[LLVM][IR] Use splat syntax when printing ConstantExpr based splats. (#116856)
[llvm-project.git] / bolt / runtime / instr.cpp
blobd1f8a216badcf2713efab082dbed55952e374f19
1 //===- bolt/runtime/instr.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does
10 // not support linking modules with dependencies on one another into the final
11 // binary (TODO?), which means this library has to be self-contained in a single
12 // module.
14 // All extern declarations here need to be defined by BOLT itself. Those will be
15 // undefined symbols that BOLT needs to resolve by emitting these symbols with
16 // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible
17 // for defining the symbols here and these two files have a tight coupling: one
18 // working statically when you run BOLT and another during program runtime when
19 // you run an instrumented binary. The main goal here is to output an fdata file
20 // (BOLT profile) with the instrumentation counters inserted by the static pass.
21 // Counters for indirect calls are an exception, as we can't know them
22 // statically. These counters are created and managed here. To allow this, we
23 // need a minimal framework for allocating memory dynamically. We provide this
24 // with the BumpPtrAllocator class (not LLVM's, but our own version of it).
26 // Since this code is intended to be inserted into any executable, we decided to
27 // make it standalone and do not depend on any external libraries (i.e. language
28 // support libraries, such as glibc or stdc++). To allow this, we provide a few
29 // light implementations of common OS interacting functionalities using direct
30 // syscall wrappers. Our simple allocator doesn't manage deallocations that
31 // fragment the memory space, so it's stack based. This is the minimal framework
32 // provided here to allow processing instrumented counters and writing fdata.
34 // In the C++ idiom used here, we never use or rely on constructors or
35 // destructors for global objects. That's because those need support from the
36 // linker in initialization/finalization code, and we want to keep our linker
37 // very simple. Similarly, we don't create any global objects that are zero
38 // initialized, since those would need to go .bss, which our simple linker also
39 // don't support (TODO?).
41 //===----------------------------------------------------------------------===//
43 #include "common.h"
45 // Enables a very verbose logging to stderr useful when debugging
46 //#define ENABLE_DEBUG
48 #ifdef ENABLE_DEBUG
49 #define DEBUG(X) \
50 { X; }
51 #else
52 #define DEBUG(X) \
54 #endif
56 #pragma GCC visibility push(hidden)
58 extern "C" {
60 #if defined(__APPLE__)
61 extern uint64_t* _bolt_instr_locations_getter();
62 extern uint32_t _bolt_num_counters_getter();
64 extern uint8_t* _bolt_instr_tables_getter();
65 extern uint32_t _bolt_instr_num_funcs_getter();
67 #else
69 // Main counters inserted by instrumentation, incremented during runtime when
70 // points of interest (locations) in the program are reached. Those are direct
71 // calls and direct and indirect branches (local ones). There are also counters
72 // for basic block execution if they are a spanning tree leaf and need to be
73 // counted in order to infer the execution count of other edges of the CFG.
74 extern uint64_t __bolt_instr_locations[];
75 extern uint32_t __bolt_num_counters;
76 // Descriptions are serialized metadata about binary functions written by BOLT,
77 // so we have a minimal understanding about the program structure. For a
78 // reference on the exact format of this metadata, see *Description structs,
79 // Location, IntrumentedNode and EntryNode.
80 // Number of indirect call site descriptions
81 extern uint32_t __bolt_instr_num_ind_calls;
82 // Number of indirect call target descriptions
83 extern uint32_t __bolt_instr_num_ind_targets;
84 // Number of function descriptions
85 extern uint32_t __bolt_instr_num_funcs;
86 // Time to sleep across dumps (when we write the fdata profile to disk)
87 extern uint32_t __bolt_instr_sleep_time;
88 // Do not clear counters across dumps, rewrite file with the updated values
89 extern bool __bolt_instr_no_counters_clear;
90 // Wait until all forks of instrumented process will finish
91 extern bool __bolt_instr_wait_forks;
92 // Filename to dump data to
93 extern char __bolt_instr_filename[];
94 // Instumented binary file path
95 extern char __bolt_instr_binpath[];
96 // If true, append current PID to the fdata filename when creating it so
97 // different invocations of the same program can be differentiated.
98 extern bool __bolt_instr_use_pid;
99 // Functions that will be used to instrument indirect calls. BOLT static pass
100 // will identify indirect calls and modify them to load the address in these
101 // trampolines and call this address instead. BOLT can't use direct calls to
102 // our handlers because our addresses here are not known at analysis time. We
103 // only support resolving dependencies from this file to the output of BOLT,
104 // *not* the other way around.
105 // TODO: We need better linking support to make that happen.
106 extern void (*__bolt_ind_call_counter_func_pointer)();
107 extern void (*__bolt_ind_tailcall_counter_func_pointer)();
108 // Function pointers to init/fini trampoline routines in the binary, so we can
109 // resume regular execution of these functions that we hooked
110 extern void __bolt_start_trampoline();
111 extern void __bolt_fini_trampoline();
113 #endif
116 namespace {
118 /// A simple allocator that mmaps a fixed size region and manages this space
119 /// in a stack fashion, meaning you always deallocate the last element that
120 /// was allocated. In practice, we don't need to deallocate individual elements.
121 /// We monotonically increase our usage and then deallocate everything once we
122 /// are done processing something.
123 class BumpPtrAllocator {
124 /// This is written before each allocation and act as a canary to detect when
125 /// a bug caused our program to cross allocation boundaries.
126 struct EntryMetadata {
127 uint64_t Magic;
128 uint64_t AllocSize;
131 public:
132 void *allocate(size_t Size) {
133 Lock L(M);
135 if (StackBase == nullptr) {
136 StackBase = reinterpret_cast<uint8_t *>(
137 __mmap(0, MaxSize, PROT_READ | PROT_WRITE,
138 (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0));
139 assert(StackBase != MAP_FAILED,
140 "BumpPtrAllocator: failed to mmap stack!");
141 StackSize = 0;
144 Size = alignTo(Size + sizeof(EntryMetadata), 16);
145 uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata);
146 auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize);
147 M->Magic = Magic;
148 M->AllocSize = Size;
149 StackSize += Size;
150 assert(StackSize < MaxSize, "allocator ran out of memory");
151 return AllocAddress;
154 #ifdef DEBUG
155 /// Element-wise deallocation is only used for debugging to catch memory
156 /// bugs by checking magic bytes. Ordinarily, we reset the allocator once
157 /// we are done with it. Reset is done with clear(). There's no need
158 /// to deallocate each element individually.
159 void deallocate(void *Ptr) {
160 Lock L(M);
161 uint8_t MetadataOffset = sizeof(EntryMetadata);
162 auto *M = reinterpret_cast<EntryMetadata *>(
163 reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset);
164 const uint8_t *StackTop = StackBase + StackSize + MetadataOffset;
165 // Validate size
166 if (Ptr != StackTop - M->AllocSize) {
167 // Failed validation, check if it is a pointer returned by operator new []
168 MetadataOffset +=
169 sizeof(uint64_t); // Space for number of elements alloc'ed
170 M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) -
171 MetadataOffset);
172 // Ok, it failed both checks if this assertion fails. Stop the program, we
173 // have a memory bug.
174 assert(Ptr == StackTop - M->AllocSize,
175 "must deallocate the last element alloc'ed");
177 assert(M->Magic == Magic, "allocator magic is corrupt");
178 StackSize -= M->AllocSize;
180 #else
181 void deallocate(void *) {}
182 #endif
184 void clear() {
185 Lock L(M);
186 StackSize = 0;
189 /// Set mmap reservation size (only relevant before first allocation)
190 void setMaxSize(uint64_t Size) { MaxSize = Size; }
192 /// Set mmap reservation privacy (only relevant before first allocation)
193 void setShared(bool S) { Shared = S; }
195 void destroy() {
196 if (StackBase == nullptr)
197 return;
198 __munmap(StackBase, MaxSize);
201 // Placement operator to construct allocator in possibly shared mmaped memory
202 static void *operator new(size_t, void *Ptr) { return Ptr; };
204 private:
205 static constexpr uint64_t Magic = 0x1122334455667788ull;
206 uint64_t MaxSize = 0xa00000;
207 uint8_t *StackBase{nullptr};
208 uint64_t StackSize{0};
209 bool Shared{false};
210 Mutex M;
213 /// Used for allocating indirect call instrumentation counters. Initialized by
214 /// __bolt_instr_setup, our initialization routine.
215 BumpPtrAllocator *GlobalAlloc;
217 // Base address which we substract from recorded PC values when searching for
218 // indirect call description entries. Needed because indCall descriptions are
219 // mapped read-only and contain static addresses. Initialized in
220 // __bolt_instr_setup.
221 uint64_t TextBaseAddress = 0;
223 // Storage for GlobalAlloc which can be shared if not using
224 // instrumentation-file-append-pid.
225 void *GlobalMetadataStorage;
227 } // anonymous namespace
229 // User-defined placement new operators. We only use those (as opposed to
230 // overriding the regular operator new) so we can keep our allocator in the
231 // stack instead of in a data section (global).
232 void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); }
233 void *operator new(size_t Sz, BumpPtrAllocator &A, char C) {
234 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
235 memset(Ptr, C, Sz);
236 return Ptr;
238 void *operator new[](size_t Sz, BumpPtrAllocator &A) {
239 return A.allocate(Sz);
241 void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) {
242 auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
243 memset(Ptr, C, Sz);
244 return Ptr;
246 // Only called during exception unwinding (useless). We must manually dealloc.
247 // C++ language weirdness
248 void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); }
250 namespace {
252 // Disable instrumentation optimizations that sacrifice profile accuracy
253 extern "C" bool __bolt_instr_conservative;
255 /// Basic key-val atom stored in our hash
256 struct SimpleHashTableEntryBase {
257 uint64_t Key;
258 uint64_t Val;
259 void dump(const char *Msg = nullptr) {
260 // TODO: make some sort of formatting function
261 // Currently we have to do it the ugly way because
262 // we want every message to be printed atomically via a single call to
263 // __write. If we use reportNumber() and others nultiple times, we'll get
264 // garbage in mulithreaded environment
265 char Buf[BufSize];
266 char *Ptr = Buf;
267 Ptr = intToStr(Ptr, __getpid(), 10);
268 *Ptr++ = ':';
269 *Ptr++ = ' ';
270 if (Msg)
271 Ptr = strCopy(Ptr, Msg, strLen(Msg));
272 *Ptr++ = '0';
273 *Ptr++ = 'x';
274 Ptr = intToStr(Ptr, (uint64_t)this, 16);
275 *Ptr++ = ':';
276 *Ptr++ = ' ';
277 Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1);
278 Ptr = intToStr(Ptr, Key, 16);
279 *Ptr++ = ',';
280 *Ptr++ = ' ';
281 *Ptr++ = '0';
282 *Ptr++ = 'x';
283 Ptr = intToStr(Ptr, Val, 16);
284 *Ptr++ = ')';
285 *Ptr++ = '\n';
286 assert(Ptr - Buf < BufSize, "Buffer overflow!");
287 // print everything all at once for atomicity
288 __write(2, Buf, Ptr - Buf);
292 /// This hash table implementation starts by allocating a table of size
293 /// InitialSize. When conflicts happen in this main table, it resolves
294 /// them by chaining a new table of size IncSize. It never reallocs as our
295 /// allocator doesn't support it. The key is intended to be function pointers.
296 /// There's no clever hash function (it's just x mod size, size being prime).
297 /// I never tuned the coefficientes in the modular equation (TODO)
298 /// This is used for indirect calls (each call site has one of this, so it
299 /// should have a small footprint) and for tallying call counts globally for
300 /// each target to check if we missed the origin of some calls (this one is a
301 /// large instantiation of this template, since it is global for all call sites)
302 template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7,
303 uint32_t IncSize = 7>
304 class SimpleHashTable {
305 public:
306 using MapEntry = T;
308 /// Increment by 1 the value of \p Key. If it is not in this table, it will be
309 /// added to the table and its value set to 1.
310 void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) {
311 if (!__bolt_instr_conservative) {
312 TryLock L(M);
313 if (!L.isLocked())
314 return;
315 auto &E = getOrAllocEntry(Key, Alloc);
316 ++E.Val;
317 return;
319 Lock L(M);
320 auto &E = getOrAllocEntry(Key, Alloc);
321 ++E.Val;
324 /// Basic member accessing interface. Here we pass the allocator explicitly to
325 /// avoid storing a pointer to it as part of this table (remember there is one
326 /// hash for each indirect call site, so we want to minimize our footprint).
327 MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) {
328 if (!__bolt_instr_conservative) {
329 TryLock L(M);
330 if (!L.isLocked())
331 return NoEntry;
332 return getOrAllocEntry(Key, Alloc);
334 Lock L(M);
335 return getOrAllocEntry(Key, Alloc);
338 /// Traverses all elements in the table
339 template <typename... Args>
340 void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) {
341 Lock L(M);
342 if (!TableRoot)
343 return;
344 return forEachElement(Callback, InitialSize, TableRoot, args...);
347 void resetCounters();
349 private:
350 constexpr static uint64_t VacantMarker = 0;
351 constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull;
353 MapEntry *TableRoot{nullptr};
354 MapEntry NoEntry;
355 Mutex M;
357 template <typename... Args>
358 void forEachElement(void (*Callback)(MapEntry &, Args...),
359 uint32_t NumEntries, MapEntry *Entries, Args... args) {
360 for (uint32_t I = 0; I < NumEntries; ++I) {
361 MapEntry &Entry = Entries[I];
362 if (Entry.Key == VacantMarker)
363 continue;
364 if (Entry.Key & FollowUpTableMarker) {
365 MapEntry *Next =
366 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker);
367 assert(Next != Entries, "Circular reference!");
368 forEachElement(Callback, IncSize, Next, args...);
369 continue;
371 Callback(Entry, args...);
375 MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) {
376 TableRoot = new (Alloc, 0) MapEntry[InitialSize];
377 MapEntry &Entry = TableRoot[Key % InitialSize];
378 Entry.Key = Key;
379 // DEBUG(Entry.dump("Created root entry: "));
380 return Entry;
383 MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector,
384 BumpPtrAllocator &Alloc, int CurLevel) {
385 // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10));
386 const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize;
387 uint64_t Remainder = Selector / NumEntries;
388 Selector = Selector % NumEntries;
389 MapEntry &Entry = Entries[Selector];
391 // A hit
392 if (Entry.Key == Key) {
393 // DEBUG(Entry.dump("Hit: "));
394 return Entry;
397 // Vacant - add new entry
398 if (Entry.Key == VacantMarker) {
399 Entry.Key = Key;
400 // DEBUG(Entry.dump("Adding new entry: "));
401 return Entry;
404 // Defer to the next level
405 if (Entry.Key & FollowUpTableMarker) {
406 return getEntry(
407 reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker),
408 Key, Remainder, Alloc, CurLevel + 1);
411 // Conflict - create the next level
412 // DEBUG(Entry.dump("Creating new level: "));
414 MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize];
415 // DEBUG(
416 // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl),
417 // 16));
418 uint64_t CurEntrySelector = Entry.Key / InitialSize;
419 for (int I = 0; I < CurLevel; ++I)
420 CurEntrySelector /= IncSize;
421 CurEntrySelector = CurEntrySelector % IncSize;
422 NextLevelTbl[CurEntrySelector] = Entry;
423 Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker;
424 assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) !=
425 uint64_t(Entries),
426 "circular reference created!\n");
427 // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: "));
428 // DEBUG(Entry.dump("Updated old entry: "));
429 return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1);
432 MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) {
433 if (TableRoot) {
434 MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0);
435 assert(!(E.Key & FollowUpTableMarker), "Invalid entry!");
436 return E;
438 return firstAllocation(Key, Alloc);
442 template <typename T> void resetIndCallCounter(T &Entry) {
443 Entry.Val = 0;
446 template <typename T, uint32_t X, uint32_t Y>
447 void SimpleHashTable<T, X, Y>::resetCounters() {
448 forEachElement(resetIndCallCounter);
451 /// Represents a hash table mapping a function target address to its counter.
452 using IndirectCallHashTable = SimpleHashTable<>;
454 /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the
455 /// global array of all hash tables storing indirect call destinations happening
456 /// during runtime, one table per call site.
457 IndirectCallHashTable *GlobalIndCallCounters{
458 reinterpret_cast<IndirectCallHashTable *>(1)};
460 /// Don't allow reentrancy in the fdata writing phase - only one thread writes
461 /// it
462 Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)};
464 /// Store number of calls in additional to target address (Key) and frequency
465 /// as perceived by the basic block counter (Val).
466 struct CallFlowEntryBase : public SimpleHashTableEntryBase {
467 uint64_t Calls;
470 using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>;
472 /// This is a large table indexing all possible call targets (indirect and
473 /// direct ones). The goal is to find mismatches between number of calls (for
474 /// those calls we were able to track) and the entry basic block counter of the
475 /// callee. In most cases, these two should be equal. If not, there are two
476 /// possible scenarios here:
478 /// * Entry BB has higher frequency than all known calls to this function.
479 /// In this case, we have dynamic library code or any uninstrumented code
480 /// calling this function. We will write the profile for these untracked
481 /// calls as having source "0 [unknown] 0" in the fdata file.
483 /// * Number of known calls is higher than the frequency of entry BB
484 /// This only happens when there is no counter for the entry BB / callee
485 /// function is not simple (in BOLT terms). We don't do anything special
486 /// here and just ignore those (we still report all calls to the non-simple
487 /// function, though).
489 class CallFlowHashTable : public CallFlowHashTableBase {
490 public:
491 CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
493 MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); }
495 private:
496 // Different than the hash table for indirect call targets, we do store the
497 // allocator here since there is only one call flow hash and space overhead
498 // is negligible.
499 BumpPtrAllocator &Alloc;
503 /// Description metadata emitted by BOLT to describe the program - refer to
504 /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote()
506 struct Location {
507 uint32_t FunctionName;
508 uint32_t Offset;
511 struct CallDescription {
512 Location From;
513 uint32_t FromNode;
514 Location To;
515 uint32_t Counter;
516 uint64_t TargetAddress;
519 using IndCallDescription = Location;
521 struct IndCallTargetDescription {
522 Location Loc;
523 uint64_t Address;
526 struct EdgeDescription {
527 Location From;
528 uint32_t FromNode;
529 Location To;
530 uint32_t ToNode;
531 uint32_t Counter;
534 struct InstrumentedNode {
535 uint32_t Node;
536 uint32_t Counter;
539 struct EntryNode {
540 uint64_t Node;
541 uint64_t Address;
544 struct FunctionDescription {
545 uint32_t NumLeafNodes;
546 const InstrumentedNode *LeafNodes;
547 uint32_t NumEdges;
548 const EdgeDescription *Edges;
549 uint32_t NumCalls;
550 const CallDescription *Calls;
551 uint32_t NumEntryNodes;
552 const EntryNode *EntryNodes;
554 /// Constructor will parse the serialized function metadata written by BOLT
555 FunctionDescription(const uint8_t *FuncDesc);
557 uint64_t getSize() const {
558 return 16 + NumLeafNodes * sizeof(InstrumentedNode) +
559 NumEdges * sizeof(EdgeDescription) +
560 NumCalls * sizeof(CallDescription) +
561 NumEntryNodes * sizeof(EntryNode);
565 /// The context is created when the fdata profile needs to be written to disk
566 /// and we need to interpret our runtime counters. It contains pointers to the
567 /// mmaped binary (only the BOLT written metadata section). Deserialization
568 /// should be straightforward as most data is POD or an array of POD elements.
569 /// This metadata is used to reconstruct function CFGs.
570 struct ProfileWriterContext {
571 IndCallDescription *IndCallDescriptions;
572 IndCallTargetDescription *IndCallTargets;
573 uint8_t *FuncDescriptions;
574 char *Strings; // String table with function names used in this binary
575 int FileDesc; // File descriptor for the file on disk backing this
576 // information in memory via mmap
577 void *MMapPtr; // The mmap ptr
578 int MMapSize; // The mmap size
580 /// Hash table storing all possible call destinations to detect untracked
581 /// calls and correctly report them as [unknown] in output fdata.
582 CallFlowHashTable *CallFlowTable;
584 /// Lookup the sorted indirect call target vector to fetch function name and
585 /// offset for an arbitrary function pointer.
586 const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const;
589 /// Perform a string comparison and returns zero if Str1 matches Str2. Compares
590 /// at most Size characters.
591 int compareStr(const char *Str1, const char *Str2, int Size) {
592 while (*Str1 == *Str2) {
593 if (*Str1 == '\0' || --Size == 0)
594 return 0;
595 ++Str1;
596 ++Str2;
598 return 1;
601 /// Output Location to the fdata file
602 char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf,
603 const Location Loc, uint32_t BufSize) {
604 // fdata location format: Type Name Offset
605 // Type 1 - regular symbol
606 OutBuf = strCopy(OutBuf, "1 ");
607 const char *Str = Ctx.Strings + Loc.FunctionName;
608 uint32_t Size = 25;
609 while (*Str) {
610 *OutBuf++ = *Str++;
611 if (++Size >= BufSize)
612 break;
614 assert(!*Str, "buffer overflow, function name too large");
615 *OutBuf++ = ' ';
616 OutBuf = intToStr(OutBuf, Loc.Offset, 16);
617 *OutBuf++ = ' ';
618 return OutBuf;
621 /// Read and deserialize a function description written by BOLT. \p FuncDesc
622 /// points at the beginning of the function metadata structure in the file.
623 /// See Instrumentation::emitTablesAsELFNote()
624 FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) {
625 NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc);
626 DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10));
627 LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4);
629 NumEdges = *reinterpret_cast<const uint32_t *>(
630 FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode));
631 DEBUG(reportNumber("NumEdges = ", NumEdges, 10));
632 Edges = reinterpret_cast<const EdgeDescription *>(
633 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode));
635 NumCalls = *reinterpret_cast<const uint32_t *>(
636 FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) +
637 NumEdges * sizeof(EdgeDescription));
638 DEBUG(reportNumber("NumCalls = ", NumCalls, 10));
639 Calls = reinterpret_cast<const CallDescription *>(
640 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
641 NumEdges * sizeof(EdgeDescription));
642 NumEntryNodes = *reinterpret_cast<const uint32_t *>(
643 FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
644 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
645 DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10));
646 EntryNodes = reinterpret_cast<const EntryNode *>(
647 FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) +
648 NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
651 /// Read and mmap descriptions written by BOLT from the executable's notes
652 /// section
653 #if defined(HAVE_ELF_H) and !defined(__APPLE__)
655 void *__attribute__((noinline)) __get_pc() {
656 return __builtin_extract_return_addr(__builtin_return_address(0));
659 /// Get string with address and parse it to hex pair <StartAddress, EndAddress>
660 bool parseAddressRange(const char *Str, uint64_t &StartAddress,
661 uint64_t &EndAddress) {
662 if (!Str)
663 return false;
664 // Parsed string format: <hex1>-<hex2>
665 StartAddress = hexToLong(Str, '-');
666 while (*Str && *Str != '-')
667 ++Str;
668 if (!*Str)
669 return false;
670 ++Str; // swallow '-'
671 EndAddress = hexToLong(Str);
672 return true;
675 /// Get full path to the real binary by getting current virtual address
676 /// and searching for the appropriate link in address range in
677 /// /proc/self/map_files
678 static char *getBinaryPath() {
679 const uint32_t BufSize = 1024;
680 const uint32_t NameMax = 4096;
681 const char DirPath[] = "/proc/self/map_files/";
682 static char TargetPath[NameMax] = {};
683 char Buf[BufSize];
685 if (__bolt_instr_binpath[0] != '\0')
686 return __bolt_instr_binpath;
688 if (TargetPath[0] != '\0')
689 return TargetPath;
691 unsigned long CurAddr = (unsigned long)__get_pc();
692 uint64_t FDdir = __open(DirPath, O_RDONLY,
693 /*mode=*/0666);
694 assert(static_cast<int64_t>(FDdir) >= 0,
695 "failed to open /proc/self/map_files");
697 while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) {
698 assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries");
700 struct dirent64 *d;
701 for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) {
702 d = (struct dirent64 *)(Buf + Bpos);
704 uint64_t StartAddress, EndAddress;
705 if (!parseAddressRange(d->d_name, StartAddress, EndAddress))
706 continue;
707 if (CurAddr < StartAddress || CurAddr > EndAddress)
708 continue;
709 char FindBuf[NameMax];
710 char *C = strCopy(FindBuf, DirPath, NameMax);
711 C = strCopy(C, d->d_name, NameMax - (C - FindBuf));
712 *C = '\0';
713 uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath));
714 assert(Ret != -1 && Ret != BufSize, "readlink error");
715 TargetPath[Ret] = '\0';
716 return TargetPath;
719 return nullptr;
722 ProfileWriterContext readDescriptions() {
723 ProfileWriterContext Result;
724 char *BinPath = getBinaryPath();
725 assert(BinPath && BinPath[0] != '\0', "failed to find binary path");
727 uint64_t FD = __open(BinPath, O_RDONLY,
728 /*mode=*/0666);
729 assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path");
731 Result.FileDesc = FD;
733 // mmap our binary to memory
734 uint64_t Size = __lseek(FD, 0, SEEK_END);
735 uint8_t *BinContents = reinterpret_cast<uint8_t *>(
736 __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0));
737 assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!");
738 Result.MMapPtr = BinContents;
739 Result.MMapSize = Size;
740 Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents);
741 Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff);
742 Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>(
743 BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize);
745 // Find .bolt.instr.tables with the data we need and set pointers to it
746 for (int I = 0; I < Hdr->e_shnum; ++I) {
747 char *SecName = reinterpret_cast<char *>(
748 BinContents + StringTblHeader->sh_offset + Shdr->sh_name);
749 if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) {
750 Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff +
751 (I + 1) * Hdr->e_shentsize);
752 continue;
754 // Actual contents of the ELF note start after offset 20 decimal:
755 // Offset 0: Producer name size (4 bytes)
756 // Offset 4: Contents size (4 bytes)
757 // Offset 8: Note type (4 bytes)
758 // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary)
759 // Offset 20: Contents
760 uint32_t IndCallDescSize =
761 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20);
762 uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>(
763 BinContents + Shdr->sh_offset + 24 + IndCallDescSize);
764 uint32_t FuncDescSize =
765 *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 +
766 IndCallDescSize + IndCallTargetDescSize);
767 Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>(
768 BinContents + Shdr->sh_offset + 24);
769 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
770 BinContents + Shdr->sh_offset + 28 + IndCallDescSize);
771 Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 +
772 IndCallDescSize + IndCallTargetDescSize;
773 Result.Strings = reinterpret_cast<char *>(
774 BinContents + Shdr->sh_offset + 32 + IndCallDescSize +
775 IndCallTargetDescSize + FuncDescSize);
776 return Result;
778 const char ErrMsg[] =
779 "BOLT instrumentation runtime error: could not find section "
780 ".bolt.instr.tables\n";
781 reportError(ErrMsg, sizeof(ErrMsg));
782 return Result;
785 #else
787 ProfileWriterContext readDescriptions() {
788 ProfileWriterContext Result;
789 uint8_t *Tables = _bolt_instr_tables_getter();
790 uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables);
791 uint32_t IndCallTargetDescSize =
792 *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize);
793 uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>(
794 Tables + 8 + IndCallDescSize + IndCallTargetDescSize);
795 Result.IndCallDescriptions =
796 reinterpret_cast<IndCallDescription *>(Tables + 4);
797 Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
798 Tables + 8 + IndCallDescSize);
799 Result.FuncDescriptions =
800 Tables + 12 + IndCallDescSize + IndCallTargetDescSize;
801 Result.Strings = reinterpret_cast<char *>(
802 Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize);
803 return Result;
806 #endif
808 #if !defined(__APPLE__)
809 /// Debug by printing overall metadata global numbers to check it is sane
810 void printStats(const ProfileWriterContext &Ctx) {
811 char StatMsg[BufSize];
812 char *StatPtr = StatMsg;
813 StatPtr =
814 strCopy(StatPtr,
815 "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: ");
816 StatPtr = intToStr(StatPtr,
817 Ctx.FuncDescriptions -
818 reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions),
819 10);
820 StatPtr = strCopy(StatPtr, "\nFuncDescSize: ");
821 StatPtr = intToStr(
822 StatPtr,
823 reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10);
824 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: ");
825 StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10);
826 StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: ");
827 StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10);
828 StatPtr = strCopy(StatPtr, "\n");
829 __write(2, StatMsg, StatPtr - StatMsg);
831 #endif
834 /// This is part of a simple CFG representation in memory, where we store
835 /// a dynamically sized array of input and output edges per node, and store
836 /// a dynamically sized array of nodes per graph. We also store the spanning
837 /// tree edges for that CFG in a separate array of nodes in
838 /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes.
839 struct Edge {
840 uint32_t Node; // Index in nodes array regarding the destination of this edge
841 uint32_t ID; // Edge index in an array comprising all edges of the graph
844 /// A regular graph node or a spanning tree node
845 struct Node {
846 uint32_t NumInEdges{0}; // Input edge count used to size InEdge
847 uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges
848 Edge *InEdges{nullptr}; // Created and managed by \p Graph
849 Edge *OutEdges{nullptr}; // ditto
852 /// Main class for CFG representation in memory. Manages object creation and
853 /// destruction, populates an array of CFG nodes as well as corresponding
854 /// spanning tree nodes.
855 struct Graph {
856 uint32_t NumNodes;
857 Node *CFGNodes;
858 Node *SpanningTreeNodes;
859 uint64_t *EdgeFreqs;
860 uint64_t *CallFreqs;
861 BumpPtrAllocator &Alloc;
862 const FunctionDescription &D;
864 /// Reads a list of edges from function description \p D and builds
865 /// the graph from it. Allocates several internal dynamic structures that are
866 /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all
867 /// spanning tree leaf nodes descriptions (their counters). They are the seed
868 /// used to compute the rest of the missing edge counts in a bottom-up
869 /// traversal of the spanning tree.
870 Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
871 const uint64_t *Counters, ProfileWriterContext &Ctx);
872 ~Graph();
873 void dump() const;
875 private:
876 void computeEdgeFrequencies(const uint64_t *Counters,
877 ProfileWriterContext &Ctx);
878 void dumpEdgeFreqs() const;
881 Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
882 const uint64_t *Counters, ProfileWriterContext &Ctx)
883 : Alloc(Alloc), D(D) {
884 DEBUG(reportNumber("G = 0x", (uint64_t)this, 16));
885 // First pass to determine number of nodes
886 int32_t MaxNodes = -1;
887 CallFreqs = nullptr;
888 EdgeFreqs = nullptr;
889 for (int I = 0; I < D.NumEdges; ++I) {
890 if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes)
891 MaxNodes = D.Edges[I].FromNode;
892 if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes)
893 MaxNodes = D.Edges[I].ToNode;
896 for (int I = 0; I < D.NumLeafNodes; ++I)
897 if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes)
898 MaxNodes = D.LeafNodes[I].Node;
900 for (int I = 0; I < D.NumCalls; ++I)
901 if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes)
902 MaxNodes = D.Calls[I].FromNode;
904 // No nodes? Nothing to do
905 if (MaxNodes < 0) {
906 DEBUG(report("No nodes!\n"));
907 CFGNodes = nullptr;
908 SpanningTreeNodes = nullptr;
909 NumNodes = 0;
910 return;
912 ++MaxNodes;
913 DEBUG(reportNumber("NumNodes = ", MaxNodes, 10));
914 NumNodes = static_cast<uint32_t>(MaxNodes);
916 // Initial allocations
917 CFGNodes = new (Alloc) Node[MaxNodes];
919 DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16));
920 SpanningTreeNodes = new (Alloc) Node[MaxNodes];
921 DEBUG(reportNumber("G->SpanningTreeNodes = 0x",
922 (uint64_t)SpanningTreeNodes, 16));
924 // Figure out how much to allocate to each vector (in/out edge sets)
925 for (int I = 0; I < D.NumEdges; ++I) {
926 CFGNodes[D.Edges[I].FromNode].NumOutEdges++;
927 CFGNodes[D.Edges[I].ToNode].NumInEdges++;
928 if (D.Edges[I].Counter != 0xffffffff)
929 continue;
931 SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++;
932 SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++;
935 // Allocate in/out edge sets
936 for (int I = 0; I < MaxNodes; ++I) {
937 if (CFGNodes[I].NumInEdges > 0)
938 CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges];
939 if (CFGNodes[I].NumOutEdges > 0)
940 CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges];
941 if (SpanningTreeNodes[I].NumInEdges > 0)
942 SpanningTreeNodes[I].InEdges =
943 new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges];
944 if (SpanningTreeNodes[I].NumOutEdges > 0)
945 SpanningTreeNodes[I].OutEdges =
946 new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges];
947 CFGNodes[I].NumInEdges = 0;
948 CFGNodes[I].NumOutEdges = 0;
949 SpanningTreeNodes[I].NumInEdges = 0;
950 SpanningTreeNodes[I].NumOutEdges = 0;
953 // Fill in/out edge sets
954 for (int I = 0; I < D.NumEdges; ++I) {
955 const uint32_t Src = D.Edges[I].FromNode;
956 const uint32_t Dst = D.Edges[I].ToNode;
957 Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++];
958 E->Node = Dst;
959 E->ID = I;
961 E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++];
962 E->Node = Src;
963 E->ID = I;
965 if (D.Edges[I].Counter != 0xffffffff)
966 continue;
968 E = &SpanningTreeNodes[Src]
969 .OutEdges[SpanningTreeNodes[Src].NumOutEdges++];
970 E->Node = Dst;
971 E->ID = I;
973 E = &SpanningTreeNodes[Dst]
974 .InEdges[SpanningTreeNodes[Dst].NumInEdges++];
975 E->Node = Src;
976 E->ID = I;
979 computeEdgeFrequencies(Counters, Ctx);
982 Graph::~Graph() {
983 if (CallFreqs)
984 Alloc.deallocate(CallFreqs);
985 if (EdgeFreqs)
986 Alloc.deallocate(EdgeFreqs);
987 for (int I = NumNodes - 1; I >= 0; --I) {
988 if (SpanningTreeNodes[I].OutEdges)
989 Alloc.deallocate(SpanningTreeNodes[I].OutEdges);
990 if (SpanningTreeNodes[I].InEdges)
991 Alloc.deallocate(SpanningTreeNodes[I].InEdges);
992 if (CFGNodes[I].OutEdges)
993 Alloc.deallocate(CFGNodes[I].OutEdges);
994 if (CFGNodes[I].InEdges)
995 Alloc.deallocate(CFGNodes[I].InEdges);
997 if (SpanningTreeNodes)
998 Alloc.deallocate(SpanningTreeNodes);
999 if (CFGNodes)
1000 Alloc.deallocate(CFGNodes);
1003 void Graph::dump() const {
1004 reportNumber("Dumping graph with number of nodes: ", NumNodes, 10);
1005 report(" Full graph:\n");
1006 for (int I = 0; I < NumNodes; ++I) {
1007 const Node *N = &CFGNodes[I];
1008 reportNumber(" Node #", I, 10);
1009 reportNumber(" InEdges total ", N->NumInEdges, 10);
1010 for (int J = 0; J < N->NumInEdges; ++J)
1011 reportNumber(" ", N->InEdges[J].Node, 10);
1012 reportNumber(" OutEdges total ", N->NumOutEdges, 10);
1013 for (int J = 0; J < N->NumOutEdges; ++J)
1014 reportNumber(" ", N->OutEdges[J].Node, 10);
1015 report("\n");
1017 report(" Spanning tree:\n");
1018 for (int I = 0; I < NumNodes; ++I) {
1019 const Node *N = &SpanningTreeNodes[I];
1020 reportNumber(" Node #", I, 10);
1021 reportNumber(" InEdges total ", N->NumInEdges, 10);
1022 for (int J = 0; J < N->NumInEdges; ++J)
1023 reportNumber(" ", N->InEdges[J].Node, 10);
1024 reportNumber(" OutEdges total ", N->NumOutEdges, 10);
1025 for (int J = 0; J < N->NumOutEdges; ++J)
1026 reportNumber(" ", N->OutEdges[J].Node, 10);
1027 report("\n");
1031 void Graph::dumpEdgeFreqs() const {
1032 reportNumber(
1033 "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10);
1034 for (int I = 0; I < D.NumEdges; ++I) {
1035 reportNumber("* Src: ", D.Edges[I].FromNode, 10);
1036 reportNumber(" Dst: ", D.Edges[I].ToNode, 10);
1037 reportNumber(" Cnt: ", EdgeFreqs[I], 10);
1041 /// Auxiliary map structure for fast lookups of which calls map to each node of
1042 /// the function CFG
1043 struct NodeToCallsMap {
1044 struct MapEntry {
1045 uint32_t NumCalls;
1046 uint32_t *Calls;
1048 MapEntry *Entries;
1049 BumpPtrAllocator &Alloc;
1050 const uint32_t NumNodes;
1052 NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D,
1053 uint32_t NumNodes)
1054 : Alloc(Alloc), NumNodes(NumNodes) {
1055 Entries = new (Alloc, 0) MapEntry[NumNodes];
1056 for (int I = 0; I < D.NumCalls; ++I) {
1057 DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10));
1058 ++Entries[D.Calls[I].FromNode].NumCalls;
1060 for (int I = 0; I < NumNodes; ++I) {
1061 Entries[I].Calls = Entries[I].NumCalls ? new (Alloc)
1062 uint32_t[Entries[I].NumCalls]
1063 : nullptr;
1064 Entries[I].NumCalls = 0;
1066 for (int I = 0; I < D.NumCalls; ++I) {
1067 MapEntry &Entry = Entries[D.Calls[I].FromNode];
1068 Entry.Calls[Entry.NumCalls++] = I;
1072 /// Set the frequency of all calls in node \p NodeID to Freq. However, if
1073 /// the calls have their own counters and do not depend on the basic block
1074 /// counter, this means they have landing pads and throw exceptions. In this
1075 /// case, set their frequency with their counters and return the maximum
1076 /// value observed in such counters. This will be used as the new frequency
1077 /// at basic block entry. This is used to fix the CFG edge frequencies in the
1078 /// presence of exceptions.
1079 uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs,
1080 const FunctionDescription &D,
1081 const uint64_t *Counters,
1082 ProfileWriterContext &Ctx) const {
1083 const MapEntry &Entry = Entries[NodeID];
1084 uint64_t MaxValue = 0ull;
1085 for (int I = 0, E = Entry.NumCalls; I != E; ++I) {
1086 const uint32_t CallID = Entry.Calls[I];
1087 DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10));
1088 const CallDescription &CallDesc = D.Calls[CallID];
1089 if (CallDesc.Counter == 0xffffffff) {
1090 CallFreqs[CallID] = Freq;
1091 DEBUG(reportNumber(" with : ", Freq, 10));
1092 } else {
1093 const uint64_t CounterVal = Counters[CallDesc.Counter];
1094 CallFreqs[CallID] = CounterVal;
1095 MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue;
1096 DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10));
1098 DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16));
1099 if (CallFreqs[CallID] > 0)
1100 Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls +=
1101 CallFreqs[CallID];
1103 return MaxValue;
1106 ~NodeToCallsMap() {
1107 for (int I = NumNodes - 1; I >= 0; --I)
1108 if (Entries[I].Calls)
1109 Alloc.deallocate(Entries[I].Calls);
1110 Alloc.deallocate(Entries);
1114 /// Fill an array with the frequency of each edge in the function represented
1115 /// by G, as well as another array for each call.
1116 void Graph::computeEdgeFrequencies(const uint64_t *Counters,
1117 ProfileWriterContext &Ctx) {
1118 if (NumNodes == 0)
1119 return;
1121 EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr;
1122 CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr;
1124 // Setup a lookup for calls present in each node (BB)
1125 NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes);
1127 // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the
1128 // spanning tree don't have explicit counters. We must infer their value using
1129 // a linear combination of other counters (sum of counters of the outgoing
1130 // edges minus sum of counters of the incoming edges).
1131 uint32_t *Stack = new (Alloc) uint32_t [NumNodes];
1132 uint32_t StackTop = 0;
1133 enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED };
1134 Status *Visited = new (Alloc, 0) Status[NumNodes];
1135 uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes];
1136 uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes];
1138 // Setup a fast lookup for frequency of leaf nodes, which have special
1139 // basic block frequency instrumentation (they are not edge profiled).
1140 for (int I = 0; I < D.NumLeafNodes; ++I) {
1141 LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter];
1142 DEBUG({
1143 if (Counters[D.LeafNodes[I].Counter] > 0) {
1144 reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);
1145 reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);
1149 for (int I = 0; I < D.NumEntryNodes; ++I) {
1150 EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address;
1151 DEBUG({
1152 reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);
1153 reportNumber(" Address: ", D.EntryNodes[I].Address, 16);
1156 // Add all root nodes to the stack
1157 for (int I = 0; I < NumNodes; ++I)
1158 if (SpanningTreeNodes[I].NumInEdges == 0)
1159 Stack[StackTop++] = I;
1161 // Empty stack?
1162 if (StackTop == 0) {
1163 DEBUG(report("Empty stack!\n"));
1164 Alloc.deallocate(EntryAddress);
1165 Alloc.deallocate(LeafFrequency);
1166 Alloc.deallocate(Visited);
1167 Alloc.deallocate(Stack);
1168 CallMap->~NodeToCallsMap();
1169 Alloc.deallocate(CallMap);
1170 if (CallFreqs)
1171 Alloc.deallocate(CallFreqs);
1172 if (EdgeFreqs)
1173 Alloc.deallocate(EdgeFreqs);
1174 EdgeFreqs = nullptr;
1175 CallFreqs = nullptr;
1176 return;
1178 // Add all known edge counts, will infer the rest
1179 for (int I = 0; I < D.NumEdges; ++I) {
1180 const uint32_t C = D.Edges[I].Counter;
1181 if (C == 0xffffffff) // inferred counter - we will compute its value
1182 continue;
1183 EdgeFreqs[I] = Counters[C];
1186 while (StackTop > 0) {
1187 const uint32_t Cur = Stack[--StackTop];
1188 DEBUG({
1189 if (Visited[Cur] == S_VISITING)
1190 report("(visiting) ");
1191 else
1192 report("(new) ");
1193 reportNumber("Cur: ", Cur, 10);
1196 // This shouldn't happen in a tree
1197 assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack");
1198 if (Visited[Cur] == S_NEW) {
1199 Visited[Cur] = S_VISITING;
1200 Stack[StackTop++] = Cur;
1201 assert(StackTop <= NumNodes, "stack grew too large");
1202 for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) {
1203 const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node;
1204 Stack[StackTop++] = Succ;
1205 assert(StackTop <= NumNodes, "stack grew too large");
1207 continue;
1209 Visited[Cur] = S_VISITED;
1211 // Establish our node frequency based on outgoing edges, which should all be
1212 // resolved by now.
1213 int64_t CurNodeFreq = LeafFrequency[Cur];
1214 // Not a leaf?
1215 if (!CurNodeFreq) {
1216 for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) {
1217 const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID;
1218 CurNodeFreq += EdgeFreqs[SuccEdge];
1221 if (CurNodeFreq < 0)
1222 CurNodeFreq = 0;
1224 const uint64_t CallFreq = CallMap->visitAllCallsIn(
1225 Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx);
1227 // Exception handling affected our output flow? Fix with calls info
1228 DEBUG({
1229 if (CallFreq > CurNodeFreq)
1230 report("Bumping node frequency with call info\n");
1232 CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq;
1234 if (CurNodeFreq > 0) {
1235 if (uint64_t Addr = EntryAddress[Cur]) {
1236 DEBUG(
1237 reportNumber(" Setting flow at entry point address 0x", Addr, 16));
1238 DEBUG(reportNumber(" with: ", CurNodeFreq, 10));
1239 Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq;
1243 // No parent? Reached a tree root, limit to call frequency updating.
1244 if (SpanningTreeNodes[Cur].NumInEdges == 0)
1245 continue;
1247 assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent");
1248 const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID;
1250 // Calculate parent edge freq.
1251 int64_t ParentEdgeFreq = CurNodeFreq;
1252 for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) {
1253 const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID;
1254 ParentEdgeFreq -= EdgeFreqs[PredEdge];
1257 // Sometimes the conservative CFG that BOLT builds will lead to incorrect
1258 // flow computation. For example, in a BB that transitively calls the exit
1259 // syscall, BOLT will add a fall-through successor even though it should not
1260 // have any successors. So this block execution will likely be wrong. We
1261 // tolerate this imperfection since this case should be quite infrequent.
1262 if (ParentEdgeFreq < 0) {
1263 DEBUG(dumpEdgeFreqs());
1264 DEBUG(report("WARNING: incorrect flow"));
1265 ParentEdgeFreq = 0;
1267 DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10));
1268 DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10));
1269 EdgeFreqs[ParentEdge] = ParentEdgeFreq;
1272 Alloc.deallocate(EntryAddress);
1273 Alloc.deallocate(LeafFrequency);
1274 Alloc.deallocate(Visited);
1275 Alloc.deallocate(Stack);
1276 CallMap->~NodeToCallsMap();
1277 Alloc.deallocate(CallMap);
1278 DEBUG(dumpEdgeFreqs());
1281 /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses
1282 /// \p Alloc to allocate helper dynamic structures used to compute profile for
1283 /// edges that we do not explicitly instrument.
1284 const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx,
1285 const uint8_t *FuncDesc,
1286 BumpPtrAllocator &Alloc) {
1287 const FunctionDescription F(FuncDesc);
1288 const uint8_t *next = FuncDesc + F.getSize();
1290 #if !defined(__APPLE__)
1291 uint64_t *bolt_instr_locations = __bolt_instr_locations;
1292 #else
1293 uint64_t *bolt_instr_locations = _bolt_instr_locations_getter();
1294 #endif
1296 // Skip funcs we know are cold
1297 #ifndef ENABLE_DEBUG
1298 uint64_t CountersFreq = 0;
1299 for (int I = 0; I < F.NumLeafNodes; ++I)
1300 CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter];
1302 if (CountersFreq == 0) {
1303 for (int I = 0; I < F.NumEdges; ++I) {
1304 const uint32_t C = F.Edges[I].Counter;
1305 if (C == 0xffffffff)
1306 continue;
1307 CountersFreq += bolt_instr_locations[C];
1309 if (CountersFreq == 0) {
1310 for (int I = 0; I < F.NumCalls; ++I) {
1311 const uint32_t C = F.Calls[I].Counter;
1312 if (C == 0xffffffff)
1313 continue;
1314 CountersFreq += bolt_instr_locations[C];
1316 if (CountersFreq == 0)
1317 return next;
1320 #endif
1322 Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx);
1323 DEBUG(G->dump());
1325 if (!G->EdgeFreqs && !G->CallFreqs) {
1326 G->~Graph();
1327 Alloc.deallocate(G);
1328 return next;
1331 for (int I = 0; I < F.NumEdges; ++I) {
1332 const uint64_t Freq = G->EdgeFreqs[I];
1333 if (Freq == 0)
1334 continue;
1335 const EdgeDescription *Desc = &F.Edges[I];
1336 char LineBuf[BufSize];
1337 char *Ptr = LineBuf;
1338 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1339 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1340 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22);
1341 Ptr = intToStr(Ptr, Freq, 10);
1342 *Ptr++ = '\n';
1343 __write(FD, LineBuf, Ptr - LineBuf);
1346 for (int I = 0; I < F.NumCalls; ++I) {
1347 const uint64_t Freq = G->CallFreqs[I];
1348 if (Freq == 0)
1349 continue;
1350 char LineBuf[BufSize];
1351 char *Ptr = LineBuf;
1352 const CallDescription *Desc = &F.Calls[I];
1353 Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1354 Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1355 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1356 Ptr = intToStr(Ptr, Freq, 10);
1357 *Ptr++ = '\n';
1358 __write(FD, LineBuf, Ptr - LineBuf);
1361 G->~Graph();
1362 Alloc.deallocate(G);
1363 return next;
1366 #if !defined(__APPLE__)
1367 const IndCallTargetDescription *
1368 ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const {
1369 uint32_t B = 0;
1370 uint32_t E = __bolt_instr_num_ind_targets;
1371 if (E == 0)
1372 return nullptr;
1373 do {
1374 uint32_t I = (E - B) / 2 + B;
1375 if (IndCallTargets[I].Address == Target)
1376 return &IndCallTargets[I];
1377 if (IndCallTargets[I].Address < Target)
1378 B = I + 1;
1379 else
1380 E = I;
1381 } while (B < E);
1382 return nullptr;
1385 /// Write a single indirect call <src, target> pair to the fdata file
1386 void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry,
1387 int FD, int CallsiteID,
1388 ProfileWriterContext *Ctx) {
1389 if (Entry.Val == 0)
1390 return;
1391 DEBUG(reportNumber("Target func 0x", Entry.Key, 16));
1392 DEBUG(reportNumber("Target freq: ", Entry.Val, 10));
1393 const IndCallDescription *CallsiteDesc =
1394 &Ctx->IndCallDescriptions[CallsiteID];
1395 const IndCallTargetDescription *TargetDesc =
1396 Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress);
1397 if (!TargetDesc) {
1398 DEBUG(report("Failed to lookup indirect call target\n"));
1399 char LineBuf[BufSize];
1400 char *Ptr = LineBuf;
1401 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1402 Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40);
1403 Ptr = intToStr(Ptr, Entry.Val, 10);
1404 *Ptr++ = '\n';
1405 __write(FD, LineBuf, Ptr - LineBuf);
1406 return;
1408 Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val;
1409 char LineBuf[BufSize];
1410 char *Ptr = LineBuf;
1411 Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1412 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1413 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1414 Ptr = intToStr(Ptr, Entry.Val, 10);
1415 *Ptr++ = '\n';
1416 __write(FD, LineBuf, Ptr - LineBuf);
1419 /// Write to \p FD all of the indirect call profiles.
1420 void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) {
1421 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
1422 DEBUG(reportNumber("IndCallsite #", I, 10));
1423 GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx);
1427 /// Check a single call flow for a callee versus all known callers. If there are
1428 /// less callers than what the callee expects, write the difference with source
1429 /// [unknown] in the profile.
1430 void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD,
1431 ProfileWriterContext *Ctx) {
1432 DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16));
1433 DEBUG(reportNumber("Calls: ", Entry.Calls, 10));
1434 DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10));
1435 DEBUG({
1436 if (Entry.Calls > Entry.Val)
1437 report(" More calls than expected!\n");
1439 if (Entry.Val <= Entry.Calls)
1440 return;
1441 DEBUG(reportNumber(
1442 " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10));
1443 const IndCallTargetDescription *TargetDesc =
1444 Ctx->lookupIndCallTarget(Entry.Key);
1445 if (!TargetDesc) {
1446 // There is probably something wrong with this callee and this should be
1447 // investigated, but I don't want to assert and lose all data collected.
1448 DEBUG(report("WARNING: failed to look up call target!\n"));
1449 return;
1451 char LineBuf[BufSize];
1452 char *Ptr = LineBuf;
1453 Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize);
1454 Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1455 Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1456 Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10);
1457 *Ptr++ = '\n';
1458 __write(FD, LineBuf, Ptr - LineBuf);
1461 /// Open fdata file for writing and return a valid file descriptor, aborting
1462 /// program upon failure.
1463 int openProfile() {
1464 // Build the profile name string by appending our PID
1465 char Buf[BufSize];
1466 uint64_t PID = __getpid();
1467 char *Ptr = strCopy(Buf, __bolt_instr_filename, BufSize);
1468 if (__bolt_instr_use_pid) {
1469 Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1));
1470 Ptr = intToStr(Ptr, PID, 10);
1471 Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1));
1473 *Ptr++ = '\0';
1474 uint64_t FD = __open(Buf, O_WRONLY | O_TRUNC | O_CREAT,
1475 /*mode=*/0666);
1476 if (static_cast<int64_t>(FD) < 0) {
1477 report("Error while trying to open profile file for writing: ");
1478 report(Buf);
1479 reportNumber("\nFailed with error number: 0x",
1480 0 - static_cast<int64_t>(FD), 16);
1481 __exit(1);
1483 return FD;
1486 #endif
1488 } // anonymous namespace
1490 #if !defined(__APPLE__)
1492 /// Reset all counters in case you want to start profiling a new phase of your
1493 /// program independently of prior phases.
1494 /// The address of this function is printed by BOLT and this can be called by
1495 /// any attached debugger during runtime. There is a useful oneliner for gdb:
1497 /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \
1498 /// -ex 'set confirm off' -ex quit
1500 /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file
1501 /// name.
1502 extern "C" void __bolt_instr_clear_counters() {
1503 memset(reinterpret_cast<char *>(__bolt_instr_locations), 0,
1504 __bolt_num_counters * 8);
1505 for (int I = 0; I < __bolt_instr_num_ind_calls; ++I)
1506 GlobalIndCallCounters[I].resetCounters();
1509 /// This is the entry point for profile writing.
1510 /// There are three ways of getting here:
1512 /// * Program execution ended, finalization methods are running and BOLT
1513 /// hooked into FINI from your binary dynamic section;
1514 /// * You used the sleep timer option and during initialization we forked
1515 /// a separate process that will call this function periodically;
1516 /// * BOLT prints this function address so you can attach a debugger and
1517 /// call this function directly to get your profile written to disk
1518 /// on demand.
1520 extern "C" void __attribute((force_align_arg_pointer))
1521 __bolt_instr_data_dump(int FD) {
1522 // Already dumping
1523 if (!GlobalWriteProfileMutex->acquire())
1524 return;
1526 int ret = __lseek(FD, 0, SEEK_SET);
1527 assert(ret == 0, "Failed to lseek!");
1528 ret = __ftruncate(FD, 0);
1529 assert(ret == 0, "Failed to ftruncate!");
1530 BumpPtrAllocator HashAlloc;
1531 HashAlloc.setMaxSize(0x6400000);
1532 ProfileWriterContext Ctx = readDescriptions();
1533 Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc);
1535 DEBUG(printStats(Ctx));
1537 BumpPtrAllocator Alloc;
1538 Alloc.setMaxSize(0x6400000);
1539 const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1540 for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) {
1541 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1542 Alloc.clear();
1543 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1545 assert(FuncDesc == (void *)Ctx.Strings,
1546 "FuncDesc ptr must be equal to stringtable");
1548 writeIndirectCallProfile(FD, Ctx);
1549 Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx);
1551 __fsync(FD);
1552 __munmap(Ctx.MMapPtr, Ctx.MMapSize);
1553 __close(Ctx.FileDesc);
1554 HashAlloc.destroy();
1555 GlobalWriteProfileMutex->release();
1556 DEBUG(report("Finished writing profile.\n"));
1559 /// Event loop for our child process spawned during setup to dump profile data
1560 /// at user-specified intervals
1561 void watchProcess() {
1562 timespec ts, rem;
1563 uint64_t Ellapsed = 0ull;
1564 int FD = openProfile();
1565 uint64_t ppid;
1566 if (__bolt_instr_wait_forks) {
1567 // Store parent pgid
1568 ppid = -__getpgid(0);
1569 // And leave parent process group
1570 __setpgid(0, 0);
1571 } else {
1572 // Store parent pid
1573 ppid = __getppid();
1574 if (ppid == 1) {
1575 // Parent already dead
1576 __bolt_instr_data_dump(FD);
1577 goto out;
1581 ts.tv_sec = 1;
1582 ts.tv_nsec = 0;
1583 while (1) {
1584 __nanosleep(&ts, &rem);
1585 // This means our parent process or all its forks are dead,
1586 // so no need for us to keep dumping.
1587 if (__kill(ppid, 0) < 0) {
1588 if (__bolt_instr_no_counters_clear)
1589 __bolt_instr_data_dump(FD);
1590 break;
1593 if (++Ellapsed < __bolt_instr_sleep_time)
1594 continue;
1596 Ellapsed = 0;
1597 __bolt_instr_data_dump(FD);
1598 if (__bolt_instr_no_counters_clear == false)
1599 __bolt_instr_clear_counters();
1602 out:;
1603 DEBUG(report("My parent process is dead, bye!\n"));
1604 __close(FD);
1605 __exit(0);
1608 extern "C" void __bolt_instr_indirect_call();
1609 extern "C" void __bolt_instr_indirect_tailcall();
1611 /// Initialization code
1612 extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() {
1613 __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call;
1614 __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall;
1615 TextBaseAddress = getTextBaseAddress();
1617 const uint64_t CountersStart =
1618 reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]);
1619 const uint64_t CountersEnd = alignTo(
1620 reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]),
1621 0x1000);
1622 DEBUG(reportNumber("replace mmap start: ", CountersStart, 16));
1623 DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16));
1624 assert(CountersEnd > CountersStart, "no counters");
1626 const bool Shared = !__bolt_instr_use_pid;
1627 const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED : MAP_PRIVATE;
1629 void *Ret =
1630 __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE,
1631 MAP_ANONYMOUS | MapPrivateOrShared | MAP_FIXED, -1, 0);
1632 assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!");
1634 GlobalMetadataStorage = __mmap(0, 4096, PROT_READ | PROT_WRITE,
1635 MapPrivateOrShared | MAP_ANONYMOUS, -1, 0);
1636 assert(GlobalMetadataStorage != MAP_FAILED,
1637 "__bolt_instr_setup: failed to mmap page for metadata!");
1639 GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator;
1640 // Conservatively reserve 100MiB
1641 GlobalAlloc->setMaxSize(0x6400000);
1642 GlobalAlloc->setShared(Shared);
1643 GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex();
1644 if (__bolt_instr_num_ind_calls > 0)
1645 GlobalIndCallCounters =
1646 new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls];
1648 if (__bolt_instr_sleep_time != 0) {
1649 // Separate instrumented process to the own process group
1650 if (__bolt_instr_wait_forks)
1651 __setpgid(0, 0);
1653 if (long PID = __fork())
1654 return;
1655 watchProcess();
1659 extern "C" __attribute((force_align_arg_pointer)) void
1660 instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) {
1661 GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc);
1664 /// We receive as in-stack arguments the identifier of the indirect call site
1665 /// as well as the target address for the call
1666 extern "C" __attribute((naked)) void __bolt_instr_indirect_call()
1668 #if defined(__aarch64__)
1669 // clang-format off
1670 __asm__ __volatile__(SAVE_ALL
1671 "ldp x0, x1, [sp, #288]\n"
1672 "bl instrumentIndirectCall\n"
1673 RESTORE_ALL
1674 "ret\n"
1675 :::);
1676 // clang-format on
1677 #else
1678 // clang-format off
1679 __asm__ __volatile__(SAVE_ALL
1680 "mov 0xa0(%%rsp), %%rdi\n"
1681 "mov 0x98(%%rsp), %%rsi\n"
1682 "call instrumentIndirectCall\n"
1683 RESTORE_ALL
1684 "ret\n"
1685 :::);
1686 // clang-format on
1687 #endif
1690 extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall()
1692 #if defined(__aarch64__)
1693 // clang-format off
1694 __asm__ __volatile__(SAVE_ALL
1695 "ldp x0, x1, [sp, #288]\n"
1696 "bl instrumentIndirectCall\n"
1697 RESTORE_ALL
1698 "ret\n"
1699 :::);
1700 // clang-format on
1701 #else
1702 // clang-format off
1703 __asm__ __volatile__(SAVE_ALL
1704 "mov 0x98(%%rsp), %%rdi\n"
1705 "mov 0x90(%%rsp), %%rsi\n"
1706 "call instrumentIndirectCall\n"
1707 RESTORE_ALL
1708 "ret\n"
1709 :::);
1710 // clang-format on
1711 #endif
1714 /// This is hooking ELF's entry, it needs to save all machine state.
1715 extern "C" __attribute((naked)) void __bolt_instr_start()
1717 #if defined(__aarch64__)
1718 // clang-format off
1719 __asm__ __volatile__(SAVE_ALL
1720 "bl __bolt_instr_setup\n"
1721 RESTORE_ALL
1722 "adrp x16, __bolt_start_trampoline\n"
1723 "add x16, x16, #:lo12:__bolt_start_trampoline\n"
1724 "br x16\n"
1725 :::);
1726 // clang-format on
1727 #else
1728 // clang-format off
1729 __asm__ __volatile__(SAVE_ALL
1730 "call __bolt_instr_setup\n"
1731 RESTORE_ALL
1732 "jmp __bolt_start_trampoline\n"
1733 :::);
1734 // clang-format on
1735 #endif
1738 /// This is hooking into ELF's DT_FINI
1739 extern "C" void __bolt_instr_fini() {
1740 #if defined(__aarch64__)
1741 // clang-format off
1742 __asm__ __volatile__(SAVE_ALL
1743 "adrp x16, __bolt_fini_trampoline\n"
1744 "add x16, x16, #:lo12:__bolt_fini_trampoline\n"
1745 "blr x16\n"
1746 RESTORE_ALL
1747 :::);
1748 // clang-format on
1749 #else
1750 __asm__ __volatile__("call __bolt_fini_trampoline\n" :::);
1751 #endif
1752 if (__bolt_instr_sleep_time == 0) {
1753 int FD = openProfile();
1754 __bolt_instr_data_dump(FD);
1755 __close(FD);
1757 DEBUG(report("Finished.\n"));
1760 #endif
1762 #if defined(__APPLE__)
1764 extern "C" void __bolt_instr_data_dump() {
1765 ProfileWriterContext Ctx = readDescriptions();
1767 int FD = 2;
1768 BumpPtrAllocator Alloc;
1769 const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1770 uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter();
1772 for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) {
1773 FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1774 Alloc.clear();
1775 DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1777 assert(FuncDesc == (void *)Ctx.Strings,
1778 "FuncDesc ptr must be equal to stringtable");
1781 // On OSX/iOS the final symbol name of an extern "C" function/variable contains
1782 // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup.
1783 extern "C"
1784 __attribute__((section("__TEXT,__setup")))
1785 __attribute__((force_align_arg_pointer))
1786 void _bolt_instr_setup() {
1787 __asm__ __volatile__(SAVE_ALL :::);
1789 report("Hello!\n");
1791 __asm__ __volatile__(RESTORE_ALL :::);
1794 extern "C"
1795 __attribute__((section("__TEXT,__fini")))
1796 __attribute__((force_align_arg_pointer))
1797 void _bolt_instr_fini() {
1798 report("Bye!\n");
1799 __bolt_instr_data_dump();
1802 #endif