[Github] Label lldb-dap PRs (#125139)
[llvm-project.git] / clang / lib / CodeGen / CGExprAgg.cpp
blob2ad6587089f10140b3f39c305642b1e59813365d
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "EHScopeStack.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 using namespace clang;
33 using namespace CodeGen;
35 //===----------------------------------------------------------------------===//
36 // Aggregate Expression Emitter
37 //===----------------------------------------------------------------------===//
39 namespace llvm {
40 extern cl::opt<bool> EnableSingleByteCoverage;
41 } // namespace llvm
43 namespace {
44 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
45 CodeGenFunction &CGF;
46 CGBuilderTy &Builder;
47 AggValueSlot Dest;
48 bool IsResultUnused;
50 AggValueSlot EnsureSlot(QualType T) {
51 if (!Dest.isIgnored()) return Dest;
52 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
54 void EnsureDest(QualType T) {
55 if (!Dest.isIgnored()) return;
56 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
59 // Calls `Fn` with a valid return value slot, potentially creating a temporary
60 // to do so. If a temporary is created, an appropriate copy into `Dest` will
61 // be emitted, as will lifetime markers.
63 // The given function should take a ReturnValueSlot, and return an RValue that
64 // points to said slot.
65 void withReturnValueSlot(const Expr *E,
66 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
68 void DoZeroInitPadding(uint64_t &PaddingStart, uint64_t PaddingEnd,
69 const FieldDecl *NextField);
71 public:
72 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
73 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
74 IsResultUnused(IsResultUnused) { }
76 //===--------------------------------------------------------------------===//
77 // Utilities
78 //===--------------------------------------------------------------------===//
80 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
81 /// represents a value lvalue, this method emits the address of the lvalue,
82 /// then loads the result into DestPtr.
83 void EmitAggLoadOfLValue(const Expr *E);
85 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
86 /// SrcIsRValue is true if source comes from an RValue.
87 void EmitFinalDestCopy(QualType type, const LValue &src,
88 CodeGenFunction::ExprValueKind SrcValueKind =
89 CodeGenFunction::EVK_NonRValue);
90 void EmitFinalDestCopy(QualType type, RValue src);
91 void EmitCopy(QualType type, const AggValueSlot &dest,
92 const AggValueSlot &src);
94 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
95 Expr *ExprToVisit, ArrayRef<Expr *> Args,
96 Expr *ArrayFiller);
98 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
99 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
100 return AggValueSlot::NeedsGCBarriers;
101 return AggValueSlot::DoesNotNeedGCBarriers;
104 bool TypeRequiresGCollection(QualType T);
106 //===--------------------------------------------------------------------===//
107 // Visitor Methods
108 //===--------------------------------------------------------------------===//
110 void Visit(Expr *E) {
111 ApplyDebugLocation DL(CGF, E);
112 StmtVisitor<AggExprEmitter>::Visit(E);
115 void VisitStmt(Stmt *S) {
116 CGF.ErrorUnsupported(S, "aggregate expression");
118 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
119 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
120 Visit(GE->getResultExpr());
122 void VisitCoawaitExpr(CoawaitExpr *E) {
123 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
125 void VisitCoyieldExpr(CoyieldExpr *E) {
126 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
128 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
129 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
130 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
131 return Visit(E->getReplacement());
134 void VisitConstantExpr(ConstantExpr *E) {
135 EnsureDest(E->getType());
137 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
138 CGF.CreateCoercedStore(
139 Result, Dest.getAddress(),
140 llvm::TypeSize::getFixed(
141 Dest.getPreferredSize(CGF.getContext(), E->getType())
142 .getQuantity()),
143 E->getType().isVolatileQualified());
144 return;
146 return Visit(E->getSubExpr());
149 // l-values.
150 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
151 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
152 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
153 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
154 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
155 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
156 EmitAggLoadOfLValue(E);
158 void VisitPredefinedExpr(const PredefinedExpr *E) {
159 EmitAggLoadOfLValue(E);
162 // Operators.
163 void VisitCastExpr(CastExpr *E);
164 void VisitCallExpr(const CallExpr *E);
165 void VisitStmtExpr(const StmtExpr *E);
166 void VisitBinaryOperator(const BinaryOperator *BO);
167 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
168 void VisitBinAssign(const BinaryOperator *E);
169 void VisitBinComma(const BinaryOperator *E);
170 void VisitBinCmp(const BinaryOperator *E);
171 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
172 Visit(E->getSemanticForm());
175 void VisitObjCMessageExpr(ObjCMessageExpr *E);
176 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
177 EmitAggLoadOfLValue(E);
180 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
181 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
182 void VisitChooseExpr(const ChooseExpr *CE);
183 void VisitInitListExpr(InitListExpr *E);
184 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
185 FieldDecl *InitializedFieldInUnion,
186 Expr *ArrayFiller);
187 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
188 llvm::Value *outerBegin = nullptr);
189 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
190 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
191 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
192 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
193 Visit(DAE->getExpr());
195 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
196 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
197 Visit(DIE->getExpr());
199 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
200 void VisitCXXConstructExpr(const CXXConstructExpr *E);
201 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
202 void VisitLambdaExpr(LambdaExpr *E);
203 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
204 void VisitExprWithCleanups(ExprWithCleanups *E);
205 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
206 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
207 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
208 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
210 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
211 if (E->isGLValue()) {
212 LValue LV = CGF.EmitPseudoObjectLValue(E);
213 return EmitFinalDestCopy(E->getType(), LV);
216 AggValueSlot Slot = EnsureSlot(E->getType());
217 bool NeedsDestruction =
218 !Slot.isExternallyDestructed() &&
219 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
220 if (NeedsDestruction)
221 Slot.setExternallyDestructed();
222 CGF.EmitPseudoObjectRValue(E, Slot);
223 if (NeedsDestruction)
224 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
225 E->getType());
228 void VisitVAArgExpr(VAArgExpr *E);
229 void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
230 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
231 Expr *ArrayFiller);
233 void EmitInitializationToLValue(Expr *E, LValue Address);
234 void EmitNullInitializationToLValue(LValue Address);
235 // case Expr::ChooseExprClass:
236 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
237 void VisitAtomicExpr(AtomicExpr *E) {
238 RValue Res = CGF.EmitAtomicExpr(E);
239 EmitFinalDestCopy(E->getType(), Res);
241 void VisitPackIndexingExpr(PackIndexingExpr *E) {
242 Visit(E->getSelectedExpr());
245 } // end anonymous namespace.
247 //===----------------------------------------------------------------------===//
248 // Utilities
249 //===----------------------------------------------------------------------===//
251 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
252 /// represents a value lvalue, this method emits the address of the lvalue,
253 /// then loads the result into DestPtr.
254 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
255 LValue LV = CGF.EmitLValue(E);
257 // If the type of the l-value is atomic, then do an atomic load.
258 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
259 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
260 return;
263 EmitFinalDestCopy(E->getType(), LV);
266 /// True if the given aggregate type requires special GC API calls.
267 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
268 // Only record types have members that might require garbage collection.
269 const RecordType *RecordTy = T->getAs<RecordType>();
270 if (!RecordTy) return false;
272 // Don't mess with non-trivial C++ types.
273 RecordDecl *Record = RecordTy->getDecl();
274 if (isa<CXXRecordDecl>(Record) &&
275 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
276 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
277 return false;
279 // Check whether the type has an object member.
280 return Record->hasObjectMember();
283 void AggExprEmitter::withReturnValueSlot(
284 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
285 QualType RetTy = E->getType();
286 bool RequiresDestruction =
287 !Dest.isExternallyDestructed() &&
288 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
290 // If it makes no observable difference, save a memcpy + temporary.
292 // We need to always provide our own temporary if destruction is required.
293 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
294 // its lifetime before we have the chance to emit a proper destructor call.
295 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
296 (RequiresDestruction && Dest.isIgnored());
298 Address RetAddr = Address::invalid();
299 RawAddress RetAllocaAddr = RawAddress::invalid();
301 EHScopeStack::stable_iterator LifetimeEndBlock;
302 llvm::Value *LifetimeSizePtr = nullptr;
303 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
304 if (!UseTemp) {
305 RetAddr = Dest.getAddress();
306 } else {
307 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
308 llvm::TypeSize Size =
309 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
310 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
311 if (LifetimeSizePtr) {
312 LifetimeStartInst =
313 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
314 assert(LifetimeStartInst->getIntrinsicID() ==
315 llvm::Intrinsic::lifetime_start &&
316 "Last insertion wasn't a lifetime.start?");
318 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
319 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
320 LifetimeEndBlock = CGF.EHStack.stable_begin();
324 RValue Src =
325 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
326 Dest.isExternallyDestructed()));
328 if (!UseTemp)
329 return;
331 assert(Dest.isIgnored() || Dest.emitRawPointer(CGF) !=
332 Src.getAggregatePointer(E->getType(), CGF));
333 EmitFinalDestCopy(E->getType(), Src);
335 if (!RequiresDestruction && LifetimeStartInst) {
336 // If there's no dtor to run, the copy was the last use of our temporary.
337 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
338 // eagerly.
339 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
340 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
344 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
345 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
346 assert(src.isAggregate() && "value must be aggregate value!");
347 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
348 EmitFinalDestCopy(type, srcLV, CodeGenFunction::EVK_RValue);
351 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
352 void AggExprEmitter::EmitFinalDestCopy(
353 QualType type, const LValue &src,
354 CodeGenFunction::ExprValueKind SrcValueKind) {
355 // If Dest is ignored, then we're evaluating an aggregate expression
356 // in a context that doesn't care about the result. Note that loads
357 // from volatile l-values force the existence of a non-ignored
358 // destination.
359 if (Dest.isIgnored())
360 return;
362 // Copy non-trivial C structs here.
363 LValue DstLV = CGF.MakeAddrLValue(
364 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
366 if (SrcValueKind == CodeGenFunction::EVK_RValue) {
367 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
368 if (Dest.isPotentiallyAliased())
369 CGF.callCStructMoveAssignmentOperator(DstLV, src);
370 else
371 CGF.callCStructMoveConstructor(DstLV, src);
372 return;
374 } else {
375 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
376 if (Dest.isPotentiallyAliased())
377 CGF.callCStructCopyAssignmentOperator(DstLV, src);
378 else
379 CGF.callCStructCopyConstructor(DstLV, src);
380 return;
384 AggValueSlot srcAgg = AggValueSlot::forLValue(
385 src, AggValueSlot::IsDestructed, needsGC(type), AggValueSlot::IsAliased,
386 AggValueSlot::MayOverlap);
387 EmitCopy(type, Dest, srcAgg);
390 /// Perform a copy from the source into the destination.
392 /// \param type - the type of the aggregate being copied; qualifiers are
393 /// ignored
394 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
395 const AggValueSlot &src) {
396 if (dest.requiresGCollection()) {
397 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
398 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
399 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
400 dest.getAddress(),
401 src.getAddress(),
402 size);
403 return;
406 // If the result of the assignment is used, copy the LHS there also.
407 // It's volatile if either side is. Use the minimum alignment of
408 // the two sides.
409 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
410 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
411 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
412 dest.isVolatile() || src.isVolatile());
415 /// Emit the initializer for a std::initializer_list initialized with a
416 /// real initializer list.
417 void
418 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
419 // Emit an array containing the elements. The array is externally destructed
420 // if the std::initializer_list object is.
421 ASTContext &Ctx = CGF.getContext();
422 LValue Array = CGF.EmitLValue(E->getSubExpr());
423 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
424 Address ArrayPtr = Array.getAddress();
426 const ConstantArrayType *ArrayType =
427 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
428 assert(ArrayType && "std::initializer_list constructed from non-array");
430 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
431 RecordDecl::field_iterator Field = Record->field_begin();
432 assert(Field != Record->field_end() &&
433 Ctx.hasSameType(Field->getType()->getPointeeType(),
434 ArrayType->getElementType()) &&
435 "Expected std::initializer_list first field to be const E *");
437 // Start pointer.
438 AggValueSlot Dest = EnsureSlot(E->getType());
439 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
440 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
441 llvm::Value *ArrayStart = ArrayPtr.emitRawPointer(CGF);
442 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
443 ++Field;
444 assert(Field != Record->field_end() &&
445 "Expected std::initializer_list to have two fields");
447 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
448 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
449 if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
450 // Length.
451 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
453 } else {
454 // End pointer.
455 assert(Field->getType()->isPointerType() &&
456 Ctx.hasSameType(Field->getType()->getPointeeType(),
457 ArrayType->getElementType()) &&
458 "Expected std::initializer_list second field to be const E *");
459 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
460 llvm::Value *IdxEnd[] = { Zero, Size };
461 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
462 ArrayPtr.getElementType(), ArrayPtr.emitRawPointer(CGF), IdxEnd,
463 "arrayend");
464 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
467 assert(++Field == Record->field_end() &&
468 "Expected std::initializer_list to only have two fields");
471 /// Determine if E is a trivial array filler, that is, one that is
472 /// equivalent to zero-initialization.
473 static bool isTrivialFiller(Expr *E) {
474 if (!E)
475 return true;
477 if (isa<ImplicitValueInitExpr>(E))
478 return true;
480 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
481 if (ILE->getNumInits())
482 return false;
483 return isTrivialFiller(ILE->getArrayFiller());
486 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
487 return Cons->getConstructor()->isDefaultConstructor() &&
488 Cons->getConstructor()->isTrivial();
490 // FIXME: Are there other cases where we can avoid emitting an initializer?
491 return false;
494 /// Emit initialization of an array from an initializer list. ExprToVisit must
495 /// be either an InitListEpxr a CXXParenInitListExpr.
496 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
497 QualType ArrayQTy, Expr *ExprToVisit,
498 ArrayRef<Expr *> Args, Expr *ArrayFiller) {
499 uint64_t NumInitElements = Args.size();
501 uint64_t NumArrayElements = AType->getNumElements();
502 for (const auto *Init : Args) {
503 if (const auto *Embed = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
504 NumInitElements += Embed->getDataElementCount() - 1;
505 if (NumInitElements > NumArrayElements) {
506 NumInitElements = NumArrayElements;
507 break;
512 assert(NumInitElements <= NumArrayElements);
514 QualType elementType =
515 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
516 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
517 CharUnits elementAlign =
518 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
519 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
521 // Consider initializing the array by copying from a global. For this to be
522 // more efficient than per-element initialization, the size of the elements
523 // with explicit initializers should be large enough.
524 if (NumInitElements * elementSize.getQuantity() > 16 &&
525 elementType.isTriviallyCopyableType(CGF.getContext())) {
526 CodeGen::CodeGenModule &CGM = CGF.CGM;
527 ConstantEmitter Emitter(CGF);
528 QualType GVArrayQTy = CGM.getContext().getAddrSpaceQualType(
529 CGM.getContext().removeAddrSpaceQualType(ArrayQTy),
530 CGM.GetGlobalConstantAddressSpace());
531 LangAS AS = GVArrayQTy.getAddressSpace();
532 if (llvm::Constant *C =
533 Emitter.tryEmitForInitializer(ExprToVisit, AS, GVArrayQTy)) {
534 auto GV = new llvm::GlobalVariable(
535 CGM.getModule(), C->getType(),
536 /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
537 "constinit",
538 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
539 CGM.getContext().getTargetAddressSpace(AS));
540 Emitter.finalize(GV);
541 CharUnits Align = CGM.getContext().getTypeAlignInChars(GVArrayQTy);
542 GV->setAlignment(Align.getAsAlign());
543 Address GVAddr(GV, GV->getValueType(), Align);
544 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, GVArrayQTy));
545 return;
549 // Exception safety requires us to destroy all the
550 // already-constructed members if an initializer throws.
551 // For that, we'll need an EH cleanup.
552 QualType::DestructionKind dtorKind = elementType.isDestructedType();
553 Address endOfInit = Address::invalid();
554 CodeGenFunction::CleanupDeactivationScope deactivation(CGF);
556 llvm::Value *begin = DestPtr.emitRawPointer(CGF);
557 if (dtorKind) {
558 CodeGenFunction::AllocaTrackerRAII allocaTracker(CGF);
559 // In principle we could tell the cleanup where we are more
560 // directly, but the control flow can get so varied here that it
561 // would actually be quite complex. Therefore we go through an
562 // alloca.
563 llvm::Instruction *dominatingIP =
564 Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(CGF.Int8PtrTy));
565 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
566 "arrayinit.endOfInit");
567 Builder.CreateStore(begin, endOfInit);
568 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
569 elementAlign,
570 CGF.getDestroyer(dtorKind));
571 cast<EHCleanupScope>(*CGF.EHStack.find(CGF.EHStack.stable_begin()))
572 .AddAuxAllocas(allocaTracker.Take());
574 CGF.DeferredDeactivationCleanupStack.push_back(
575 {CGF.EHStack.stable_begin(), dominatingIP});
578 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
580 auto Emit = [&](Expr *Init, uint64_t ArrayIndex) {
581 llvm::Value *element = begin;
582 if (ArrayIndex > 0) {
583 element = Builder.CreateInBoundsGEP(
584 llvmElementType, begin,
585 llvm::ConstantInt::get(CGF.SizeTy, ArrayIndex), "arrayinit.element");
587 // Tell the cleanup that it needs to destroy up to this
588 // element. TODO: some of these stores can be trivially
589 // observed to be unnecessary.
590 if (endOfInit.isValid())
591 Builder.CreateStore(element, endOfInit);
594 LValue elementLV = CGF.MakeAddrLValue(
595 Address(element, llvmElementType, elementAlign), elementType);
596 EmitInitializationToLValue(Init, elementLV);
597 return true;
600 unsigned ArrayIndex = 0;
601 // Emit the explicit initializers.
602 for (uint64_t i = 0; i != NumInitElements; ++i) {
603 if (ArrayIndex >= NumInitElements)
604 break;
605 if (auto *EmbedS = dyn_cast<EmbedExpr>(Args[i]->IgnoreParenImpCasts())) {
606 EmbedS->doForEachDataElement(Emit, ArrayIndex);
607 } else {
608 Emit(Args[i], ArrayIndex);
609 ArrayIndex++;
613 // Check whether there's a non-trivial array-fill expression.
614 bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
616 // Any remaining elements need to be zero-initialized, possibly
617 // using the filler expression. We can skip this if the we're
618 // emitting to zeroed memory.
619 if (NumInitElements != NumArrayElements &&
620 !(Dest.isZeroed() && hasTrivialFiller &&
621 CGF.getTypes().isZeroInitializable(elementType))) {
623 // Use an actual loop. This is basically
624 // do { *array++ = filler; } while (array != end);
626 // Advance to the start of the rest of the array.
627 llvm::Value *element = begin;
628 if (NumInitElements) {
629 element = Builder.CreateInBoundsGEP(
630 llvmElementType, element,
631 llvm::ConstantInt::get(CGF.SizeTy, NumInitElements),
632 "arrayinit.start");
633 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
636 // Compute the end of the array.
637 llvm::Value *end = Builder.CreateInBoundsGEP(
638 llvmElementType, begin,
639 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
641 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
642 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
644 // Jump into the body.
645 CGF.EmitBlock(bodyBB);
646 llvm::PHINode *currentElement =
647 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
648 currentElement->addIncoming(element, entryBB);
650 // Emit the actual filler expression.
652 // C++1z [class.temporary]p5:
653 // when a default constructor is called to initialize an element of
654 // an array with no corresponding initializer [...] the destruction of
655 // every temporary created in a default argument is sequenced before
656 // the construction of the next array element, if any
657 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
658 LValue elementLV = CGF.MakeAddrLValue(
659 Address(currentElement, llvmElementType, elementAlign), elementType);
660 if (ArrayFiller)
661 EmitInitializationToLValue(ArrayFiller, elementLV);
662 else
663 EmitNullInitializationToLValue(elementLV);
666 // Move on to the next element.
667 llvm::Value *nextElement = Builder.CreateInBoundsGEP(
668 llvmElementType, currentElement, one, "arrayinit.next");
670 // Tell the EH cleanup that we finished with the last element.
671 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
673 // Leave the loop if we're done.
674 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
675 "arrayinit.done");
676 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
677 Builder.CreateCondBr(done, endBB, bodyBB);
678 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
680 CGF.EmitBlock(endBB);
684 //===----------------------------------------------------------------------===//
685 // Visitor Methods
686 //===----------------------------------------------------------------------===//
688 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
689 Visit(E->getSubExpr());
692 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
693 // If this is a unique OVE, just visit its source expression.
694 if (e->isUnique())
695 Visit(e->getSourceExpr());
696 else
697 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
700 void
701 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
702 if (Dest.isPotentiallyAliased() &&
703 E->getType().isPODType(CGF.getContext())) {
704 // For a POD type, just emit a load of the lvalue + a copy, because our
705 // compound literal might alias the destination.
706 EmitAggLoadOfLValue(E);
707 return;
710 AggValueSlot Slot = EnsureSlot(E->getType());
712 // Block-scope compound literals are destroyed at the end of the enclosing
713 // scope in C.
714 bool Destruct =
715 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
716 if (Destruct)
717 Slot.setExternallyDestructed();
719 CGF.EmitAggExpr(E->getInitializer(), Slot);
721 if (Destruct)
722 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
723 CGF.pushLifetimeExtendedDestroy(
724 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
725 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
728 /// Attempt to look through various unimportant expressions to find a
729 /// cast of the given kind.
730 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
731 op = op->IgnoreParenNoopCasts(ctx);
732 if (auto castE = dyn_cast<CastExpr>(op)) {
733 if (castE->getCastKind() == kind)
734 return castE->getSubExpr();
736 return nullptr;
739 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
740 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
741 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
742 switch (E->getCastKind()) {
743 case CK_Dynamic: {
744 // FIXME: Can this actually happen? We have no test coverage for it.
745 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
746 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
747 CodeGenFunction::TCK_Load);
748 // FIXME: Do we also need to handle property references here?
749 if (LV.isSimple())
750 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
751 else
752 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
754 if (!Dest.isIgnored())
755 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
756 break;
759 case CK_ToUnion: {
760 // Evaluate even if the destination is ignored.
761 if (Dest.isIgnored()) {
762 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
763 /*ignoreResult=*/true);
764 break;
767 // GCC union extension
768 QualType Ty = E->getSubExpr()->getType();
769 Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty));
770 EmitInitializationToLValue(E->getSubExpr(),
771 CGF.MakeAddrLValue(CastPtr, Ty));
772 break;
775 case CK_LValueToRValueBitCast: {
776 if (Dest.isIgnored()) {
777 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
778 /*ignoreResult=*/true);
779 break;
782 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
783 Address SourceAddress = SourceLV.getAddress().withElementType(CGF.Int8Ty);
784 Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty);
785 llvm::Value *SizeVal = llvm::ConstantInt::get(
786 CGF.SizeTy,
787 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
788 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
789 break;
792 case CK_DerivedToBase:
793 case CK_BaseToDerived:
794 case CK_UncheckedDerivedToBase: {
795 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
796 "should have been unpacked before we got here");
799 case CK_NonAtomicToAtomic:
800 case CK_AtomicToNonAtomic: {
801 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
803 // Determine the atomic and value types.
804 QualType atomicType = E->getSubExpr()->getType();
805 QualType valueType = E->getType();
806 if (isToAtomic) std::swap(atomicType, valueType);
808 assert(atomicType->isAtomicType());
809 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
810 atomicType->castAs<AtomicType>()->getValueType()));
812 // Just recurse normally if we're ignoring the result or the
813 // atomic type doesn't change representation.
814 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
815 return Visit(E->getSubExpr());
818 CastKind peepholeTarget =
819 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
821 // These two cases are reverses of each other; try to peephole them.
822 if (Expr *op =
823 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
824 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
825 E->getType()) &&
826 "peephole significantly changed types?");
827 return Visit(op);
830 // If we're converting an r-value of non-atomic type to an r-value
831 // of atomic type, just emit directly into the relevant sub-object.
832 if (isToAtomic) {
833 AggValueSlot valueDest = Dest;
834 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
835 // Zero-initialize. (Strictly speaking, we only need to initialize
836 // the padding at the end, but this is simpler.)
837 if (!Dest.isZeroed())
838 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
840 // Build a GEP to refer to the subobject.
841 Address valueAddr =
842 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
843 valueDest = AggValueSlot::forAddr(valueAddr,
844 valueDest.getQualifiers(),
845 valueDest.isExternallyDestructed(),
846 valueDest.requiresGCollection(),
847 valueDest.isPotentiallyAliased(),
848 AggValueSlot::DoesNotOverlap,
849 AggValueSlot::IsZeroed);
852 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
853 return;
856 // Otherwise, we're converting an atomic type to a non-atomic type.
857 // Make an atomic temporary, emit into that, and then copy the value out.
858 AggValueSlot atomicSlot =
859 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
860 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
862 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
863 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
864 return EmitFinalDestCopy(valueType, rvalue);
866 case CK_AddressSpaceConversion:
867 return Visit(E->getSubExpr());
869 case CK_LValueToRValue:
870 // If we're loading from a volatile type, force the destination
871 // into existence.
872 if (E->getSubExpr()->getType().isVolatileQualified()) {
873 bool Destruct =
874 !Dest.isExternallyDestructed() &&
875 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
876 if (Destruct)
877 Dest.setExternallyDestructed();
878 EnsureDest(E->getType());
879 Visit(E->getSubExpr());
881 if (Destruct)
882 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
883 E->getType());
885 return;
888 [[fallthrough]];
890 case CK_HLSLArrayRValue:
891 Visit(E->getSubExpr());
892 break;
894 case CK_NoOp:
895 case CK_UserDefinedConversion:
896 case CK_ConstructorConversion:
897 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
898 E->getType()) &&
899 "Implicit cast types must be compatible");
900 Visit(E->getSubExpr());
901 break;
903 case CK_LValueBitCast:
904 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
906 case CK_Dependent:
907 case CK_BitCast:
908 case CK_ArrayToPointerDecay:
909 case CK_FunctionToPointerDecay:
910 case CK_NullToPointer:
911 case CK_NullToMemberPointer:
912 case CK_BaseToDerivedMemberPointer:
913 case CK_DerivedToBaseMemberPointer:
914 case CK_MemberPointerToBoolean:
915 case CK_ReinterpretMemberPointer:
916 case CK_IntegralToPointer:
917 case CK_PointerToIntegral:
918 case CK_PointerToBoolean:
919 case CK_ToVoid:
920 case CK_VectorSplat:
921 case CK_IntegralCast:
922 case CK_BooleanToSignedIntegral:
923 case CK_IntegralToBoolean:
924 case CK_IntegralToFloating:
925 case CK_FloatingToIntegral:
926 case CK_FloatingToBoolean:
927 case CK_FloatingCast:
928 case CK_CPointerToObjCPointerCast:
929 case CK_BlockPointerToObjCPointerCast:
930 case CK_AnyPointerToBlockPointerCast:
931 case CK_ObjCObjectLValueCast:
932 case CK_FloatingRealToComplex:
933 case CK_FloatingComplexToReal:
934 case CK_FloatingComplexToBoolean:
935 case CK_FloatingComplexCast:
936 case CK_FloatingComplexToIntegralComplex:
937 case CK_IntegralRealToComplex:
938 case CK_IntegralComplexToReal:
939 case CK_IntegralComplexToBoolean:
940 case CK_IntegralComplexCast:
941 case CK_IntegralComplexToFloatingComplex:
942 case CK_ARCProduceObject:
943 case CK_ARCConsumeObject:
944 case CK_ARCReclaimReturnedObject:
945 case CK_ARCExtendBlockObject:
946 case CK_CopyAndAutoreleaseBlockObject:
947 case CK_BuiltinFnToFnPtr:
948 case CK_ZeroToOCLOpaqueType:
949 case CK_MatrixCast:
950 case CK_HLSLVectorTruncation:
952 case CK_IntToOCLSampler:
953 case CK_FloatingToFixedPoint:
954 case CK_FixedPointToFloating:
955 case CK_FixedPointCast:
956 case CK_FixedPointToBoolean:
957 case CK_FixedPointToIntegral:
958 case CK_IntegralToFixedPoint:
959 llvm_unreachable("cast kind invalid for aggregate types");
963 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
964 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
965 EmitAggLoadOfLValue(E);
966 return;
969 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
970 return CGF.EmitCallExpr(E, Slot);
974 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
975 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
976 return CGF.EmitObjCMessageExpr(E, Slot);
980 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
981 CGF.EmitIgnoredExpr(E->getLHS());
982 Visit(E->getRHS());
985 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
986 CodeGenFunction::StmtExprEvaluation eval(CGF);
987 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
990 enum CompareKind {
991 CK_Less,
992 CK_Greater,
993 CK_Equal,
996 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
997 const BinaryOperator *E, llvm::Value *LHS,
998 llvm::Value *RHS, CompareKind Kind,
999 const char *NameSuffix = "") {
1000 QualType ArgTy = E->getLHS()->getType();
1001 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
1002 ArgTy = CT->getElementType();
1004 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
1005 assert(Kind == CK_Equal &&
1006 "member pointers may only be compared for equality");
1007 return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1008 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
1011 // Compute the comparison instructions for the specified comparison kind.
1012 struct CmpInstInfo {
1013 const char *Name;
1014 llvm::CmpInst::Predicate FCmp;
1015 llvm::CmpInst::Predicate SCmp;
1016 llvm::CmpInst::Predicate UCmp;
1018 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1019 using FI = llvm::FCmpInst;
1020 using II = llvm::ICmpInst;
1021 switch (Kind) {
1022 case CK_Less:
1023 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1024 case CK_Greater:
1025 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1026 case CK_Equal:
1027 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1029 llvm_unreachable("Unrecognised CompareKind enum");
1030 }();
1032 if (ArgTy->hasFloatingRepresentation())
1033 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1034 llvm::Twine(InstInfo.Name) + NameSuffix);
1035 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1036 auto Inst =
1037 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1038 return Builder.CreateICmp(Inst, LHS, RHS,
1039 llvm::Twine(InstInfo.Name) + NameSuffix);
1042 llvm_unreachable("unsupported aggregate binary expression should have "
1043 "already been handled");
1046 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1047 using llvm::BasicBlock;
1048 using llvm::PHINode;
1049 using llvm::Value;
1050 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1051 E->getRHS()->getType()));
1052 const ComparisonCategoryInfo &CmpInfo =
1053 CGF.getContext().CompCategories.getInfoForType(E->getType());
1054 assert(CmpInfo.Record->isTriviallyCopyable() &&
1055 "cannot copy non-trivially copyable aggregate");
1057 QualType ArgTy = E->getLHS()->getType();
1059 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1060 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1061 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1062 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1064 bool IsComplex = ArgTy->isAnyComplexType();
1066 // Evaluate the operands to the expression and extract their values.
1067 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1068 RValue RV = CGF.EmitAnyExpr(E);
1069 if (RV.isScalar())
1070 return {RV.getScalarVal(), nullptr};
1071 if (RV.isAggregate())
1072 return {RV.getAggregatePointer(E->getType(), CGF), nullptr};
1073 assert(RV.isComplex());
1074 return RV.getComplexVal();
1076 auto LHSValues = EmitOperand(E->getLHS()),
1077 RHSValues = EmitOperand(E->getRHS());
1079 auto EmitCmp = [&](CompareKind K) {
1080 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1081 K, IsComplex ? ".r" : "");
1082 if (!IsComplex)
1083 return Cmp;
1084 assert(K == CompareKind::CK_Equal);
1085 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1086 RHSValues.second, K, ".i");
1087 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1089 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1090 return Builder.getInt(VInfo->getIntValue());
1093 Value *Select;
1094 if (ArgTy->isNullPtrType()) {
1095 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1096 } else if (!CmpInfo.isPartial()) {
1097 Value *SelectOne =
1098 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1099 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1100 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1101 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1102 SelectOne, "sel.eq");
1103 } else {
1104 Value *SelectEq = Builder.CreateSelect(
1105 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1106 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1107 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1108 EmitCmpRes(CmpInfo.getGreater()),
1109 SelectEq, "sel.gt");
1110 Select = Builder.CreateSelect(
1111 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1113 // Create the return value in the destination slot.
1114 EnsureDest(E->getType());
1115 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1117 // Emit the address of the first (and only) field in the comparison category
1118 // type, and initialize it from the constant integer value selected above.
1119 LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1120 DestLV, *CmpInfo.Record->field_begin());
1121 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1123 // All done! The result is in the Dest slot.
1126 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1127 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1128 VisitPointerToDataMemberBinaryOperator(E);
1129 else
1130 CGF.ErrorUnsupported(E, "aggregate binary expression");
1133 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1134 const BinaryOperator *E) {
1135 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1136 EmitFinalDestCopy(E->getType(), LV);
1139 /// Is the value of the given expression possibly a reference to or
1140 /// into a __block variable?
1141 static bool isBlockVarRef(const Expr *E) {
1142 // Make sure we look through parens.
1143 E = E->IgnoreParens();
1145 // Check for a direct reference to a __block variable.
1146 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1147 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1148 return (var && var->hasAttr<BlocksAttr>());
1151 // More complicated stuff.
1153 // Binary operators.
1154 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1155 // For an assignment or pointer-to-member operation, just care
1156 // about the LHS.
1157 if (op->isAssignmentOp() || op->isPtrMemOp())
1158 return isBlockVarRef(op->getLHS());
1160 // For a comma, just care about the RHS.
1161 if (op->getOpcode() == BO_Comma)
1162 return isBlockVarRef(op->getRHS());
1164 // FIXME: pointer arithmetic?
1165 return false;
1167 // Check both sides of a conditional operator.
1168 } else if (const AbstractConditionalOperator *op
1169 = dyn_cast<AbstractConditionalOperator>(E)) {
1170 return isBlockVarRef(op->getTrueExpr())
1171 || isBlockVarRef(op->getFalseExpr());
1173 // OVEs are required to support BinaryConditionalOperators.
1174 } else if (const OpaqueValueExpr *op
1175 = dyn_cast<OpaqueValueExpr>(E)) {
1176 if (const Expr *src = op->getSourceExpr())
1177 return isBlockVarRef(src);
1179 // Casts are necessary to get things like (*(int*)&var) = foo().
1180 // We don't really care about the kind of cast here, except
1181 // we don't want to look through l2r casts, because it's okay
1182 // to get the *value* in a __block variable.
1183 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1184 if (cast->getCastKind() == CK_LValueToRValue)
1185 return false;
1186 return isBlockVarRef(cast->getSubExpr());
1188 // Handle unary operators. Again, just aggressively look through
1189 // it, ignoring the operation.
1190 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1191 return isBlockVarRef(uop->getSubExpr());
1193 // Look into the base of a field access.
1194 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1195 return isBlockVarRef(mem->getBase());
1197 // Look into the base of a subscript.
1198 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1199 return isBlockVarRef(sub->getBase());
1202 return false;
1205 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1206 // For an assignment to work, the value on the right has
1207 // to be compatible with the value on the left.
1208 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1209 E->getRHS()->getType())
1210 && "Invalid assignment");
1212 // If the LHS might be a __block variable, and the RHS can
1213 // potentially cause a block copy, we need to evaluate the RHS first
1214 // so that the assignment goes the right place.
1215 // This is pretty semantically fragile.
1216 if (isBlockVarRef(E->getLHS()) &&
1217 E->getRHS()->HasSideEffects(CGF.getContext())) {
1218 // Ensure that we have a destination, and evaluate the RHS into that.
1219 EnsureDest(E->getRHS()->getType());
1220 Visit(E->getRHS());
1222 // Now emit the LHS and copy into it.
1223 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1225 // That copy is an atomic copy if the LHS is atomic.
1226 if (LHS.getType()->isAtomicType() ||
1227 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1228 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1229 return;
1232 EmitCopy(E->getLHS()->getType(),
1233 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1234 needsGC(E->getLHS()->getType()),
1235 AggValueSlot::IsAliased,
1236 AggValueSlot::MayOverlap),
1237 Dest);
1238 return;
1241 LValue LHS = CGF.EmitLValue(E->getLHS());
1243 // If we have an atomic type, evaluate into the destination and then
1244 // do an atomic copy.
1245 if (LHS.getType()->isAtomicType() ||
1246 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1247 EnsureDest(E->getRHS()->getType());
1248 Visit(E->getRHS());
1249 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1250 return;
1253 // Codegen the RHS so that it stores directly into the LHS.
1254 AggValueSlot LHSSlot = AggValueSlot::forLValue(
1255 LHS, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1256 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1257 // A non-volatile aggregate destination might have volatile member.
1258 if (!LHSSlot.isVolatile() &&
1259 CGF.hasVolatileMember(E->getLHS()->getType()))
1260 LHSSlot.setVolatile(true);
1262 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1264 // Copy into the destination if the assignment isn't ignored.
1265 EmitFinalDestCopy(E->getType(), LHS);
1267 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1268 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1269 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1270 E->getType());
1273 void AggExprEmitter::
1274 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1275 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1276 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1277 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1279 // Bind the common expression if necessary.
1280 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1282 CodeGenFunction::ConditionalEvaluation eval(CGF);
1283 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1284 CGF.getProfileCount(E));
1286 // Save whether the destination's lifetime is externally managed.
1287 bool isExternallyDestructed = Dest.isExternallyDestructed();
1288 bool destructNonTrivialCStruct =
1289 !isExternallyDestructed &&
1290 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1291 isExternallyDestructed |= destructNonTrivialCStruct;
1292 Dest.setExternallyDestructed(isExternallyDestructed);
1294 eval.begin(CGF);
1295 CGF.EmitBlock(LHSBlock);
1296 if (llvm::EnableSingleByteCoverage)
1297 CGF.incrementProfileCounter(E->getTrueExpr());
1298 else
1299 CGF.incrementProfileCounter(E);
1300 Visit(E->getTrueExpr());
1301 eval.end(CGF);
1303 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1304 CGF.Builder.CreateBr(ContBlock);
1306 // If the result of an agg expression is unused, then the emission
1307 // of the LHS might need to create a destination slot. That's fine
1308 // with us, and we can safely emit the RHS into the same slot, but
1309 // we shouldn't claim that it's already being destructed.
1310 Dest.setExternallyDestructed(isExternallyDestructed);
1312 eval.begin(CGF);
1313 CGF.EmitBlock(RHSBlock);
1314 if (llvm::EnableSingleByteCoverage)
1315 CGF.incrementProfileCounter(E->getFalseExpr());
1316 Visit(E->getFalseExpr());
1317 eval.end(CGF);
1319 if (destructNonTrivialCStruct)
1320 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1321 E->getType());
1323 CGF.EmitBlock(ContBlock);
1324 if (llvm::EnableSingleByteCoverage)
1325 CGF.incrementProfileCounter(E);
1328 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1329 Visit(CE->getChosenSubExpr());
1332 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1333 Address ArgValue = Address::invalid();
1334 CGF.EmitVAArg(VE, ArgValue, Dest);
1336 // If EmitVAArg fails, emit an error.
1337 if (!ArgValue.isValid()) {
1338 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1339 return;
1343 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1344 // Ensure that we have a slot, but if we already do, remember
1345 // whether it was externally destructed.
1346 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1347 EnsureDest(E->getType());
1349 // We're going to push a destructor if there isn't already one.
1350 Dest.setExternallyDestructed();
1352 Visit(E->getSubExpr());
1354 // Push that destructor we promised.
1355 if (!wasExternallyDestructed)
1356 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1359 void
1360 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1361 AggValueSlot Slot = EnsureSlot(E->getType());
1362 CGF.EmitCXXConstructExpr(E, Slot);
1365 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1366 const CXXInheritedCtorInitExpr *E) {
1367 AggValueSlot Slot = EnsureSlot(E->getType());
1368 CGF.EmitInheritedCXXConstructorCall(
1369 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1370 E->inheritedFromVBase(), E);
1373 void
1374 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1375 AggValueSlot Slot = EnsureSlot(E->getType());
1376 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1378 // We'll need to enter cleanup scopes in case any of the element
1379 // initializers throws an exception or contains branch out of the expressions.
1380 CodeGenFunction::CleanupDeactivationScope scope(CGF);
1382 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1383 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1384 e = E->capture_init_end();
1385 i != e; ++i, ++CurField) {
1386 // Emit initialization
1387 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1388 if (CurField->hasCapturedVLAType()) {
1389 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1390 continue;
1393 EmitInitializationToLValue(*i, LV);
1395 // Push a destructor if necessary.
1396 if (QualType::DestructionKind DtorKind =
1397 CurField->getType().isDestructedType()) {
1398 assert(LV.isSimple());
1399 if (DtorKind)
1400 CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1401 CurField->getType(),
1402 CGF.getDestroyer(DtorKind), false);
1407 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1408 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1409 Visit(E->getSubExpr());
1412 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1413 QualType T = E->getType();
1414 AggValueSlot Slot = EnsureSlot(T);
1415 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1418 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1419 QualType T = E->getType();
1420 AggValueSlot Slot = EnsureSlot(T);
1421 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1424 /// Determine whether the given cast kind is known to always convert values
1425 /// with all zero bits in their value representation to values with all zero
1426 /// bits in their value representation.
1427 static bool castPreservesZero(const CastExpr *CE) {
1428 switch (CE->getCastKind()) {
1429 // No-ops.
1430 case CK_NoOp:
1431 case CK_UserDefinedConversion:
1432 case CK_ConstructorConversion:
1433 case CK_BitCast:
1434 case CK_ToUnion:
1435 case CK_ToVoid:
1436 // Conversions between (possibly-complex) integral, (possibly-complex)
1437 // floating-point, and bool.
1438 case CK_BooleanToSignedIntegral:
1439 case CK_FloatingCast:
1440 case CK_FloatingComplexCast:
1441 case CK_FloatingComplexToBoolean:
1442 case CK_FloatingComplexToIntegralComplex:
1443 case CK_FloatingComplexToReal:
1444 case CK_FloatingRealToComplex:
1445 case CK_FloatingToBoolean:
1446 case CK_FloatingToIntegral:
1447 case CK_IntegralCast:
1448 case CK_IntegralComplexCast:
1449 case CK_IntegralComplexToBoolean:
1450 case CK_IntegralComplexToFloatingComplex:
1451 case CK_IntegralComplexToReal:
1452 case CK_IntegralRealToComplex:
1453 case CK_IntegralToBoolean:
1454 case CK_IntegralToFloating:
1455 // Reinterpreting integers as pointers and vice versa.
1456 case CK_IntegralToPointer:
1457 case CK_PointerToIntegral:
1458 // Language extensions.
1459 case CK_VectorSplat:
1460 case CK_MatrixCast:
1461 case CK_NonAtomicToAtomic:
1462 case CK_AtomicToNonAtomic:
1463 case CK_HLSLVectorTruncation:
1464 return true;
1466 case CK_BaseToDerivedMemberPointer:
1467 case CK_DerivedToBaseMemberPointer:
1468 case CK_MemberPointerToBoolean:
1469 case CK_NullToMemberPointer:
1470 case CK_ReinterpretMemberPointer:
1471 // FIXME: ABI-dependent.
1472 return false;
1474 case CK_AnyPointerToBlockPointerCast:
1475 case CK_BlockPointerToObjCPointerCast:
1476 case CK_CPointerToObjCPointerCast:
1477 case CK_ObjCObjectLValueCast:
1478 case CK_IntToOCLSampler:
1479 case CK_ZeroToOCLOpaqueType:
1480 // FIXME: Check these.
1481 return false;
1483 case CK_FixedPointCast:
1484 case CK_FixedPointToBoolean:
1485 case CK_FixedPointToFloating:
1486 case CK_FixedPointToIntegral:
1487 case CK_FloatingToFixedPoint:
1488 case CK_IntegralToFixedPoint:
1489 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1490 return false;
1492 case CK_AddressSpaceConversion:
1493 case CK_BaseToDerived:
1494 case CK_DerivedToBase:
1495 case CK_Dynamic:
1496 case CK_NullToPointer:
1497 case CK_PointerToBoolean:
1498 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1499 // same representation in all involved address spaces.
1500 return false;
1502 case CK_ARCConsumeObject:
1503 case CK_ARCExtendBlockObject:
1504 case CK_ARCProduceObject:
1505 case CK_ARCReclaimReturnedObject:
1506 case CK_CopyAndAutoreleaseBlockObject:
1507 case CK_ArrayToPointerDecay:
1508 case CK_FunctionToPointerDecay:
1509 case CK_BuiltinFnToFnPtr:
1510 case CK_Dependent:
1511 case CK_LValueBitCast:
1512 case CK_LValueToRValue:
1513 case CK_LValueToRValueBitCast:
1514 case CK_UncheckedDerivedToBase:
1515 case CK_HLSLArrayRValue:
1516 return false;
1518 llvm_unreachable("Unhandled clang::CastKind enum");
1521 /// isSimpleZero - If emitting this value will obviously just cause a store of
1522 /// zero to memory, return true. This can return false if uncertain, so it just
1523 /// handles simple cases.
1524 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1525 E = E->IgnoreParens();
1526 while (auto *CE = dyn_cast<CastExpr>(E)) {
1527 if (!castPreservesZero(CE))
1528 break;
1529 E = CE->getSubExpr()->IgnoreParens();
1532 // 0
1533 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1534 return IL->getValue() == 0;
1535 // +0.0
1536 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1537 return FL->getValue().isPosZero();
1538 // int()
1539 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1540 CGF.getTypes().isZeroInitializable(E->getType()))
1541 return true;
1542 // (int*)0 - Null pointer expressions.
1543 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1544 return ICE->getCastKind() == CK_NullToPointer &&
1545 CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1546 !E->HasSideEffects(CGF.getContext());
1547 // '\0'
1548 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1549 return CL->getValue() == 0;
1551 // Otherwise, hard case: conservatively return false.
1552 return false;
1556 void
1557 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1558 QualType type = LV.getType();
1559 // FIXME: Ignore result?
1560 // FIXME: Are initializers affected by volatile?
1561 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1562 // Storing "i32 0" to a zero'd memory location is a noop.
1563 return;
1564 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1565 return EmitNullInitializationToLValue(LV);
1566 } else if (isa<NoInitExpr>(E)) {
1567 // Do nothing.
1568 return;
1569 } else if (type->isReferenceType()) {
1570 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1571 return CGF.EmitStoreThroughLValue(RV, LV);
1574 CGF.EmitInitializationToLValue(E, LV, Dest.isZeroed());
1577 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1578 QualType type = lv.getType();
1580 // If the destination slot is already zeroed out before the aggregate is
1581 // copied into it, we don't have to emit any zeros here.
1582 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1583 return;
1585 if (CGF.hasScalarEvaluationKind(type)) {
1586 // For non-aggregates, we can store the appropriate null constant.
1587 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1588 // Note that the following is not equivalent to
1589 // EmitStoreThroughBitfieldLValue for ARC types.
1590 if (lv.isBitField()) {
1591 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1592 } else {
1593 assert(lv.isSimple());
1594 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1596 } else {
1597 // There's a potential optimization opportunity in combining
1598 // memsets; that would be easy for arrays, but relatively
1599 // difficult for structures with the current code.
1600 CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1604 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1605 VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1606 E->getInitializedFieldInUnion(),
1607 E->getArrayFiller());
1610 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1611 if (E->hadArrayRangeDesignator())
1612 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1614 if (E->isTransparent())
1615 return Visit(E->getInit(0));
1617 VisitCXXParenListOrInitListExpr(
1618 E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1621 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1622 Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1623 FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1624 #if 0
1625 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1626 // (Length of globals? Chunks of zeroed-out space?).
1628 // If we can, prefer a copy from a global; this is a lot less code for long
1629 // globals, and it's easier for the current optimizers to analyze.
1630 if (llvm::Constant *C =
1631 CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1632 llvm::GlobalVariable* GV =
1633 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1634 llvm::GlobalValue::InternalLinkage, C, "");
1635 EmitFinalDestCopy(ExprToVisit->getType(),
1636 CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1637 return;
1639 #endif
1641 AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1643 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1645 // Handle initialization of an array.
1646 if (ExprToVisit->getType()->isConstantArrayType()) {
1647 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1648 EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1649 InitExprs, ArrayFiller);
1650 return;
1651 } else if (ExprToVisit->getType()->isVariableArrayType()) {
1652 // A variable array type that has an initializer can only do empty
1653 // initialization. And because this feature is not exposed as an extension
1654 // in C++, we can safely memset the array memory to zero.
1655 assert(InitExprs.size() == 0 &&
1656 "you can only use an empty initializer with VLAs");
1657 CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1658 return;
1661 assert(ExprToVisit->getType()->isRecordType() &&
1662 "Only support structs/unions here!");
1664 // Do struct initialization; this code just sets each individual member
1665 // to the approprate value. This makes bitfield support automatic;
1666 // the disadvantage is that the generated code is more difficult for
1667 // the optimizer, especially with bitfields.
1668 unsigned NumInitElements = InitExprs.size();
1669 RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1671 // We'll need to enter cleanup scopes in case any of the element
1672 // initializers throws an exception.
1673 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1674 CodeGenFunction::CleanupDeactivationScope DeactivateCleanups(CGF);
1676 unsigned curInitIndex = 0;
1678 // Emit initialization of base classes.
1679 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1680 assert(NumInitElements >= CXXRD->getNumBases() &&
1681 "missing initializer for base class");
1682 for (auto &Base : CXXRD->bases()) {
1683 assert(!Base.isVirtual() && "should not see vbases here");
1684 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1685 Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1686 Dest.getAddress(), CXXRD, BaseRD,
1687 /*isBaseVirtual*/ false);
1688 AggValueSlot AggSlot = AggValueSlot::forAddr(
1689 V, Qualifiers(),
1690 AggValueSlot::IsDestructed,
1691 AggValueSlot::DoesNotNeedGCBarriers,
1692 AggValueSlot::IsNotAliased,
1693 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1694 CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1696 if (QualType::DestructionKind dtorKind =
1697 Base.getType().isDestructedType())
1698 CGF.pushDestroyAndDeferDeactivation(dtorKind, V, Base.getType());
1702 // Prepare a 'this' for CXXDefaultInitExprs.
1703 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1705 const bool ZeroInitPadding =
1706 CGF.CGM.shouldZeroInitPadding() && !Dest.isZeroed();
1708 if (record->isUnion()) {
1709 // Only initialize one field of a union. The field itself is
1710 // specified by the initializer list.
1711 if (!InitializedFieldInUnion) {
1712 // Empty union; we have nothing to do.
1714 #ifndef NDEBUG
1715 // Make sure that it's really an empty and not a failure of
1716 // semantic analysis.
1717 for (const auto *Field : record->fields())
1718 assert(
1719 (Field->isUnnamedBitField() || Field->isAnonymousStructOrUnion()) &&
1720 "Only unnamed bitfields or anonymous class allowed");
1721 #endif
1722 return;
1725 // FIXME: volatility
1726 FieldDecl *Field = InitializedFieldInUnion;
1728 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1729 if (NumInitElements) {
1730 // Store the initializer into the field
1731 EmitInitializationToLValue(InitExprs[0], FieldLoc);
1732 if (ZeroInitPadding) {
1733 uint64_t TotalSize = CGF.getContext().toBits(
1734 Dest.getPreferredSize(CGF.getContext(), DestLV.getType()));
1735 uint64_t FieldSize = CGF.getContext().getTypeSize(FieldLoc.getType());
1736 DoZeroInitPadding(FieldSize, TotalSize, nullptr);
1738 } else {
1739 // Default-initialize to null.
1740 if (ZeroInitPadding)
1741 EmitNullInitializationToLValue(DestLV);
1742 else
1743 EmitNullInitializationToLValue(FieldLoc);
1745 return;
1748 // Here we iterate over the fields; this makes it simpler to both
1749 // default-initialize fields and skip over unnamed fields.
1750 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(record);
1751 uint64_t PaddingStart = 0;
1753 for (const auto *field : record->fields()) {
1754 // We're done once we hit the flexible array member.
1755 if (field->getType()->isIncompleteArrayType())
1756 break;
1758 // Always skip anonymous bitfields.
1759 if (field->isUnnamedBitField())
1760 continue;
1762 // We're done if we reach the end of the explicit initializers, we
1763 // have a zeroed object, and the rest of the fields are
1764 // zero-initializable.
1765 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1766 CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1767 break;
1769 if (ZeroInitPadding)
1770 DoZeroInitPadding(PaddingStart,
1771 Layout.getFieldOffset(field->getFieldIndex()), field);
1773 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1774 // We never generate write-barries for initialized fields.
1775 LV.setNonGC(true);
1777 if (curInitIndex < NumInitElements) {
1778 // Store the initializer into the field.
1779 EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1780 } else {
1781 // We're out of initializers; default-initialize to null
1782 EmitNullInitializationToLValue(LV);
1785 // Push a destructor if necessary.
1786 // FIXME: if we have an array of structures, all explicitly
1787 // initialized, we can end up pushing a linear number of cleanups.
1788 if (QualType::DestructionKind dtorKind
1789 = field->getType().isDestructedType()) {
1790 assert(LV.isSimple());
1791 if (dtorKind) {
1792 CGF.pushDestroyAndDeferDeactivation(NormalAndEHCleanup, LV.getAddress(),
1793 field->getType(),
1794 CGF.getDestroyer(dtorKind), false);
1798 if (ZeroInitPadding) {
1799 uint64_t TotalSize = CGF.getContext().toBits(
1800 Dest.getPreferredSize(CGF.getContext(), DestLV.getType()));
1801 DoZeroInitPadding(PaddingStart, TotalSize, nullptr);
1805 void AggExprEmitter::DoZeroInitPadding(uint64_t &PaddingStart,
1806 uint64_t PaddingEnd,
1807 const FieldDecl *NextField) {
1809 auto InitBytes = [&](uint64_t StartBit, uint64_t EndBit) {
1810 CharUnits Start = CGF.getContext().toCharUnitsFromBits(StartBit);
1811 CharUnits End = CGF.getContext().toCharUnitsFromBits(EndBit);
1812 Address Addr = Dest.getAddress().withElementType(CGF.CharTy);
1813 if (!Start.isZero())
1814 Addr = Builder.CreateConstGEP(Addr, Start.getQuantity());
1815 llvm::Constant *SizeVal = Builder.getInt64((End - Start).getQuantity());
1816 CGF.Builder.CreateMemSet(Addr, Builder.getInt8(0), SizeVal, false);
1819 if (NextField != nullptr && NextField->isBitField()) {
1820 // For bitfield, zero init StorageSize before storing the bits. So we don't
1821 // need to handle big/little endian.
1822 const CGRecordLayout &RL =
1823 CGF.getTypes().getCGRecordLayout(NextField->getParent());
1824 const CGBitFieldInfo &Info = RL.getBitFieldInfo(NextField);
1825 uint64_t StorageStart = CGF.getContext().toBits(Info.StorageOffset);
1826 if (StorageStart + Info.StorageSize > PaddingStart) {
1827 if (StorageStart > PaddingStart)
1828 InitBytes(PaddingStart, StorageStart);
1829 Address Addr = Dest.getAddress();
1830 if (!Info.StorageOffset.isZero())
1831 Addr = Builder.CreateConstGEP(Addr.withElementType(CGF.CharTy),
1832 Info.StorageOffset.getQuantity());
1833 Addr = Addr.withElementType(
1834 llvm::Type::getIntNTy(CGF.getLLVMContext(), Info.StorageSize));
1835 Builder.CreateStore(Builder.getIntN(Info.StorageSize, 0), Addr);
1836 PaddingStart = StorageStart + Info.StorageSize;
1838 return;
1841 if (PaddingStart < PaddingEnd)
1842 InitBytes(PaddingStart, PaddingEnd);
1843 if (NextField != nullptr)
1844 PaddingStart =
1845 PaddingEnd + CGF.getContext().getTypeSize(NextField->getType());
1848 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1849 llvm::Value *outerBegin) {
1850 // Emit the common subexpression.
1851 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1853 Address destPtr = EnsureSlot(E->getType()).getAddress();
1854 uint64_t numElements = E->getArraySize().getZExtValue();
1856 if (!numElements)
1857 return;
1859 // destPtr is an array*. Construct an elementType* by drilling down a level.
1860 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1861 llvm::Value *indices[] = {zero, zero};
1862 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getElementType(),
1863 destPtr.emitRawPointer(CGF),
1864 indices, "arrayinit.begin");
1866 // Prepare to special-case multidimensional array initialization: we avoid
1867 // emitting multiple destructor loops in that case.
1868 if (!outerBegin)
1869 outerBegin = begin;
1870 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1872 QualType elementType =
1873 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1874 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1875 CharUnits elementAlign =
1876 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1877 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1879 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1880 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1882 // Jump into the body.
1883 CGF.EmitBlock(bodyBB);
1884 llvm::PHINode *index =
1885 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1886 index->addIncoming(zero, entryBB);
1887 llvm::Value *element =
1888 Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1890 // Prepare for a cleanup.
1891 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1892 EHScopeStack::stable_iterator cleanup;
1893 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1894 if (outerBegin->getType() != element->getType())
1895 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1896 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1897 elementAlign,
1898 CGF.getDestroyer(dtorKind));
1899 cleanup = CGF.EHStack.stable_begin();
1900 } else {
1901 dtorKind = QualType::DK_none;
1904 // Emit the actual filler expression.
1906 // Temporaries created in an array initialization loop are destroyed
1907 // at the end of each iteration.
1908 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1909 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1910 LValue elementLV = CGF.MakeAddrLValue(
1911 Address(element, llvmElementType, elementAlign), elementType);
1913 if (InnerLoop) {
1914 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1915 auto elementSlot = AggValueSlot::forLValue(
1916 elementLV, AggValueSlot::IsDestructed,
1917 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1918 AggValueSlot::DoesNotOverlap);
1919 AggExprEmitter(CGF, elementSlot, false)
1920 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1921 } else
1922 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1925 // Move on to the next element.
1926 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1927 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1928 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1930 // Leave the loop if we're done.
1931 llvm::Value *done = Builder.CreateICmpEQ(
1932 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1933 "arrayinit.done");
1934 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1935 Builder.CreateCondBr(done, endBB, bodyBB);
1937 CGF.EmitBlock(endBB);
1939 // Leave the partial-array cleanup if we entered one.
1940 if (dtorKind)
1941 CGF.DeactivateCleanupBlock(cleanup, index);
1944 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1945 AggValueSlot Dest = EnsureSlot(E->getType());
1947 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1948 EmitInitializationToLValue(E->getBase(), DestLV);
1949 VisitInitListExpr(E->getUpdater());
1952 //===----------------------------------------------------------------------===//
1953 // Entry Points into this File
1954 //===----------------------------------------------------------------------===//
1956 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1957 /// non-zero bytes that will be stored when outputting the initializer for the
1958 /// specified initializer expression.
1959 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1960 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1961 E = MTE->getSubExpr();
1962 E = E->IgnoreParenNoopCasts(CGF.getContext());
1964 // 0 and 0.0 won't require any non-zero stores!
1965 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1967 // If this is an initlist expr, sum up the size of sizes of the (present)
1968 // elements. If this is something weird, assume the whole thing is non-zero.
1969 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1970 while (ILE && ILE->isTransparent())
1971 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1972 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1973 return CGF.getContext().getTypeSizeInChars(E->getType());
1975 // InitListExprs for structs have to be handled carefully. If there are
1976 // reference members, we need to consider the size of the reference, not the
1977 // referencee. InitListExprs for unions and arrays can't have references.
1978 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1979 if (!RT->isUnionType()) {
1980 RecordDecl *SD = RT->getDecl();
1981 CharUnits NumNonZeroBytes = CharUnits::Zero();
1983 unsigned ILEElement = 0;
1984 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1985 while (ILEElement != CXXRD->getNumBases())
1986 NumNonZeroBytes +=
1987 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1988 for (const auto *Field : SD->fields()) {
1989 // We're done once we hit the flexible array member or run out of
1990 // InitListExpr elements.
1991 if (Field->getType()->isIncompleteArrayType() ||
1992 ILEElement == ILE->getNumInits())
1993 break;
1994 if (Field->isUnnamedBitField())
1995 continue;
1997 const Expr *E = ILE->getInit(ILEElement++);
1999 // Reference values are always non-null and have the width of a pointer.
2000 if (Field->getType()->isReferenceType())
2001 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
2002 CGF.getTarget().getPointerWidth(LangAS::Default));
2003 else
2004 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
2007 return NumNonZeroBytes;
2011 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
2012 CharUnits NumNonZeroBytes = CharUnits::Zero();
2013 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
2014 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
2015 return NumNonZeroBytes;
2018 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
2019 /// zeros in it, emit a memset and avoid storing the individual zeros.
2021 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
2022 CodeGenFunction &CGF) {
2023 // If the slot is already known to be zeroed, nothing to do. Don't mess with
2024 // volatile stores.
2025 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
2026 return;
2028 // C++ objects with a user-declared constructor don't need zero'ing.
2029 if (CGF.getLangOpts().CPlusPlus)
2030 if (const RecordType *RT = CGF.getContext()
2031 .getBaseElementType(E->getType())->getAs<RecordType>()) {
2032 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2033 if (RD->hasUserDeclaredConstructor())
2034 return;
2037 // If the type is 16-bytes or smaller, prefer individual stores over memset.
2038 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2039 if (Size <= CharUnits::fromQuantity(16))
2040 return;
2042 // Check to see if over 3/4 of the initializer are known to be zero. If so,
2043 // we prefer to emit memset + individual stores for the rest.
2044 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2045 if (NumNonZeroBytes*4 > Size)
2046 return;
2048 // Okay, it seems like a good idea to use an initial memset, emit the call.
2049 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2051 Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty);
2052 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2054 // Tell the AggExprEmitter that the slot is known zero.
2055 Slot.setZeroed();
2061 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2062 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
2063 /// the value of the aggregate expression is not needed. If VolatileDest is
2064 /// true, DestPtr cannot be 0.
2065 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2066 assert(E && hasAggregateEvaluationKind(E->getType()) &&
2067 "Invalid aggregate expression to emit");
2068 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2069 "slot has bits but no address");
2071 // Optimize the slot if possible.
2072 CheckAggExprForMemSetUse(Slot, E, *this);
2074 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2077 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2078 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2079 Address Temp = CreateMemTemp(E->getType());
2080 LValue LV = MakeAddrLValue(Temp, E->getType());
2081 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
2082 AggValueSlot::DoesNotNeedGCBarriers,
2083 AggValueSlot::IsNotAliased,
2084 AggValueSlot::DoesNotOverlap));
2085 return LV;
2088 void CodeGenFunction::EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest,
2089 const LValue &Src,
2090 ExprValueKind SrcKind) {
2091 return AggExprEmitter(*this, Dest, Dest.isIgnored())
2092 .EmitFinalDestCopy(Type, Src, SrcKind);
2095 AggValueSlot::Overlap_t
2096 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2097 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2098 return AggValueSlot::DoesNotOverlap;
2100 // Empty fields can overlap earlier fields.
2101 if (FD->getType()->getAsCXXRecordDecl()->isEmpty())
2102 return AggValueSlot::MayOverlap;
2104 // If the field lies entirely within the enclosing class's nvsize, its tail
2105 // padding cannot overlap any already-initialized object. (The only subobjects
2106 // with greater addresses that might already be initialized are vbases.)
2107 const RecordDecl *ClassRD = FD->getParent();
2108 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2109 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2110 getContext().getTypeSize(FD->getType()) <=
2111 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2112 return AggValueSlot::DoesNotOverlap;
2114 // The tail padding may contain values we need to preserve.
2115 return AggValueSlot::MayOverlap;
2118 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2119 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2120 // If the most-derived object is a field declared with [[no_unique_address]],
2121 // the tail padding of any virtual base could be reused for other subobjects
2122 // of that field's class.
2123 if (IsVirtual)
2124 return AggValueSlot::MayOverlap;
2126 // Empty bases can overlap earlier bases.
2127 if (BaseRD->isEmpty())
2128 return AggValueSlot::MayOverlap;
2130 // If the base class is laid out entirely within the nvsize of the derived
2131 // class, its tail padding cannot yet be initialized, so we can issue
2132 // stores at the full width of the base class.
2133 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2134 if (Layout.getBaseClassOffset(BaseRD) +
2135 getContext().getASTRecordLayout(BaseRD).getSize() <=
2136 Layout.getNonVirtualSize())
2137 return AggValueSlot::DoesNotOverlap;
2139 // The tail padding may contain values we need to preserve.
2140 return AggValueSlot::MayOverlap;
2143 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2144 AggValueSlot::Overlap_t MayOverlap,
2145 bool isVolatile) {
2146 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2148 Address DestPtr = Dest.getAddress();
2149 Address SrcPtr = Src.getAddress();
2151 if (getLangOpts().CPlusPlus) {
2152 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2153 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2154 assert((Record->hasTrivialCopyConstructor() ||
2155 Record->hasTrivialCopyAssignment() ||
2156 Record->hasTrivialMoveConstructor() ||
2157 Record->hasTrivialMoveAssignment() ||
2158 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2159 "Trying to aggregate-copy a type without a trivial copy/move "
2160 "constructor or assignment operator");
2161 // Ignore empty classes in C++.
2162 if (Record->isEmpty())
2163 return;
2167 if (getLangOpts().CUDAIsDevice) {
2168 if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2169 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2170 Src))
2171 return;
2172 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2173 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2174 Src))
2175 return;
2179 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2180 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2181 // read from another object that overlaps in anyway the storage of the first
2182 // object, then the overlap shall be exact and the two objects shall have
2183 // qualified or unqualified versions of a compatible type."
2185 // memcpy is not defined if the source and destination pointers are exactly
2186 // equal, but other compilers do this optimization, and almost every memcpy
2187 // implementation handles this case safely. If there is a libc that does not
2188 // safely handle this, we can add a target hook.
2190 // Get data size info for this aggregate. Don't copy the tail padding if this
2191 // might be a potentially-overlapping subobject, since the tail padding might
2192 // be occupied by a different object. Otherwise, copying it is fine.
2193 TypeInfoChars TypeInfo;
2194 if (MayOverlap)
2195 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2196 else
2197 TypeInfo = getContext().getTypeInfoInChars(Ty);
2199 llvm::Value *SizeVal = nullptr;
2200 if (TypeInfo.Width.isZero()) {
2201 // But note that getTypeInfo returns 0 for a VLA.
2202 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2203 getContext().getAsArrayType(Ty))) {
2204 QualType BaseEltTy;
2205 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2206 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2207 assert(!TypeInfo.Width.isZero());
2208 SizeVal = Builder.CreateNUWMul(
2209 SizeVal,
2210 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2213 if (!SizeVal) {
2214 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2217 // FIXME: If we have a volatile struct, the optimizer can remove what might
2218 // appear to be `extra' memory ops:
2220 // volatile struct { int i; } a, b;
2222 // int main() {
2223 // a = b;
2224 // a = b;
2225 // }
2227 // we need to use a different call here. We use isVolatile to indicate when
2228 // either the source or the destination is volatile.
2230 DestPtr = DestPtr.withElementType(Int8Ty);
2231 SrcPtr = SrcPtr.withElementType(Int8Ty);
2233 // Don't do any of the memmove_collectable tests if GC isn't set.
2234 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2235 // fall through
2236 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2237 RecordDecl *Record = RecordTy->getDecl();
2238 if (Record->hasObjectMember()) {
2239 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2240 SizeVal);
2241 return;
2243 } else if (Ty->isArrayType()) {
2244 QualType BaseType = getContext().getBaseElementType(Ty);
2245 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2246 if (RecordTy->getDecl()->hasObjectMember()) {
2247 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2248 SizeVal);
2249 return;
2254 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2256 // Determine the metadata to describe the position of any padding in this
2257 // memcpy, as well as the TBAA tags for the members of the struct, in case
2258 // the optimizer wishes to expand it in to scalar memory operations.
2259 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2260 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2262 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2263 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2264 Dest.getTBAAInfo(), Src.getTBAAInfo());
2265 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);