1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
53 using namespace clang
;
54 using namespace CodeGen
;
57 extern cl::opt
<bool> EnableSingleByteCoverage
;
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions
&CGOpts
,
63 const LangOptions
&LangOpts
) {
64 if (CGOpts
.DisableLifetimeMarkers
)
67 // Sanitizers may use markers.
68 if (CGOpts
.SanitizeAddressUseAfterScope
||
69 LangOpts
.Sanitize
.has(SanitizerKind::HWAddress
) ||
70 LangOpts
.Sanitize
.has(SanitizerKind::Memory
))
73 // For now, only in optimized builds.
74 return CGOpts
.OptimizationLevel
!= 0;
77 CodeGenFunction::CodeGenFunction(CodeGenModule
&cgm
, bool suppressNewContext
)
78 : CodeGenTypeCache(cgm
), CGM(cgm
), Target(cgm
.getTarget()),
79 Builder(cgm
, cgm
.getModule().getContext(), llvm::ConstantFolder(),
80 CGBuilderInserterTy(this)),
81 SanOpts(CGM
.getLangOpts().Sanitize
), CurFPFeatures(CGM
.getLangOpts()),
82 DebugInfo(CGM
.getModuleDebugInfo()), PGO(cgm
),
83 ShouldEmitLifetimeMarkers(
84 shouldEmitLifetimeMarkers(CGM
.getCodeGenOpts(), CGM
.getLangOpts())) {
85 if (!suppressNewContext
)
86 CGM
.getCXXABI().getMangleContext().startNewFunction();
89 SetFastMathFlags(CurFPFeatures
);
92 CodeGenFunction::~CodeGenFunction() {
93 assert(LifetimeExtendedCleanupStack
.empty() && "failed to emit a cleanup");
94 assert(DeferredDeactivationCleanupStack
.empty() &&
95 "missed to deactivate a cleanup");
97 if (getLangOpts().OpenMP
&& CurFn
)
98 CGM
.getOpenMPRuntime().functionFinished(*this);
100 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101 // outlining etc) at some point. Doing it once the function codegen is done
102 // seems to be a reasonable spot. We do it here, as opposed to the deletion
103 // time of the CodeGenModule, because we have to ensure the IR has not yet
104 // been "emitted" to the outside, thus, modifications are still sensible.
105 if (CGM
.getLangOpts().OpenMPIRBuilder
&& CurFn
)
106 CGM
.getOpenMPRuntime().getOMPBuilder().finalize(CurFn
);
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind
) {
115 case LangOptions::FPE_Ignore
: return llvm::fp::ebIgnore
;
116 case LangOptions::FPE_MayTrap
: return llvm::fp::ebMayTrap
;
117 case LangOptions::FPE_Strict
: return llvm::fp::ebStrict
;
119 llvm_unreachable("Unsupported FP Exception Behavior");
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures
) {
124 llvm::FastMathFlags FMF
;
125 FMF
.setAllowReassoc(FPFeatures
.getAllowFPReassociate());
126 FMF
.setNoNaNs(FPFeatures
.getNoHonorNaNs());
127 FMF
.setNoInfs(FPFeatures
.getNoHonorInfs());
128 FMF
.setNoSignedZeros(FPFeatures
.getNoSignedZero());
129 FMF
.setAllowReciprocal(FPFeatures
.getAllowReciprocal());
130 FMF
.setApproxFunc(FPFeatures
.getAllowApproxFunc());
131 FMF
.setAllowContract(FPFeatures
.allowFPContractAcrossStatement());
132 Builder
.setFastMathFlags(FMF
);
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
138 ConstructorHelper(E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
142 FPOptions FPFeatures
)
144 ConstructorHelper(FPFeatures
);
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures
) {
148 OldFPFeatures
= CGF
.CurFPFeatures
;
149 CGF
.CurFPFeatures
= FPFeatures
;
151 OldExcept
= CGF
.Builder
.getDefaultConstrainedExcept();
152 OldRounding
= CGF
.Builder
.getDefaultConstrainedRounding();
154 if (OldFPFeatures
== FPFeatures
)
157 FMFGuard
.emplace(CGF
.Builder
);
159 llvm::RoundingMode NewRoundingBehavior
= FPFeatures
.getRoundingMode();
160 CGF
.Builder
.setDefaultConstrainedRounding(NewRoundingBehavior
);
161 auto NewExceptionBehavior
=
162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind
>(
163 FPFeatures
.getExceptionMode()));
164 CGF
.Builder
.setDefaultConstrainedExcept(NewExceptionBehavior
);
166 CGF
.SetFastMathFlags(FPFeatures
);
168 assert((CGF
.CurFuncDecl
== nullptr || CGF
.Builder
.getIsFPConstrained() ||
169 isa
<CXXConstructorDecl
>(CGF
.CurFuncDecl
) ||
170 isa
<CXXDestructorDecl
>(CGF
.CurFuncDecl
) ||
171 (NewExceptionBehavior
== llvm::fp::ebIgnore
&&
172 NewRoundingBehavior
== llvm::RoundingMode::NearestTiesToEven
)) &&
173 "FPConstrained should be enabled on entire function");
175 auto mergeFnAttrValue
= [&](StringRef Name
, bool Value
) {
177 CGF
.CurFn
->getFnAttribute(Name
).getValueAsBool();
178 auto NewValue
= OldValue
& Value
;
179 if (OldValue
!= NewValue
)
180 CGF
.CurFn
->addFnAttr(Name
, llvm::toStringRef(NewValue
));
182 mergeFnAttrValue("no-infs-fp-math", FPFeatures
.getNoHonorInfs());
183 mergeFnAttrValue("no-nans-fp-math", FPFeatures
.getNoHonorNaNs());
184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures
.getNoSignedZero());
187 FPFeatures
.getAllowFPReassociate() && FPFeatures
.getAllowReciprocal() &&
188 FPFeatures
.getAllowApproxFunc() && FPFeatures
.getNoSignedZero() &&
189 FPFeatures
.allowFPContractAcrossStatement());
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193 CGF
.CurFPFeatures
= OldFPFeatures
;
194 CGF
.Builder
.setDefaultConstrainedExcept(OldExcept
);
195 CGF
.Builder
.setDefaultConstrainedRounding(OldRounding
);
199 makeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
, bool ForPointeeType
,
200 bool MightBeSigned
, CodeGenFunction
&CGF
,
201 KnownNonNull_t IsKnownNonNull
= NotKnownNonNull
) {
202 LValueBaseInfo BaseInfo
;
203 TBAAAccessInfo TBAAInfo
;
204 CharUnits Alignment
=
205 CGF
.CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
, ForPointeeType
);
208 ? CGF
.makeNaturalAddressForPointer(V
, T
, Alignment
, false, nullptr,
209 nullptr, IsKnownNonNull
)
210 : Address(V
, CGF
.ConvertTypeForMem(T
), Alignment
, IsKnownNonNull
);
211 return CGF
.MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
,
216 KnownNonNull_t IsKnownNonNull
) {
217 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ false,
218 /*MightBeSigned*/ true, *this,
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value
*V
, QualType T
) {
224 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ true,
225 /*MightBeSigned*/ true, *this);
228 LValue
CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value
*V
,
230 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ false,
231 /*MightBeSigned*/ false, *this);
234 LValue
CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value
*V
,
236 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ true,
237 /*MightBeSigned*/ false, *this);
240 llvm::Type
*CodeGenFunction::ConvertTypeForMem(QualType T
) {
241 return CGM
.getTypes().ConvertTypeForMem(T
);
244 llvm::Type
*CodeGenFunction::ConvertType(QualType T
) {
245 return CGM
.getTypes().ConvertType(T
);
248 llvm::Type
*CodeGenFunction::convertTypeForLoadStore(QualType ASTTy
,
249 llvm::Type
*LLVMTy
) {
250 return CGM
.getTypes().convertTypeForLoadStore(ASTTy
, LLVMTy
);
253 TypeEvaluationKind
CodeGenFunction::getEvaluationKind(QualType type
) {
254 type
= type
.getCanonicalType();
256 switch (type
->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263 llvm_unreachable("non-canonical or dependent type in IR-generation");
266 case Type::DeducedTemplateSpecialization
:
267 llvm_unreachable("undeduced type in IR-generation");
269 // Various scalar types.
272 case Type::BlockPointer
:
273 case Type::LValueReference
:
274 case Type::RValueReference
:
275 case Type::MemberPointer
:
277 case Type::ExtVector
:
278 case Type::ConstantMatrix
:
279 case Type::FunctionProto
:
280 case Type::FunctionNoProto
:
282 case Type::ObjCObjectPointer
:
285 case Type::HLSLAttributedResource
:
292 // Arrays, records, and Objective-C objects.
293 case Type::ConstantArray
:
294 case Type::IncompleteArray
:
295 case Type::VariableArray
:
297 case Type::ObjCObject
:
298 case Type::ObjCInterface
:
299 case Type::ArrayParameter
:
300 return TEK_Aggregate
;
302 // We operate on atomic values according to their underlying type.
304 type
= cast
<AtomicType
>(type
)->getValueType();
307 llvm_unreachable("unknown type kind!");
311 llvm::DebugLoc
CodeGenFunction::EmitReturnBlock() {
312 // For cleanliness, we try to avoid emitting the return block for
314 llvm::BasicBlock
*CurBB
= Builder
.GetInsertBlock();
317 assert(!CurBB
->getTerminator() && "Unexpected terminated block.");
319 // We have a valid insert point, reuse it if it is empty or there are no
320 // explicit jumps to the return block.
321 if (CurBB
->empty() || ReturnBlock
.getBlock()->use_empty()) {
322 ReturnBlock
.getBlock()->replaceAllUsesWith(CurBB
);
323 delete ReturnBlock
.getBlock();
324 ReturnBlock
= JumpDest();
326 EmitBlock(ReturnBlock
.getBlock());
327 return llvm::DebugLoc();
330 // Otherwise, if the return block is the target of a single direct
331 // branch then we can just put the code in that block instead. This
332 // cleans up functions which started with a unified return block.
333 if (ReturnBlock
.getBlock()->hasOneUse()) {
334 llvm::BranchInst
*BI
=
335 dyn_cast
<llvm::BranchInst
>(*ReturnBlock
.getBlock()->user_begin());
336 if (BI
&& BI
->isUnconditional() &&
337 BI
->getSuccessor(0) == ReturnBlock
.getBlock()) {
338 // Record/return the DebugLoc of the simple 'return' expression to be used
339 // later by the actual 'ret' instruction.
340 llvm::DebugLoc Loc
= BI
->getDebugLoc();
341 Builder
.SetInsertPoint(BI
->getParent());
342 BI
->eraseFromParent();
343 delete ReturnBlock
.getBlock();
344 ReturnBlock
= JumpDest();
349 // FIXME: We are at an unreachable point, there is no reason to emit the block
350 // unless it has uses. However, we still need a place to put the debug
351 // region.end for now.
353 EmitBlock(ReturnBlock
.getBlock());
354 return llvm::DebugLoc();
357 static void EmitIfUsed(CodeGenFunction
&CGF
, llvm::BasicBlock
*BB
) {
359 if (!BB
->use_empty()) {
360 CGF
.CurFn
->insert(CGF
.CurFn
->end(), BB
);
366 void CodeGenFunction::FinishFunction(SourceLocation EndLoc
) {
367 assert(BreakContinueStack
.empty() &&
368 "mismatched push/pop in break/continue stack!");
369 assert(LifetimeExtendedCleanupStack
.empty() &&
370 "mismatched push/pop of cleanups in EHStack!");
371 assert(DeferredDeactivationCleanupStack
.empty() &&
372 "mismatched activate/deactivate of cleanups!");
374 if (CGM
.shouldEmitConvergenceTokens()) {
375 ConvergenceTokenStack
.pop_back();
376 assert(ConvergenceTokenStack
.empty() &&
377 "mismatched push/pop in convergence stack!");
380 bool OnlySimpleReturnStmts
= NumSimpleReturnExprs
> 0
381 && NumSimpleReturnExprs
== NumReturnExprs
382 && ReturnBlock
.getBlock()->use_empty();
383 // Usually the return expression is evaluated before the cleanup
384 // code. If the function contains only a simple return statement,
385 // such as a constant, the location before the cleanup code becomes
386 // the last useful breakpoint in the function, because the simple
387 // return expression will be evaluated after the cleanup code. To be
388 // safe, set the debug location for cleanup code to the location of
389 // the return statement. Otherwise the cleanup code should be at the
390 // end of the function's lexical scope.
392 // If there are multiple branches to the return block, the branch
393 // instructions will get the location of the return statements and
395 if (CGDebugInfo
*DI
= getDebugInfo()) {
396 if (OnlySimpleReturnStmts
)
397 DI
->EmitLocation(Builder
, LastStopPoint
);
399 DI
->EmitLocation(Builder
, EndLoc
);
402 // Pop any cleanups that might have been associated with the
403 // parameters. Do this in whatever block we're currently in; it's
404 // important to do this before we enter the return block or return
405 // edges will be *really* confused.
406 bool HasCleanups
= EHStack
.stable_begin() != PrologueCleanupDepth
;
407 bool HasOnlyNoopCleanups
=
408 HasCleanups
&& EHStack
.containsOnlyNoopCleanups(PrologueCleanupDepth
);
409 bool EmitRetDbgLoc
= !HasCleanups
|| HasOnlyNoopCleanups
;
411 std::optional
<ApplyDebugLocation
> OAL
;
413 // Make sure the line table doesn't jump back into the body for
414 // the ret after it's been at EndLoc.
415 if (CGDebugInfo
*DI
= getDebugInfo()) {
416 if (OnlySimpleReturnStmts
)
417 DI
->EmitLocation(Builder
, EndLoc
);
419 // We may not have a valid end location. Try to apply it anyway, and
420 // fall back to an artificial location if needed.
421 OAL
= ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc
);
424 PopCleanupBlocks(PrologueCleanupDepth
);
427 // Emit function epilog (to return).
428 llvm::DebugLoc Loc
= EmitReturnBlock();
430 if (ShouldInstrumentFunction()) {
431 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
432 CurFn
->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
433 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
434 CurFn
->addFnAttr("instrument-function-exit-inlined",
435 "__cyg_profile_func_exit");
438 // Emit debug descriptor for function end.
439 if (CGDebugInfo
*DI
= getDebugInfo())
440 DI
->EmitFunctionEnd(Builder
, CurFn
);
442 // Reset the debug location to that of the simple 'return' expression, if any
443 // rather than that of the end of the function's scope '}'.
444 ApplyDebugLocation
AL(*this, Loc
);
445 EmitFunctionEpilog(*CurFnInfo
, EmitRetDbgLoc
, EndLoc
);
446 EmitEndEHSpec(CurCodeDecl
);
448 assert(EHStack
.empty() &&
449 "did not remove all scopes from cleanup stack!");
451 // If someone did an indirect goto, emit the indirect goto block at the end of
453 if (IndirectBranch
) {
454 EmitBlock(IndirectBranch
->getParent());
455 Builder
.ClearInsertionPoint();
458 // If some of our locals escaped, insert a call to llvm.localescape in the
460 if (!EscapedLocals
.empty()) {
461 // Invert the map from local to index into a simple vector. There should be
463 SmallVector
<llvm::Value
*, 4> EscapeArgs
;
464 EscapeArgs
.resize(EscapedLocals
.size());
465 for (auto &Pair
: EscapedLocals
)
466 EscapeArgs
[Pair
.second
] = Pair
.first
;
467 llvm::Function
*FrameEscapeFn
= llvm::Intrinsic::getOrInsertDeclaration(
468 &CGM
.getModule(), llvm::Intrinsic::localescape
);
469 CGBuilderTy(*this, AllocaInsertPt
).CreateCall(FrameEscapeFn
, EscapeArgs
);
472 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
473 llvm::Instruction
*Ptr
= AllocaInsertPt
;
474 AllocaInsertPt
= nullptr;
475 Ptr
->eraseFromParent();
477 // PostAllocaInsertPt, if created, was lazily created when it was required,
478 // remove it now since it was just created for our own convenience.
479 if (PostAllocaInsertPt
) {
480 llvm::Instruction
*PostPtr
= PostAllocaInsertPt
;
481 PostAllocaInsertPt
= nullptr;
482 PostPtr
->eraseFromParent();
485 // If someone took the address of a label but never did an indirect goto, we
486 // made a zero entry PHI node, which is illegal, zap it now.
487 if (IndirectBranch
) {
488 llvm::PHINode
*PN
= cast
<llvm::PHINode
>(IndirectBranch
->getAddress());
489 if (PN
->getNumIncomingValues() == 0) {
490 PN
->replaceAllUsesWith(llvm::PoisonValue::get(PN
->getType()));
491 PN
->eraseFromParent();
495 EmitIfUsed(*this, EHResumeBlock
);
496 EmitIfUsed(*this, TerminateLandingPad
);
497 EmitIfUsed(*this, TerminateHandler
);
498 EmitIfUsed(*this, UnreachableBlock
);
500 for (const auto &FuncletAndParent
: TerminateFunclets
)
501 EmitIfUsed(*this, FuncletAndParent
.second
);
503 if (CGM
.getCodeGenOpts().EmitDeclMetadata
)
506 for (const auto &R
: DeferredReplacements
) {
507 if (llvm::Value
*Old
= R
.first
) {
508 Old
->replaceAllUsesWith(R
.second
);
509 cast
<llvm::Instruction
>(Old
)->eraseFromParent();
512 DeferredReplacements
.clear();
514 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
515 // PHIs if the current function is a coroutine. We don't do it for all
516 // functions as it may result in slight increase in numbers of instructions
517 // if compiled with no optimizations. We do it for coroutine as the lifetime
518 // of CleanupDestSlot alloca make correct coroutine frame building very
520 if (NormalCleanupDest
.isValid() && isCoroutine()) {
521 llvm::DominatorTree
DT(*CurFn
);
522 llvm::PromoteMemToReg(
523 cast
<llvm::AllocaInst
>(NormalCleanupDest
.getPointer()), DT
);
524 NormalCleanupDest
= Address::invalid();
527 // Scan function arguments for vector width.
528 for (llvm::Argument
&A
: CurFn
->args())
529 if (auto *VT
= dyn_cast
<llvm::VectorType
>(A
.getType()))
531 std::max((uint64_t)LargestVectorWidth
,
532 VT
->getPrimitiveSizeInBits().getKnownMinValue());
534 // Update vector width based on return type.
535 if (auto *VT
= dyn_cast
<llvm::VectorType
>(CurFn
->getReturnType()))
537 std::max((uint64_t)LargestVectorWidth
,
538 VT
->getPrimitiveSizeInBits().getKnownMinValue());
540 if (CurFnInfo
->getMaxVectorWidth() > LargestVectorWidth
)
541 LargestVectorWidth
= CurFnInfo
->getMaxVectorWidth();
543 // Add the min-legal-vector-width attribute. This contains the max width from:
544 // 1. min-vector-width attribute used in the source program.
545 // 2. Any builtins used that have a vector width specified.
546 // 3. Values passed in and out of inline assembly.
547 // 4. Width of vector arguments and return types for this function.
548 // 5. Width of vector arguments and return types for functions called by this
550 if (getContext().getTargetInfo().getTriple().isX86())
551 CurFn
->addFnAttr("min-legal-vector-width",
552 llvm::utostr(LargestVectorWidth
));
554 // If we generated an unreachable return block, delete it now.
555 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty()) {
556 Builder
.ClearInsertionPoint();
557 ReturnBlock
.getBlock()->eraseFromParent();
559 if (ReturnValue
.isValid()) {
561 dyn_cast
<llvm::AllocaInst
>(ReturnValue
.emitRawPointer(*this));
562 if (RetAlloca
&& RetAlloca
->use_empty()) {
563 RetAlloca
->eraseFromParent();
564 ReturnValue
= Address::invalid();
569 /// ShouldInstrumentFunction - Return true if the current function should be
570 /// instrumented with __cyg_profile_func_* calls
571 bool CodeGenFunction::ShouldInstrumentFunction() {
572 if (!CGM
.getCodeGenOpts().InstrumentFunctions
&&
573 !CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
&&
574 !CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
576 if (!CurFuncDecl
|| CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>())
581 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
584 return CurFuncDecl
->hasAttr
<DisableSanitizerInstrumentationAttr
>();
587 /// ShouldXRayInstrument - Return true if the current function should be
588 /// instrumented with XRay nop sleds.
589 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
590 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
;
593 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
594 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
595 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
596 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
597 (CGM
.getCodeGenOpts().XRayAlwaysEmitCustomEvents
||
598 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
599 XRayInstrKind::Custom
);
602 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
603 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
604 (CGM
.getCodeGenOpts().XRayAlwaysEmitTypedEvents
||
605 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
606 XRayInstrKind::Typed
);
610 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty
) const {
611 // Remove any (C++17) exception specifications, to allow calling e.g. a
612 // noexcept function through a non-noexcept pointer.
613 if (!Ty
->isFunctionNoProtoType())
614 Ty
= getContext().getFunctionTypeWithExceptionSpec(Ty
, EST_None
);
616 llvm::raw_string_ostream
Out(Mangled
);
617 CGM
.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty
, Out
, false);
618 return llvm::ConstantInt::get(
619 CGM
.Int32Ty
, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled
)));
622 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl
*FD
,
623 llvm::Function
*Fn
) {
624 if (!FD
->hasAttr
<OpenCLKernelAttr
>() && !FD
->hasAttr
<CUDAGlobalAttr
>())
627 llvm::LLVMContext
&Context
= getLLVMContext();
629 CGM
.GenKernelArgMetadata(Fn
, FD
, this);
631 if (!(getLangOpts().OpenCL
||
632 (getLangOpts().CUDA
&&
633 getContext().getTargetInfo().getTriple().isSPIRV())))
636 if (const VecTypeHintAttr
*A
= FD
->getAttr
<VecTypeHintAttr
>()) {
637 QualType HintQTy
= A
->getTypeHint();
638 const ExtVectorType
*HintEltQTy
= HintQTy
->getAs
<ExtVectorType
>();
639 bool IsSignedInteger
=
640 HintQTy
->isSignedIntegerType() ||
641 (HintEltQTy
&& HintEltQTy
->getElementType()->isSignedIntegerType());
642 llvm::Metadata
*AttrMDArgs
[] = {
643 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
644 CGM
.getTypes().ConvertType(A
->getTypeHint()))),
645 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
646 llvm::IntegerType::get(Context
, 32),
647 llvm::APInt(32, (uint64_t)(IsSignedInteger
? 1 : 0))))};
648 Fn
->setMetadata("vec_type_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
651 if (const WorkGroupSizeHintAttr
*A
= FD
->getAttr
<WorkGroupSizeHintAttr
>()) {
652 llvm::Metadata
*AttrMDArgs
[] = {
653 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
654 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
655 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
656 Fn
->setMetadata("work_group_size_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
659 if (const ReqdWorkGroupSizeAttr
*A
= FD
->getAttr
<ReqdWorkGroupSizeAttr
>()) {
660 llvm::Metadata
*AttrMDArgs
[] = {
661 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
662 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
663 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
664 Fn
->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context
, AttrMDArgs
));
667 if (const OpenCLIntelReqdSubGroupSizeAttr
*A
=
668 FD
->getAttr
<OpenCLIntelReqdSubGroupSizeAttr
>()) {
669 llvm::Metadata
*AttrMDArgs
[] = {
670 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getSubGroupSize()))};
671 Fn
->setMetadata("intel_reqd_sub_group_size",
672 llvm::MDNode::get(Context
, AttrMDArgs
));
676 /// Determine whether the function F ends with a return stmt.
677 static bool endsWithReturn(const Decl
* F
) {
678 const Stmt
*Body
= nullptr;
679 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(F
))
680 Body
= FD
->getBody();
681 else if (auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(F
))
682 Body
= OMD
->getBody();
684 if (auto *CS
= dyn_cast_or_null
<CompoundStmt
>(Body
)) {
685 auto LastStmt
= CS
->body_rbegin();
686 if (LastStmt
!= CS
->body_rend())
687 return isa
<ReturnStmt
>(*LastStmt
);
692 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function
*Fn
) {
693 if (SanOpts
.has(SanitizerKind::Thread
)) {
694 Fn
->addFnAttr("sanitize_thread_no_checking_at_run_time");
695 Fn
->removeFnAttr(llvm::Attribute::SanitizeThread
);
699 /// Check if the return value of this function requires sanitization.
700 bool CodeGenFunction::requiresReturnValueCheck() const {
701 return requiresReturnValueNullabilityCheck() ||
702 (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) && CurCodeDecl
&&
703 CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>());
706 static bool matchesStlAllocatorFn(const Decl
*D
, const ASTContext
&Ctx
) {
707 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(D
);
708 if (!MD
|| !MD
->getDeclName().getAsIdentifierInfo() ||
709 !MD
->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
710 (MD
->getNumParams() != 1 && MD
->getNumParams() != 2))
713 if (MD
->parameters()[0]->getType().getCanonicalType() != Ctx
.getSizeType())
716 if (MD
->getNumParams() == 2) {
717 auto *PT
= MD
->parameters()[1]->getType()->getAs
<PointerType
>();
718 if (!PT
|| !PT
->isVoidPointerType() ||
719 !PT
->getPointeeType().isConstQualified())
726 bool CodeGenFunction::isInAllocaArgument(CGCXXABI
&ABI
, QualType Ty
) {
727 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
728 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
731 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl
*MD
) {
732 return getTarget().getTriple().getArch() == llvm::Triple::x86
&&
733 getTarget().getCXXABI().isMicrosoft() &&
734 llvm::any_of(MD
->parameters(), [&](ParmVarDecl
*P
) {
735 return isInAllocaArgument(CGM
.getCXXABI(), P
->getType());
739 /// Return the UBSan prologue signature for \p FD if one is available.
740 static llvm::Constant
*getPrologueSignature(CodeGenModule
&CGM
,
741 const FunctionDecl
*FD
) {
742 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
745 return CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
);
748 void CodeGenFunction::StartFunction(GlobalDecl GD
, QualType RetTy
,
750 const CGFunctionInfo
&FnInfo
,
751 const FunctionArgList
&Args
,
753 SourceLocation StartLoc
) {
755 "Do not use a CodeGenFunction object for more than one function");
757 const Decl
*D
= GD
.getDecl();
759 DidCallStackSave
= false;
761 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(D
);
762 if (FD
&& FD
->usesSEHTry())
764 CurFuncDecl
= (D
? D
->getNonClosureContext() : nullptr);
768 assert(CurFn
->isDeclaration() && "Function already has body?");
770 // If this function is ignored for any of the enabled sanitizers,
771 // disable the sanitizer for the function.
773 #define SANITIZER(NAME, ID) \
774 if (SanOpts.empty()) \
776 if (SanOpts.has(SanitizerKind::ID)) \
777 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
778 SanOpts.set(SanitizerKind::ID, false);
780 #include "clang/Basic/Sanitizers.def"
785 const bool SanitizeBounds
= SanOpts
.hasOneOf(SanitizerKind::Bounds
);
786 SanitizerMask no_sanitize_mask
;
787 bool NoSanitizeCoverage
= false;
789 for (auto *Attr
: D
->specific_attrs
<NoSanitizeAttr
>()) {
790 no_sanitize_mask
|= Attr
->getMask();
791 // SanitizeCoverage is not handled by SanOpts.
792 if (Attr
->hasCoverage())
793 NoSanitizeCoverage
= true;
796 // Apply the no_sanitize* attributes to SanOpts.
797 SanOpts
.Mask
&= ~no_sanitize_mask
;
798 if (no_sanitize_mask
& SanitizerKind::Address
)
799 SanOpts
.set(SanitizerKind::KernelAddress
, false);
800 if (no_sanitize_mask
& SanitizerKind::KernelAddress
)
801 SanOpts
.set(SanitizerKind::Address
, false);
802 if (no_sanitize_mask
& SanitizerKind::HWAddress
)
803 SanOpts
.set(SanitizerKind::KernelHWAddress
, false);
804 if (no_sanitize_mask
& SanitizerKind::KernelHWAddress
)
805 SanOpts
.set(SanitizerKind::HWAddress
, false);
807 if (SanitizeBounds
&& !SanOpts
.hasOneOf(SanitizerKind::Bounds
))
808 Fn
->addFnAttr(llvm::Attribute::NoSanitizeBounds
);
810 if (NoSanitizeCoverage
&& CGM
.getCodeGenOpts().hasSanitizeCoverage())
811 Fn
->addFnAttr(llvm::Attribute::NoSanitizeCoverage
);
813 // Some passes need the non-negated no_sanitize attribute. Pass them on.
814 if (CGM
.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
815 if (no_sanitize_mask
& SanitizerKind::Thread
)
816 Fn
->addFnAttr("no_sanitize_thread");
820 if (ShouldSkipSanitizerInstrumentation()) {
821 CurFn
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
823 // Apply sanitizer attributes to the function.
824 if (SanOpts
.hasOneOf(SanitizerKind::Address
| SanitizerKind::KernelAddress
))
825 Fn
->addFnAttr(llvm::Attribute::SanitizeAddress
);
826 if (SanOpts
.hasOneOf(SanitizerKind::HWAddress
|
827 SanitizerKind::KernelHWAddress
))
828 Fn
->addFnAttr(llvm::Attribute::SanitizeHWAddress
);
829 if (SanOpts
.has(SanitizerKind::MemtagStack
))
830 Fn
->addFnAttr(llvm::Attribute::SanitizeMemTag
);
831 if (SanOpts
.has(SanitizerKind::Thread
))
832 Fn
->addFnAttr(llvm::Attribute::SanitizeThread
);
833 if (SanOpts
.has(SanitizerKind::Type
))
834 Fn
->addFnAttr(llvm::Attribute::SanitizeType
);
835 if (SanOpts
.has(SanitizerKind::NumericalStability
))
836 Fn
->addFnAttr(llvm::Attribute::SanitizeNumericalStability
);
837 if (SanOpts
.hasOneOf(SanitizerKind::Memory
| SanitizerKind::KernelMemory
))
838 Fn
->addFnAttr(llvm::Attribute::SanitizeMemory
);
840 if (SanOpts
.has(SanitizerKind::SafeStack
))
841 Fn
->addFnAttr(llvm::Attribute::SafeStack
);
842 if (SanOpts
.has(SanitizerKind::ShadowCallStack
))
843 Fn
->addFnAttr(llvm::Attribute::ShadowCallStack
);
845 if (SanOpts
.has(SanitizerKind::Realtime
))
846 if (FD
&& FD
->getASTContext().hasAnyFunctionEffects())
847 for (const FunctionEffectWithCondition
&Fe
: FD
->getFunctionEffects()) {
848 if (Fe
.Effect
.kind() == FunctionEffect::Kind::NonBlocking
)
849 Fn
->addFnAttr(llvm::Attribute::SanitizeRealtime
);
850 else if (Fe
.Effect
.kind() == FunctionEffect::Kind::Blocking
)
851 Fn
->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking
);
854 // Apply fuzzing attribute to the function.
855 if (SanOpts
.hasOneOf(SanitizerKind::Fuzzer
| SanitizerKind::FuzzerNoLink
))
856 Fn
->addFnAttr(llvm::Attribute::OptForFuzzing
);
858 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
859 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
860 if (SanOpts
.has(SanitizerKind::Thread
)) {
861 if (const auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(D
)) {
862 const IdentifierInfo
*II
= OMD
->getSelector().getIdentifierInfoForSlot(0);
863 if (OMD
->getMethodFamily() == OMF_dealloc
||
864 OMD
->getMethodFamily() == OMF_initialize
||
865 (OMD
->getSelector().isUnarySelector() && II
->isStr(".cxx_destruct"))) {
866 markAsIgnoreThreadCheckingAtRuntime(Fn
);
871 // Ignore unrelated casts in STL allocate() since the allocator must cast
872 // from void* to T* before object initialization completes. Don't match on the
873 // namespace because not all allocators are in std::
874 if (D
&& SanOpts
.has(SanitizerKind::CFIUnrelatedCast
)) {
875 if (matchesStlAllocatorFn(D
, getContext()))
876 SanOpts
.Mask
&= ~SanitizerKind::CFIUnrelatedCast
;
879 // Ignore null checks in coroutine functions since the coroutines passes
880 // are not aware of how to move the extra UBSan instructions across the split
881 // coroutine boundaries.
882 if (D
&& SanOpts
.has(SanitizerKind::Null
))
883 if (FD
&& FD
->getBody() &&
884 FD
->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass
)
885 SanOpts
.Mask
&= ~SanitizerKind::Null
;
887 // Add pointer authentication attributes.
888 const CodeGenOptions
&CodeGenOpts
= CGM
.getCodeGenOpts();
889 if (CodeGenOpts
.PointerAuth
.ReturnAddresses
)
890 Fn
->addFnAttr("ptrauth-returns");
891 if (CodeGenOpts
.PointerAuth
.FunctionPointers
)
892 Fn
->addFnAttr("ptrauth-calls");
893 if (CodeGenOpts
.PointerAuth
.AuthTraps
)
894 Fn
->addFnAttr("ptrauth-auth-traps");
895 if (CodeGenOpts
.PointerAuth
.IndirectGotos
)
896 Fn
->addFnAttr("ptrauth-indirect-gotos");
897 if (CodeGenOpts
.PointerAuth
.AArch64JumpTableHardening
)
898 Fn
->addFnAttr("aarch64-jump-table-hardening");
900 // Apply xray attributes to the function (as a string, for now)
901 bool AlwaysXRayAttr
= false;
902 if (const auto *XRayAttr
= D
? D
->getAttr
<XRayInstrumentAttr
>() : nullptr) {
903 if (CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
904 XRayInstrKind::FunctionEntry
) ||
905 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
906 XRayInstrKind::FunctionExit
)) {
907 if (XRayAttr
->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
908 Fn
->addFnAttr("function-instrument", "xray-always");
909 AlwaysXRayAttr
= true;
911 if (XRayAttr
->neverXRayInstrument())
912 Fn
->addFnAttr("function-instrument", "xray-never");
913 if (const auto *LogArgs
= D
->getAttr
<XRayLogArgsAttr
>())
914 if (ShouldXRayInstrumentFunction())
915 Fn
->addFnAttr("xray-log-args",
916 llvm::utostr(LogArgs
->getArgumentCount()));
919 if (ShouldXRayInstrumentFunction() && !CGM
.imbueXRayAttrs(Fn
, Loc
))
921 "xray-instruction-threshold",
922 llvm::itostr(CGM
.getCodeGenOpts().XRayInstructionThreshold
));
925 if (ShouldXRayInstrumentFunction()) {
926 if (CGM
.getCodeGenOpts().XRayIgnoreLoops
)
927 Fn
->addFnAttr("xray-ignore-loops");
929 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
930 XRayInstrKind::FunctionExit
))
931 Fn
->addFnAttr("xray-skip-exit");
933 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
934 XRayInstrKind::FunctionEntry
))
935 Fn
->addFnAttr("xray-skip-entry");
937 auto FuncGroups
= CGM
.getCodeGenOpts().XRayTotalFunctionGroups
;
938 if (FuncGroups
> 1) {
939 auto FuncName
= llvm::ArrayRef
<uint8_t>(CurFn
->getName().bytes_begin(),
940 CurFn
->getName().bytes_end());
941 auto Group
= crc32(FuncName
) % FuncGroups
;
942 if (Group
!= CGM
.getCodeGenOpts().XRaySelectedFunctionGroup
&&
944 Fn
->addFnAttr("function-instrument", "xray-never");
948 if (CGM
.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone
) {
949 switch (CGM
.isFunctionBlockedFromProfileInstr(Fn
, Loc
)) {
950 case ProfileList::Skip
:
951 Fn
->addFnAttr(llvm::Attribute::SkipProfile
);
953 case ProfileList::Forbid
:
954 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
956 case ProfileList::Allow
:
961 unsigned Count
, Offset
;
962 if (const auto *Attr
=
963 D
? D
->getAttr
<PatchableFunctionEntryAttr
>() : nullptr) {
964 Count
= Attr
->getCount();
965 Offset
= Attr
->getOffset();
967 Count
= CGM
.getCodeGenOpts().PatchableFunctionEntryCount
;
968 Offset
= CGM
.getCodeGenOpts().PatchableFunctionEntryOffset
;
970 if (Count
&& Offset
<= Count
) {
971 Fn
->addFnAttr("patchable-function-entry", std::to_string(Count
- Offset
));
973 Fn
->addFnAttr("patchable-function-prefix", std::to_string(Offset
));
975 // Instruct that functions for COFF/CodeView targets should start with a
976 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
977 // backends as they don't need it -- instructions on these architectures are
978 // always atomically patchable at runtime.
979 if (CGM
.getCodeGenOpts().HotPatch
&&
980 getContext().getTargetInfo().getTriple().isX86() &&
981 getContext().getTargetInfo().getTriple().getEnvironment() !=
982 llvm::Triple::CODE16
)
983 Fn
->addFnAttr("patchable-function", "prologue-short-redirect");
985 // Add no-jump-tables value.
986 if (CGM
.getCodeGenOpts().NoUseJumpTables
)
987 Fn
->addFnAttr("no-jump-tables", "true");
989 // Add no-inline-line-tables value.
990 if (CGM
.getCodeGenOpts().NoInlineLineTables
)
991 Fn
->addFnAttr("no-inline-line-tables");
993 // Add profile-sample-accurate value.
994 if (CGM
.getCodeGenOpts().ProfileSampleAccurate
)
995 Fn
->addFnAttr("profile-sample-accurate");
997 if (!CGM
.getCodeGenOpts().SampleProfileFile
.empty())
998 Fn
->addFnAttr("use-sample-profile");
1000 if (D
&& D
->hasAttr
<CFICanonicalJumpTableAttr
>())
1001 Fn
->addFnAttr("cfi-canonical-jump-table");
1003 if (D
&& D
->hasAttr
<NoProfileFunctionAttr
>())
1004 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
1006 if (D
&& D
->hasAttr
<HybridPatchableAttr
>())
1007 Fn
->addFnAttr(llvm::Attribute::HybridPatchable
);
1010 // Function attributes take precedence over command line flags.
1011 if (auto *A
= D
->getAttr
<FunctionReturnThunksAttr
>()) {
1012 switch (A
->getThunkType()) {
1013 case FunctionReturnThunksAttr::Kind::Keep
:
1015 case FunctionReturnThunksAttr::Kind::Extern
:
1016 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
1019 } else if (CGM
.getCodeGenOpts().FunctionReturnThunks
)
1020 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
1023 if (FD
&& (getLangOpts().OpenCL
||
1024 (getLangOpts().CUDA
&&
1025 getContext().getTargetInfo().getTriple().isSPIRV()) ||
1026 ((getLangOpts().HIP
|| getLangOpts().OffloadViaLLVM
) &&
1027 getLangOpts().CUDAIsDevice
))) {
1028 // Add metadata for a kernel function.
1029 EmitKernelMetadata(FD
, Fn
);
1032 if (FD
&& FD
->hasAttr
<ClspvLibclcBuiltinAttr
>()) {
1033 Fn
->setMetadata("clspv_libclc_builtin",
1034 llvm::MDNode::get(getLLVMContext(), {}));
1037 // If we are checking function types, emit a function type signature as
1039 if (FD
&& SanOpts
.has(SanitizerKind::Function
)) {
1040 if (llvm::Constant
*PrologueSig
= getPrologueSignature(CGM
, FD
)) {
1041 llvm::LLVMContext
&Ctx
= Fn
->getContext();
1042 llvm::MDBuilder
MDB(Ctx
);
1044 llvm::LLVMContext::MD_func_sanitize
,
1045 MDB
.createRTTIPointerPrologue(
1046 PrologueSig
, getUBSanFunctionTypeHash(FD
->getType())));
1050 // If we're checking nullability, we need to know whether we can check the
1051 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1052 if (SanOpts
.has(SanitizerKind::NullabilityReturn
)) {
1053 auto Nullability
= FnRetTy
->getNullability();
1054 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
&&
1055 !FnRetTy
->isRecordType()) {
1056 if (!(SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) &&
1057 CurCodeDecl
&& CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>()))
1058 RetValNullabilityPrecondition
=
1059 llvm::ConstantInt::getTrue(getLLVMContext());
1063 // If we're in C++ mode and the function name is "main", it is guaranteed
1064 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1065 // used within a program").
1067 // OpenCL C 2.0 v2.2-11 s6.9.i:
1068 // Recursion is not supported.
1071 // Recursion is not supported.
1073 // SYCL v1.2.1 s3.10:
1074 // kernels cannot include RTTI information, exception classes,
1075 // recursive code, virtual functions or make use of C++ libraries that
1076 // are not compiled for the device.
1078 ((getLangOpts().CPlusPlus
&& FD
->isMain()) || getLangOpts().OpenCL
||
1079 getLangOpts().HLSL
|| getLangOpts().SYCLIsDevice
||
1080 (getLangOpts().CUDA
&& FD
->hasAttr
<CUDAGlobalAttr
>())))
1081 Fn
->addFnAttr(llvm::Attribute::NoRecurse
);
1083 llvm::RoundingMode RM
= getLangOpts().getDefaultRoundingMode();
1084 llvm::fp::ExceptionBehavior FPExceptionBehavior
=
1085 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1086 Builder
.setDefaultConstrainedRounding(RM
);
1087 Builder
.setDefaultConstrainedExcept(FPExceptionBehavior
);
1088 if ((FD
&& (FD
->UsesFPIntrin() || FD
->hasAttr
<StrictFPAttr
>())) ||
1089 (!FD
&& (FPExceptionBehavior
!= llvm::fp::ebIgnore
||
1090 RM
!= llvm::RoundingMode::NearestTiesToEven
))) {
1091 Builder
.setIsFPConstrained(true);
1092 Fn
->addFnAttr(llvm::Attribute::StrictFP
);
1095 // If a custom alignment is used, force realigning to this alignment on
1096 // any main function which certainly will need it.
1097 if (FD
&& ((FD
->isMain() || FD
->isMSVCRTEntryPoint()) &&
1098 CGM
.getCodeGenOpts().StackAlignment
))
1099 Fn
->addFnAttr("stackrealign");
1101 // "main" doesn't need to zero out call-used registers.
1102 if (FD
&& FD
->isMain())
1103 Fn
->removeFnAttr("zero-call-used-regs");
1105 // Add vscale_range attribute if appropriate.
1106 std::optional
<std::pair
<unsigned, unsigned>> VScaleRange
=
1107 getContext().getTargetInfo().getVScaleRange(
1108 getLangOpts(), FD
? IsArmStreamingFunction(FD
, true) : false);
1110 CurFn
->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1111 getLLVMContext(), VScaleRange
->first
, VScaleRange
->second
));
1114 llvm::BasicBlock
*EntryBB
= createBasicBlock("entry", CurFn
);
1116 // Create a marker to make it easy to insert allocas into the entryblock
1117 // later. Don't create this with the builder, because we don't want it
1119 llvm::Value
*Poison
= llvm::PoisonValue::get(Int32Ty
);
1120 AllocaInsertPt
= new llvm::BitCastInst(Poison
, Int32Ty
, "allocapt", EntryBB
);
1122 ReturnBlock
= getJumpDestInCurrentScope("return");
1124 Builder
.SetInsertPoint(EntryBB
);
1126 // If we're checking the return value, allocate space for a pointer to a
1127 // precise source location of the checked return statement.
1128 if (requiresReturnValueCheck()) {
1129 ReturnLocation
= CreateDefaultAlignTempAlloca(Int8PtrTy
, "return.sloc.ptr");
1130 Builder
.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy
),
1134 // Emit subprogram debug descriptor.
1135 if (CGDebugInfo
*DI
= getDebugInfo()) {
1136 // Reconstruct the type from the argument list so that implicit parameters,
1137 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1139 DI
->emitFunctionStart(GD
, Loc
, StartLoc
,
1140 DI
->getFunctionType(FD
, RetTy
, Args
), CurFn
,
1144 if (ShouldInstrumentFunction()) {
1145 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
1146 CurFn
->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1147 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
1148 CurFn
->addFnAttr("instrument-function-entry-inlined",
1149 "__cyg_profile_func_enter");
1150 if (CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
1151 CurFn
->addFnAttr("instrument-function-entry-inlined",
1152 "__cyg_profile_func_enter_bare");
1155 // Since emitting the mcount call here impacts optimizations such as function
1156 // inlining, we just add an attribute to insert a mcount call in backend.
1157 // The attribute "counting-function" is set to mcount function name which is
1158 // architecture dependent.
1159 if (CGM
.getCodeGenOpts().InstrumentForProfiling
) {
1160 // Calls to fentry/mcount should not be generated if function has
1161 // the no_instrument_function attribute.
1162 if (!CurFuncDecl
|| !CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>()) {
1163 if (CGM
.getCodeGenOpts().CallFEntry
)
1164 Fn
->addFnAttr("fentry-call", "true");
1166 Fn
->addFnAttr("instrument-function-entry-inlined",
1167 getTarget().getMCountName());
1169 if (CGM
.getCodeGenOpts().MNopMCount
) {
1170 if (!CGM
.getCodeGenOpts().CallFEntry
)
1171 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1172 << "-mnop-mcount" << "-mfentry";
1173 Fn
->addFnAttr("mnop-mcount");
1176 if (CGM
.getCodeGenOpts().RecordMCount
) {
1177 if (!CGM
.getCodeGenOpts().CallFEntry
)
1178 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1179 << "-mrecord-mcount" << "-mfentry";
1180 Fn
->addFnAttr("mrecord-mcount");
1185 if (CGM
.getCodeGenOpts().PackedStack
) {
1186 if (getContext().getTargetInfo().getTriple().getArch() !=
1187 llvm::Triple::systemz
)
1188 CGM
.getDiags().Report(diag::err_opt_not_valid_on_target
)
1189 << "-mpacked-stack";
1190 Fn
->addFnAttr("packed-stack");
1193 if (CGM
.getCodeGenOpts().WarnStackSize
!= UINT_MAX
&&
1194 !CGM
.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than
, Loc
))
1195 Fn
->addFnAttr("warn-stack-size",
1196 std::to_string(CGM
.getCodeGenOpts().WarnStackSize
));
1198 if (RetTy
->isVoidType()) {
1199 // Void type; nothing to return.
1200 ReturnValue
= Address::invalid();
1202 // Count the implicit return.
1203 if (!endsWithReturn(D
))
1205 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
) {
1206 // Indirect return; emit returned value directly into sret slot.
1207 // This reduces code size, and affects correctness in C++.
1208 auto AI
= CurFn
->arg_begin();
1209 if (CurFnInfo
->getReturnInfo().isSRetAfterThis())
1211 ReturnValue
= makeNaturalAddressForPointer(
1212 &*AI
, RetTy
, CurFnInfo
->getReturnInfo().getIndirectAlign(), false,
1213 nullptr, nullptr, KnownNonNull
);
1214 if (!CurFnInfo
->getReturnInfo().getIndirectByVal()) {
1215 ReturnValuePointer
=
1216 CreateDefaultAlignTempAlloca(ReturnValue
.getType(), "result.ptr");
1217 Builder
.CreateStore(ReturnValue
.emitRawPointer(*this),
1218 ReturnValuePointer
);
1220 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::InAlloca
&&
1221 !hasScalarEvaluationKind(CurFnInfo
->getReturnType())) {
1222 // Load the sret pointer from the argument struct and return into that.
1223 unsigned Idx
= CurFnInfo
->getReturnInfo().getInAllocaFieldIndex();
1224 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
1226 llvm::Value
*Addr
= Builder
.CreateStructGEP(
1227 CurFnInfo
->getArgStruct(), &*EI
, Idx
);
1229 cast
<llvm::GetElementPtrInst
>(Addr
)->getResultElementType();
1230 ReturnValuePointer
= Address(Addr
, Ty
, getPointerAlign());
1231 Addr
= Builder
.CreateAlignedLoad(Ty
, Addr
, getPointerAlign(), "agg.result");
1232 ReturnValue
= Address(Addr
, ConvertType(RetTy
),
1233 CGM
.getNaturalTypeAlignment(RetTy
), KnownNonNull
);
1235 ReturnValue
= CreateIRTemp(RetTy
, "retval");
1237 // Tell the epilog emitter to autorelease the result. We do this
1238 // now so that various specialized functions can suppress it
1239 // during their IR-generation.
1240 if (getLangOpts().ObjCAutoRefCount
&&
1241 !CurFnInfo
->isReturnsRetained() &&
1242 RetTy
->isObjCRetainableType())
1243 AutoreleaseResult
= true;
1246 EmitStartEHSpec(CurCodeDecl
);
1248 PrologueCleanupDepth
= EHStack
.stable_begin();
1250 // Emit OpenMP specific initialization of the device functions.
1251 if (getLangOpts().OpenMP
&& CurCodeDecl
)
1252 CGM
.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl
);
1254 if (FD
&& getLangOpts().HLSL
) {
1255 // Handle emitting HLSL entry functions.
1256 if (FD
->hasAttr
<HLSLShaderAttr
>()) {
1257 CGM
.getHLSLRuntime().emitEntryFunction(FD
, Fn
);
1259 CGM
.getHLSLRuntime().setHLSLFunctionAttributes(FD
, Fn
);
1262 EmitFunctionProlog(*CurFnInfo
, CurFn
, Args
);
1264 if (const CXXMethodDecl
*MD
= dyn_cast_if_present
<CXXMethodDecl
>(D
);
1265 MD
&& !MD
->isStatic()) {
1267 MD
->getParent()->isLambda() && MD
->getOverloadedOperator() == OO_Call
;
1268 if (MD
->isImplicitObjectMemberFunction())
1269 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
1271 // We're in a lambda; figure out the captures.
1272 MD
->getParent()->getCaptureFields(LambdaCaptureFields
,
1273 LambdaThisCaptureField
);
1274 if (LambdaThisCaptureField
) {
1275 // If the lambda captures the object referred to by '*this' - either by
1276 // value or by reference, make sure CXXThisValue points to the correct
1279 // Get the lvalue for the field (which is a copy of the enclosing object
1280 // or contains the address of the enclosing object).
1281 LValue ThisFieldLValue
= EmitLValueForLambdaField(LambdaThisCaptureField
);
1282 if (!LambdaThisCaptureField
->getType()->isPointerType()) {
1283 // If the enclosing object was captured by value, just use its
1284 // address. Sign this pointer.
1285 CXXThisValue
= ThisFieldLValue
.getPointer(*this);
1287 // Load the lvalue pointed to by the field, since '*this' was captured
1290 EmitLoadOfLValue(ThisFieldLValue
, SourceLocation()).getScalarVal();
1293 for (auto *FD
: MD
->getParent()->fields()) {
1294 if (FD
->hasCapturedVLAType()) {
1295 auto *ExprArg
= EmitLoadOfLValue(EmitLValueForLambdaField(FD
),
1296 SourceLocation()).getScalarVal();
1297 auto VAT
= FD
->getCapturedVLAType();
1298 VLASizeMap
[VAT
->getSizeExpr()] = ExprArg
;
1301 } else if (MD
->isImplicitObjectMemberFunction()) {
1302 // Not in a lambda; just use 'this' from the method.
1303 // FIXME: Should we generate a new load for each use of 'this'? The
1304 // fast register allocator would be happier...
1305 CXXThisValue
= CXXABIThisValue
;
1308 // Check the 'this' pointer once per function, if it's available.
1309 if (CXXABIThisValue
) {
1310 SanitizerSet SkippedChecks
;
1311 SkippedChecks
.set(SanitizerKind::ObjectSize
, true);
1312 QualType ThisTy
= MD
->getThisType();
1314 // If this is the call operator of a lambda with no captures, it
1315 // may have a static invoker function, which may call this operator with
1316 // a null 'this' pointer.
1317 if (isLambdaCallOperator(MD
) && MD
->getParent()->isCapturelessLambda())
1318 SkippedChecks
.set(SanitizerKind::Null
, true);
1321 isa
<CXXConstructorDecl
>(MD
) ? TCK_ConstructorCall
: TCK_MemberCall
,
1322 Loc
, CXXABIThisValue
, ThisTy
, CXXABIThisAlignment
, SkippedChecks
);
1326 // If any of the arguments have a variably modified type, make sure to
1327 // emit the type size, but only if the function is not naked. Naked functions
1328 // have no prolog to run this evaluation.
1329 if (!FD
|| !FD
->hasAttr
<NakedAttr
>()) {
1330 for (const VarDecl
*VD
: Args
) {
1331 // Dig out the type as written from ParmVarDecls; it's unclear whether
1332 // the standard (C99 6.9.1p10) requires this, but we're following the
1333 // precedent set by gcc.
1335 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(VD
))
1336 Ty
= PVD
->getOriginalType();
1340 if (Ty
->isVariablyModifiedType())
1341 EmitVariablyModifiedType(Ty
);
1344 // Emit a location at the end of the prologue.
1345 if (CGDebugInfo
*DI
= getDebugInfo())
1346 DI
->EmitLocation(Builder
, StartLoc
);
1347 // TODO: Do we need to handle this in two places like we do with
1348 // target-features/target-cpu?
1350 if (const auto *VecWidth
= CurFuncDecl
->getAttr
<MinVectorWidthAttr
>())
1351 LargestVectorWidth
= VecWidth
->getVectorWidth();
1353 if (CGM
.shouldEmitConvergenceTokens())
1354 ConvergenceTokenStack
.push_back(getOrEmitConvergenceEntryToken(CurFn
));
1357 void CodeGenFunction::EmitFunctionBody(const Stmt
*Body
) {
1358 incrementProfileCounter(Body
);
1359 maybeCreateMCDCCondBitmap();
1360 if (const CompoundStmt
*S
= dyn_cast
<CompoundStmt
>(Body
))
1361 EmitCompoundStmtWithoutScope(*S
);
1366 /// When instrumenting to collect profile data, the counts for some blocks
1367 /// such as switch cases need to not include the fall-through counts, so
1368 /// emit a branch around the instrumentation code. When not instrumenting,
1369 /// this just calls EmitBlock().
1370 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock
*BB
,
1372 llvm::BasicBlock
*SkipCountBB
= nullptr;
1373 // Do not skip over the instrumentation when single byte coverage mode is
1375 if (HaveInsertPoint() && CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1376 !llvm::EnableSingleByteCoverage
) {
1377 // When instrumenting for profiling, the fallthrough to certain
1378 // statements needs to skip over the instrumentation code so that we
1379 // get an accurate count.
1380 SkipCountBB
= createBasicBlock("skipcount");
1381 EmitBranch(SkipCountBB
);
1384 uint64_t CurrentCount
= getCurrentProfileCount();
1385 incrementProfileCounter(S
);
1386 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount
);
1388 EmitBlock(SkipCountBB
);
1391 /// Tries to mark the given function nounwind based on the
1392 /// non-existence of any throwing calls within it. We believe this is
1393 /// lightweight enough to do at -O0.
1394 static void TryMarkNoThrow(llvm::Function
*F
) {
1395 // LLVM treats 'nounwind' on a function as part of the type, so we
1396 // can't do this on functions that can be overwritten.
1397 if (F
->isInterposable()) return;
1399 for (llvm::BasicBlock
&BB
: *F
)
1400 for (llvm::Instruction
&I
: BB
)
1404 F
->setDoesNotThrow();
1407 QualType
CodeGenFunction::BuildFunctionArgList(GlobalDecl GD
,
1408 FunctionArgList
&Args
) {
1409 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1410 QualType ResTy
= FD
->getReturnType();
1412 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
1413 if (MD
&& MD
->isImplicitObjectMemberFunction()) {
1414 if (CGM
.getCXXABI().HasThisReturn(GD
))
1415 ResTy
= MD
->getThisType();
1416 else if (CGM
.getCXXABI().hasMostDerivedReturn(GD
))
1417 ResTy
= CGM
.getContext().VoidPtrTy
;
1418 CGM
.getCXXABI().buildThisParam(*this, Args
);
1421 // The base version of an inheriting constructor whose constructed base is a
1422 // virtual base is not passed any arguments (because it doesn't actually call
1423 // the inherited constructor).
1424 bool PassedParams
= true;
1425 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(FD
))
1426 if (auto Inherited
= CD
->getInheritedConstructor())
1428 getTypes().inheritingCtorHasParams(Inherited
, GD
.getCtorType());
1431 for (auto *Param
: FD
->parameters()) {
1432 Args
.push_back(Param
);
1433 if (!Param
->hasAttr
<PassObjectSizeAttr
>())
1436 auto *Implicit
= ImplicitParamDecl::Create(
1437 getContext(), Param
->getDeclContext(), Param
->getLocation(),
1438 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other
);
1439 SizeArguments
[Param
] = Implicit
;
1440 Args
.push_back(Implicit
);
1444 if (MD
&& (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)))
1445 CGM
.getCXXABI().addImplicitStructorParams(*this, ResTy
, Args
);
1450 void CodeGenFunction::GenerateCode(GlobalDecl GD
, llvm::Function
*Fn
,
1451 const CGFunctionInfo
&FnInfo
) {
1452 assert(Fn
&& "generating code for null Function");
1453 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1456 FunctionArgList Args
;
1457 QualType ResTy
= BuildFunctionArgList(GD
, Args
);
1459 CGM
.getTargetCodeGenInfo().checkFunctionABI(CGM
, FD
);
1461 if (FD
->isInlineBuiltinDeclaration()) {
1462 // When generating code for a builtin with an inline declaration, use a
1463 // mangled name to hold the actual body, while keeping an external
1464 // definition in case the function pointer is referenced somewhere.
1465 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1466 llvm::Module
*M
= Fn
->getParent();
1467 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
1469 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
1470 llvm::GlobalValue::InternalLinkage
,
1471 Fn
->getAddressSpace(), FDInlineName
, M
);
1472 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
1474 Fn
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
1477 // Detect the unusual situation where an inline version is shadowed by a
1478 // non-inline version. In that case we should pick the external one
1479 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1480 // to detect that situation before we reach codegen, so do some late
1482 for (const FunctionDecl
*PD
= FD
->getPreviousDecl(); PD
;
1483 PD
= PD
->getPreviousDecl()) {
1484 if (LLVM_UNLIKELY(PD
->isInlineBuiltinDeclaration())) {
1485 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1486 llvm::Module
*M
= Fn
->getParent();
1487 if (llvm::Function
*Clone
= M
->getFunction(FDInlineName
)) {
1488 Clone
->replaceAllUsesWith(Fn
);
1489 Clone
->eraseFromParent();
1496 // Check if we should generate debug info for this function.
1497 if (FD
->hasAttr
<NoDebugAttr
>()) {
1498 // Clear non-distinct debug info that was possibly attached to the function
1499 // due to an earlier declaration without the nodebug attribute
1500 Fn
->setSubprogram(nullptr);
1501 // Disable debug info indefinitely for this function
1502 DebugInfo
= nullptr;
1505 // The function might not have a body if we're generating thunks for a
1506 // function declaration.
1507 SourceRange BodyRange
;
1508 if (Stmt
*Body
= FD
->getBody())
1509 BodyRange
= Body
->getSourceRange();
1511 BodyRange
= FD
->getLocation();
1512 CurEHLocation
= BodyRange
.getEnd();
1514 // Use the location of the start of the function to determine where
1515 // the function definition is located. By default use the location
1516 // of the declaration as the location for the subprogram. A function
1517 // may lack a declaration in the source code if it is created by code
1518 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1519 SourceLocation Loc
= FD
->getLocation();
1521 // If this is a function specialization then use the pattern body
1522 // as the location for the function.
1523 if (const FunctionDecl
*SpecDecl
= FD
->getTemplateInstantiationPattern())
1524 if (SpecDecl
->hasBody(SpecDecl
))
1525 Loc
= SpecDecl
->getLocation();
1527 Stmt
*Body
= FD
->getBody();
1530 // Coroutines always emit lifetime markers.
1531 if (isa
<CoroutineBodyStmt
>(Body
))
1532 ShouldEmitLifetimeMarkers
= true;
1534 // Initialize helper which will detect jumps which can cause invalid
1535 // lifetime markers.
1536 if (ShouldEmitLifetimeMarkers
)
1537 Bypasses
.Init(Body
);
1540 // Emit the standard function prologue.
1541 StartFunction(GD
, ResTy
, Fn
, FnInfo
, Args
, Loc
, BodyRange
.getBegin());
1543 // Save parameters for coroutine function.
1544 if (Body
&& isa_and_nonnull
<CoroutineBodyStmt
>(Body
))
1545 llvm::append_range(FnArgs
, FD
->parameters());
1547 // Ensure that the function adheres to the forward progress guarantee, which
1548 // is required by certain optimizations.
1549 // In C++11 and up, the attribute will be removed if the body contains a
1550 // trivial empty loop.
1551 if (checkIfFunctionMustProgress())
1552 CurFn
->addFnAttr(llvm::Attribute::MustProgress
);
1554 // Generate the body of the function.
1555 PGO
.assignRegionCounters(GD
, CurFn
);
1556 if (isa
<CXXDestructorDecl
>(FD
))
1557 EmitDestructorBody(Args
);
1558 else if (isa
<CXXConstructorDecl
>(FD
))
1559 EmitConstructorBody(Args
);
1560 else if (getLangOpts().CUDA
&&
1561 !getLangOpts().CUDAIsDevice
&&
1562 FD
->hasAttr
<CUDAGlobalAttr
>())
1563 CGM
.getCUDARuntime().emitDeviceStub(*this, Args
);
1564 else if (isa
<CXXMethodDecl
>(FD
) &&
1565 cast
<CXXMethodDecl
>(FD
)->isLambdaStaticInvoker()) {
1566 // The lambda static invoker function is special, because it forwards or
1567 // clones the body of the function call operator (but is actually static).
1568 EmitLambdaStaticInvokeBody(cast
<CXXMethodDecl
>(FD
));
1569 } else if (isa
<CXXMethodDecl
>(FD
) &&
1570 isLambdaCallOperator(cast
<CXXMethodDecl
>(FD
)) &&
1571 !FnInfo
.isDelegateCall() &&
1572 cast
<CXXMethodDecl
>(FD
)->getParent()->getLambdaStaticInvoker() &&
1573 hasInAllocaArg(cast
<CXXMethodDecl
>(FD
))) {
1574 // If emitting a lambda with static invoker on X86 Windows, change
1575 // the call operator body.
1576 // Make sure that this is a call operator with an inalloca arg and check
1577 // for delegate call to make sure this is the original call op and not the
1578 // new forwarding function for the static invoker.
1579 EmitLambdaInAllocaCallOpBody(cast
<CXXMethodDecl
>(FD
));
1580 } else if (FD
->isDefaulted() && isa
<CXXMethodDecl
>(FD
) &&
1581 (cast
<CXXMethodDecl
>(FD
)->isCopyAssignmentOperator() ||
1582 cast
<CXXMethodDecl
>(FD
)->isMoveAssignmentOperator())) {
1583 // Implicit copy-assignment gets the same special treatment as implicit
1584 // copy-constructors.
1585 emitImplicitAssignmentOperatorBody(Args
);
1587 EmitFunctionBody(Body
);
1589 llvm_unreachable("no definition for emitted function");
1591 // C++11 [stmt.return]p2:
1592 // Flowing off the end of a function [...] results in undefined behavior in
1593 // a value-returning function.
1595 // If the '}' that terminates a function is reached, and the value of the
1596 // function call is used by the caller, the behavior is undefined.
1597 if (getLangOpts().CPlusPlus
&& !FD
->hasImplicitReturnZero() && !SawAsmBlock
&&
1598 !FD
->getReturnType()->isVoidType() && Builder
.GetInsertBlock()) {
1599 bool ShouldEmitUnreachable
=
1600 CGM
.getCodeGenOpts().StrictReturn
||
1601 !CGM
.MayDropFunctionReturn(FD
->getASTContext(), FD
->getReturnType());
1602 if (SanOpts
.has(SanitizerKind::Return
)) {
1603 SanitizerScope
SanScope(this);
1604 llvm::Value
*IsFalse
= Builder
.getFalse();
1605 EmitCheck(std::make_pair(IsFalse
, SanitizerKind::SO_Return
),
1606 SanitizerHandler::MissingReturn
,
1607 EmitCheckSourceLocation(FD
->getLocation()), {});
1608 } else if (ShouldEmitUnreachable
) {
1609 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1610 EmitTrapCall(llvm::Intrinsic::trap
);
1612 if (SanOpts
.has(SanitizerKind::Return
) || ShouldEmitUnreachable
) {
1613 Builder
.CreateUnreachable();
1614 Builder
.ClearInsertionPoint();
1618 // Emit the standard function epilogue.
1619 FinishFunction(BodyRange
.getEnd());
1621 PGO
.verifyCounterMap();
1623 // If we haven't marked the function nothrow through other means, do
1624 // a quick pass now to see if we can.
1625 if (!CurFn
->doesNotThrow())
1626 TryMarkNoThrow(CurFn
);
1629 /// ContainsLabel - Return true if the statement contains a label in it. If
1630 /// this statement is not executed normally, it not containing a label means
1631 /// that we can just remove the code.
1632 bool CodeGenFunction::ContainsLabel(const Stmt
*S
, bool IgnoreCaseStmts
) {
1633 // Null statement, not a label!
1634 if (!S
) return false;
1636 // If this is a label, we have to emit the code, consider something like:
1637 // if (0) { ... foo: bar(); } goto foo;
1639 // TODO: If anyone cared, we could track __label__'s, since we know that you
1640 // can't jump to one from outside their declared region.
1641 if (isa
<LabelStmt
>(S
))
1644 // If this is a case/default statement, and we haven't seen a switch, we have
1645 // to emit the code.
1646 if (isa
<SwitchCase
>(S
) && !IgnoreCaseStmts
)
1649 // If this is a switch statement, we want to ignore cases below it.
1650 if (isa
<SwitchStmt
>(S
))
1651 IgnoreCaseStmts
= true;
1653 // Scan subexpressions for verboten labels.
1654 for (const Stmt
*SubStmt
: S
->children())
1655 if (ContainsLabel(SubStmt
, IgnoreCaseStmts
))
1661 /// containsBreak - Return true if the statement contains a break out of it.
1662 /// If the statement (recursively) contains a switch or loop with a break
1663 /// inside of it, this is fine.
1664 bool CodeGenFunction::containsBreak(const Stmt
*S
) {
1665 // Null statement, not a label!
1666 if (!S
) return false;
1668 // If this is a switch or loop that defines its own break scope, then we can
1669 // include it and anything inside of it.
1670 if (isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) || isa
<DoStmt
>(S
) ||
1674 if (isa
<BreakStmt
>(S
))
1677 // Scan subexpressions for verboten breaks.
1678 for (const Stmt
*SubStmt
: S
->children())
1679 if (containsBreak(SubStmt
))
1685 bool CodeGenFunction::mightAddDeclToScope(const Stmt
*S
) {
1686 if (!S
) return false;
1688 // Some statement kinds add a scope and thus never add a decl to the current
1689 // scope. Note, this list is longer than the list of statements that might
1690 // have an unscoped decl nested within them, but this way is conservatively
1691 // correct even if more statement kinds are added.
1692 if (isa
<IfStmt
>(S
) || isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) ||
1693 isa
<DoStmt
>(S
) || isa
<ForStmt
>(S
) || isa
<CompoundStmt
>(S
) ||
1694 isa
<CXXForRangeStmt
>(S
) || isa
<CXXTryStmt
>(S
) ||
1695 isa
<ObjCForCollectionStmt
>(S
) || isa
<ObjCAtTryStmt
>(S
))
1698 if (isa
<DeclStmt
>(S
))
1701 for (const Stmt
*SubStmt
: S
->children())
1702 if (mightAddDeclToScope(SubStmt
))
1708 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1709 /// to a constant, or if it does but contains a label, return false. If it
1710 /// constant folds return true and set the boolean result in Result.
1711 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1714 // If MC/DC is enabled, disable folding so that we can instrument all
1715 // conditions to yield complete test vectors. We still keep track of
1716 // folded conditions during region mapping and visualization.
1717 if (!AllowLabels
&& CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1718 CGM
.getCodeGenOpts().MCDCCoverage
)
1721 llvm::APSInt ResultInt
;
1722 if (!ConstantFoldsToSimpleInteger(Cond
, ResultInt
, AllowLabels
))
1725 ResultBool
= ResultInt
.getBoolValue();
1729 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1730 /// to a constant, or if it does but contains a label, return false. If it
1731 /// constant folds return true and set the folded value.
1732 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1733 llvm::APSInt
&ResultInt
,
1735 // FIXME: Rename and handle conversion of other evaluatable things
1737 Expr::EvalResult Result
;
1738 if (!Cond
->EvaluateAsInt(Result
, getContext()))
1739 return false; // Not foldable, not integer or not fully evaluatable.
1741 llvm::APSInt Int
= Result
.Val
.getInt();
1742 if (!AllowLabels
&& CodeGenFunction::ContainsLabel(Cond
))
1743 return false; // Contains a label.
1745 PGO
.markStmtMaybeUsed(Cond
);
1750 /// Strip parentheses and simplistic logical-NOT operators.
1751 const Expr
*CodeGenFunction::stripCond(const Expr
*C
) {
1752 while (const UnaryOperator
*Op
= dyn_cast
<UnaryOperator
>(C
->IgnoreParens())) {
1753 if (Op
->getOpcode() != UO_LNot
)
1755 C
= Op
->getSubExpr();
1757 return C
->IgnoreParens();
1760 /// Determine whether the given condition is an instrumentable condition
1761 /// (i.e. no "&&" or "||").
1762 bool CodeGenFunction::isInstrumentedCondition(const Expr
*C
) {
1763 const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(stripCond(C
));
1764 return (!BOp
|| !BOp
->isLogicalOp());
1767 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1768 /// increments a profile counter based on the semantics of the given logical
1769 /// operator opcode. This is used to instrument branch condition coverage for
1770 /// logical operators.
1771 void CodeGenFunction::EmitBranchToCounterBlock(
1772 const Expr
*Cond
, BinaryOperator::Opcode LOp
, llvm::BasicBlock
*TrueBlock
,
1773 llvm::BasicBlock
*FalseBlock
, uint64_t TrueCount
/* = 0 */,
1774 Stmt::Likelihood LH
/* =None */, const Expr
*CntrIdx
/* = nullptr */) {
1775 // If not instrumenting, just emit a branch.
1776 bool InstrumentRegions
= CGM
.getCodeGenOpts().hasProfileClangInstr();
1777 if (!InstrumentRegions
|| !isInstrumentedCondition(Cond
))
1778 return EmitBranchOnBoolExpr(Cond
, TrueBlock
, FalseBlock
, TrueCount
, LH
);
1780 const Stmt
*CntrStmt
= (CntrIdx
? CntrIdx
: Cond
);
1782 llvm::BasicBlock
*ThenBlock
= nullptr;
1783 llvm::BasicBlock
*ElseBlock
= nullptr;
1784 llvm::BasicBlock
*NextBlock
= nullptr;
1786 // Create the block we'll use to increment the appropriate counter.
1787 llvm::BasicBlock
*CounterIncrBlock
= createBasicBlock("lop.rhscnt");
1789 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1790 // means we need to evaluate the condition and increment the counter on TRUE:
1793 // goto CounterIncrBlock;
1797 // CounterIncrBlock:
1801 if (LOp
== BO_LAnd
) {
1802 ThenBlock
= CounterIncrBlock
;
1803 ElseBlock
= FalseBlock
;
1804 NextBlock
= TrueBlock
;
1807 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1808 // we need to evaluate the condition and increment the counter on FALSE:
1813 // goto CounterIncrBlock;
1815 // CounterIncrBlock:
1819 else if (LOp
== BO_LOr
) {
1820 ThenBlock
= TrueBlock
;
1821 ElseBlock
= CounterIncrBlock
;
1822 NextBlock
= FalseBlock
;
1824 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1827 // Emit Branch based on condition.
1828 EmitBranchOnBoolExpr(Cond
, ThenBlock
, ElseBlock
, TrueCount
, LH
);
1830 // Emit the block containing the counter increment(s).
1831 EmitBlock(CounterIncrBlock
);
1833 // Increment corresponding counter; if index not provided, use Cond as index.
1834 incrementProfileCounter(CntrStmt
);
1836 // Go to the next block.
1837 EmitBranch(NextBlock
);
1840 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1841 /// statement) to the specified blocks. Based on the condition, this might try
1842 /// to simplify the codegen of the conditional based on the branch.
1843 /// \param LH The value of the likelihood attribute on the True branch.
1844 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1845 /// ConditionalOperator (ternary) through a recursive call for the operator's
1846 /// LHS and RHS nodes.
1847 void CodeGenFunction::EmitBranchOnBoolExpr(
1848 const Expr
*Cond
, llvm::BasicBlock
*TrueBlock
, llvm::BasicBlock
*FalseBlock
,
1849 uint64_t TrueCount
, Stmt::Likelihood LH
, const Expr
*ConditionalOp
) {
1850 Cond
= Cond
->IgnoreParens();
1852 if (const BinaryOperator
*CondBOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
1853 // Handle X && Y in a condition.
1854 if (CondBOp
->getOpcode() == BO_LAnd
) {
1855 MCDCLogOpStack
.push_back(CondBOp
);
1857 // If we have "1 && X", simplify the code. "0 && X" would have constant
1858 // folded if the case was simple enough.
1859 bool ConstantBool
= false;
1860 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1862 // br(1 && X) -> br(X).
1863 incrementProfileCounter(CondBOp
);
1864 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1865 FalseBlock
, TrueCount
, LH
);
1866 MCDCLogOpStack
.pop_back();
1870 // If we have "X && 1", simplify the code to use an uncond branch.
1871 // "X && 0" would have been constant folded to 0.
1872 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1874 // br(X && 1) -> br(X).
1875 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LAnd
, TrueBlock
,
1876 FalseBlock
, TrueCount
, LH
, CondBOp
);
1877 MCDCLogOpStack
.pop_back();
1881 // Emit the LHS as a conditional. If the LHS conditional is false, we
1882 // want to jump to the FalseBlock.
1883 llvm::BasicBlock
*LHSTrue
= createBasicBlock("land.lhs.true");
1884 // The counter tells us how often we evaluate RHS, and all of TrueCount
1885 // can be propagated to that branch.
1886 uint64_t RHSCount
= getProfileCount(CondBOp
->getRHS());
1888 ConditionalEvaluation
eval(*this);
1890 ApplyDebugLocation
DL(*this, Cond
);
1891 // Propagate the likelihood attribute like __builtin_expect
1892 // __builtin_expect(X && Y, 1) -> X and Y are likely
1893 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1894 EmitBranchOnBoolExpr(CondBOp
->getLHS(), LHSTrue
, FalseBlock
, RHSCount
,
1895 LH
== Stmt::LH_Unlikely
? Stmt::LH_None
: LH
);
1899 incrementProfileCounter(CondBOp
);
1900 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1902 // Any temporaries created here are conditional.
1904 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1905 FalseBlock
, TrueCount
, LH
);
1907 MCDCLogOpStack
.pop_back();
1911 if (CondBOp
->getOpcode() == BO_LOr
) {
1912 MCDCLogOpStack
.push_back(CondBOp
);
1914 // If we have "0 || X", simplify the code. "1 || X" would have constant
1915 // folded if the case was simple enough.
1916 bool ConstantBool
= false;
1917 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1919 // br(0 || X) -> br(X).
1920 incrementProfileCounter(CondBOp
);
1921 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
,
1922 FalseBlock
, TrueCount
, LH
);
1923 MCDCLogOpStack
.pop_back();
1927 // If we have "X || 0", simplify the code to use an uncond branch.
1928 // "X || 1" would have been constant folded to 1.
1929 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1931 // br(X || 0) -> br(X).
1932 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LOr
, TrueBlock
,
1933 FalseBlock
, TrueCount
, LH
, CondBOp
);
1934 MCDCLogOpStack
.pop_back();
1937 // Emit the LHS as a conditional. If the LHS conditional is true, we
1938 // want to jump to the TrueBlock.
1939 llvm::BasicBlock
*LHSFalse
= createBasicBlock("lor.lhs.false");
1940 // We have the count for entry to the RHS and for the whole expression
1941 // being true, so we can divy up True count between the short circuit and
1944 getCurrentProfileCount() - getProfileCount(CondBOp
->getRHS());
1945 uint64_t RHSCount
= TrueCount
- LHSCount
;
1947 ConditionalEvaluation
eval(*this);
1949 // Propagate the likelihood attribute like __builtin_expect
1950 // __builtin_expect(X || Y, 1) -> only Y is likely
1951 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1952 ApplyDebugLocation
DL(*this, Cond
);
1953 EmitBranchOnBoolExpr(CondBOp
->getLHS(), TrueBlock
, LHSFalse
, LHSCount
,
1954 LH
== Stmt::LH_Likely
? Stmt::LH_None
: LH
);
1955 EmitBlock(LHSFalse
);
1958 incrementProfileCounter(CondBOp
);
1959 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1961 // Any temporaries created here are conditional.
1963 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
, FalseBlock
,
1967 MCDCLogOpStack
.pop_back();
1972 if (const UnaryOperator
*CondUOp
= dyn_cast
<UnaryOperator
>(Cond
)) {
1973 // br(!x, t, f) -> br(x, f, t)
1974 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1975 // LNot is taken as part of the condition for simplicity, and changing its
1976 // sense negatively impacts test vector tracking.
1977 bool MCDCCondition
= CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1978 CGM
.getCodeGenOpts().MCDCCoverage
&&
1979 isInstrumentedCondition(Cond
);
1980 if (CondUOp
->getOpcode() == UO_LNot
&& !MCDCCondition
) {
1981 // Negate the count.
1982 uint64_t FalseCount
= getCurrentProfileCount() - TrueCount
;
1983 // The values of the enum are chosen to make this negation possible.
1984 LH
= static_cast<Stmt::Likelihood
>(-LH
);
1985 // Negate the condition and swap the destination blocks.
1986 return EmitBranchOnBoolExpr(CondUOp
->getSubExpr(), FalseBlock
, TrueBlock
,
1991 if (const ConditionalOperator
*CondOp
= dyn_cast
<ConditionalOperator
>(Cond
)) {
1992 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1993 llvm::BasicBlock
*LHSBlock
= createBasicBlock("cond.true");
1994 llvm::BasicBlock
*RHSBlock
= createBasicBlock("cond.false");
1996 // The ConditionalOperator itself has no likelihood information for its
1997 // true and false branches. This matches the behavior of __builtin_expect.
1998 ConditionalEvaluation
cond(*this);
1999 EmitBranchOnBoolExpr(CondOp
->getCond(), LHSBlock
, RHSBlock
,
2000 getProfileCount(CondOp
), Stmt::LH_None
);
2002 // When computing PGO branch weights, we only know the overall count for
2003 // the true block. This code is essentially doing tail duplication of the
2004 // naive code-gen, introducing new edges for which counts are not
2005 // available. Divide the counts proportionally between the LHS and RHS of
2006 // the conditional operator.
2007 uint64_t LHSScaledTrueCount
= 0;
2010 getProfileCount(CondOp
) / (double)getCurrentProfileCount();
2011 LHSScaledTrueCount
= TrueCount
* LHSRatio
;
2015 EmitBlock(LHSBlock
);
2016 incrementProfileCounter(CondOp
);
2018 ApplyDebugLocation
DL(*this, Cond
);
2019 EmitBranchOnBoolExpr(CondOp
->getLHS(), TrueBlock
, FalseBlock
,
2020 LHSScaledTrueCount
, LH
, CondOp
);
2025 EmitBlock(RHSBlock
);
2026 EmitBranchOnBoolExpr(CondOp
->getRHS(), TrueBlock
, FalseBlock
,
2027 TrueCount
- LHSScaledTrueCount
, LH
, CondOp
);
2033 if (const CXXThrowExpr
*Throw
= dyn_cast
<CXXThrowExpr
>(Cond
)) {
2034 // Conditional operator handling can give us a throw expression as a
2035 // condition for a case like:
2036 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2038 // br(c, throw x, br(y, t, f))
2039 EmitCXXThrowExpr(Throw
, /*KeepInsertionPoint*/false);
2043 // Emit the code with the fully general case.
2046 ApplyDebugLocation
DL(*this, Cond
);
2047 CondV
= EvaluateExprAsBool(Cond
);
2050 // If not at the top of the logical operator nest, update MCDC temp with the
2051 // boolean result of the evaluated condition.
2052 if (!MCDCLogOpStack
.empty()) {
2053 const Expr
*MCDCBaseExpr
= Cond
;
2054 // When a nested ConditionalOperator (ternary) is encountered in a boolean
2055 // expression, MC/DC tracks the result of the ternary, and this is tied to
2056 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2057 // this is the case, the ConditionalOperator expression is passed through
2058 // the ConditionalOp parameter and then used as the MCDC base expression.
2060 MCDCBaseExpr
= ConditionalOp
;
2062 maybeUpdateMCDCCondBitmap(MCDCBaseExpr
, CondV
);
2065 llvm::MDNode
*Weights
= nullptr;
2066 llvm::MDNode
*Unpredictable
= nullptr;
2068 // If the branch has a condition wrapped by __builtin_unpredictable,
2069 // create metadata that specifies that the branch is unpredictable.
2070 // Don't bother if not optimizing because that metadata would not be used.
2071 auto *Call
= dyn_cast
<CallExpr
>(Cond
->IgnoreImpCasts());
2072 if (Call
&& CGM
.getCodeGenOpts().OptimizationLevel
!= 0) {
2073 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(Call
->getCalleeDecl());
2074 if (FD
&& FD
->getBuiltinID() == Builtin::BI__builtin_unpredictable
) {
2075 llvm::MDBuilder
MDHelper(getLLVMContext());
2076 Unpredictable
= MDHelper
.createUnpredictable();
2080 // If there is a Likelihood knowledge for the cond, lower it.
2081 // Note that if not optimizing this won't emit anything.
2082 llvm::Value
*NewCondV
= emitCondLikelihoodViaExpectIntrinsic(CondV
, LH
);
2083 if (CondV
!= NewCondV
)
2086 // Otherwise, lower profile counts. Note that we do this even at -O0.
2087 uint64_t CurrentCount
= std::max(getCurrentProfileCount(), TrueCount
);
2088 Weights
= createProfileWeights(TrueCount
, CurrentCount
- TrueCount
);
2091 llvm::Instruction
*BrInst
= Builder
.CreateCondBr(CondV
, TrueBlock
, FalseBlock
,
2092 Weights
, Unpredictable
);
2093 switch (HLSLControlFlowAttr
) {
2094 case HLSLControlFlowHintAttr::Microsoft_branch
:
2095 case HLSLControlFlowHintAttr::Microsoft_flatten
: {
2096 llvm::MDBuilder
MDHelper(CGM
.getLLVMContext());
2098 llvm::ConstantInt
*BranchHintConstant
=
2099 HLSLControlFlowAttr
==
2100 HLSLControlFlowHintAttr::Spelling::Microsoft_branch
2101 ? llvm::ConstantInt::get(CGM
.Int32Ty
, 1)
2102 : llvm::ConstantInt::get(CGM
.Int32Ty
, 2);
2104 SmallVector
<llvm::Metadata
*, 2> Vals(
2105 {MDHelper
.createString("hlsl.controlflow.hint"),
2106 MDHelper
.createConstant(BranchHintConstant
)});
2107 BrInst
->setMetadata("hlsl.controlflow.hint",
2108 llvm::MDNode::get(CGM
.getLLVMContext(), Vals
));
2111 // This is required to avoid warnings during compilation
2112 case HLSLControlFlowHintAttr::SpellingNotCalculated
:
2117 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2118 /// specified stmt yet.
2119 void CodeGenFunction::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
2120 CGM
.ErrorUnsupported(S
, Type
);
2123 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2124 /// variable-length array whose elements have a non-zero bit-pattern.
2126 /// \param baseType the inner-most element type of the array
2127 /// \param src - a char* pointing to the bit-pattern for a single
2128 /// base element of the array
2129 /// \param sizeInChars - the total size of the VLA, in chars
2130 static void emitNonZeroVLAInit(CodeGenFunction
&CGF
, QualType baseType
,
2131 Address dest
, Address src
,
2132 llvm::Value
*sizeInChars
) {
2133 CGBuilderTy
&Builder
= CGF
.Builder
;
2135 CharUnits baseSize
= CGF
.getContext().getTypeSizeInChars(baseType
);
2136 llvm::Value
*baseSizeInChars
2137 = llvm::ConstantInt::get(CGF
.IntPtrTy
, baseSize
.getQuantity());
2139 Address begin
= dest
.withElementType(CGF
.Int8Ty
);
2140 llvm::Value
*end
= Builder
.CreateInBoundsGEP(begin
.getElementType(),
2141 begin
.emitRawPointer(CGF
),
2142 sizeInChars
, "vla.end");
2144 llvm::BasicBlock
*originBB
= CGF
.Builder
.GetInsertBlock();
2145 llvm::BasicBlock
*loopBB
= CGF
.createBasicBlock("vla-init.loop");
2146 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("vla-init.cont");
2148 // Make a loop over the VLA. C99 guarantees that the VLA element
2149 // count must be nonzero.
2150 CGF
.EmitBlock(loopBB
);
2152 llvm::PHINode
*cur
= Builder
.CreatePHI(begin
.getType(), 2, "vla.cur");
2153 cur
->addIncoming(begin
.emitRawPointer(CGF
), originBB
);
2155 CharUnits curAlign
=
2156 dest
.getAlignment().alignmentOfArrayElement(baseSize
);
2158 // memcpy the individual element bit-pattern.
2159 Builder
.CreateMemCpy(Address(cur
, CGF
.Int8Ty
, curAlign
), src
, baseSizeInChars
,
2160 /*volatile*/ false);
2162 // Go to the next element.
2164 Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, cur
, baseSizeInChars
, "vla.next");
2166 // Leave if that's the end of the VLA.
2167 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, end
, "vla-init.isdone");
2168 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2169 cur
->addIncoming(next
, loopBB
);
2171 CGF
.EmitBlock(contBB
);
2175 CodeGenFunction::EmitNullInitialization(Address DestPtr
, QualType Ty
) {
2176 // Ignore empty classes in C++.
2177 if (getLangOpts().CPlusPlus
) {
2178 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
2179 if (cast
<CXXRecordDecl
>(RT
->getDecl())->isEmpty())
2184 if (DestPtr
.getElementType() != Int8Ty
)
2185 DestPtr
= DestPtr
.withElementType(Int8Ty
);
2187 // Get size and alignment info for this aggregate.
2188 CharUnits size
= getContext().getTypeSizeInChars(Ty
);
2190 llvm::Value
*SizeVal
;
2191 const VariableArrayType
*vla
;
2193 // Don't bother emitting a zero-byte memset.
2194 if (size
.isZero()) {
2195 // But note that getTypeInfo returns 0 for a VLA.
2196 if (const VariableArrayType
*vlaType
=
2197 dyn_cast_or_null
<VariableArrayType
>(
2198 getContext().getAsArrayType(Ty
))) {
2199 auto VlaSize
= getVLASize(vlaType
);
2200 SizeVal
= VlaSize
.NumElts
;
2201 CharUnits eltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
2202 if (!eltSize
.isOne())
2203 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(eltSize
));
2209 SizeVal
= CGM
.getSize(size
);
2213 // If the type contains a pointer to data member we can't memset it to zero.
2214 // Instead, create a null constant and copy it to the destination.
2215 // TODO: there are other patterns besides zero that we can usefully memset,
2216 // like -1, which happens to be the pattern used by member-pointers.
2217 if (!CGM
.getTypes().isZeroInitializable(Ty
)) {
2218 // For a VLA, emit a single element, then splat that over the VLA.
2219 if (vla
) Ty
= getContext().getBaseElementType(vla
);
2221 llvm::Constant
*NullConstant
= CGM
.EmitNullConstant(Ty
);
2223 llvm::GlobalVariable
*NullVariable
=
2224 new llvm::GlobalVariable(CGM
.getModule(), NullConstant
->getType(),
2225 /*isConstant=*/true,
2226 llvm::GlobalVariable::PrivateLinkage
,
2227 NullConstant
, Twine());
2228 CharUnits NullAlign
= DestPtr
.getAlignment();
2229 NullVariable
->setAlignment(NullAlign
.getAsAlign());
2230 Address
SrcPtr(NullVariable
, Builder
.getInt8Ty(), NullAlign
);
2232 if (vla
) return emitNonZeroVLAInit(*this, Ty
, DestPtr
, SrcPtr
, SizeVal
);
2234 // Get and call the appropriate llvm.memcpy overload.
2235 Builder
.CreateMemCpy(DestPtr
, SrcPtr
, SizeVal
, false);
2239 // Otherwise, just memset the whole thing to zero. This is legal
2240 // because in LLVM, all default initializers (other than the ones we just
2241 // handled above) are guaranteed to have a bit pattern of all zeros.
2242 Builder
.CreateMemSet(DestPtr
, Builder
.getInt8(0), SizeVal
, false);
2245 llvm::BlockAddress
*CodeGenFunction::GetAddrOfLabel(const LabelDecl
*L
) {
2246 // Make sure that there is a block for the indirect goto.
2247 if (!IndirectBranch
)
2248 GetIndirectGotoBlock();
2250 llvm::BasicBlock
*BB
= getJumpDestForLabel(L
).getBlock();
2252 // Make sure the indirect branch includes all of the address-taken blocks.
2253 IndirectBranch
->addDestination(BB
);
2254 return llvm::BlockAddress::get(CurFn
, BB
);
2257 llvm::BasicBlock
*CodeGenFunction::GetIndirectGotoBlock() {
2258 // If we already made the indirect branch for indirect goto, return its block.
2259 if (IndirectBranch
) return IndirectBranch
->getParent();
2261 CGBuilderTy
TmpBuilder(*this, createBasicBlock("indirectgoto"));
2263 // Create the PHI node that indirect gotos will add entries to.
2264 llvm::Value
*DestVal
= TmpBuilder
.CreatePHI(Int8PtrTy
, 0,
2265 "indirect.goto.dest");
2267 // Create the indirect branch instruction.
2268 IndirectBranch
= TmpBuilder
.CreateIndirectBr(DestVal
);
2269 return IndirectBranch
->getParent();
2272 /// Computes the length of an array in elements, as well as the base
2273 /// element type and a properly-typed first element pointer.
2274 llvm::Value
*CodeGenFunction::emitArrayLength(const ArrayType
*origArrayType
,
2277 const ArrayType
*arrayType
= origArrayType
;
2279 // If it's a VLA, we have to load the stored size. Note that
2280 // this is the size of the VLA in bytes, not its size in elements.
2281 llvm::Value
*numVLAElements
= nullptr;
2282 if (isa
<VariableArrayType
>(arrayType
)) {
2283 numVLAElements
= getVLASize(cast
<VariableArrayType
>(arrayType
)).NumElts
;
2285 // Walk into all VLAs. This doesn't require changes to addr,
2286 // which has type T* where T is the first non-VLA element type.
2288 QualType elementType
= arrayType
->getElementType();
2289 arrayType
= getContext().getAsArrayType(elementType
);
2291 // If we only have VLA components, 'addr' requires no adjustment.
2293 baseType
= elementType
;
2294 return numVLAElements
;
2296 } while (isa
<VariableArrayType
>(arrayType
));
2298 // We get out here only if we find a constant array type
2302 // We have some number of constant-length arrays, so addr should
2303 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2304 // down to the first element of addr.
2305 SmallVector
<llvm::Value
*, 8> gepIndices
;
2307 // GEP down to the array type.
2308 llvm::ConstantInt
*zero
= Builder
.getInt32(0);
2309 gepIndices
.push_back(zero
);
2311 uint64_t countFromCLAs
= 1;
2314 llvm::ArrayType
*llvmArrayType
=
2315 dyn_cast
<llvm::ArrayType
>(addr
.getElementType());
2316 while (llvmArrayType
) {
2317 assert(isa
<ConstantArrayType
>(arrayType
));
2318 assert(cast
<ConstantArrayType
>(arrayType
)->getZExtSize() ==
2319 llvmArrayType
->getNumElements());
2321 gepIndices
.push_back(zero
);
2322 countFromCLAs
*= llvmArrayType
->getNumElements();
2323 eltType
= arrayType
->getElementType();
2326 dyn_cast
<llvm::ArrayType
>(llvmArrayType
->getElementType());
2327 arrayType
= getContext().getAsArrayType(arrayType
->getElementType());
2328 assert((!llvmArrayType
|| arrayType
) &&
2329 "LLVM and Clang types are out-of-synch");
2333 // From this point onwards, the Clang array type has been emitted
2334 // as some other type (probably a packed struct). Compute the array
2335 // size, and just emit the 'begin' expression as a bitcast.
2337 countFromCLAs
*= cast
<ConstantArrayType
>(arrayType
)->getZExtSize();
2338 eltType
= arrayType
->getElementType();
2339 arrayType
= getContext().getAsArrayType(eltType
);
2342 llvm::Type
*baseType
= ConvertType(eltType
);
2343 addr
= addr
.withElementType(baseType
);
2345 // Create the actual GEP.
2346 addr
= Address(Builder
.CreateInBoundsGEP(addr
.getElementType(),
2347 addr
.emitRawPointer(*this),
2348 gepIndices
, "array.begin"),
2349 ConvertTypeForMem(eltType
), addr
.getAlignment());
2354 llvm::Value
*numElements
2355 = llvm::ConstantInt::get(SizeTy
, countFromCLAs
);
2357 // If we had any VLA dimensions, factor them in.
2359 numElements
= Builder
.CreateNUWMul(numVLAElements
, numElements
);
2364 CodeGenFunction::VlaSizePair
CodeGenFunction::getVLASize(QualType type
) {
2365 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2366 assert(vla
&& "type was not a variable array type!");
2367 return getVLASize(vla
);
2370 CodeGenFunction::VlaSizePair
2371 CodeGenFunction::getVLASize(const VariableArrayType
*type
) {
2372 // The number of elements so far; always size_t.
2373 llvm::Value
*numElements
= nullptr;
2375 QualType elementType
;
2377 elementType
= type
->getElementType();
2378 llvm::Value
*vlaSize
= VLASizeMap
[type
->getSizeExpr()];
2379 assert(vlaSize
&& "no size for VLA!");
2380 assert(vlaSize
->getType() == SizeTy
);
2383 numElements
= vlaSize
;
2385 // It's undefined behavior if this wraps around, so mark it that way.
2386 // FIXME: Teach -fsanitize=undefined to trap this.
2387 numElements
= Builder
.CreateNUWMul(numElements
, vlaSize
);
2389 } while ((type
= getContext().getAsVariableArrayType(elementType
)));
2391 return { numElements
, elementType
};
2394 CodeGenFunction::VlaSizePair
2395 CodeGenFunction::getVLAElements1D(QualType type
) {
2396 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2397 assert(vla
&& "type was not a variable array type!");
2398 return getVLAElements1D(vla
);
2401 CodeGenFunction::VlaSizePair
2402 CodeGenFunction::getVLAElements1D(const VariableArrayType
*Vla
) {
2403 llvm::Value
*VlaSize
= VLASizeMap
[Vla
->getSizeExpr()];
2404 assert(VlaSize
&& "no size for VLA!");
2405 assert(VlaSize
->getType() == SizeTy
);
2406 return { VlaSize
, Vla
->getElementType() };
2409 void CodeGenFunction::EmitVariablyModifiedType(QualType type
) {
2410 assert(type
->isVariablyModifiedType() &&
2411 "Must pass variably modified type to EmitVLASizes!");
2413 EnsureInsertPoint();
2415 // We're going to walk down into the type and look for VLA
2418 assert(type
->isVariablyModifiedType());
2420 const Type
*ty
= type
.getTypePtr();
2421 switch (ty
->getTypeClass()) {
2423 #define TYPE(Class, Base)
2424 #define ABSTRACT_TYPE(Class, Base)
2425 #define NON_CANONICAL_TYPE(Class, Base)
2426 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2427 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2428 #include "clang/AST/TypeNodes.inc"
2429 llvm_unreachable("unexpected dependent type!");
2431 // These types are never variably-modified.
2435 case Type::ExtVector
:
2436 case Type::ConstantMatrix
:
2440 case Type::TemplateSpecialization
:
2441 case Type::ObjCTypeParam
:
2442 case Type::ObjCObject
:
2443 case Type::ObjCInterface
:
2444 case Type::ObjCObjectPointer
:
2446 llvm_unreachable("type class is never variably-modified!");
2448 case Type::Elaborated
:
2449 type
= cast
<ElaboratedType
>(ty
)->getNamedType();
2452 case Type::Adjusted
:
2453 type
= cast
<AdjustedType
>(ty
)->getAdjustedType();
2457 type
= cast
<DecayedType
>(ty
)->getPointeeType();
2461 type
= cast
<PointerType
>(ty
)->getPointeeType();
2464 case Type::BlockPointer
:
2465 type
= cast
<BlockPointerType
>(ty
)->getPointeeType();
2468 case Type::LValueReference
:
2469 case Type::RValueReference
:
2470 type
= cast
<ReferenceType
>(ty
)->getPointeeType();
2473 case Type::MemberPointer
:
2474 type
= cast
<MemberPointerType
>(ty
)->getPointeeType();
2477 case Type::ArrayParameter
:
2478 case Type::ConstantArray
:
2479 case Type::IncompleteArray
:
2480 // Losing element qualification here is fine.
2481 type
= cast
<ArrayType
>(ty
)->getElementType();
2484 case Type::VariableArray
: {
2485 // Losing element qualification here is fine.
2486 const VariableArrayType
*vat
= cast
<VariableArrayType
>(ty
);
2488 // Unknown size indication requires no size computation.
2489 // Otherwise, evaluate and record it.
2490 if (const Expr
*sizeExpr
= vat
->getSizeExpr()) {
2491 // It's possible that we might have emitted this already,
2492 // e.g. with a typedef and a pointer to it.
2493 llvm::Value
*&entry
= VLASizeMap
[sizeExpr
];
2495 llvm::Value
*size
= EmitScalarExpr(sizeExpr
);
2498 // If the size is an expression that is not an integer constant
2499 // expression [...] each time it is evaluated it shall have a value
2500 // greater than zero.
2501 if (SanOpts
.has(SanitizerKind::VLABound
)) {
2502 SanitizerScope
SanScope(this);
2503 llvm::Value
*Zero
= llvm::Constant::getNullValue(size
->getType());
2504 clang::QualType SEType
= sizeExpr
->getType();
2505 llvm::Value
*CheckCondition
=
2506 SEType
->isSignedIntegerType()
2507 ? Builder
.CreateICmpSGT(size
, Zero
)
2508 : Builder
.CreateICmpUGT(size
, Zero
);
2509 llvm::Constant
*StaticArgs
[] = {
2510 EmitCheckSourceLocation(sizeExpr
->getBeginLoc()),
2511 EmitCheckTypeDescriptor(SEType
)};
2513 std::make_pair(CheckCondition
, SanitizerKind::SO_VLABound
),
2514 SanitizerHandler::VLABoundNotPositive
, StaticArgs
, size
);
2517 // Always zexting here would be wrong if it weren't
2518 // undefined behavior to have a negative bound.
2519 // FIXME: What about when size's type is larger than size_t?
2520 entry
= Builder
.CreateIntCast(size
, SizeTy
, /*signed*/ false);
2523 type
= vat
->getElementType();
2527 case Type::FunctionProto
:
2528 case Type::FunctionNoProto
:
2529 type
= cast
<FunctionType
>(ty
)->getReturnType();
2534 case Type::UnaryTransform
:
2535 case Type::Attributed
:
2536 case Type::BTFTagAttributed
:
2537 case Type::HLSLAttributedResource
:
2538 case Type::SubstTemplateTypeParm
:
2539 case Type::MacroQualified
:
2540 case Type::CountAttributed
:
2541 // Keep walking after single level desugaring.
2542 type
= type
.getSingleStepDesugaredType(getContext());
2546 case Type::Decltype
:
2548 case Type::DeducedTemplateSpecialization
:
2549 case Type::PackIndexing
:
2550 // Stop walking: nothing to do.
2553 case Type::TypeOfExpr
:
2554 // Stop walking: emit typeof expression.
2555 EmitIgnoredExpr(cast
<TypeOfExprType
>(ty
)->getUnderlyingExpr());
2559 type
= cast
<AtomicType
>(ty
)->getValueType();
2563 type
= cast
<PipeType
>(ty
)->getElementType();
2566 } while (type
->isVariablyModifiedType());
2569 Address
CodeGenFunction::EmitVAListRef(const Expr
* E
) {
2570 if (getContext().getBuiltinVaListType()->isArrayType())
2571 return EmitPointerWithAlignment(E
);
2572 return EmitLValue(E
).getAddress();
2575 Address
CodeGenFunction::EmitMSVAListRef(const Expr
*E
) {
2576 return EmitLValue(E
).getAddress();
2579 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr
*E
,
2580 const APValue
&Init
) {
2581 assert(Init
.hasValue() && "Invalid DeclRefExpr initializer!");
2582 if (CGDebugInfo
*Dbg
= getDebugInfo())
2583 if (CGM
.getCodeGenOpts().hasReducedDebugInfo())
2584 Dbg
->EmitGlobalVariable(E
->getDecl(), Init
);
2587 CodeGenFunction::PeepholeProtection
2588 CodeGenFunction::protectFromPeepholes(RValue rvalue
) {
2589 // At the moment, the only aggressive peephole we do in IR gen
2590 // is trunc(zext) folding, but if we add more, we can easily
2591 // extend this protection.
2593 if (!rvalue
.isScalar()) return PeepholeProtection();
2594 llvm::Value
*value
= rvalue
.getScalarVal();
2595 if (!isa
<llvm::ZExtInst
>(value
)) return PeepholeProtection();
2597 // Just make an extra bitcast.
2598 assert(HaveInsertPoint());
2599 llvm::Instruction
*inst
= new llvm::BitCastInst(value
, value
->getType(), "",
2600 Builder
.GetInsertBlock());
2602 PeepholeProtection protection
;
2603 protection
.Inst
= inst
;
2607 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection
) {
2608 if (!protection
.Inst
) return;
2610 // In theory, we could try to duplicate the peepholes now, but whatever.
2611 protection
.Inst
->eraseFromParent();
2614 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2615 QualType Ty
, SourceLocation Loc
,
2616 SourceLocation AssumptionLoc
,
2617 llvm::Value
*Alignment
,
2618 llvm::Value
*OffsetValue
) {
2619 if (Alignment
->getType() != IntPtrTy
)
2621 Builder
.CreateIntCast(Alignment
, IntPtrTy
, false, "casted.align");
2622 if (OffsetValue
&& OffsetValue
->getType() != IntPtrTy
)
2624 Builder
.CreateIntCast(OffsetValue
, IntPtrTy
, true, "casted.offset");
2625 llvm::Value
*TheCheck
= nullptr;
2626 if (SanOpts
.has(SanitizerKind::Alignment
)) {
2627 llvm::Value
*PtrIntValue
=
2628 Builder
.CreatePtrToInt(PtrValue
, IntPtrTy
, "ptrint");
2631 bool IsOffsetZero
= false;
2632 if (const auto *CI
= dyn_cast
<llvm::ConstantInt
>(OffsetValue
))
2633 IsOffsetZero
= CI
->isZero();
2636 PtrIntValue
= Builder
.CreateSub(PtrIntValue
, OffsetValue
, "offsetptr");
2639 llvm::Value
*Zero
= llvm::ConstantInt::get(IntPtrTy
, 0);
2641 Builder
.CreateSub(Alignment
, llvm::ConstantInt::get(IntPtrTy
, 1));
2642 llvm::Value
*MaskedPtr
= Builder
.CreateAnd(PtrIntValue
, Mask
, "maskedptr");
2643 TheCheck
= Builder
.CreateICmpEQ(MaskedPtr
, Zero
, "maskcond");
2645 llvm::Instruction
*Assumption
= Builder
.CreateAlignmentAssumption(
2646 CGM
.getDataLayout(), PtrValue
, Alignment
, OffsetValue
);
2648 if (!SanOpts
.has(SanitizerKind::Alignment
))
2650 emitAlignmentAssumptionCheck(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2651 OffsetValue
, TheCheck
, Assumption
);
2654 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2656 SourceLocation AssumptionLoc
,
2657 llvm::Value
*Alignment
,
2658 llvm::Value
*OffsetValue
) {
2659 QualType Ty
= E
->getType();
2660 SourceLocation Loc
= E
->getExprLoc();
2662 emitAlignmentAssumption(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2666 llvm::Value
*CodeGenFunction::EmitAnnotationCall(llvm::Function
*AnnotationFn
,
2667 llvm::Value
*AnnotatedVal
,
2668 StringRef AnnotationStr
,
2669 SourceLocation Location
,
2670 const AnnotateAttr
*Attr
) {
2671 SmallVector
<llvm::Value
*, 5> Args
= {
2673 CGM
.EmitAnnotationString(AnnotationStr
),
2674 CGM
.EmitAnnotationUnit(Location
),
2675 CGM
.EmitAnnotationLineNo(Location
),
2678 Args
.push_back(CGM
.EmitAnnotationArgs(Attr
));
2679 return Builder
.CreateCall(AnnotationFn
, Args
);
2682 void CodeGenFunction::EmitVarAnnotations(const VarDecl
*D
, llvm::Value
*V
) {
2683 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2684 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
2685 EmitAnnotationCall(CGM
.getIntrinsic(llvm::Intrinsic::var_annotation
,
2686 {V
->getType(), CGM
.ConstGlobalsPtrTy
}),
2687 V
, I
->getAnnotation(), D
->getLocation(), I
);
2690 Address
CodeGenFunction::EmitFieldAnnotations(const FieldDecl
*D
,
2692 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2693 llvm::Value
*V
= Addr
.emitRawPointer(*this);
2694 llvm::Type
*VTy
= V
->getType();
2695 auto *PTy
= dyn_cast
<llvm::PointerType
>(VTy
);
2696 unsigned AS
= PTy
? PTy
->getAddressSpace() : 0;
2697 llvm::PointerType
*IntrinTy
=
2698 llvm::PointerType::get(CGM
.getLLVMContext(), AS
);
2699 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::ptr_annotation
,
2700 {IntrinTy
, CGM
.ConstGlobalsPtrTy
});
2702 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>()) {
2703 // FIXME Always emit the cast inst so we can differentiate between
2704 // annotation on the first field of a struct and annotation on the struct
2706 if (VTy
!= IntrinTy
)
2707 V
= Builder
.CreateBitCast(V
, IntrinTy
);
2708 V
= EmitAnnotationCall(F
, V
, I
->getAnnotation(), D
->getLocation(), I
);
2709 V
= Builder
.CreateBitCast(V
, VTy
);
2712 return Address(V
, Addr
.getElementType(), Addr
.getAlignment());
2715 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2717 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction
*CGF
)
2719 assert(!CGF
->IsSanitizerScope
);
2720 CGF
->IsSanitizerScope
= true;
2723 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2724 CGF
->IsSanitizerScope
= false;
2727 void CodeGenFunction::InsertHelper(llvm::Instruction
*I
,
2728 const llvm::Twine
&Name
,
2729 llvm::BasicBlock::iterator InsertPt
) const {
2730 LoopStack
.InsertHelper(I
);
2731 if (IsSanitizerScope
)
2732 I
->setNoSanitizeMetadata();
2735 void CGBuilderInserter::InsertHelper(
2736 llvm::Instruction
*I
, const llvm::Twine
&Name
,
2737 llvm::BasicBlock::iterator InsertPt
) const {
2738 llvm::IRBuilderDefaultInserter::InsertHelper(I
, Name
, InsertPt
);
2740 CGF
->InsertHelper(I
, Name
, InsertPt
);
2743 // Emits an error if we don't have a valid set of target features for the
2745 void CodeGenFunction::checkTargetFeatures(const CallExpr
*E
,
2746 const FunctionDecl
*TargetDecl
) {
2747 // SemaChecking cannot handle below x86 builtins because they have different
2748 // parameter ranges with different TargetAttribute of caller.
2749 if (CGM
.getContext().getTargetInfo().getTriple().isX86()) {
2750 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2751 if (BuiltinID
== X86::BI__builtin_ia32_cmpps
||
2752 BuiltinID
== X86::BI__builtin_ia32_cmpss
||
2753 BuiltinID
== X86::BI__builtin_ia32_cmppd
||
2754 BuiltinID
== X86::BI__builtin_ia32_cmpsd
) {
2755 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2756 llvm::StringMap
<bool> TargetFetureMap
;
2757 CGM
.getContext().getFunctionFeatureMap(TargetFetureMap
, FD
);
2758 llvm::APSInt Result
=
2759 *(E
->getArg(2)->getIntegerConstantExpr(CGM
.getContext()));
2760 if (Result
.getSExtValue() > 7 && !TargetFetureMap
.lookup("avx"))
2761 CGM
.getDiags().Report(E
->getBeginLoc(), diag::err_builtin_needs_feature
)
2762 << TargetDecl
->getDeclName() << "avx";
2765 return checkTargetFeatures(E
->getBeginLoc(), TargetDecl
);
2768 // Emits an error if we don't have a valid set of target features for the
2770 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc
,
2771 const FunctionDecl
*TargetDecl
) {
2772 // Early exit if this is an indirect call.
2776 // Get the current enclosing function if it exists. If it doesn't
2777 // we can't check the target features anyhow.
2778 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2782 // Grab the required features for the call. For a builtin this is listed in
2783 // the td file with the default cpu, for an always_inline function this is any
2784 // listed cpu and any listed features.
2785 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2786 std::string MissingFeature
;
2787 llvm::StringMap
<bool> CallerFeatureMap
;
2788 CGM
.getContext().getFunctionFeatureMap(CallerFeatureMap
, FD
);
2789 // When compiling in HipStdPar mode we have to be conservative in rejecting
2790 // target specific features in the FE, and defer the possible error to the
2791 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2792 // referenced by an accelerator executable function, we emit an error.
2793 bool IsHipStdPar
= getLangOpts().HIPStdPar
&& getLangOpts().CUDAIsDevice
;
2795 StringRef
FeatureList(CGM
.getContext().BuiltinInfo
.getRequiredFeatures(BuiltinID
));
2796 if (!Builtin::evaluateRequiredTargetFeatures(
2797 FeatureList
, CallerFeatureMap
) && !IsHipStdPar
) {
2798 CGM
.getDiags().Report(Loc
, diag::err_builtin_needs_feature
)
2799 << TargetDecl
->getDeclName()
2802 } else if (!TargetDecl
->isMultiVersion() &&
2803 TargetDecl
->hasAttr
<TargetAttr
>()) {
2804 // Get the required features for the callee.
2806 const TargetAttr
*TD
= TargetDecl
->getAttr
<TargetAttr
>();
2807 ParsedTargetAttr ParsedAttr
=
2808 CGM
.getContext().filterFunctionTargetAttrs(TD
);
2810 SmallVector
<StringRef
, 1> ReqFeatures
;
2811 llvm::StringMap
<bool> CalleeFeatureMap
;
2812 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2814 for (const auto &F
: ParsedAttr
.Features
) {
2815 if (F
[0] == '+' && CalleeFeatureMap
.lookup(F
.substr(1)))
2816 ReqFeatures
.push_back(StringRef(F
).substr(1));
2819 for (const auto &F
: CalleeFeatureMap
) {
2820 // Only positive features are "required".
2822 ReqFeatures
.push_back(F
.getKey());
2824 if (!llvm::all_of(ReqFeatures
, [&](StringRef Feature
) {
2825 if (!CallerFeatureMap
.lookup(Feature
)) {
2826 MissingFeature
= Feature
.str();
2831 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2832 << FD
->getDeclName() << TargetDecl
->getDeclName() << MissingFeature
;
2833 } else if (!FD
->isMultiVersion() && FD
->hasAttr
<TargetAttr
>()) {
2834 llvm::StringMap
<bool> CalleeFeatureMap
;
2835 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2837 for (const auto &F
: CalleeFeatureMap
) {
2838 if (F
.getValue() && (!CallerFeatureMap
.lookup(F
.getKey()) ||
2839 !CallerFeatureMap
.find(F
.getKey())->getValue()) &&
2841 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2842 << FD
->getDeclName() << TargetDecl
->getDeclName() << F
.getKey();
2847 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK
) {
2848 if (!CGM
.getCodeGenOpts().SanitizeStats
)
2851 llvm::IRBuilder
<> IRB(Builder
.GetInsertBlock(), Builder
.GetInsertPoint());
2852 IRB
.SetCurrentDebugLocation(Builder
.getCurrentDebugLocation());
2853 CGM
.getSanStats().create(IRB
, SSK
);
2856 void CodeGenFunction::EmitKCFIOperandBundle(
2857 const CGCallee
&Callee
, SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
2858 const FunctionProtoType
*FP
=
2859 Callee
.getAbstractInfo().getCalleeFunctionProtoType();
2861 Bundles
.emplace_back("kcfi", CGM
.CreateKCFITypeId(FP
->desugar()));
2865 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption
&RO
) {
2866 return RO
.Features
.empty() ? nullptr : EmitAArch64CpuSupports(RO
.Features
);
2870 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption
&RO
) {
2871 llvm::Value
*Condition
= nullptr;
2873 if (RO
.Architecture
) {
2874 StringRef Arch
= *RO
.Architecture
;
2875 // If arch= specifies an x86-64 micro-architecture level, test the feature
2876 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2877 if (Arch
.starts_with("x86-64"))
2878 Condition
= EmitX86CpuSupports({Arch
});
2880 Condition
= EmitX86CpuIs(Arch
);
2883 if (!RO
.Features
.empty()) {
2884 llvm::Value
*FeatureCond
= EmitX86CpuSupports(RO
.Features
);
2886 Condition
? Builder
.CreateAnd(Condition
, FeatureCond
) : FeatureCond
;
2891 static void CreateMultiVersionResolverReturn(CodeGenModule
&CGM
,
2892 llvm::Function
*Resolver
,
2893 CGBuilderTy
&Builder
,
2894 llvm::Function
*FuncToReturn
,
2895 bool SupportsIFunc
) {
2896 if (SupportsIFunc
) {
2897 Builder
.CreateRet(FuncToReturn
);
2901 llvm::SmallVector
<llvm::Value
*, 10> Args(
2902 llvm::make_pointer_range(Resolver
->args()));
2904 llvm::CallInst
*Result
= Builder
.CreateCall(FuncToReturn
, Args
);
2905 Result
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
2907 if (Resolver
->getReturnType()->isVoidTy())
2908 Builder
.CreateRetVoid();
2910 Builder
.CreateRet(Result
);
2913 void CodeGenFunction::EmitMultiVersionResolver(
2914 llvm::Function
*Resolver
, ArrayRef
<FMVResolverOption
> Options
) {
2916 llvm::Triple::ArchType ArchType
=
2917 getContext().getTargetInfo().getTriple().getArch();
2920 case llvm::Triple::x86
:
2921 case llvm::Triple::x86_64
:
2922 EmitX86MultiVersionResolver(Resolver
, Options
);
2924 case llvm::Triple::aarch64
:
2925 EmitAArch64MultiVersionResolver(Resolver
, Options
);
2927 case llvm::Triple::riscv32
:
2928 case llvm::Triple::riscv64
:
2929 EmitRISCVMultiVersionResolver(Resolver
, Options
);
2933 assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2937 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2938 llvm::Function
*Resolver
, ArrayRef
<FMVResolverOption
> Options
) {
2940 if (getContext().getTargetInfo().getTriple().getOS() !=
2941 llvm::Triple::OSType::Linux
) {
2942 CGM
.getDiags().Report(diag::err_os_unsupport_riscv_fmv
);
2946 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2947 Builder
.SetInsertPoint(CurBlock
);
2950 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2951 bool HasDefault
= false;
2952 unsigned DefaultIndex
= 0;
2954 // Check the each candidate function.
2955 for (unsigned Index
= 0; Index
< Options
.size(); Index
++) {
2957 if (Options
[Index
].Features
.empty()) {
2959 DefaultIndex
= Index
;
2963 Builder
.SetInsertPoint(CurBlock
);
2965 // FeaturesCondition: The bitmask of the required extension has been
2966 // enabled by the runtime object.
2967 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2970 // When condition is met, return this version of the function.
2971 // Otherwise, try the next version.
2973 // if (FeaturesConditionVersion1)
2975 // else if (FeaturesConditionVersion2)
2977 // else if (FeaturesConditionVersion3)
2981 // return DefaultVersion;
2983 // TODO: Add a condition to check the length before accessing elements.
2984 // Without checking the length first, we may access an incorrect memory
2985 // address when using different versions.
2986 llvm::SmallVector
<StringRef
, 8> CurrTargetAttrFeats
;
2987 llvm::SmallVector
<std::string
, 8> TargetAttrFeats
;
2989 for (StringRef Feat
: Options
[Index
].Features
) {
2990 std::vector
<std::string
> FeatStr
=
2991 getContext().getTargetInfo().parseTargetAttr(Feat
).Features
;
2993 assert(FeatStr
.size() == 1 && "Feature string not delimited");
2995 std::string
&CurrFeat
= FeatStr
.front();
2996 if (CurrFeat
[0] == '+')
2997 TargetAttrFeats
.push_back(CurrFeat
.substr(1));
3000 if (TargetAttrFeats
.empty())
3003 for (std::string
&Feat
: TargetAttrFeats
)
3004 CurrTargetAttrFeats
.push_back(Feat
);
3006 Builder
.SetInsertPoint(CurBlock
);
3007 llvm::Value
*FeatsCondition
= EmitRISCVCpuSupports(CurrTargetAttrFeats
);
3009 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
3010 CGBuilderTy
RetBuilder(*this, RetBlock
);
3011 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
,
3012 Options
[Index
].Function
, SupportsIFunc
);
3013 llvm::BasicBlock
*ElseBlock
= createBasicBlock("resolver_else", Resolver
);
3015 Builder
.SetInsertPoint(CurBlock
);
3016 Builder
.CreateCondBr(FeatsCondition
, RetBlock
, ElseBlock
);
3018 CurBlock
= ElseBlock
;
3021 // Finally, emit the default one.
3023 Builder
.SetInsertPoint(CurBlock
);
3024 CreateMultiVersionResolverReturn(
3025 CGM
, Resolver
, Builder
, Options
[DefaultIndex
].Function
, SupportsIFunc
);
3029 // If no generic/default, emit an unreachable.
3030 Builder
.SetInsertPoint(CurBlock
);
3031 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
3032 TrapCall
->setDoesNotReturn();
3033 TrapCall
->setDoesNotThrow();
3034 Builder
.CreateUnreachable();
3035 Builder
.ClearInsertionPoint();
3038 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3039 llvm::Function
*Resolver
, ArrayRef
<FMVResolverOption
> Options
) {
3040 assert(!Options
.empty() && "No multiversion resolver options found");
3041 assert(Options
.back().Features
.size() == 0 && "Default case must be last");
3042 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
3043 assert(SupportsIFunc
&&
3044 "Multiversion resolver requires target IFUNC support");
3045 bool AArch64CpuInitialized
= false;
3046 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
3048 for (const FMVResolverOption
&RO
: Options
) {
3049 Builder
.SetInsertPoint(CurBlock
);
3050 llvm::Value
*Condition
= FormAArch64ResolverCondition(RO
);
3052 // The 'default' or 'all features enabled' case.
3054 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
3059 if (!AArch64CpuInitialized
) {
3060 Builder
.SetInsertPoint(CurBlock
, CurBlock
->begin());
3061 EmitAArch64CpuInit();
3062 AArch64CpuInitialized
= true;
3063 Builder
.SetInsertPoint(CurBlock
);
3066 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
3067 CGBuilderTy
RetBuilder(*this, RetBlock
);
3068 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
3070 CurBlock
= createBasicBlock("resolver_else", Resolver
);
3071 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
3074 // If no default, emit an unreachable.
3075 Builder
.SetInsertPoint(CurBlock
);
3076 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
3077 TrapCall
->setDoesNotReturn();
3078 TrapCall
->setDoesNotThrow();
3079 Builder
.CreateUnreachable();
3080 Builder
.ClearInsertionPoint();
3083 void CodeGenFunction::EmitX86MultiVersionResolver(
3084 llvm::Function
*Resolver
, ArrayRef
<FMVResolverOption
> Options
) {
3086 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
3088 // Main function's basic block.
3089 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
3090 Builder
.SetInsertPoint(CurBlock
);
3093 for (const FMVResolverOption
&RO
: Options
) {
3094 Builder
.SetInsertPoint(CurBlock
);
3095 llvm::Value
*Condition
= FormX86ResolverCondition(RO
);
3097 // The 'default' or 'generic' case.
3099 assert(&RO
== Options
.end() - 1 &&
3100 "Default or Generic case must be last");
3101 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
3106 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
3107 CGBuilderTy
RetBuilder(*this, RetBlock
);
3108 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
3110 CurBlock
= createBasicBlock("resolver_else", Resolver
);
3111 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
3114 // If no generic/default, emit an unreachable.
3115 Builder
.SetInsertPoint(CurBlock
);
3116 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
3117 TrapCall
->setDoesNotReturn();
3118 TrapCall
->setDoesNotThrow();
3119 Builder
.CreateUnreachable();
3120 Builder
.ClearInsertionPoint();
3123 // Loc - where the diagnostic will point, where in the source code this
3124 // alignment has failed.
3125 // SecondaryLoc - if present (will be present if sufficiently different from
3126 // Loc), the diagnostic will additionally point a "Note:" to this location.
3127 // It should be the location where the __attribute__((assume_aligned))
3129 void CodeGenFunction::emitAlignmentAssumptionCheck(
3130 llvm::Value
*Ptr
, QualType Ty
, SourceLocation Loc
,
3131 SourceLocation SecondaryLoc
, llvm::Value
*Alignment
,
3132 llvm::Value
*OffsetValue
, llvm::Value
*TheCheck
,
3133 llvm::Instruction
*Assumption
) {
3134 assert(isa_and_nonnull
<llvm::CallInst
>(Assumption
) &&
3135 cast
<llvm::CallInst
>(Assumption
)->getCalledOperand() ==
3136 llvm::Intrinsic::getOrInsertDeclaration(
3137 Builder
.GetInsertBlock()->getParent()->getParent(),
3138 llvm::Intrinsic::assume
) &&
3139 "Assumption should be a call to llvm.assume().");
3140 assert(&(Builder
.GetInsertBlock()->back()) == Assumption
&&
3141 "Assumption should be the last instruction of the basic block, "
3142 "since the basic block is still being generated.");
3144 if (!SanOpts
.has(SanitizerKind::Alignment
))
3147 // Don't check pointers to volatile data. The behavior here is implementation-
3149 if (Ty
->getPointeeType().isVolatileQualified())
3152 // We need to temorairly remove the assumption so we can insert the
3153 // sanitizer check before it, else the check will be dropped by optimizations.
3154 Assumption
->removeFromParent();
3157 SanitizerScope
SanScope(this);
3160 OffsetValue
= Builder
.getInt1(false); // no offset.
3162 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(Loc
),
3163 EmitCheckSourceLocation(SecondaryLoc
),
3164 EmitCheckTypeDescriptor(Ty
)};
3165 llvm::Value
*DynamicData
[] = {EmitCheckValue(Ptr
),
3166 EmitCheckValue(Alignment
),
3167 EmitCheckValue(OffsetValue
)};
3168 EmitCheck({std::make_pair(TheCheck
, SanitizerKind::SO_Alignment
)},
3169 SanitizerHandler::AlignmentAssumption
, StaticData
, DynamicData
);
3172 // We are now in the (new, empty) "cont" basic block.
3173 // Reintroduce the assumption.
3174 Builder
.Insert(Assumption
);
3175 // FIXME: Assumption still has it's original basic block as it's Parent.
3178 llvm::DebugLoc
CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location
) {
3179 if (CGDebugInfo
*DI
= getDebugInfo())
3180 return DI
->SourceLocToDebugLoc(Location
);
3182 return llvm::DebugLoc();
3186 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value
*Cond
,
3187 Stmt::Likelihood LH
) {
3191 case Stmt::LH_Likely
:
3192 case Stmt::LH_Unlikely
:
3193 // Don't generate llvm.expect on -O0 as the backend won't use it for
3195 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
3197 llvm::Type
*CondTy
= Cond
->getType();
3198 assert(CondTy
->isIntegerTy(1) && "expecting condition to be a boolean");
3199 llvm::Function
*FnExpect
=
3200 CGM
.getIntrinsic(llvm::Intrinsic::expect
, CondTy
);
3201 llvm::Value
*ExpectedValueOfCond
=
3202 llvm::ConstantInt::getBool(CondTy
, LH
== Stmt::LH_Likely
);
3203 return Builder
.CreateCall(FnExpect
, {Cond
, ExpectedValueOfCond
},
3204 Cond
->getName() + ".expval");
3206 llvm_unreachable("Unknown Likelihood");
3209 llvm::Value
*CodeGenFunction::emitBoolVecConversion(llvm::Value
*SrcVec
,
3210 unsigned NumElementsDst
,
3211 const llvm::Twine
&Name
) {
3212 auto *SrcTy
= cast
<llvm::FixedVectorType
>(SrcVec
->getType());
3213 unsigned NumElementsSrc
= SrcTy
->getNumElements();
3214 if (NumElementsSrc
== NumElementsDst
)
3217 std::vector
<int> ShuffleMask(NumElementsDst
, -1);
3218 for (unsigned MaskIdx
= 0;
3219 MaskIdx
< std::min
<>(NumElementsDst
, NumElementsSrc
); ++MaskIdx
)
3220 ShuffleMask
[MaskIdx
] = MaskIdx
;
3222 return Builder
.CreateShuffleVector(SrcVec
, ShuffleMask
, Name
);
3225 void CodeGenFunction::EmitPointerAuthOperandBundle(
3226 const CGPointerAuthInfo
&PointerAuth
,
3227 SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
3228 if (!PointerAuth
.isSigned())
3231 auto *Key
= Builder
.getInt32(PointerAuth
.getKey());
3233 llvm::Value
*Discriminator
= PointerAuth
.getDiscriminator();
3235 Discriminator
= Builder
.getSize(0);
3237 llvm::Value
*Args
[] = {Key
, Discriminator
};
3238 Bundles
.emplace_back("ptrauth", Args
);
3241 static llvm::Value
*EmitPointerAuthCommon(CodeGenFunction
&CGF
,
3242 const CGPointerAuthInfo
&PointerAuth
,
3243 llvm::Value
*Pointer
,
3244 unsigned IntrinsicID
) {
3248 auto Key
= CGF
.Builder
.getInt32(PointerAuth
.getKey());
3250 llvm::Value
*Discriminator
= PointerAuth
.getDiscriminator();
3251 if (!Discriminator
) {
3252 Discriminator
= CGF
.Builder
.getSize(0);
3255 // Convert the pointer to intptr_t before signing it.
3256 auto OrigType
= Pointer
->getType();
3257 Pointer
= CGF
.Builder
.CreatePtrToInt(Pointer
, CGF
.IntPtrTy
);
3259 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3260 auto Intrinsic
= CGF
.CGM
.getIntrinsic(IntrinsicID
);
3261 Pointer
= CGF
.EmitRuntimeCall(Intrinsic
, {Pointer
, Key
, Discriminator
});
3263 // Convert back to the original type.
3264 Pointer
= CGF
.Builder
.CreateIntToPtr(Pointer
, OrigType
);
3269 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo
&PointerAuth
,
3270 llvm::Value
*Pointer
) {
3271 if (!PointerAuth
.shouldSign())
3273 return EmitPointerAuthCommon(*this, PointerAuth
, Pointer
,
3274 llvm::Intrinsic::ptrauth_sign
);
3277 static llvm::Value
*EmitStrip(CodeGenFunction
&CGF
,
3278 const CGPointerAuthInfo
&PointerAuth
,
3279 llvm::Value
*Pointer
) {
3280 auto StripIntrinsic
= CGF
.CGM
.getIntrinsic(llvm::Intrinsic::ptrauth_strip
);
3282 auto Key
= CGF
.Builder
.getInt32(PointerAuth
.getKey());
3283 // Convert the pointer to intptr_t before signing it.
3284 auto OrigType
= Pointer
->getType();
3285 Pointer
= CGF
.EmitRuntimeCall(
3286 StripIntrinsic
, {CGF
.Builder
.CreatePtrToInt(Pointer
, CGF
.IntPtrTy
), Key
});
3287 return CGF
.Builder
.CreateIntToPtr(Pointer
, OrigType
);
3291 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo
&PointerAuth
,
3292 llvm::Value
*Pointer
) {
3293 if (PointerAuth
.shouldStrip()) {
3294 return EmitStrip(*this, PointerAuth
, Pointer
);
3296 if (!PointerAuth
.shouldAuth()) {
3300 return EmitPointerAuthCommon(*this, PointerAuth
, Pointer
,
3301 llvm::Intrinsic::ptrauth_auth
);