1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "UnwindInfoSection.h"
10 #include "ConcatOutputSection.h"
12 #include "InputSection.h"
13 #include "OutputSection.h"
14 #include "OutputSegment.h"
15 #include "SymbolTable.h"
17 #include "SyntheticSections.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/BinaryFormat/MachO.h"
25 #include "llvm/Support/Parallel.h"
30 using namespace llvm::MachO
;
31 using namespace llvm::support::endian
;
33 using namespace lld::macho
;
35 #define COMMON_ENCODINGS_MAX 127
36 #define COMPACT_ENCODINGS_MAX 256
38 #define SECOND_LEVEL_PAGE_BYTES 4096
39 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
40 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
41 ((SECOND_LEVEL_PAGE_BYTES - \
42 sizeof(unwind_info_regular_second_level_page_header)) / \
43 sizeof(unwind_info_regular_second_level_entry))
44 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
45 ((SECOND_LEVEL_PAGE_BYTES - \
46 sizeof(unwind_info_compressed_second_level_page_header)) / \
49 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
51 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
53 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
54 // optimizes space and exception-time lookup. Most DWARF unwind
55 // entries can be replaced with Compact Unwind entries, but the ones
56 // that cannot are retained in DWARF form.
58 // This comment will address macro-level organization of the pre-link
59 // and post-link compact unwind tables. For micro-level organization
60 // pertaining to the bitfield layout of the 32-bit compact unwind
61 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
63 // Important clarifying factoids:
65 // * __LD,__compact_unwind is the compact unwind format for compiler
66 // output and linker input. It is never a final output. It could be
67 // an intermediate output with the `-r` option which retains relocs.
69 // * __TEXT,__unwind_info is the compact unwind format for final
70 // linker output. It is never an input.
72 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
74 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
75 // level) by ascending address, and the pages are referenced by an
76 // index (1st level) in the section header.
78 // * Following the headers in __TEXT,__unwind_info, the bulk of the
79 // section contains a vector of compact unwind entries
80 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
81 // Adjacent entries with the same encoding can be folded to great
82 // advantage, achieving a 3-order-of-magnitude reduction in the
85 // * The __TEXT,__unwind_info format can accommodate up to 127 unique
86 // encodings for the space-efficient compressed format. In practice,
87 // fewer than a dozen unique encodings are used by C++ programs of
88 // all sizes. Therefore, we don't even bother implementing the regular
89 // non-compressed format. Time will tell if anyone in the field ever
90 // overflows the 127-encodings limit.
92 // Refer to the definition of unwind_info_section_header in
93 // compact_unwind_encoding.h for an overview of the format we are encoding
96 // TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
97 // TODO(gkm): how do we align the 2nd-level pages?
99 // The offsets of various fields in the on-disk representation of each compact
101 struct CompactUnwindOffsets
{
102 uint32_t functionAddress
;
103 uint32_t functionLength
;
105 uint32_t personality
;
108 CompactUnwindOffsets(size_t wordSize
) {
112 assert(wordSize
== 4);
118 template <class Ptr
> void init() {
119 functionAddress
= offsetof(Layout
<Ptr
>, functionAddress
);
120 functionLength
= offsetof(Layout
<Ptr
>, functionLength
);
121 encoding
= offsetof(Layout
<Ptr
>, encoding
);
122 personality
= offsetof(Layout
<Ptr
>, personality
);
123 lsda
= offsetof(Layout
<Ptr
>, lsda
);
126 template <class Ptr
> struct Layout
{
128 uint32_t functionLength
;
129 compact_unwind_encoding_t encoding
;
135 // LLD's internal representation of a compact unwind entry.
136 struct CompactUnwindEntry
{
137 uint64_t functionAddress
;
138 uint32_t functionLength
;
139 compact_unwind_encoding_t encoding
;
144 using EncodingMap
= DenseMap
<compact_unwind_encoding_t
, size_t>;
146 struct SecondLevelPage
{
151 std::vector
<compact_unwind_encoding_t
> localEncodings
;
152 EncodingMap localEncodingIndexes
;
155 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
156 // lengthy definition of UnwindInfoSection.
157 class UnwindInfoSectionImpl final
: public UnwindInfoSection
{
159 UnwindInfoSectionImpl() : cuOffsets(target
->wordSize
) {}
160 uint64_t getSize() const override
{ return unwindInfoSize
; }
161 void prepareRelocations() override
;
162 void finalize() override
;
163 void writeTo(uint8_t *buf
) const override
;
166 void prepareRelocations(ConcatInputSection
*);
167 void relocateCompactUnwind(std::vector
<CompactUnwindEntry
> &);
168 void encodePersonalities();
170 uint64_t unwindInfoSize
= 0;
171 std::vector
<decltype(symbols
)::value_type
> symbolsVec
;
172 CompactUnwindOffsets cuOffsets
;
173 std::vector
<std::pair
<compact_unwind_encoding_t
, size_t>> commonEncodings
;
174 EncodingMap commonEncodingIndexes
;
175 // The entries here will be in the same order as their originating symbols
177 std::vector
<CompactUnwindEntry
> cuEntries
;
178 // Indices into the cuEntries vector.
179 std::vector
<size_t> cuIndices
;
180 std::vector
<Symbol
*> personalities
;
181 SmallDenseMap
<std::pair
<InputSection
*, uint64_t /* addend */>, Symbol
*>
183 // Indices into cuEntries for CUEs with a non-null LSDA.
184 std::vector
<size_t> entriesWithLsda
;
185 // Map of cuEntries index to an index within the LSDA array.
186 DenseMap
<size_t, uint32_t> lsdaIndex
;
187 std::vector
<SecondLevelPage
> secondLevelPages
;
188 uint64_t level2PagesOffset
= 0;
191 UnwindInfoSection::UnwindInfoSection()
192 : SyntheticSection(segment_names::text
, section_names::unwindInfo
) {
196 // Record function symbols that may need entries emitted in __unwind_info, which
197 // stores unwind data for address ranges.
199 // Note that if several adjacent functions have the same unwind encoding, LSDA,
200 // and personality function, they share one unwind entry. For this to work,
201 // functions without unwind info need explicit "no unwind info" unwind entries
202 // -- else the unwinder would think they have the unwind info of the closest
203 // function with unwind info right before in the image. Thus, we add function
204 // symbols for each unique address regardless of whether they have associated
206 void UnwindInfoSection::addSymbol(const Defined
*d
) {
208 allEntriesAreOmitted
= false;
209 // We don't yet know the final output address of this symbol, but we know that
210 // they are uniquely determined by a combination of the isec and value, so
211 // we use that as the key here.
212 auto p
= symbols
.insert({{d
->isec
, d
->value
}, d
});
213 // If we have multiple symbols at the same address, only one of them can have
214 // an associated unwind entry.
215 if (!p
.second
&& d
->unwindEntry
) {
216 assert(!p
.first
->second
->unwindEntry
);
221 void UnwindInfoSectionImpl::prepareRelocations() {
222 // This iteration needs to be deterministic, since prepareRelocations may add
223 // entries to the GOT. Hence the use of a MapVector for
224 // UnwindInfoSection::symbols.
225 for (const Defined
*d
: make_second_range(symbols
))
226 if (d
->unwindEntry
&&
227 d
->unwindEntry
->getName() == section_names::compactUnwind
)
228 prepareRelocations(d
->unwindEntry
);
231 // Compact unwind relocations have different semantics, so we handle them in a
232 // separate code path from regular relocations. First, we do not wish to add
233 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
234 // actually end up in the final binary. Second, personality pointers always
235 // reside in the GOT and must be treated specially.
236 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection
*isec
) {
237 assert(!isec
->shouldOmitFromOutput() &&
238 "__compact_unwind section should not be omitted");
240 // FIXME: Make this skip relocations for CompactUnwindEntries that
241 // point to dead-stripped functions. That might save some amount of
242 // work. But since there are usually just few personality functions
243 // that are referenced from many places, at least some of them likely
244 // live, it wouldn't reduce number of got entries.
245 for (size_t i
= 0; i
< isec
->relocs
.size(); ++i
) {
246 Reloc
&r
= isec
->relocs
[i
];
247 assert(target
->hasAttr(r
.type
, RelocAttrBits::UNSIGNED
));
249 // Functions and LSDA entries always reside in the same object file as the
250 // compact unwind entries that references them, and thus appear as section
251 // relocs. There is no need to prepare them. We only prepare relocs for
252 // personality functions.
253 if (r
.offset
!= cuOffsets
.personality
)
256 if (auto *s
= r
.referent
.dyn_cast
<Symbol
*>()) {
257 // Personality functions are nearly always system-defined (e.g.,
258 // ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
259 // application provides its own personality function, it might be
260 // referenced by an extern Defined symbol reloc, or a local section reloc.
261 if (auto *defined
= dyn_cast
<Defined
>(s
)) {
262 // XXX(vyng) This is a a special case for handling duplicate personality
263 // symbols. Note that LD64's behavior is a bit different and it is
264 // inconsistent with how symbol resolution usually work
266 // So we've decided not to follow it. Instead, simply pick the symbol
267 // with the same name from the symbol table to replace the local one.
269 // (See discussions/alternatives already considered on D107533)
270 if (!defined
->isExternal())
271 if (Symbol
*sym
= symtab
->find(defined
->getName()))
273 r
.referent
= s
= sym
;
275 if (auto *undefined
= dyn_cast
<Undefined
>(s
)) {
276 treatUndefinedSymbol(*undefined
, isec
, r
.offset
);
277 // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
278 if (isa
<Undefined
>(s
))
282 if (auto *defined
= dyn_cast
<Defined
>(s
)) {
283 // Check if we have created a synthetic symbol at the same address.
284 Symbol
*&personality
=
285 personalityTable
[{defined
->isec
, defined
->value
}];
286 if (personality
== nullptr) {
287 personality
= defined
;
288 in
.got
->addEntry(defined
);
289 } else if (personality
!= defined
) {
290 r
.referent
= personality
;
294 assert(isa
<DylibSymbol
>(s
));
299 if (auto *referentIsec
= r
.referent
.dyn_cast
<InputSection
*>()) {
300 assert(!isCoalescedWeak(referentIsec
));
301 // Personality functions can be referenced via section relocations
302 // if they live in the same object file. Create placeholder synthetic
303 // symbols for them in the GOT.
304 Symbol
*&s
= personalityTable
[{referentIsec
, r
.addend
}];
306 // This runs after dead stripping, so the noDeadStrip argument does not
308 s
= make
<Defined
>("<internal>", /*file=*/nullptr, referentIsec
,
309 r
.addend
, /*size=*/0, /*isWeakDef=*/false,
310 /*isExternal=*/false, /*isPrivateExtern=*/false,
311 /*includeInSymtab=*/true,
312 /*isThumb=*/false, /*isReferencedDynamically=*/false,
313 /*noDeadStrip=*/false);
323 // We need to apply the relocations to the pre-link compact unwind section
324 // before converting it to post-link form. There should only be absolute
325 // relocations here: since we are not emitting the pre-link CU section, there
326 // is no source address to make a relative location meaningful.
327 void UnwindInfoSectionImpl::relocateCompactUnwind(
328 std::vector
<CompactUnwindEntry
> &cuEntries
) {
329 parallelFor(0, symbolsVec
.size(), [&](size_t i
) {
330 CompactUnwindEntry
&cu
= cuEntries
[i
];
331 const Defined
*d
= symbolsVec
[i
].second
;
332 cu
.functionAddress
= d
->getVA();
336 // If we have DWARF unwind info, create a CU entry that points to it.
337 if (d
->unwindEntry
->getName() == section_names::ehFrame
) {
338 cu
.encoding
= target
->modeDwarfEncoding
| d
->unwindEntry
->outSecOff
;
339 const FDE
&fde
= cast
<ObjFile
>(d
->getFile())->fdes
[d
->unwindEntry
];
340 cu
.functionLength
= fde
.funcLength
;
341 cu
.personality
= fde
.personality
;
346 assert(d
->unwindEntry
->getName() == section_names::compactUnwind
);
348 auto buf
= reinterpret_cast<const uint8_t *>(d
->unwindEntry
->data
.data()) -
351 support::endian::read32le(buf
+ cuOffsets
.functionLength
);
352 cu
.encoding
= support::endian::read32le(buf
+ cuOffsets
.encoding
);
353 for (const Reloc
&r
: d
->unwindEntry
->relocs
) {
354 if (r
.offset
== cuOffsets
.personality
) {
355 cu
.personality
= r
.referent
.get
<Symbol
*>();
356 } else if (r
.offset
== cuOffsets
.lsda
) {
357 if (auto *referentSym
= r
.referent
.dyn_cast
<Symbol
*>())
358 cu
.lsda
= cast
<Defined
>(referentSym
)->isec
;
360 cu
.lsda
= r
.referent
.get
<InputSection
*>();
366 // There should only be a handful of unique personality pointers, so we can
367 // encode them as 2-bit indices into a small array.
368 void UnwindInfoSectionImpl::encodePersonalities() {
369 for (size_t idx
: cuIndices
) {
370 CompactUnwindEntry
&cu
= cuEntries
[idx
];
371 if (cu
.personality
== nullptr)
373 // Linear search is fast enough for a small array.
374 auto it
= find(personalities
, cu
.personality
);
375 uint32_t personalityIndex
; // 1-based index
376 if (it
!= personalities
.end()) {
377 personalityIndex
= std::distance(personalities
.begin(), it
) + 1;
379 personalities
.push_back(cu
.personality
);
380 personalityIndex
= personalities
.size();
383 personalityIndex
<< countTrailingZeros(
384 static_cast<compact_unwind_encoding_t
>(UNWIND_PERSONALITY_MASK
));
386 if (personalities
.size() > 3)
387 error("too many personalities (" + Twine(personalities
.size()) +
388 ") for compact unwind to encode");
391 static bool canFoldEncoding(compact_unwind_encoding_t encoding
) {
392 // From compact_unwind_encoding.h:
393 // UNWIND_X86_64_MODE_STACK_IND:
394 // A "frameless" (RBP not used as frame pointer) function large constant
395 // stack size. This case is like the previous, except the stack size is too
396 // large to encode in the compact unwind encoding. Instead it requires that
397 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
398 // encoding contains the offset to the nnnnnnnn value in the function in
399 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
400 // Since this means the unwinder has to look at the `subq` in the function
401 // of the unwind info's unwind address, two functions that have identical
402 // unwind info can't be folded if it's using this encoding since both
403 // entries need unique addresses.
404 static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK
) ==
405 static_cast<uint32_t>(UNWIND_X86_MODE_MASK
),
407 static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND
) ==
408 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND
),
410 if ((target
->cpuType
== CPU_TYPE_X86_64
|| target
->cpuType
== CPU_TYPE_X86
) &&
411 (encoding
& UNWIND_X86_64_MODE_MASK
) == UNWIND_X86_64_MODE_STACK_IND
) {
412 // FIXME: Consider passing in the two function addresses and getting
413 // their two stack sizes off the `subq` and only returning false if they're
414 // actually different.
420 // Scan the __LD,__compact_unwind entries and compute the space needs of
421 // __TEXT,__unwind_info and __TEXT,__eh_frame.
422 void UnwindInfoSectionImpl::finalize() {
426 // At this point, the address space for __TEXT,__text has been
427 // assigned, so we can relocate the __LD,__compact_unwind entries
428 // into a temporary buffer. Relocation is necessary in order to sort
429 // the CU entries by function address. Sorting is necessary so that
430 // we can fold adjacent CU entries with identical
431 // encoding+personality+lsda. Folding is necessary because it reduces
432 // the number of CU entries by as much as 3 orders of magnitude!
433 cuEntries
.resize(symbols
.size());
434 // The "map" part of the symbols MapVector was only needed for deduplication
435 // in addSymbol(). Now that we are done adding, move the contents to a plain
436 // std::vector for indexed access.
437 symbolsVec
= symbols
.takeVector();
438 relocateCompactUnwind(cuEntries
);
440 // Rather than sort & fold the 32-byte entries directly, we create a
441 // vector of indices to entries and sort & fold that instead.
442 cuIndices
.resize(cuEntries
.size());
443 std::iota(cuIndices
.begin(), cuIndices
.end(), 0);
444 llvm::sort(cuIndices
, [&](size_t a
, size_t b
) {
445 return cuEntries
[a
].functionAddress
< cuEntries
[b
].functionAddress
;
448 // Fold adjacent entries with matching encoding+personality+lsda
449 // We use three iterators on the same cuIndices to fold in-situ:
450 // (1) `foldBegin` is the first of a potential sequence of matching entries
451 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
452 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
453 // entries that can be folded into a single entry and written to ...
455 auto foldWrite
= cuIndices
.begin();
456 for (auto foldBegin
= cuIndices
.begin(); foldBegin
< cuIndices
.end();) {
457 auto foldEnd
= foldBegin
;
458 while (++foldEnd
< cuIndices
.end() &&
459 cuEntries
[*foldBegin
].encoding
== cuEntries
[*foldEnd
].encoding
&&
460 cuEntries
[*foldBegin
].personality
==
461 cuEntries
[*foldEnd
].personality
&&
462 cuEntries
[*foldBegin
].lsda
== cuEntries
[*foldEnd
].lsda
&&
463 canFoldEncoding(cuEntries
[*foldEnd
].encoding
))
465 *foldWrite
++ = *foldBegin
;
468 cuIndices
.erase(foldWrite
, cuIndices
.end());
470 encodePersonalities();
472 // Count frequencies of the folded encodings
473 EncodingMap encodingFrequencies
;
474 for (size_t idx
: cuIndices
)
475 encodingFrequencies
[cuEntries
[idx
].encoding
]++;
477 // Make a vector of encodings, sorted by descending frequency
478 for (const auto &frequency
: encodingFrequencies
)
479 commonEncodings
.emplace_back(frequency
);
480 llvm::sort(commonEncodings
,
481 [](const std::pair
<compact_unwind_encoding_t
, size_t> &a
,
482 const std::pair
<compact_unwind_encoding_t
, size_t> &b
) {
483 if (a
.second
== b
.second
)
484 // When frequencies match, secondarily sort on encoding
485 // to maintain parity with validate-unwind-info.py
486 return a
.first
> b
.first
;
487 return a
.second
> b
.second
;
490 // Truncate the vector to 127 elements.
491 // Common encoding indexes are limited to 0..126, while encoding
492 // indexes 127..255 are local to each second-level page
493 if (commonEncodings
.size() > COMMON_ENCODINGS_MAX
)
494 commonEncodings
.resize(COMMON_ENCODINGS_MAX
);
496 // Create a map from encoding to common-encoding-table index
497 for (size_t i
= 0; i
< commonEncodings
.size(); i
++)
498 commonEncodingIndexes
[commonEncodings
[i
].first
] = i
;
500 // Split folded encodings into pages, where each page is limited by ...
501 // (a) 4 KiB capacity
502 // (b) 24-bit difference between first & final function address
503 // (c) 8-bit compact-encoding-table index,
504 // for which 0..126 references the global common-encodings table,
505 // and 127..255 references a local per-second-level-page table.
506 // First we try the compact format and determine how many entries fit.
507 // If more entries fit in the regular format, we use that.
508 for (size_t i
= 0; i
< cuIndices
.size();) {
509 size_t idx
= cuIndices
[i
];
510 secondLevelPages
.emplace_back();
511 SecondLevelPage
&page
= secondLevelPages
.back();
513 uint64_t functionAddressMax
=
514 cuEntries
[idx
].functionAddress
+ COMPRESSED_ENTRY_FUNC_OFFSET_MASK
;
515 size_t n
= commonEncodings
.size();
516 size_t wordsRemaining
=
517 SECOND_LEVEL_PAGE_WORDS
-
518 sizeof(unwind_info_compressed_second_level_page_header
) /
520 while (wordsRemaining
>= 1 && i
< cuIndices
.size()) {
522 const CompactUnwindEntry
*cuPtr
= &cuEntries
[idx
];
523 if (cuPtr
->functionAddress
>= functionAddressMax
) {
525 } else if (commonEncodingIndexes
.count(cuPtr
->encoding
) ||
526 page
.localEncodingIndexes
.count(cuPtr
->encoding
)) {
529 } else if (wordsRemaining
>= 2 && n
< COMPACT_ENCODINGS_MAX
) {
530 page
.localEncodings
.emplace_back(cuPtr
->encoding
);
531 page
.localEncodingIndexes
[cuPtr
->encoding
] = n
++;
538 page
.entryCount
= i
- page
.entryIndex
;
540 // If this is not the final page, see if it's possible to fit more
541 // entries by using the regular format. This can happen when there
542 // are many unique encodings, and we we saturated the local
543 // encoding table early.
544 if (i
< cuIndices
.size() &&
545 page
.entryCount
< REGULAR_SECOND_LEVEL_ENTRIES_MAX
) {
546 page
.kind
= UNWIND_SECOND_LEVEL_REGULAR
;
547 page
.entryCount
= std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX
,
548 cuIndices
.size() - page
.entryIndex
);
549 i
= page
.entryIndex
+ page
.entryCount
;
551 page
.kind
= UNWIND_SECOND_LEVEL_COMPRESSED
;
555 for (size_t idx
: cuIndices
) {
556 lsdaIndex
[idx
] = entriesWithLsda
.size();
557 if (cuEntries
[idx
].lsda
)
558 entriesWithLsda
.push_back(idx
);
561 // compute size of __TEXT,__unwind_info section
562 level2PagesOffset
= sizeof(unwind_info_section_header
) +
563 commonEncodings
.size() * sizeof(uint32_t) +
564 personalities
.size() * sizeof(uint32_t) +
565 // The extra second-level-page entry is for the sentinel
566 (secondLevelPages
.size() + 1) *
567 sizeof(unwind_info_section_header_index_entry
) +
568 entriesWithLsda
.size() *
569 sizeof(unwind_info_section_header_lsda_index_entry
);
571 level2PagesOffset
+ secondLevelPages
.size() * SECOND_LEVEL_PAGE_BYTES
;
574 // All inputs are relocated and output addresses are known, so write!
576 void UnwindInfoSectionImpl::writeTo(uint8_t *buf
) const {
577 assert(!cuIndices
.empty() && "call only if there is unwind info");
580 auto *uip
= reinterpret_cast<unwind_info_section_header
*>(buf
);
582 uip
->commonEncodingsArraySectionOffset
= sizeof(unwind_info_section_header
);
583 uip
->commonEncodingsArrayCount
= commonEncodings
.size();
584 uip
->personalityArraySectionOffset
=
585 uip
->commonEncodingsArraySectionOffset
+
586 (uip
->commonEncodingsArrayCount
* sizeof(uint32_t));
587 uip
->personalityArrayCount
= personalities
.size();
588 uip
->indexSectionOffset
= uip
->personalityArraySectionOffset
+
589 (uip
->personalityArrayCount
* sizeof(uint32_t));
590 uip
->indexCount
= secondLevelPages
.size() + 1;
593 auto *i32p
= reinterpret_cast<uint32_t *>(&uip
[1]);
594 for (const auto &encoding
: commonEncodings
)
595 *i32p
++ = encoding
.first
;
598 for (const Symbol
*personality
: personalities
)
599 *i32p
++ = personality
->getGotVA() - in
.header
->addr
;
602 uint32_t lsdaOffset
=
603 uip
->indexSectionOffset
+
604 uip
->indexCount
* sizeof(unwind_info_section_header_index_entry
);
605 uint64_t l2PagesOffset
= level2PagesOffset
;
606 auto *iep
= reinterpret_cast<unwind_info_section_header_index_entry
*>(i32p
);
607 for (const SecondLevelPage
&page
: secondLevelPages
) {
608 size_t idx
= cuIndices
[page
.entryIndex
];
609 iep
->functionOffset
= cuEntries
[idx
].functionAddress
- in
.header
->addr
;
610 iep
->secondLevelPagesSectionOffset
= l2PagesOffset
;
611 iep
->lsdaIndexArraySectionOffset
=
612 lsdaOffset
+ lsdaIndex
.lookup(idx
) *
613 sizeof(unwind_info_section_header_lsda_index_entry
);
615 l2PagesOffset
+= SECOND_LEVEL_PAGE_BYTES
;
618 const CompactUnwindEntry
&cuEnd
= cuEntries
[cuIndices
.back()];
619 iep
->functionOffset
=
620 cuEnd
.functionAddress
- in
.header
->addr
+ cuEnd
.functionLength
;
621 iep
->secondLevelPagesSectionOffset
= 0;
622 iep
->lsdaIndexArraySectionOffset
=
623 lsdaOffset
+ entriesWithLsda
.size() *
624 sizeof(unwind_info_section_header_lsda_index_entry
);
629 reinterpret_cast<unwind_info_section_header_lsda_index_entry
*>(iep
);
630 for (size_t idx
: entriesWithLsda
) {
631 const CompactUnwindEntry
&cu
= cuEntries
[idx
];
632 lep
->lsdaOffset
= cu
.lsda
->getVA(/*off=*/0) - in
.header
->addr
;
633 lep
->functionOffset
= cu
.functionAddress
- in
.header
->addr
;
638 auto *pp
= reinterpret_cast<uint32_t *>(lep
);
639 for (const SecondLevelPage
&page
: secondLevelPages
) {
640 if (page
.kind
== UNWIND_SECOND_LEVEL_COMPRESSED
) {
641 uintptr_t functionAddressBase
=
642 cuEntries
[cuIndices
[page
.entryIndex
]].functionAddress
;
644 reinterpret_cast<unwind_info_compressed_second_level_page_header
*>(
646 p2p
->kind
= page
.kind
;
647 p2p
->entryPageOffset
=
648 sizeof(unwind_info_compressed_second_level_page_header
);
649 p2p
->entryCount
= page
.entryCount
;
650 p2p
->encodingsPageOffset
=
651 p2p
->entryPageOffset
+ p2p
->entryCount
* sizeof(uint32_t);
652 p2p
->encodingsCount
= page
.localEncodings
.size();
653 auto *ep
= reinterpret_cast<uint32_t *>(&p2p
[1]);
654 for (size_t i
= 0; i
< page
.entryCount
; i
++) {
655 const CompactUnwindEntry
&cue
=
656 cuEntries
[cuIndices
[page
.entryIndex
+ i
]];
657 auto it
= commonEncodingIndexes
.find(cue
.encoding
);
658 if (it
== commonEncodingIndexes
.end())
659 it
= page
.localEncodingIndexes
.find(cue
.encoding
);
660 *ep
++ = (it
->second
<< COMPRESSED_ENTRY_FUNC_OFFSET_BITS
) |
661 (cue
.functionAddress
- functionAddressBase
);
663 if (!page
.localEncodings
.empty())
664 memcpy(ep
, page
.localEncodings
.data(),
665 page
.localEncodings
.size() * sizeof(uint32_t));
668 reinterpret_cast<unwind_info_regular_second_level_page_header
*>(pp
);
669 p2p
->kind
= page
.kind
;
670 p2p
->entryPageOffset
=
671 sizeof(unwind_info_regular_second_level_page_header
);
672 p2p
->entryCount
= page
.entryCount
;
673 auto *ep
= reinterpret_cast<uint32_t *>(&p2p
[1]);
674 for (size_t i
= 0; i
< page
.entryCount
; i
++) {
675 const CompactUnwindEntry
&cue
=
676 cuEntries
[cuIndices
[page
.entryIndex
+ i
]];
677 *ep
++ = cue
.functionAddress
;
678 *ep
++ = cue
.encoding
;
681 pp
+= SECOND_LEVEL_PAGE_WORDS
;
685 UnwindInfoSection
*macho::makeUnwindInfoSection() {
686 return make
<UnwindInfoSectionImpl
>();