 CalleeName == "emscripten_asm_const_double" ||
679 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
680 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
681 CalleeName == "emscripten_asm_const_async_on_main_thread";
684 // Generate __wasm_setjmp_test function call seqence with preamble and
685 // postamble. The code this generates is equivalent to the following
686 // JavaScript code:
687 // %__threwValue.val = __threwValue;
688 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
689 // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
690 // if (%label == 0)
691 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
692 // setTempRet0(%__threwValue.val);
693 // } else {
694 // %label = -1;
695 // }
696 // %longjmp_result = getTempRet0();
698 // As output parameters. returns %label, %longjmp_result, and the BB the last
699 // instruction (%longjmp_result = ...) is in.
700 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
701 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *FunctionInvocationId,
702 Value *&Label, Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
703 PHINode *&CallEmLongjmpBBThrewPHI, PHINode *&CallEmLongjmpBBThrewValuePHI,
704 BasicBlock *&EndBB) {
705 Function *F = BB->getParent();
706 Module *M = F->getParent();
707 LLVMContext &C = M->getContext();
708 IRBuilder<> IRB(C);
709 IRB.SetCurrentDebugLocation(DL);
711 // if (%__THREW__.val != 0 & %__threwValue.val != 0)
712 IRB.SetInsertPoint(BB);
713 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
714 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
715 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
716 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
717 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
718 ThrewValueGV->getName() + ".val");
719 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
720 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
721 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
723 // Generate call.em.longjmp BB once and share it within the function
724 if (!CallEmLongjmpBB) {
725 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
726 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
727 IRB.SetInsertPoint(CallEmLongjmpBB);
728 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
729 CallEmLongjmpBBThrewValuePHI =
730 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
731 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
732 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
733 IRB.CreateCall(EmLongjmpF,
734 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
735 IRB.CreateUnreachable();
736 } else {
737 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
738 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
741 // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
742 // if (%label == 0)
743 IRB.SetInsertPoint(ThenBB1);
744 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
745 Value *ThrewPtr =
746 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
747 Value *ThenLabel = IRB.CreateCall(WasmSetjmpTestF,
748 {ThrewPtr, FunctionInvocationId}, "label");
749 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
750 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
752 // setTempRet0(%__threwValue.val);
753 IRB.SetInsertPoint(EndBB2);
754 IRB.CreateCall(SetTempRet0F, ThrewValue);
755 IRB.CreateBr(EndBB1);
757 IRB.SetInsertPoint(ElseBB1);
758 IRB.CreateBr(EndBB1);
760 // longjmp_result = getTempRet0();
761 IRB.SetInsertPoint(EndBB1);
762 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
763 LabelPHI->addIncoming(ThenLabel, EndBB2);
765 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
767 // Output parameter assignment
768 Label = LabelPHI;
769 EndBB = EndBB1;
770 LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result");
773 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
774 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
775 DT.recalculate(F); // CFG has been changed
777 SSAUpdaterBulk SSA;
778 for (BasicBlock &BB : F) {
779 for (Instruction &I : BB) {
780 unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
781 // If a value is defined by an invoke instruction, it is only available in
782 // its normal destination and not in its unwind destination.
783 if (auto *II = dyn_cast<InvokeInst>(&I))
784 SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
785 else
786 SSA.AddAvailableValue(VarID, &BB, &I);
787 for (auto &U : I.uses()) {
788 auto *User = cast<Instruction>(U.getUser());
789 if (auto *UserPN = dyn_cast<PHINode>(User))
790 if (UserPN->getIncomingBlock(U) == &BB)
791 continue;
792 if (DT.dominates(&I, User))
793 continue;
794 SSA.AddUse(VarID, &U);
798 SSA.RewriteAllUses(&DT);
801 // Replace uses of longjmp with a new longjmp function in Emscripten library.
802 // In Emscripten SjLj, the new function is
803 // void emscripten_longjmp(uintptr_t, i32)
804 // In Wasm SjLj, the new function is
805 // void __wasm_longjmp(i8*, i32)
806 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
807 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
808 // eventually be lowered to i32/i64 in the wasm backend.
809 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
810 Function *NewF) {
811 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
812 Module *M = LongjmpF->getParent();
813 SmallVector<CallInst *, 8> ToErase;
814 LLVMContext &C = LongjmpF->getParent()->getContext();
815 IRBuilder<> IRB(C);
817 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
818 // cast its first argument (jmp_buf*) appropriately
819 for (User *U : LongjmpF->users()) {
820 auto *CI = dyn_cast<CallInst>(U);
821 if (CI && CI->getCalledFunction() == LongjmpF) {
822 IRB.SetInsertPoint(CI);
823 Value *Env = nullptr;
824 if (NewF == EmLongjmpF)
825 Env =
826 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
827 else // WasmLongjmpF
828 Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env");
829 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
830 ToErase.push_back(CI);
833 for (auto *I : ToErase)
834 I->eraseFromParent();
836 // If we have any remaining uses of longjmp's function pointer, replace it
837 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
838 if (!LongjmpF->uses().empty()) {
839 Value *NewLongjmp =
840 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
841 LongjmpF->replaceAllUsesWith(NewLongjmp);
845 static bool containsLongjmpableCalls(const Function *F) {
846 for (const auto &BB : *F)
847 for (const auto &I : BB)
848 if (const auto *CB = dyn_cast<CallBase>(&I))
849 if (canLongjmp(CB->getCalledOperand()))
850 return true;
851 return false;
854 // When a function contains a setjmp call but not other calls that can longjmp,
855 // we don't do setjmp transformation for that setjmp. But we need to convert the
856 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
857 // returns 0 when called directly.
858 static void nullifySetjmp(Function *F) {
859 Module &M = *F->getParent();
860 IRBuilder<> IRB(M.getContext());
861 Function *SetjmpF = M.getFunction("setjmp");
862 SmallVector<Instruction *, 1> ToErase;
864 for (User *U : make_early_inc_range(SetjmpF->users())) {
865 auto *CB = cast<CallBase>(U);
866 BasicBlock *BB = CB->getParent();
867 if (BB->getParent() != F) // in other function
868 continue;
869 CallInst *CI = nullptr;
870 // setjmp cannot throw. So if it is an invoke, lower it to a call
871 if (auto *II = dyn_cast<InvokeInst>(CB))
872 CI = llvm::changeToCall(II);
873 else
874 CI = cast<CallInst>(CB);
875 ToErase.push_back(CI);
876 CI->replaceAllUsesWith(IRB.getInt32(0));
878 for (auto *I : ToErase)
879 I->eraseFromParent();
882 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
883 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
885 LLVMContext &C = M.getContext();
886 IRBuilder<> IRB(C);
888 Function *SetjmpF = M.getFunction("setjmp");
889 Function *LongjmpF = M.getFunction("longjmp");
891 // In some platforms _setjmp and _longjmp are used instead. Change these to
892 // use setjmp/longjmp instead, because we later detect these functions by
893 // their names.
894 Function *SetjmpF2 = M.getFunction("_setjmp");
895 Function *LongjmpF2 = M.getFunction("_longjmp");
896 if (SetjmpF2) {
897 if (SetjmpF) {
898 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
899 report_fatal_error("setjmp and _setjmp have different function types");
900 } else {
901 SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
902 GlobalValue::ExternalLinkage, "setjmp", M);
904 SetjmpF2->replaceAllUsesWith(SetjmpF);
906 if (LongjmpF2) {
907 if (LongjmpF) {
908 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
909 report_fatal_error(
910 "longjmp and _longjmp have different function types");
911 } else {
912 LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
913 GlobalValue::ExternalLinkage, "setjmp", M);
915 LongjmpF2->replaceAllUsesWith(LongjmpF);
918 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
919 assert(TPC && "Expected a TargetPassConfig");
920 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
922 // Declare (or get) global variables __THREW__, __threwValue, and
923 // getTempRet0/setTempRet0 function which are used in common for both
924 // exception handling and setjmp/longjmp handling
925 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
926 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
927 GetTempRet0F = getEmscriptenFunction(
928 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
929 SetTempRet0F = getEmscriptenFunction(
930 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
931 "setTempRet0", &M);
932 GetTempRet0F->setDoesNotThrow();
933 SetTempRet0F->setDoesNotThrow();
935 bool Changed = false;
937 // Function registration for exception handling
938 if (EnableEmEH) {
939 // Register __resumeException function
940 FunctionType *ResumeFTy =
941 FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false);
942 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
943 ResumeF->addFnAttr(Attribute::NoReturn);
945 // Register llvm_eh_typeid_for function
946 FunctionType *EHTypeIDTy =
947 FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false);
948 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
951 // Functions that contains calls to setjmp but don't have other longjmpable
952 // calls within them.
953 SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
955 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
956 // Precompute setjmp users
957 for (User *U : SetjmpF->users()) {
958 if (auto *CB = dyn_cast<CallBase>(U)) {
959 auto *UserF = CB->getFunction();
960 // If a function that calls setjmp does not contain any other calls that
961 // can longjmp, we don't need to do any transformation on that function,
962 // so can ignore it
963 if (containsLongjmpableCalls(UserF))
964 SetjmpUsers.insert(UserF);
965 else
966 SetjmpUsersToNullify.insert(UserF);
967 } else {
968 std::string S;
969 raw_string_ostream SS(S);
970 SS << *U;
971 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
972 SS.str());
977 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
978 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
979 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
981 // Function registration and data pre-gathering for setjmp/longjmp handling
982 if (DoSjLj) {
983 assert(EnableEmSjLj || EnableWasmSjLj);
984 if (EnableEmSjLj) {
985 // Register emscripten_longjmp function
986 FunctionType *FTy = FunctionType::get(
987 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
988 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
989 EmLongjmpF->addFnAttr(Attribute::NoReturn);
990 } else { // EnableWasmSjLj
991 Type *Int8PtrTy = IRB.getPtrTy();
992 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
993 FunctionType *FTy = FunctionType::get(
994 IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false);
995 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
996 WasmLongjmpF->addFnAttr(Attribute::NoReturn);
999 if (SetjmpF) {
1000 Type *Int8PtrTy = IRB.getPtrTy();
1001 Type *Int32PtrTy = IRB.getPtrTy();
1002 Type *Int32Ty = IRB.getInt32Ty();
1004 // Register __wasm_setjmp function
1005 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1006 FunctionType *FTy = FunctionType::get(
1007 IRB.getVoidTy(), {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy},
1008 false);
1009 WasmSetjmpF = getEmscriptenFunction(FTy, "__wasm_setjmp", &M);
1011 // Register __wasm_setjmp_test function
1012 FTy = FunctionType::get(Int32Ty, {Int32PtrTy, Int32PtrTy}, false);
1013 WasmSetjmpTestF = getEmscriptenFunction(FTy, "__wasm_setjmp_test", &M);
1015 // wasm.catch() will be lowered down to wasm 'catch' instruction in
1016 // instruction selection.
1017 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1018 // Type for struct __WasmLongjmpArgs
1019 LongjmpArgsTy = StructType::get(Int8PtrTy, // env
1020 Int32Ty // val
1025 // Exception handling transformation
1026 if (EnableEmEH) {
1027 for (Function &F : M) {
1028 if (F.isDeclaration())
1029 continue;
1030 Changed |= runEHOnFunction(F);
1034 // Setjmp/longjmp handling transformation
1035 if (DoSjLj) {
1036 Changed = true; // We have setjmp or longjmp somewhere
1037 if (LongjmpF)
1038 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1039 // Only traverse functions that uses setjmp in order not to insert
1040 // unnecessary prep / cleanup code in every function
1041 if (SetjmpF)
1042 for (Function *F : SetjmpUsers)
1043 runSjLjOnFunction(*F);
1046 // Replace unnecessary setjmp calls with 0
1047 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1048 Changed = true;
1049 assert(SetjmpF);
1050 for (Function *F : SetjmpUsersToNullify)
1051 nullifySetjmp(F);
1054 // Delete unused global variables and functions
1055 for (auto *V : {ThrewGV, ThrewValueGV})
1056 if (V && V->use_empty())
1057 V->eraseFromParent();
1058 for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1059 WasmSetjmpF, WasmSetjmpTestF, WasmLongjmpF, CatchF})
1060 if (V && V->use_empty())
1061 V->eraseFromParent();
1063 return Changed;
1066 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1067 Module &M = *F.getParent();
1068 LLVMContext &C = F.getContext();
1069 IRBuilder<> IRB(C);
1070 bool Changed = false;
1071 SmallVector<Instruction *, 64> ToErase;
1072 SmallPtrSet<LandingPadInst *, 32> LandingPads;
1074 // rethrow.longjmp BB that will be shared within the function.
1075 BasicBlock *RethrowLongjmpBB = nullptr;
1076 // PHI node for the loaded value of __THREW__ global variable in
1077 // rethrow.longjmp BB
1078 PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1080 for (BasicBlock &BB : F) {
1081 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1082 if (!II)
1083 continue;
1084 Changed = true;
1085 LandingPads.insert(II->getLandingPadInst());
1086 IRB.SetInsertPoint(II);
1088 const Value *Callee = II->getCalledOperand();
1089 bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1090 if (NeedInvoke) {
1091 // Wrap invoke with invoke wrapper and generate preamble/postamble
1092 Value *Threw = wrapInvoke(II);
1093 ToErase.push_back(II);
1095 // If setjmp/longjmp handling is enabled, the thrown value can be not an
1096 // exception but a longjmp. If the current function contains calls to
1097 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1098 // if the function does not contain setjmp calls, we shouldn't silently
1099 // ignore longjmps; we should rethrow them so they can be correctly
1100 // handled in somewhere up the call chain where setjmp is. __THREW__'s
1101 // value is 0 when nothing happened, 1 when an exception is thrown, and
1102 // other values when longjmp is thrown.
1104 // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1105 // goto %tail
1106 // else
1107 // goto %longjmp.rethrow
1109 // rethrow.longjmp: ;; This is longjmp. Rethrow it
1110 // %__threwValue.val = __threwValue
1111 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1113 // tail: ;; Nothing happened or an exception is thrown
1114 // ... Continue exception handling ...
1115 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1116 canLongjmp(Callee)) {
1117 // Create longjmp.rethrow BB once and share it within the function
1118 if (!RethrowLongjmpBB) {
1119 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1120 IRB.SetInsertPoint(RethrowLongjmpBB);
1121 RethrowLongjmpBBThrewPHI =
1122 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1123 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1124 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1125 ThrewValueGV->getName() + ".val");
1126 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1127 IRB.CreateUnreachable();
1128 } else {
1129 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1132 IRB.SetInsertPoint(II); // Restore the insert point back
1133 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1134 Value *CmpEqOne =
1135 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1136 Value *CmpEqZero =
1137 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1138 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1139 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1140 IRB.SetInsertPoint(Tail);
1141 BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1144 // Insert a branch based on __THREW__ variable
1145 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1146 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1148 } else {
1149 // This can't throw, and we don't need this invoke, just replace it with a
1150 // call+branch
1151 changeToCall(II);
1155 // Process resume instructions
1156 for (BasicBlock &BB : F) {
1157 // Scan the body of the basic block for resumes
1158 for (Instruction &I : BB) {
1159 auto *RI = dyn_cast<ResumeInst>(&I);
1160 if (!RI)
1161 continue;
1162 Changed = true;
1164 // Split the input into legal values
1165 Value *Input = RI->getValue();
1166 IRB.SetInsertPoint(RI);
1167 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1168 // Create a call to __resumeException function
1169 IRB.CreateCall(ResumeF, {Low});
1170 // Add a terminator to the block
1171 IRB.CreateUnreachable();
1172 ToErase.push_back(RI);
1176 // Process llvm.eh.typeid.for intrinsics
1177 for (BasicBlock &BB : F) {
1178 for (Instruction &I : BB) {
1179 auto *CI = dyn_cast<CallInst>(&I);
1180 if (!CI)
1181 continue;
1182 const Function *Callee = CI->getCalledFunction();
1183 if (!Callee)
1184 continue;
1185 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1186 continue;
1187 Changed = true;
1189 IRB.SetInsertPoint(CI);
1190 CallInst *NewCI =
1191 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1192 CI->replaceAllUsesWith(NewCI);
1193 ToErase.push_back(CI);
1197 // Look for orphan landingpads, can occur in blocks with no predecessors
1198 for (BasicBlock &BB : F) {
1199 Instruction *I = BB.getFirstNonPHI();
1200 if (auto *LPI = dyn_cast<LandingPadInst>(I))
1201 LandingPads.insert(LPI);
1203 Changed |= !LandingPads.empty();
1205 // Handle all the landingpad for this function together, as multiple invokes
1206 // may share a single lp
1207 for (LandingPadInst *LPI : LandingPads) {
1208 IRB.SetInsertPoint(LPI);
1209 SmallVector<Value *, 16> FMCArgs;
1210 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1211 Constant *Clause = LPI->getClause(I);
1212 // TODO Handle filters (= exception specifications).
1213 // https://github.com/llvm/llvm-project/issues/49740
1214 if (LPI->isCatch(I))
1215 FMCArgs.push_back(Clause);
1218 // Create a call to __cxa_find_matching_catch_N function
1219 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1220 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1221 Value *Poison = PoisonValue::get(LPI->getType());
1222 Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0");
1223 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0");
1224 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1226 LPI->replaceAllUsesWith(Pair1);
1227 ToErase.push_back(LPI);
1230 // Erase everything we no longer need in this function
1231 for (Instruction *I : ToErase)
1232 I->eraseFromParent();
1234 return Changed;
1237 // This tries to get debug info from the instruction before which a new
1238 // instruction will be inserted, and if there's no debug info in that
1239 // instruction, tries to get the info instead from the previous instruction (if
1240 // any). If none of these has debug info and a DISubprogram is provided, it
1241 // creates a dummy debug info with the first line of the function, because IR
1242 // verifier requires all inlinable callsites should have debug info when both a
1243 // caller and callee have DISubprogram. If none of these conditions are met,
1244 // returns empty info.
1245 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1246 DISubprogram *SP) {
1247 assert(InsertBefore);
1248 if (InsertBefore->getDebugLoc())
1249 return InsertBefore->getDebugLoc();
1250 const Instruction *Prev = InsertBefore->getPrevNode();
1251 if (Prev && Prev->getDebugLoc())
1252 return Prev->getDebugLoc();
1253 if (SP)
1254 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1255 return DebugLoc();
1258 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1259 assert(EnableEmSjLj || EnableWasmSjLj);
1260 Module &M = *F.getParent();
1261 LLVMContext &C = F.getContext();
1262 IRBuilder<> IRB(C);
1263 SmallVector<Instruction *, 64> ToErase;
1265 // Setjmp preparation
1267 BasicBlock *Entry = &F.getEntryBlock();
1268 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1269 SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1271 IRB.SetInsertPoint(Entry->getTerminator()->getIterator());
1272 // This alloca'ed pointer is used by the runtime to identify function
1273 // invocations. It's just for pointer comparisons. It will never be
1274 // dereferenced.
1275 Instruction *FunctionInvocationId =
1276 IRB.CreateAlloca(IRB.getInt32Ty(), nullptr, "functionInvocationId");
1277 FunctionInvocationId->setDebugLoc(FirstDL);
1279 // Setjmp transformation
1280 SmallVector<PHINode *, 4> SetjmpRetPHIs;
1281 Function *SetjmpF = M.getFunction("setjmp");
1282 for (auto *U : make_early_inc_range(SetjmpF->users())) {
1283 auto *CB = cast<CallBase>(U);
1284 BasicBlock *BB = CB->getParent();
1285 if (BB->getParent() != &F) // in other function
1286 continue;
1287 if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1288 std::string S;
1289 raw_string_ostream SS(S);
1290 SS << "In function " + F.getName() +
1291 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1292 SS << *CB;
1293 report_fatal_error(StringRef(SS.str()));
1296 CallInst *CI = nullptr;
1297 // setjmp cannot throw. So if it is an invoke, lower it to a call
1298 if (auto *II = dyn_cast<InvokeInst>(CB))
1299 CI = llvm::changeToCall(II);
1300 else
1301 CI = cast<CallInst>(CB);
1303 // The tail is everything right after the call, and will be reached once
1304 // when setjmp is called, and later when longjmp returns to the setjmp
1305 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1306 // Add a phi to the tail, which will be the output of setjmp, which
1307 // indicates if this is the first call or a longjmp back. The phi directly
1308 // uses the right value based on where we arrive from
1309 IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt());
1310 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1312 // setjmp initial call returns 0
1313 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1314 // The proper output is now this, not the setjmp call itself
1315 CI->replaceAllUsesWith(SetjmpRet);
1316 // longjmp returns to the setjmp will add themselves to this phi
1317 SetjmpRetPHIs.push_back(SetjmpRet);
1319 // Fix call target
1320 // Our index in the function is our place in the array + 1 to avoid index
1321 // 0, because index 0 means the longjmp is not ours to handle.
1322 IRB.SetInsertPoint(CI);
1323 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1324 FunctionInvocationId};
1325 IRB.CreateCall(WasmSetjmpF, Args);
1326 ToErase.push_back(CI);
1329 // Handle longjmpable calls.
1330 if (EnableEmSjLj)
1331 handleLongjmpableCallsForEmscriptenSjLj(F, FunctionInvocationId,
1332 SetjmpRetPHIs);
1333 else // EnableWasmSjLj
1334 handleLongjmpableCallsForWasmSjLj(F, FunctionInvocationId, SetjmpRetPHIs);
1336 // Erase everything we no longer need in this function
1337 for (Instruction *I : ToErase)
1338 I->eraseFromParent();
1340 // Finally, our modifications to the cfg can break dominance of SSA variables.
1341 // For example, in this code,
1342 // if (x()) { .. setjmp() .. }
1343 // if (y()) { .. longjmp() .. }
1344 // We must split the longjmp block, and it can jump into the block splitted
1345 // from setjmp one. But that means that when we split the setjmp block, it's
1346 // first part no longer dominates its second part - there is a theoretically
1347 // possible control flow path where x() is false, then y() is true and we
1348 // reach the second part of the setjmp block, without ever reaching the first
1349 // part. So, we rebuild SSA form here.
1350 rebuildSSA(F);
1351 return true;
1354 // Update each call that can longjmp so it can return to the corresponding
1355 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1356 // comments at top of the file for details.
1357 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1358 Function &F, Instruction *FunctionInvocationId,
1359 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1360 Module &M = *F.getParent();
1361 LLVMContext &C = F.getContext();
1362 IRBuilder<> IRB(C);
1363 SmallVector<Instruction *, 64> ToErase;
1365 // call.em.longjmp BB that will be shared within the function.
1366 BasicBlock *CallEmLongjmpBB = nullptr;
1367 // PHI node for the loaded value of __THREW__ global variable in
1368 // call.em.longjmp BB
1369 PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1370 // PHI node for the loaded value of __threwValue global variable in
1371 // call.em.longjmp BB
1372 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1373 // rethrow.exn BB that will be shared within the function.
1374 BasicBlock *RethrowExnBB = nullptr;
1376 // Because we are creating new BBs while processing and don't want to make
1377 // all these newly created BBs candidates again for longjmp processing, we
1378 // first make the vector of candidate BBs.
1379 std::vector<BasicBlock *> BBs;
1380 for (BasicBlock &BB : F)
1381 BBs.push_back(&BB);
1383 // BBs.size() will change within the loop, so we query it every time
1384 for (unsigned I = 0; I < BBs.size(); I++) {
1385 BasicBlock *BB = BBs[I];
1386 for (Instruction &I : *BB) {
1387 if (isa<InvokeInst>(&I)) {
1388 std::string S;
1389 raw_string_ostream SS(S);
1390 SS << "In function " << F.getName()
1391 << ": When using Wasm EH with Emscripten SjLj, there is a "
1392 "restriction that `setjmp` function call and exception cannot be "
1393 "used within the same function:\n";
1394 SS << I;
1395 report_fatal_error(StringRef(SS.str()));
1397 auto *CI = dyn_cast<CallInst>(&I);
1398 if (!CI)
1399 continue;
1401 const Value *Callee = CI->getCalledOperand();
1402 if (!canLongjmp(Callee))
1403 continue;
1404 if (isEmAsmCall(Callee))
1405 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1406 F.getName() +
1407 ". Please consider using EM_JS, or move the "
1408 "EM_ASM into another function.",
1409 false);
1411 Value *Threw = nullptr;
1412 BasicBlock *Tail;
1413 if (Callee->getName().starts_with("__invoke_")) {
1414 // If invoke wrapper has already been generated for this call in
1415 // previous EH phase, search for the load instruction
1416 // %__THREW__.val = __THREW__;
1417 // in postamble after the invoke wrapper call
1418 LoadInst *ThrewLI = nullptr;
1419 StoreInst *ThrewResetSI = nullptr;
1420 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1421 I != IE; ++I) {
1422 if (auto *LI = dyn_cast<LoadInst>(I))
1423 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1424 if (GV == ThrewGV) {
1425 Threw = ThrewLI = LI;
1426 break;
1429 // Search for the store instruction after the load above
1430 // __THREW__ = 0;
1431 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1432 I != IE; ++I) {
1433 if (auto *SI = dyn_cast<StoreInst>(I)) {
1434 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1435 if (GV == ThrewGV &&
1436 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1437 ThrewResetSI = SI;
1438 break;
1443 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1444 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1445 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1447 } else {
1448 // Wrap call with invoke wrapper and generate preamble/postamble
1449 Threw = wrapInvoke(CI);
1450 ToErase.push_back(CI);
1451 Tail = SplitBlock(BB, CI->getNextNode());
1453 // If exception handling is enabled, the thrown value can be not a
1454 // longjmp but an exception, in which case we shouldn't silently ignore
1455 // exceptions; we should rethrow them.
1456 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1457 // thrown, other values when longjmp is thrown.
1459 // if (%__THREW__.val == 1)
1460 // goto %eh.rethrow
1461 // else
1462 // goto %normal
1464 // eh.rethrow: ;; Rethrow exception
1465 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1466 // __resumeException(%exn)
1468 // normal:
1469 // <-- Insertion point. Will insert sjlj handling code from here
1470 // goto %tail
1472 // tail:
1473 // ...
1474 if (supportsException(&F) && canThrow(Callee)) {
1475 // We will add a new conditional branch. So remove the branch created
1476 // when we split the BB
1477 ToErase.push_back(BB->getTerminator());
1479 // Generate rethrow.exn BB once and share it within the function
1480 if (!RethrowExnBB) {
1481 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1482 IRB.SetInsertPoint(RethrowExnBB);
1483 CallInst *Exn =
1484 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1485 IRB.CreateCall(ResumeF, {Exn});
1486 IRB.CreateUnreachable();
1489 IRB.SetInsertPoint(CI);
1490 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1491 Value *CmpEqOne =
1492 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1493 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1495 IRB.SetInsertPoint(NormalBB);
1496 IRB.CreateBr(Tail);
1497 BB = NormalBB; // New insertion point to insert __wasm_setjmp_test()
1501 // We need to replace the terminator in Tail - SplitBlock makes BB go
1502 // straight to Tail, we need to check if a longjmp occurred, and go to the
1503 // right setjmp-tail if so
1504 ToErase.push_back(BB->getTerminator());
1506 // Generate a function call to __wasm_setjmp_test function and
1507 // preamble/postamble code to figure out (1) whether longjmp
1508 // occurred (2) if longjmp occurred, which setjmp it corresponds to
1509 Value *Label = nullptr;
1510 Value *LongjmpResult = nullptr;
1511 BasicBlock *EndBB = nullptr;
1512 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, FunctionInvocationId, Label,
1513 LongjmpResult, CallEmLongjmpBB, CallEmLongjmpBBThrewPHI,
1514 CallEmLongjmpBBThrewValuePHI, EndBB);
1515 assert(Label && LongjmpResult && EndBB);
1517 // Create switch instruction
1518 IRB.SetInsertPoint(EndBB);
1519 IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc());
1520 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1521 // -1 means no longjmp happened, continue normally (will hit the default
1522 // switch case). 0 means a longjmp that is not ours to handle, needs a
1523 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1524 // 0).
1525 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1526 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1527 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1530 // We are splitting the block here, and must continue to find other calls
1531 // in the block - which is now split. so continue to traverse in the Tail
1532 BBs.push_back(Tail);
1536 for (Instruction *I : ToErase)
1537 I->eraseFromParent();
1540 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1541 for (const User *U : CPI->users())
1542 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1543 return CRI->getUnwindDest();
1544 return nullptr;
1547 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1548 // if the longjmp corresponds to one of setjmps in the current function, and if
1549 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1550 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1551 // top of the file for details.
1552 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1553 Function &F, Instruction *FunctionInvocationId,
1554 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1555 Module &M = *F.getParent();
1556 LLVMContext &C = F.getContext();
1557 IRBuilder<> IRB(C);
1559 // A function with catchswitch/catchpad instruction should have a personality
1560 // function attached to it. Search for the wasm personality function, and if
1561 // it exists, use it, and if it doesn't, create a dummy personality function.
1562 // (SjLj is not going to call it anyway.)
1563 if (!F.hasPersonalityFn()) {
1564 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1565 FunctionType *PersType =
1566 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1567 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1568 F.setPersonalityFn(
1569 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy())));
1572 // Use the entry BB's debugloc as a fallback
1573 BasicBlock *Entry = &F.getEntryBlock();
1574 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1575 IRB.SetCurrentDebugLocation(FirstDL);
1577 // Add setjmp.dispatch BB right after the entry block. Because we have
1578 // initialized functionInvocationId in the entry block and split the
1579 // rest into another BB, here 'OrigEntry' is the function's original entry
1580 // block before the transformation.
1582 // entry:
1583 // functionInvocationId initialization
1584 // setjmp.dispatch:
1585 // switch will be inserted here later
1586 // entry.split: (OrigEntry)
1587 // the original function starts here
1588 BasicBlock *OrigEntry = Entry->getNextNode();
1589 BasicBlock *SetjmpDispatchBB =
1590 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1591 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1593 // Create catch.dispatch.longjmp BB and a catchswitch instruction
1594 BasicBlock *CatchDispatchLongjmpBB =
1595 BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1596 IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1597 CatchSwitchInst *CatchSwitchLongjmp =
1598 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1600 // Create catch.longjmp BB and a catchpad instruction
1601 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1602 CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1603 IRB.SetInsertPoint(CatchLongjmpBB);
1604 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1606 // Wasm throw and catch instructions can throw and catch multiple values, but
1607 // that requires multivalue support in the toolchain, which is currently not
1608 // very reliable. We instead throw and catch a pointer to a struct value of
1609 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1610 Instruction *LongjmpArgs =
1611 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1612 Value *EnvField =
1613 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1614 Value *ValField =
1615 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1616 // void *env = __wasm_longjmp_args.env;
1617 Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env");
1618 // int val = __wasm_longjmp_args.val;
1619 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1621 // %label = __wasm_setjmp_test(%env, functionInvocatinoId);
1622 // if (%label == 0)
1623 // __wasm_longjmp(%env, %val)
1624 // catchret to %setjmp.dispatch
1625 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1626 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1627 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1628 Value *Label = IRB.CreateCall(WasmSetjmpTestF, {EnvP, FunctionInvocationId},
1629 OperandBundleDef("funclet", CatchPad), "label");
1630 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1631 IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1633 IRB.SetInsertPoint(ThenBB);
1634 CallInst *WasmLongjmpCI = IRB.CreateCall(
1635 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1636 IRB.CreateUnreachable();
1638 IRB.SetInsertPoint(EndBB);
1639 // Jump to setjmp.dispatch block
1640 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1642 // Go back to setjmp.dispatch BB
1643 // setjmp.dispatch:
1644 // switch %label {
1645 // label 1: goto post-setjmp BB 1
1646 // label 2: goto post-setjmp BB 2
1647 // ...
1648 // default: goto splitted next BB
1649 // }
1650 IRB.SetInsertPoint(SetjmpDispatchBB);
1651 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1652 LabelPHI->addIncoming(Label, EndBB);
1653 LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1654 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1655 // -1 means no longjmp happened, continue normally (will hit the default
1656 // switch case). 0 means a longjmp that is not ours to handle, needs a
1657 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1658 // 0).
1659 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1660 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1661 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1664 // Convert all longjmpable call instructions to invokes that unwind to the
1665 // newly created catch.dispatch.longjmp BB.
1666 SmallVector<CallInst *, 64> LongjmpableCalls;
1667 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1668 for (auto &I : *BB) {
1669 auto *CI = dyn_cast<CallInst>(&I);
1670 if (!CI)
1671 continue;
1672 const Value *Callee = CI->getCalledOperand();
1673 if (!canLongjmp(Callee))
1674 continue;
1675 if (isEmAsmCall(Callee))
1676 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1677 F.getName() +
1678 ". Please consider using EM_JS, or move the "
1679 "EM_ASM into another function.",
1680 false);
1681 // This is __wasm_longjmp() call we inserted in this function, which
1682 // rethrows the longjmp when the longjmp does not correspond to one of
1683 // setjmps in this function. We should not convert this call to an invoke.
1684 if (CI == WasmLongjmpCI)
1685 continue;
1686 LongjmpableCalls.push_back(CI);
1690 for (auto *CI : LongjmpableCalls) {
1691 // Even if the callee function has attribute 'nounwind', which is true for
1692 // all C functions, it can longjmp, which means it can throw a Wasm
1693 // exception now.
1694 CI->removeFnAttr(Attribute::NoUnwind);
1695 if (Function *CalleeF = CI->getCalledFunction())
1696 CalleeF->removeFnAttr(Attribute::NoUnwind);
1698 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1699 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1700 // to its parent pad's unwind destination instead to preserve the scope
1701 // structure. It will eventually unwind to the catch.dispatch.longjmp.
1702 SmallVector<OperandBundleDef, 1> Bundles;
1703 BasicBlock *UnwindDest = nullptr;
1704 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1705 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1706 while (!UnwindDest) {
1707 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1708 UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1709 break;
1711 if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1712 // getCleanupRetUnwindDest() can return nullptr when
1713 // 1. This cleanuppad's matching cleanupret uwninds to caller
1714 // 2. There is no matching cleanupret because it ends with
1715 // unreachable.
1716 // In case of 2, we need to traverse the parent pad chain.
1717 UnwindDest = getCleanupRetUnwindDest(CPI);
1718 Value *ParentPad = CPI->getParentPad();
1719 if (isa<ConstantTokenNone>(ParentPad))
1720 break;
1721 FromPad = cast<Instruction>(ParentPad);
1725 if (!UnwindDest)
1726 UnwindDest = CatchDispatchLongjmpBB;
1727 changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1730 SmallVector<Instruction *, 16> ToErase;
1731 for (auto &BB : F) {
1732 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1733 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1734 IRB.SetInsertPoint(CSI);
1735 ToErase.push_back(CSI);
1736 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1737 CatchDispatchLongjmpBB, 1);
1738 NewCSI->addHandler(*CSI->handler_begin());
1739 NewCSI->takeName(CSI);
1740 CSI->replaceAllUsesWith(NewCSI);
1744 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1745 if (CRI->unwindsToCaller()) {
1746 IRB.SetInsertPoint(CRI);
1747 ToErase.push_back(CRI);
1748 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1753 for (Instruction *I : ToErase)
1754 I->eraseFromParent();