[Github] Label lldb-dap PRs (#125139)
[llvm-project.git] / clang / lib / Sema / SemaExprCXX.cpp
blob1e39d69e8b230f7d8d86b15af88b88d43198c906
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DynamicRecursiveASTVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprConcepts.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaCUDA.h"
42 #include "clang/Sema/SemaHLSL.h"
43 #include "clang/Sema/SemaInternal.h"
44 #include "clang/Sema/SemaLambda.h"
45 #include "clang/Sema/SemaObjC.h"
46 #include "clang/Sema/SemaPPC.h"
47 #include "clang/Sema/Template.h"
48 #include "clang/Sema/TemplateDeduction.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/STLForwardCompat.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/TypeSize.h"
55 #include <optional>
56 using namespace clang;
57 using namespace sema;
59 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
60 SourceLocation NameLoc,
61 const IdentifierInfo &Name) {
62 NestedNameSpecifier *NNS = SS.getScopeRep();
64 // Convert the nested-name-specifier into a type.
65 QualType Type;
66 switch (NNS->getKind()) {
67 case NestedNameSpecifier::TypeSpec:
68 case NestedNameSpecifier::TypeSpecWithTemplate:
69 Type = QualType(NNS->getAsType(), 0);
70 break;
72 case NestedNameSpecifier::Identifier:
73 // Strip off the last layer of the nested-name-specifier and build a
74 // typename type for it.
75 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
76 Type = Context.getDependentNameType(
77 ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
78 break;
80 case NestedNameSpecifier::Global:
81 case NestedNameSpecifier::Super:
82 case NestedNameSpecifier::Namespace:
83 case NestedNameSpecifier::NamespaceAlias:
84 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
87 // This reference to the type is located entirely at the location of the
88 // final identifier in the qualified-id.
89 return CreateParsedType(Type,
90 Context.getTrivialTypeSourceInfo(Type, NameLoc));
93 ParsedType Sema::getConstructorName(const IdentifierInfo &II,
94 SourceLocation NameLoc, Scope *S,
95 CXXScopeSpec &SS, bool EnteringContext) {
96 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97 assert(CurClass && &II == CurClass->getIdentifier() &&
98 "not a constructor name");
100 // When naming a constructor as a member of a dependent context (eg, in a
101 // friend declaration or an inherited constructor declaration), form an
102 // unresolved "typename" type.
103 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105 SS.getScopeRep(), &II);
106 return ParsedType::make(T);
109 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110 return ParsedType();
112 // Find the injected-class-name declaration. Note that we make no attempt to
113 // diagnose cases where the injected-class-name is shadowed: the only
114 // declaration that can validly shadow the injected-class-name is a
115 // non-static data member, and if the class contains both a non-static data
116 // member and a constructor then it is ill-formed (we check that in
117 // CheckCompletedCXXClass).
118 CXXRecordDecl *InjectedClassName = nullptr;
119 for (NamedDecl *ND : CurClass->lookup(&II)) {
120 auto *RD = dyn_cast<CXXRecordDecl>(ND);
121 if (RD && RD->isInjectedClassName()) {
122 InjectedClassName = RD;
123 break;
126 if (!InjectedClassName) {
127 if (!CurClass->isInvalidDecl()) {
128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129 // properly. Work around it here for now.
130 Diag(SS.getLastQualifierNameLoc(),
131 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
133 return ParsedType();
136 QualType T = Context.getTypeDeclType(InjectedClassName);
137 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
140 return ParsedType::make(T);
143 ParsedType Sema::getDestructorName(const IdentifierInfo &II,
144 SourceLocation NameLoc, Scope *S,
145 CXXScopeSpec &SS, ParsedType ObjectTypePtr,
146 bool EnteringContext) {
147 // Determine where to perform name lookup.
149 // FIXME: This area of the standard is very messy, and the current
150 // wording is rather unclear about which scopes we search for the
151 // destructor name; see core issues 399 and 555. Issue 399 in
152 // particular shows where the current description of destructor name
153 // lookup is completely out of line with existing practice, e.g.,
154 // this appears to be ill-formed:
156 // namespace N {
157 // template <typename T> struct S {
158 // ~S();
159 // };
160 // }
162 // void f(N::S<int>* s) {
163 // s->N::S<int>::~S();
164 // }
166 // See also PR6358 and PR6359.
168 // For now, we accept all the cases in which the name given could plausibly
169 // be interpreted as a correct destructor name, issuing off-by-default
170 // extension diagnostics on the cases that don't strictly conform to the
171 // C++20 rules. This basically means we always consider looking in the
172 // nested-name-specifier prefix, the complete nested-name-specifier, and
173 // the scope, and accept if we find the expected type in any of the three
174 // places.
176 if (SS.isInvalid())
177 return nullptr;
179 // Whether we've failed with a diagnostic already.
180 bool Failed = false;
182 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
185 // If we have an object type, it's because we are in a
186 // pseudo-destructor-expression or a member access expression, and
187 // we know what type we're looking for.
188 QualType SearchType =
189 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
191 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194 if (!Type)
195 return false;
197 if (SearchType.isNull() || SearchType->isDependentType())
198 return true;
200 QualType T = Context.getTypeDeclType(Type);
201 return Context.hasSameUnqualifiedType(T, SearchType);
204 unsigned NumAcceptableResults = 0;
205 for (NamedDecl *D : Found) {
206 if (IsAcceptableResult(D))
207 ++NumAcceptableResults;
209 // Don't list a class twice in the lookup failure diagnostic if it's
210 // found by both its injected-class-name and by the name in the enclosing
211 // scope.
212 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213 if (RD->isInjectedClassName())
214 D = cast<NamedDecl>(RD->getParent());
216 if (FoundDeclSet.insert(D).second)
217 FoundDecls.push_back(D);
220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221 // results, and all non-matching results if we have a search type. It's not
222 // clear what the right behavior is if destructor lookup hits an ambiguity,
223 // but other compilers do generally accept at least some kinds of
224 // ambiguity.
225 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227 LookupResult::Filter F = Found.makeFilter();
228 while (F.hasNext()) {
229 NamedDecl *D = F.next();
230 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231 Diag(D->getLocation(), diag::note_destructor_type_here)
232 << Context.getTypeDeclType(TD);
233 else
234 Diag(D->getLocation(), diag::note_destructor_nontype_here);
236 if (!IsAcceptableResult(D))
237 F.erase();
239 F.done();
242 if (Found.isAmbiguous())
243 Failed = true;
245 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246 if (IsAcceptableResult(Type)) {
247 QualType T = Context.getTypeDeclType(Type);
248 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249 return CreateParsedType(
250 Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251 Context.getTrivialTypeSourceInfo(T, NameLoc));
255 return nullptr;
258 bool IsDependent = false;
260 auto LookupInObjectType = [&]() -> ParsedType {
261 if (Failed || SearchType.isNull())
262 return nullptr;
264 IsDependent |= SearchType->isDependentType();
266 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267 DeclContext *LookupCtx = computeDeclContext(SearchType);
268 if (!LookupCtx)
269 return nullptr;
270 LookupQualifiedName(Found, LookupCtx);
271 return CheckLookupResult(Found);
274 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275 if (Failed)
276 return nullptr;
278 IsDependent |= isDependentScopeSpecifier(LookupSS);
279 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280 if (!LookupCtx)
281 return nullptr;
283 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285 Failed = true;
286 return nullptr;
288 LookupQualifiedName(Found, LookupCtx);
289 return CheckLookupResult(Found);
292 auto LookupInScope = [&]() -> ParsedType {
293 if (Failed || !S)
294 return nullptr;
296 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297 LookupName(Found, S);
298 return CheckLookupResult(Found);
301 // C++2a [basic.lookup.qual]p6:
302 // In a qualified-id of the form
304 // nested-name-specifier[opt] type-name :: ~ type-name
306 // the second type-name is looked up in the same scope as the first.
308 // We interpret this as meaning that if you do a dual-scope lookup for the
309 // first name, you also do a dual-scope lookup for the second name, per
310 // C++ [basic.lookup.classref]p4:
312 // If the id-expression in a class member access is a qualified-id of the
313 // form
315 // class-name-or-namespace-name :: ...
317 // the class-name-or-namespace-name following the . or -> is first looked
318 // up in the class of the object expression and the name, if found, is used.
319 // Otherwise, it is looked up in the context of the entire
320 // postfix-expression.
322 // This looks in the same scopes as for an unqualified destructor name:
324 // C++ [basic.lookup.classref]p3:
325 // If the unqualified-id is ~ type-name, the type-name is looked up
326 // in the context of the entire postfix-expression. If the type T
327 // of the object expression is of a class type C, the type-name is
328 // also looked up in the scope of class C. At least one of the
329 // lookups shall find a name that refers to cv T.
331 // FIXME: The intent is unclear here. Should type-name::~type-name look in
332 // the scope anyway if it finds a non-matching name declared in the class?
333 // If both lookups succeed and find a dependent result, which result should
334 // we retain? (Same question for p->~type-name().)
336 if (NestedNameSpecifier *Prefix =
337 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338 // This is
340 // nested-name-specifier type-name :: ~ type-name
342 // Look for the second type-name in the nested-name-specifier.
343 CXXScopeSpec PrefixSS;
344 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346 return T;
347 } else {
348 // This is one of
350 // type-name :: ~ type-name
351 // ~ type-name
353 // Look in the scope and (if any) the object type.
354 if (ParsedType T = LookupInScope())
355 return T;
356 if (ParsedType T = LookupInObjectType())
357 return T;
360 if (Failed)
361 return nullptr;
363 if (IsDependent) {
364 // We didn't find our type, but that's OK: it's dependent anyway.
366 // FIXME: What if we have no nested-name-specifier?
367 QualType T =
368 CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369 SS.getWithLocInContext(Context), II, NameLoc);
370 return ParsedType::make(T);
373 // The remaining cases are all non-standard extensions imitating the behavior
374 // of various other compilers.
375 unsigned NumNonExtensionDecls = FoundDecls.size();
377 if (SS.isSet()) {
378 // For compatibility with older broken C++ rules and existing code,
380 // nested-name-specifier :: ~ type-name
382 // also looks for type-name within the nested-name-specifier.
383 if (ParsedType T = LookupInNestedNameSpec(SS)) {
384 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385 << SS.getRange()
386 << FixItHint::CreateInsertion(SS.getEndLoc(),
387 ("::" + II.getName()).str());
388 return T;
391 // For compatibility with other compilers and older versions of Clang,
393 // nested-name-specifier type-name :: ~ type-name
395 // also looks for type-name in the scope. Unfortunately, we can't
396 // reasonably apply this fallback for dependent nested-name-specifiers.
397 if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398 if (ParsedType T = LookupInScope()) {
399 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400 << FixItHint::CreateRemoval(SS.getRange());
401 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402 << GetTypeFromParser(T);
403 return T;
408 // We didn't find anything matching; tell the user what we did find (if
409 // anything).
411 // Don't tell the user about declarations we shouldn't have found.
412 FoundDecls.resize(NumNonExtensionDecls);
414 // List types before non-types.
415 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416 [](NamedDecl *A, NamedDecl *B) {
417 return isa<TypeDecl>(A->getUnderlyingDecl()) >
418 isa<TypeDecl>(B->getUnderlyingDecl());
421 // Suggest a fixit to properly name the destroyed type.
422 auto MakeFixItHint = [&]{
423 const CXXRecordDecl *Destroyed = nullptr;
424 // FIXME: If we have a scope specifier, suggest its last component?
425 if (!SearchType.isNull())
426 Destroyed = SearchType->getAsCXXRecordDecl();
427 else if (S)
428 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429 if (Destroyed)
430 return FixItHint::CreateReplacement(SourceRange(NameLoc),
431 Destroyed->getNameAsString());
432 return FixItHint();
435 if (FoundDecls.empty()) {
436 // FIXME: Attempt typo-correction?
437 Diag(NameLoc, diag::err_undeclared_destructor_name)
438 << &II << MakeFixItHint();
439 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441 assert(!SearchType.isNull() &&
442 "should only reject a type result if we have a search type");
443 QualType T = Context.getTypeDeclType(TD);
444 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445 << T << SearchType << MakeFixItHint();
446 } else {
447 Diag(NameLoc, diag::err_destructor_expr_nontype)
448 << &II << MakeFixItHint();
450 } else {
451 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452 : diag::err_destructor_expr_mismatch)
453 << &II << SearchType << MakeFixItHint();
456 for (NamedDecl *FoundD : FoundDecls) {
457 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459 << Context.getTypeDeclType(TD);
460 else
461 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462 << FoundD;
465 return nullptr;
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469 ParsedType ObjectType) {
470 if (DS.getTypeSpecType() == DeclSpec::TST_error)
471 return nullptr;
473 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475 return nullptr;
478 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479 "unexpected type in getDestructorType");
480 QualType T = BuildDecltypeType(DS.getRepAsExpr());
482 // If we know the type of the object, check that the correct destructor
483 // type was named now; we can give better diagnostics this way.
484 QualType SearchType = GetTypeFromParser(ObjectType);
485 if (!SearchType.isNull() && !SearchType->isDependentType() &&
486 !Context.hasSameUnqualifiedType(T, SearchType)) {
487 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488 << T << SearchType;
489 return nullptr;
492 return ParsedType::make(T);
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496 const UnqualifiedId &Name, bool IsUDSuffix) {
497 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498 if (!IsUDSuffix) {
499 // [over.literal] p8
501 // double operator""_Bq(long double); // OK: not a reserved identifier
502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503 const IdentifierInfo *II = Name.Identifier;
504 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505 SourceLocation Loc = Name.getEndLoc();
507 auto Hint = FixItHint::CreateReplacement(
508 Name.getSourceRange(),
509 (StringRef("operator\"\"") + II->getName()).str());
511 // Only emit this diagnostic if we start with an underscore, else the
512 // diagnostic for C++11 requiring a space between the quotes and the
513 // identifier conflicts with this and gets confusing. The diagnostic stating
514 // this is a reserved name should force the underscore, which gets this
515 // back.
516 if (II->isReservedLiteralSuffixId() !=
517 ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore)
518 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
520 if (isReservedInAllContexts(Status))
521 Diag(Loc, diag::warn_reserved_extern_symbol)
522 << II << static_cast<int>(Status) << Hint;
525 if (!SS.isValid())
526 return false;
528 switch (SS.getScopeRep()->getKind()) {
529 case NestedNameSpecifier::Identifier:
530 case NestedNameSpecifier::TypeSpec:
531 case NestedNameSpecifier::TypeSpecWithTemplate:
532 // Per C++11 [over.literal]p2, literal operators can only be declared at
533 // namespace scope. Therefore, this unqualified-id cannot name anything.
534 // Reject it early, because we have no AST representation for this in the
535 // case where the scope is dependent.
536 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
537 << SS.getScopeRep();
538 return true;
540 case NestedNameSpecifier::Global:
541 case NestedNameSpecifier::Super:
542 case NestedNameSpecifier::Namespace:
543 case NestedNameSpecifier::NamespaceAlias:
544 return false;
547 llvm_unreachable("unknown nested name specifier kind");
550 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
551 SourceLocation TypeidLoc,
552 TypeSourceInfo *Operand,
553 SourceLocation RParenLoc) {
554 // C++ [expr.typeid]p4:
555 // The top-level cv-qualifiers of the lvalue expression or the type-id
556 // that is the operand of typeid are always ignored.
557 // If the type of the type-id is a class type or a reference to a class
558 // type, the class shall be completely-defined.
559 Qualifiers Quals;
560 QualType T
561 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
562 Quals);
563 if (T->getAs<RecordType>() &&
564 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
565 return ExprError();
567 if (T->isVariablyModifiedType())
568 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
570 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
571 return ExprError();
573 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
574 SourceRange(TypeidLoc, RParenLoc));
577 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
578 SourceLocation TypeidLoc,
579 Expr *E,
580 SourceLocation RParenLoc) {
581 bool WasEvaluated = false;
582 if (E && !E->isTypeDependent()) {
583 if (E->hasPlaceholderType()) {
584 ExprResult result = CheckPlaceholderExpr(E);
585 if (result.isInvalid()) return ExprError();
586 E = result.get();
589 QualType T = E->getType();
590 if (const RecordType *RecordT = T->getAs<RecordType>()) {
591 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
592 // C++ [expr.typeid]p3:
593 // [...] If the type of the expression is a class type, the class
594 // shall be completely-defined.
595 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
596 return ExprError();
598 // C++ [expr.typeid]p3:
599 // When typeid is applied to an expression other than an glvalue of a
600 // polymorphic class type [...] [the] expression is an unevaluated
601 // operand. [...]
602 if (RecordD->isPolymorphic() && E->isGLValue()) {
603 if (isUnevaluatedContext()) {
604 // The operand was processed in unevaluated context, switch the
605 // context and recheck the subexpression.
606 ExprResult Result = TransformToPotentiallyEvaluated(E);
607 if (Result.isInvalid())
608 return ExprError();
609 E = Result.get();
612 // We require a vtable to query the type at run time.
613 MarkVTableUsed(TypeidLoc, RecordD);
614 WasEvaluated = true;
618 ExprResult Result = CheckUnevaluatedOperand(E);
619 if (Result.isInvalid())
620 return ExprError();
621 E = Result.get();
623 // C++ [expr.typeid]p4:
624 // [...] If the type of the type-id is a reference to a possibly
625 // cv-qualified type, the result of the typeid expression refers to a
626 // std::type_info object representing the cv-unqualified referenced
627 // type.
628 Qualifiers Quals;
629 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
630 if (!Context.hasSameType(T, UnqualT)) {
631 T = UnqualT;
632 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
636 if (E->getType()->isVariablyModifiedType())
637 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
638 << E->getType());
639 else if (!inTemplateInstantiation() &&
640 E->HasSideEffects(Context, WasEvaluated)) {
641 // The expression operand for typeid is in an unevaluated expression
642 // context, so side effects could result in unintended consequences.
643 Diag(E->getExprLoc(), WasEvaluated
644 ? diag::warn_side_effects_typeid
645 : diag::warn_side_effects_unevaluated_context);
648 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
649 SourceRange(TypeidLoc, RParenLoc));
652 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
653 ExprResult
654 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
655 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
656 // typeid is not supported in OpenCL.
657 if (getLangOpts().OpenCLCPlusPlus) {
658 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
659 << "typeid");
662 // Find the std::type_info type.
663 if (!getStdNamespace())
664 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
666 if (!CXXTypeInfoDecl) {
667 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
668 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
669 LookupQualifiedName(R, getStdNamespace());
670 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
671 // Microsoft's typeinfo doesn't have type_info in std but in the global
672 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
673 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
674 LookupQualifiedName(R, Context.getTranslationUnitDecl());
675 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
677 if (!CXXTypeInfoDecl)
678 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
681 if (!getLangOpts().RTTI) {
682 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
685 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
687 if (isType) {
688 // The operand is a type; handle it as such.
689 TypeSourceInfo *TInfo = nullptr;
690 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
691 &TInfo);
692 if (T.isNull())
693 return ExprError();
695 if (!TInfo)
696 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
698 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
701 // The operand is an expression.
702 ExprResult Result =
703 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
705 if (!getLangOpts().RTTIData && !Result.isInvalid())
706 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
707 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
708 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
709 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
710 DiagnosticOptions::MSVC);
711 return Result;
714 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
715 /// a single GUID.
716 static void
717 getUuidAttrOfType(Sema &SemaRef, QualType QT,
718 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
719 // Optionally remove one level of pointer, reference or array indirection.
720 const Type *Ty = QT.getTypePtr();
721 if (QT->isPointerOrReferenceType())
722 Ty = QT->getPointeeType().getTypePtr();
723 else if (QT->isArrayType())
724 Ty = Ty->getBaseElementTypeUnsafe();
726 const auto *TD = Ty->getAsTagDecl();
727 if (!TD)
728 return;
730 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
731 UuidAttrs.insert(Uuid);
732 return;
735 // __uuidof can grab UUIDs from template arguments.
736 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
737 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
738 for (const TemplateArgument &TA : TAL.asArray()) {
739 const UuidAttr *UuidForTA = nullptr;
740 if (TA.getKind() == TemplateArgument::Type)
741 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
742 else if (TA.getKind() == TemplateArgument::Declaration)
743 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
745 if (UuidForTA)
746 UuidAttrs.insert(UuidForTA);
751 ExprResult Sema::BuildCXXUuidof(QualType Type,
752 SourceLocation TypeidLoc,
753 TypeSourceInfo *Operand,
754 SourceLocation RParenLoc) {
755 MSGuidDecl *Guid = nullptr;
756 if (!Operand->getType()->isDependentType()) {
757 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
758 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
759 if (UuidAttrs.empty())
760 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
761 if (UuidAttrs.size() > 1)
762 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
763 Guid = UuidAttrs.back()->getGuidDecl();
766 return new (Context)
767 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
770 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
771 Expr *E, SourceLocation RParenLoc) {
772 MSGuidDecl *Guid = nullptr;
773 if (!E->getType()->isDependentType()) {
774 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
775 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
776 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
777 } else {
778 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
779 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
780 if (UuidAttrs.empty())
781 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
782 if (UuidAttrs.size() > 1)
783 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
784 Guid = UuidAttrs.back()->getGuidDecl();
788 return new (Context)
789 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
792 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
793 ExprResult
794 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
795 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
796 QualType GuidType = Context.getMSGuidType();
797 GuidType.addConst();
799 if (isType) {
800 // The operand is a type; handle it as such.
801 TypeSourceInfo *TInfo = nullptr;
802 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
803 &TInfo);
804 if (T.isNull())
805 return ExprError();
807 if (!TInfo)
808 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
810 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
813 // The operand is an expression.
814 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
817 ExprResult
818 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
819 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
820 "Unknown C++ Boolean value!");
821 return new (Context)
822 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
830 ExprResult
831 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
832 bool IsThrownVarInScope = false;
833 if (Ex) {
834 // C++0x [class.copymove]p31:
835 // When certain criteria are met, an implementation is allowed to omit the
836 // copy/move construction of a class object [...]
838 // - in a throw-expression, when the operand is the name of a
839 // non-volatile automatic object (other than a function or catch-
840 // clause parameter) whose scope does not extend beyond the end of the
841 // innermost enclosing try-block (if there is one), the copy/move
842 // operation from the operand to the exception object (15.1) can be
843 // omitted by constructing the automatic object directly into the
844 // exception object
845 if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
846 if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
847 Var && Var->hasLocalStorage() &&
848 !Var->getType().isVolatileQualified()) {
849 for (; S; S = S->getParent()) {
850 if (S->isDeclScope(Var)) {
851 IsThrownVarInScope = true;
852 break;
855 // FIXME: Many of the scope checks here seem incorrect.
856 if (S->getFlags() &
857 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
858 Scope::ObjCMethodScope | Scope::TryScope))
859 break;
864 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
867 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
868 bool IsThrownVarInScope) {
869 const llvm::Triple &T = Context.getTargetInfo().getTriple();
870 const bool IsOpenMPGPUTarget =
871 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
872 // Don't report an error if 'throw' is used in system headers or in an OpenMP
873 // target region compiled for a GPU architecture.
874 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
875 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
876 // Delay error emission for the OpenMP device code.
877 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
880 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
881 if (IsOpenMPGPUTarget)
882 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
884 // Exceptions aren't allowed in CUDA device code.
885 if (getLangOpts().CUDA)
886 CUDA().DiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
887 << "throw" << llvm::to_underlying(CUDA().CurrentTarget());
889 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
890 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
892 // Exceptions that escape a compute construct are ill-formed.
893 if (getLangOpts().OpenACC && getCurScope() &&
894 getCurScope()->isInOpenACCComputeConstructScope(Scope::TryScope))
895 Diag(OpLoc, diag::err_acc_branch_in_out_compute_construct)
896 << /*throw*/ 2 << /*out of*/ 0;
898 if (Ex && !Ex->isTypeDependent()) {
899 // Initialize the exception result. This implicitly weeds out
900 // abstract types or types with inaccessible copy constructors.
902 // C++0x [class.copymove]p31:
903 // When certain criteria are met, an implementation is allowed to omit the
904 // copy/move construction of a class object [...]
906 // - in a throw-expression, when the operand is the name of a
907 // non-volatile automatic object (other than a function or
908 // catch-clause
909 // parameter) whose scope does not extend beyond the end of the
910 // innermost enclosing try-block (if there is one), the copy/move
911 // operation from the operand to the exception object (15.1) can be
912 // omitted by constructing the automatic object directly into the
913 // exception object
914 NamedReturnInfo NRInfo =
915 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
917 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
918 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
919 return ExprError();
921 InitializedEntity Entity =
922 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
923 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
924 if (Res.isInvalid())
925 return ExprError();
926 Ex = Res.get();
929 // PPC MMA non-pointer types are not allowed as throw expr types.
930 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
931 PPC().CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
933 return new (Context)
934 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
937 static void
938 collectPublicBases(CXXRecordDecl *RD,
939 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
940 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
941 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
942 bool ParentIsPublic) {
943 for (const CXXBaseSpecifier &BS : RD->bases()) {
944 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
945 bool NewSubobject;
946 // Virtual bases constitute the same subobject. Non-virtual bases are
947 // always distinct subobjects.
948 if (BS.isVirtual())
949 NewSubobject = VBases.insert(BaseDecl).second;
950 else
951 NewSubobject = true;
953 if (NewSubobject)
954 ++SubobjectsSeen[BaseDecl];
956 // Only add subobjects which have public access throughout the entire chain.
957 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
958 if (PublicPath)
959 PublicSubobjectsSeen.insert(BaseDecl);
961 // Recurse on to each base subobject.
962 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
963 PublicPath);
967 static void getUnambiguousPublicSubobjects(
968 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
969 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
970 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
971 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
972 SubobjectsSeen[RD] = 1;
973 PublicSubobjectsSeen.insert(RD);
974 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
975 /*ParentIsPublic=*/true);
977 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
978 // Skip ambiguous objects.
979 if (SubobjectsSeen[PublicSubobject] > 1)
980 continue;
982 Objects.push_back(PublicSubobject);
986 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
987 QualType ExceptionObjectTy, Expr *E) {
988 // If the type of the exception would be an incomplete type or a pointer
989 // to an incomplete type other than (cv) void the program is ill-formed.
990 QualType Ty = ExceptionObjectTy;
991 bool isPointer = false;
992 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
993 Ty = Ptr->getPointeeType();
994 isPointer = true;
997 // Cannot throw WebAssembly reference type.
998 if (Ty.isWebAssemblyReferenceType()) {
999 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
1000 return true;
1003 // Cannot throw WebAssembly table.
1004 if (isPointer && Ty.isWebAssemblyReferenceType()) {
1005 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1006 return true;
1009 if (!isPointer || !Ty->isVoidType()) {
1010 if (RequireCompleteType(ThrowLoc, Ty,
1011 isPointer ? diag::err_throw_incomplete_ptr
1012 : diag::err_throw_incomplete,
1013 E->getSourceRange()))
1014 return true;
1016 if (!isPointer && Ty->isSizelessType()) {
1017 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1018 return true;
1021 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1022 diag::err_throw_abstract_type, E))
1023 return true;
1026 // If the exception has class type, we need additional handling.
1027 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1028 if (!RD)
1029 return false;
1031 // If we are throwing a polymorphic class type or pointer thereof,
1032 // exception handling will make use of the vtable.
1033 MarkVTableUsed(ThrowLoc, RD);
1035 // If a pointer is thrown, the referenced object will not be destroyed.
1036 if (isPointer)
1037 return false;
1039 // If the class has a destructor, we must be able to call it.
1040 if (!RD->hasIrrelevantDestructor()) {
1041 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1042 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1043 CheckDestructorAccess(E->getExprLoc(), Destructor,
1044 PDiag(diag::err_access_dtor_exception) << Ty);
1045 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1046 return true;
1050 // The MSVC ABI creates a list of all types which can catch the exception
1051 // object. This list also references the appropriate copy constructor to call
1052 // if the object is caught by value and has a non-trivial copy constructor.
1053 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1054 // We are only interested in the public, unambiguous bases contained within
1055 // the exception object. Bases which are ambiguous or otherwise
1056 // inaccessible are not catchable types.
1057 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1058 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1060 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1061 // Attempt to lookup the copy constructor. Various pieces of machinery
1062 // will spring into action, like template instantiation, which means this
1063 // cannot be a simple walk of the class's decls. Instead, we must perform
1064 // lookup and overload resolution.
1065 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1066 if (!CD || CD->isDeleted())
1067 continue;
1069 // Mark the constructor referenced as it is used by this throw expression.
1070 MarkFunctionReferenced(E->getExprLoc(), CD);
1072 // Skip this copy constructor if it is trivial, we don't need to record it
1073 // in the catchable type data.
1074 if (CD->isTrivial())
1075 continue;
1077 // The copy constructor is non-trivial, create a mapping from this class
1078 // type to this constructor.
1079 // N.B. The selection of copy constructor is not sensitive to this
1080 // particular throw-site. Lookup will be performed at the catch-site to
1081 // ensure that the copy constructor is, in fact, accessible (via
1082 // friendship or any other means).
1083 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1085 // We don't keep the instantiated default argument expressions around so
1086 // we must rebuild them here.
1087 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1088 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1089 return true;
1094 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1095 // the runtime with no ability for the compiler to request additional
1096 // alignment. Warn if the exception type requires alignment beyond the minimum
1097 // guaranteed by the target C++ runtime.
1098 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1099 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1100 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1101 if (ExnObjAlign < TypeAlign) {
1102 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1103 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1104 << Ty << (unsigned)TypeAlign.getQuantity()
1105 << (unsigned)ExnObjAlign.getQuantity();
1108 if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1109 if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1110 auto Ty = Dtor->getType();
1111 if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1112 if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1113 !FT->isNothrow())
1114 Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1119 return false;
1122 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1123 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1124 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1126 QualType ClassType = ThisTy->getPointeeType();
1127 LambdaScopeInfo *CurLSI = nullptr;
1128 DeclContext *CurDC = CurSemaContext;
1130 // Iterate through the stack of lambdas starting from the innermost lambda to
1131 // the outermost lambda, checking if '*this' is ever captured by copy - since
1132 // that could change the cv-qualifiers of the '*this' object.
1133 // The object referred to by '*this' starts out with the cv-qualifiers of its
1134 // member function. We then start with the innermost lambda and iterate
1135 // outward checking to see if any lambda performs a by-copy capture of '*this'
1136 // - and if so, any nested lambda must respect the 'constness' of that
1137 // capturing lamdbda's call operator.
1140 // Since the FunctionScopeInfo stack is representative of the lexical
1141 // nesting of the lambda expressions during initial parsing (and is the best
1142 // place for querying information about captures about lambdas that are
1143 // partially processed) and perhaps during instantiation of function templates
1144 // that contain lambda expressions that need to be transformed BUT not
1145 // necessarily during instantiation of a nested generic lambda's function call
1146 // operator (which might even be instantiated at the end of the TU) - at which
1147 // time the DeclContext tree is mature enough to query capture information
1148 // reliably - we use a two pronged approach to walk through all the lexically
1149 // enclosing lambda expressions:
1151 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1152 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1153 // enclosed by the call-operator of the LSI below it on the stack (while
1154 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1155 // the stack represents the innermost lambda.
1157 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1158 // represents a lambda's call operator. If it does, we must be instantiating
1159 // a generic lambda's call operator (represented by the Current LSI, and
1160 // should be the only scenario where an inconsistency between the LSI and the
1161 // DeclContext should occur), so climb out the DeclContexts if they
1162 // represent lambdas, while querying the corresponding closure types
1163 // regarding capture information.
1165 // 1) Climb down the function scope info stack.
1166 for (int I = FunctionScopes.size();
1167 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1168 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1169 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1170 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1171 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1173 if (!CurLSI->isCXXThisCaptured())
1174 continue;
1176 auto C = CurLSI->getCXXThisCapture();
1178 if (C.isCopyCapture()) {
1179 if (CurLSI->lambdaCaptureShouldBeConst())
1180 ClassType.addConst();
1181 return ASTCtx.getPointerType(ClassType);
1185 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1186 // can happen during instantiation of its nested generic lambda call
1187 // operator); 2. if we're in a lambda scope (lambda body).
1188 if (CurLSI && isLambdaCallOperator(CurDC)) {
1189 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1190 "While computing 'this' capture-type for a generic lambda, when we "
1191 "run out of enclosing LSI's, yet the enclosing DC is a "
1192 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1193 "lambda call oeprator");
1194 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1196 auto IsThisCaptured =
1197 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1198 IsConst = false;
1199 IsByCopy = false;
1200 for (auto &&C : Closure->captures()) {
1201 if (C.capturesThis()) {
1202 if (C.getCaptureKind() == LCK_StarThis)
1203 IsByCopy = true;
1204 if (Closure->getLambdaCallOperator()->isConst())
1205 IsConst = true;
1206 return true;
1209 return false;
1212 bool IsByCopyCapture = false;
1213 bool IsConstCapture = false;
1214 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1215 while (Closure &&
1216 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1217 if (IsByCopyCapture) {
1218 if (IsConstCapture)
1219 ClassType.addConst();
1220 return ASTCtx.getPointerType(ClassType);
1222 Closure = isLambdaCallOperator(Closure->getParent())
1223 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1224 : nullptr;
1227 return ThisTy;
1230 QualType Sema::getCurrentThisType() {
1231 DeclContext *DC = getFunctionLevelDeclContext();
1232 QualType ThisTy = CXXThisTypeOverride;
1234 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1235 if (method && method->isImplicitObjectMemberFunction())
1236 ThisTy = method->getThisType().getNonReferenceType();
1239 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1240 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1242 // This is a lambda call operator that is being instantiated as a default
1243 // initializer. DC must point to the enclosing class type, so we can recover
1244 // the 'this' type from it.
1245 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1246 // There are no cv-qualifiers for 'this' within default initializers,
1247 // per [expr.prim.general]p4.
1248 ThisTy = Context.getPointerType(ClassTy);
1251 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1252 // might need to be adjusted if the lambda or any of its enclosing lambda's
1253 // captures '*this' by copy.
1254 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1255 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1256 CurContext, Context);
1257 return ThisTy;
1260 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1261 Decl *ContextDecl,
1262 Qualifiers CXXThisTypeQuals,
1263 bool Enabled)
1264 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1266 if (!Enabled || !ContextDecl)
1267 return;
1269 CXXRecordDecl *Record = nullptr;
1270 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1271 Record = Template->getTemplatedDecl();
1272 else
1273 Record = cast<CXXRecordDecl>(ContextDecl);
1275 QualType T = S.Context.getRecordType(Record);
1276 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1278 S.CXXThisTypeOverride =
1279 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1281 this->Enabled = true;
1285 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1286 if (Enabled) {
1287 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1291 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1292 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1293 assert(!LSI->isCXXThisCaptured());
1294 // [=, this] {}; // until C++20: Error: this when = is the default
1295 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1296 !Sema.getLangOpts().CPlusPlus20)
1297 return;
1298 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1299 << FixItHint::CreateInsertion(
1300 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1303 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1304 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1305 const bool ByCopy) {
1306 // We don't need to capture this in an unevaluated context.
1307 if (isUnevaluatedContext() && !Explicit)
1308 return true;
1310 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1312 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1313 ? *FunctionScopeIndexToStopAt
1314 : FunctionScopes.size() - 1;
1316 // Check that we can capture the *enclosing object* (referred to by '*this')
1317 // by the capturing-entity/closure (lambda/block/etc) at
1318 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1320 // Note: The *enclosing object* can only be captured by-value by a
1321 // closure that is a lambda, using the explicit notation:
1322 // [*this] { ... }.
1323 // Every other capture of the *enclosing object* results in its by-reference
1324 // capture.
1326 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1327 // stack), we can capture the *enclosing object* only if:
1328 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1329 // - or, 'L' has an implicit capture.
1330 // AND
1331 // -- there is no enclosing closure
1332 // -- or, there is some enclosing closure 'E' that has already captured the
1333 // *enclosing object*, and every intervening closure (if any) between 'E'
1334 // and 'L' can implicitly capture the *enclosing object*.
1335 // -- or, every enclosing closure can implicitly capture the
1336 // *enclosing object*
1339 unsigned NumCapturingClosures = 0;
1340 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1341 if (CapturingScopeInfo *CSI =
1342 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1343 if (CSI->CXXThisCaptureIndex != 0) {
1344 // 'this' is already being captured; there isn't anything more to do.
1345 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1346 break;
1348 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1349 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1350 // This context can't implicitly capture 'this'; fail out.
1351 if (BuildAndDiagnose) {
1352 LSI->CallOperator->setInvalidDecl();
1353 Diag(Loc, diag::err_this_capture)
1354 << (Explicit && idx == MaxFunctionScopesIndex);
1355 if (!Explicit)
1356 buildLambdaThisCaptureFixit(*this, LSI);
1358 return true;
1360 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1361 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1362 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1363 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1364 (Explicit && idx == MaxFunctionScopesIndex)) {
1365 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1366 // iteration through can be an explicit capture, all enclosing closures,
1367 // if any, must perform implicit captures.
1369 // This closure can capture 'this'; continue looking upwards.
1370 NumCapturingClosures++;
1371 continue;
1373 // This context can't implicitly capture 'this'; fail out.
1374 if (BuildAndDiagnose) {
1375 LSI->CallOperator->setInvalidDecl();
1376 Diag(Loc, diag::err_this_capture)
1377 << (Explicit && idx == MaxFunctionScopesIndex);
1379 if (!Explicit)
1380 buildLambdaThisCaptureFixit(*this, LSI);
1381 return true;
1383 break;
1385 if (!BuildAndDiagnose) return false;
1387 // If we got here, then the closure at MaxFunctionScopesIndex on the
1388 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1389 // (including implicit by-reference captures in any enclosing closures).
1391 // In the loop below, respect the ByCopy flag only for the closure requesting
1392 // the capture (i.e. first iteration through the loop below). Ignore it for
1393 // all enclosing closure's up to NumCapturingClosures (since they must be
1394 // implicitly capturing the *enclosing object* by reference (see loop
1395 // above)).
1396 assert((!ByCopy ||
1397 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1398 "Only a lambda can capture the enclosing object (referred to by "
1399 "*this) by copy");
1400 QualType ThisTy = getCurrentThisType();
1401 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1402 --idx, --NumCapturingClosures) {
1403 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1405 // The type of the corresponding data member (not a 'this' pointer if 'by
1406 // copy').
1407 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1409 bool isNested = NumCapturingClosures > 1;
1410 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1412 return false;
1415 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1416 // C++20 [expr.prim.this]p1:
1417 // The keyword this names a pointer to the object for which an
1418 // implicit object member function is invoked or a non-static
1419 // data member's initializer is evaluated.
1420 QualType ThisTy = getCurrentThisType();
1422 if (CheckCXXThisType(Loc, ThisTy))
1423 return ExprError();
1425 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1428 bool Sema::CheckCXXThisType(SourceLocation Loc, QualType Type) {
1429 if (!Type.isNull())
1430 return false;
1432 // C++20 [expr.prim.this]p3:
1433 // If a declaration declares a member function or member function template
1434 // of a class X, the expression this is a prvalue of type
1435 // "pointer to cv-qualifier-seq X" wherever X is the current class between
1436 // the optional cv-qualifier-seq and the end of the function-definition,
1437 // member-declarator, or declarator. It shall not appear within the
1438 // declaration of either a static member function or an explicit object
1439 // member function of the current class (although its type and value
1440 // category are defined within such member functions as they are within
1441 // an implicit object member function).
1442 DeclContext *DC = getFunctionLevelDeclContext();
1443 const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1444 if (Method && Method->isExplicitObjectMemberFunction()) {
1445 Diag(Loc, diag::err_invalid_this_use) << 1;
1446 } else if (Method && isLambdaCallWithExplicitObjectParameter(CurContext)) {
1447 Diag(Loc, diag::err_invalid_this_use) << 1;
1448 } else {
1449 Diag(Loc, diag::err_invalid_this_use) << 0;
1451 return true;
1454 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1455 bool IsImplicit) {
1456 auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1457 MarkThisReferenced(This);
1458 return This;
1461 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1462 CheckCXXThisCapture(This->getExprLoc());
1463 if (This->isTypeDependent())
1464 return;
1466 // Check if 'this' is captured by value in a lambda with a dependent explicit
1467 // object parameter, and mark it as type-dependent as well if so.
1468 auto IsDependent = [&]() {
1469 for (auto *Scope : llvm::reverse(FunctionScopes)) {
1470 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
1471 if (!LSI)
1472 continue;
1474 if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) &&
1475 LSI->AfterParameterList)
1476 return false;
1478 // If this lambda captures 'this' by value, then 'this' is dependent iff
1479 // this lambda has a dependent explicit object parameter. If we can't
1480 // determine whether it does (e.g. because the CXXMethodDecl's type is
1481 // null), assume it doesn't.
1482 if (LSI->isCXXThisCaptured()) {
1483 if (!LSI->getCXXThisCapture().isCopyCapture())
1484 continue;
1486 const auto *MD = LSI->CallOperator;
1487 if (MD->getType().isNull())
1488 return false;
1490 const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
1491 return Ty && MD->isExplicitObjectMemberFunction() &&
1492 Ty->getParamType(0)->isDependentType();
1495 return false;
1496 }();
1498 This->setCapturedByCopyInLambdaWithExplicitObjectParameter(IsDependent);
1501 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1502 // If we're outside the body of a member function, then we'll have a specified
1503 // type for 'this'.
1504 if (CXXThisTypeOverride.isNull())
1505 return false;
1507 // Determine whether we're looking into a class that's currently being
1508 // defined.
1509 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1510 return Class && Class->isBeingDefined();
1513 ExprResult
1514 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1515 SourceLocation LParenOrBraceLoc,
1516 MultiExprArg exprs,
1517 SourceLocation RParenOrBraceLoc,
1518 bool ListInitialization) {
1519 if (!TypeRep)
1520 return ExprError();
1522 TypeSourceInfo *TInfo;
1523 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1524 if (!TInfo)
1525 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1527 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1528 RParenOrBraceLoc, ListInitialization);
1529 // Avoid creating a non-type-dependent expression that contains typos.
1530 // Non-type-dependent expressions are liable to be discarded without
1531 // checking for embedded typos.
1532 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1533 !Result.get()->isTypeDependent())
1534 Result = CorrectDelayedTyposInExpr(Result.get());
1535 else if (Result.isInvalid())
1536 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1537 RParenOrBraceLoc, exprs, Ty);
1538 return Result;
1541 ExprResult
1542 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1543 SourceLocation LParenOrBraceLoc,
1544 MultiExprArg Exprs,
1545 SourceLocation RParenOrBraceLoc,
1546 bool ListInitialization) {
1547 QualType Ty = TInfo->getType();
1548 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1549 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1551 InitializedEntity Entity =
1552 InitializedEntity::InitializeTemporary(Context, TInfo);
1553 InitializationKind Kind =
1554 Exprs.size()
1555 ? ListInitialization
1556 ? InitializationKind::CreateDirectList(
1557 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1558 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1559 RParenOrBraceLoc)
1560 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1561 RParenOrBraceLoc);
1563 // C++17 [expr.type.conv]p1:
1564 // If the type is a placeholder for a deduced class type, [...perform class
1565 // template argument deduction...]
1566 // C++23:
1567 // Otherwise, if the type contains a placeholder type, it is replaced by the
1568 // type determined by placeholder type deduction.
1569 DeducedType *Deduced = Ty->getContainedDeducedType();
1570 if (Deduced && !Deduced->isDeduced() &&
1571 isa<DeducedTemplateSpecializationType>(Deduced)) {
1572 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1573 Kind, Exprs);
1574 if (Ty.isNull())
1575 return ExprError();
1576 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1577 } else if (Deduced && !Deduced->isDeduced()) {
1578 MultiExprArg Inits = Exprs;
1579 if (ListInitialization) {
1580 auto *ILE = cast<InitListExpr>(Exprs[0]);
1581 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1584 if (Inits.empty())
1585 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1586 << Ty << FullRange);
1587 if (Inits.size() > 1) {
1588 Expr *FirstBad = Inits[1];
1589 return ExprError(Diag(FirstBad->getBeginLoc(),
1590 diag::err_auto_expr_init_multiple_expressions)
1591 << Ty << FullRange);
1593 if (getLangOpts().CPlusPlus23) {
1594 if (Ty->getAs<AutoType>())
1595 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1597 Expr *Deduce = Inits[0];
1598 if (isa<InitListExpr>(Deduce))
1599 return ExprError(
1600 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1601 << ListInitialization << Ty << FullRange);
1602 QualType DeducedType;
1603 TemplateDeductionInfo Info(Deduce->getExprLoc());
1604 TemplateDeductionResult Result =
1605 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1606 if (Result != TemplateDeductionResult::Success &&
1607 Result != TemplateDeductionResult::AlreadyDiagnosed)
1608 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1609 << Ty << Deduce->getType() << FullRange
1610 << Deduce->getSourceRange());
1611 if (DeducedType.isNull()) {
1612 assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
1613 return ExprError();
1616 Ty = DeducedType;
1617 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1620 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1621 return CXXUnresolvedConstructExpr::Create(
1622 Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1623 RParenOrBraceLoc, ListInitialization);
1625 // C++ [expr.type.conv]p1:
1626 // If the expression list is a parenthesized single expression, the type
1627 // conversion expression is equivalent (in definedness, and if defined in
1628 // meaning) to the corresponding cast expression.
1629 if (Exprs.size() == 1 && !ListInitialization &&
1630 !isa<InitListExpr>(Exprs[0])) {
1631 Expr *Arg = Exprs[0];
1632 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1633 RParenOrBraceLoc);
1636 // For an expression of the form T(), T shall not be an array type.
1637 QualType ElemTy = Ty;
1638 if (Ty->isArrayType()) {
1639 if (!ListInitialization)
1640 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1641 << FullRange);
1642 ElemTy = Context.getBaseElementType(Ty);
1645 // Only construct objects with object types.
1646 // The standard doesn't explicitly forbid function types here, but that's an
1647 // obvious oversight, as there's no way to dynamically construct a function
1648 // in general.
1649 if (Ty->isFunctionType())
1650 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1651 << Ty << FullRange);
1653 // C++17 [expr.type.conv]p2, per DR2351:
1654 // If the type is cv void and the initializer is () or {}, the expression is
1655 // a prvalue of the specified type that performs no initialization.
1656 if (Ty->isVoidType()) {
1657 if (Exprs.empty())
1658 return new (Context) CXXScalarValueInitExpr(
1659 Ty.getUnqualifiedType(), TInfo, Kind.getRange().getEnd());
1660 if (ListInitialization &&
1661 cast<InitListExpr>(Exprs[0])->getNumInits() == 0) {
1662 return CXXFunctionalCastExpr::Create(
1663 Context, Ty.getUnqualifiedType(), VK_PRValue, TInfo, CK_ToVoid,
1664 Exprs[0], /*Path=*/nullptr, CurFPFeatureOverrides(),
1665 Exprs[0]->getBeginLoc(), Exprs[0]->getEndLoc());
1667 } else if (RequireCompleteType(TyBeginLoc, ElemTy,
1668 diag::err_invalid_incomplete_type_use,
1669 FullRange))
1670 return ExprError();
1672 // Otherwise, the expression is a prvalue of the specified type whose
1673 // result object is direct-initialized (11.6) with the initializer.
1674 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1675 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1677 if (Result.isInvalid())
1678 return Result;
1680 Expr *Inner = Result.get();
1681 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1682 Inner = BTE->getSubExpr();
1683 if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1684 CE && CE->isImmediateInvocation())
1685 Inner = CE->getSubExpr();
1686 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1687 !isa<CXXScalarValueInitExpr>(Inner)) {
1688 // If we created a CXXTemporaryObjectExpr, that node also represents the
1689 // functional cast. Otherwise, create an explicit cast to represent
1690 // the syntactic form of a functional-style cast that was used here.
1692 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1693 // would give a more consistent AST representation than using a
1694 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1695 // is sometimes handled by initialization and sometimes not.
1696 QualType ResultType = Result.get()->getType();
1697 SourceRange Locs = ListInitialization
1698 ? SourceRange()
1699 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1700 Result = CXXFunctionalCastExpr::Create(
1701 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1702 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1703 Locs.getBegin(), Locs.getEnd());
1706 return Result;
1709 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1710 // [CUDA] Ignore this function, if we can't call it.
1711 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1712 if (getLangOpts().CUDA) {
1713 auto CallPreference = CUDA().IdentifyPreference(Caller, Method);
1714 // If it's not callable at all, it's not the right function.
1715 if (CallPreference < SemaCUDA::CFP_WrongSide)
1716 return false;
1717 if (CallPreference == SemaCUDA::CFP_WrongSide) {
1718 // Maybe. We have to check if there are better alternatives.
1719 DeclContext::lookup_result R =
1720 Method->getDeclContext()->lookup(Method->getDeclName());
1721 for (const auto *D : R) {
1722 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1723 if (CUDA().IdentifyPreference(Caller, FD) > SemaCUDA::CFP_WrongSide)
1724 return false;
1727 // We've found no better variants.
1731 SmallVector<const FunctionDecl*, 4> PreventedBy;
1732 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1734 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1735 return Result;
1737 // In case of CUDA, return true if none of the 1-argument deallocator
1738 // functions are actually callable.
1739 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1740 assert(FD->getNumParams() == 1 &&
1741 "Only single-operand functions should be in PreventedBy");
1742 return CUDA().IdentifyPreference(Caller, FD) >= SemaCUDA::CFP_HostDevice;
1746 /// Determine whether the given function is a non-placement
1747 /// deallocation function.
1748 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1749 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1750 return S.isUsualDeallocationFunction(Method);
1752 if (FD->getOverloadedOperator() != OO_Delete &&
1753 FD->getOverloadedOperator() != OO_Array_Delete)
1754 return false;
1756 unsigned UsualParams = 1;
1758 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1759 S.Context.hasSameUnqualifiedType(
1760 FD->getParamDecl(UsualParams)->getType(),
1761 S.Context.getSizeType()))
1762 ++UsualParams;
1764 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1765 S.Context.hasSameUnqualifiedType(
1766 FD->getParamDecl(UsualParams)->getType(),
1767 S.Context.getTypeDeclType(S.getStdAlignValT())))
1768 ++UsualParams;
1770 return UsualParams == FD->getNumParams();
1773 namespace {
1774 struct UsualDeallocFnInfo {
1775 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1776 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1777 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1778 Destroying(false), HasSizeT(false), HasAlignValT(false),
1779 CUDAPref(SemaCUDA::CFP_Native) {
1780 // A function template declaration is never a usual deallocation function.
1781 if (!FD)
1782 return;
1783 unsigned NumBaseParams = 1;
1784 if (FD->isDestroyingOperatorDelete()) {
1785 Destroying = true;
1786 ++NumBaseParams;
1789 if (NumBaseParams < FD->getNumParams() &&
1790 S.Context.hasSameUnqualifiedType(
1791 FD->getParamDecl(NumBaseParams)->getType(),
1792 S.Context.getSizeType())) {
1793 ++NumBaseParams;
1794 HasSizeT = true;
1797 if (NumBaseParams < FD->getNumParams() &&
1798 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1799 ++NumBaseParams;
1800 HasAlignValT = true;
1803 // In CUDA, determine how much we'd like / dislike to call this.
1804 if (S.getLangOpts().CUDA)
1805 CUDAPref = S.CUDA().IdentifyPreference(
1806 S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1809 explicit operator bool() const { return FD; }
1811 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1812 bool WantAlign) const {
1813 // C++ P0722:
1814 // A destroying operator delete is preferred over a non-destroying
1815 // operator delete.
1816 if (Destroying != Other.Destroying)
1817 return Destroying;
1819 // C++17 [expr.delete]p10:
1820 // If the type has new-extended alignment, a function with a parameter
1821 // of type std::align_val_t is preferred; otherwise a function without
1822 // such a parameter is preferred
1823 if (HasAlignValT != Other.HasAlignValT)
1824 return HasAlignValT == WantAlign;
1826 if (HasSizeT != Other.HasSizeT)
1827 return HasSizeT == WantSize;
1829 // Use CUDA call preference as a tiebreaker.
1830 return CUDAPref > Other.CUDAPref;
1833 DeclAccessPair Found;
1834 FunctionDecl *FD;
1835 bool Destroying, HasSizeT, HasAlignValT;
1836 SemaCUDA::CUDAFunctionPreference CUDAPref;
1840 /// Determine whether a type has new-extended alignment. This may be called when
1841 /// the type is incomplete (for a delete-expression with an incomplete pointee
1842 /// type), in which case it will conservatively return false if the alignment is
1843 /// not known.
1844 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1845 return S.getLangOpts().AlignedAllocation &&
1846 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1847 S.getASTContext().getTargetInfo().getNewAlign();
1850 /// Select the correct "usual" deallocation function to use from a selection of
1851 /// deallocation functions (either global or class-scope).
1852 static UsualDeallocFnInfo resolveDeallocationOverload(
1853 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1854 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1855 UsualDeallocFnInfo Best;
1857 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1858 UsualDeallocFnInfo Info(S, I.getPair());
1859 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1860 Info.CUDAPref == SemaCUDA::CFP_Never)
1861 continue;
1863 if (!Best) {
1864 Best = Info;
1865 if (BestFns)
1866 BestFns->push_back(Info);
1867 continue;
1870 if (Best.isBetterThan(Info, WantSize, WantAlign))
1871 continue;
1873 // If more than one preferred function is found, all non-preferred
1874 // functions are eliminated from further consideration.
1875 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1876 BestFns->clear();
1878 Best = Info;
1879 if (BestFns)
1880 BestFns->push_back(Info);
1883 return Best;
1886 /// Determine whether a given type is a class for which 'delete[]' would call
1887 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1888 /// we need to store the array size (even if the type is
1889 /// trivially-destructible).
1890 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1891 QualType allocType) {
1892 const RecordType *record =
1893 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1894 if (!record) return false;
1896 // Try to find an operator delete[] in class scope.
1898 DeclarationName deleteName =
1899 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1900 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1901 S.LookupQualifiedName(ops, record->getDecl());
1903 // We're just doing this for information.
1904 ops.suppressDiagnostics();
1906 // Very likely: there's no operator delete[].
1907 if (ops.empty()) return false;
1909 // If it's ambiguous, it should be illegal to call operator delete[]
1910 // on this thing, so it doesn't matter if we allocate extra space or not.
1911 if (ops.isAmbiguous()) return false;
1913 // C++17 [expr.delete]p10:
1914 // If the deallocation functions have class scope, the one without a
1915 // parameter of type std::size_t is selected.
1916 auto Best = resolveDeallocationOverload(
1917 S, ops, /*WantSize*/false,
1918 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1919 return Best && Best.HasSizeT;
1922 ExprResult
1923 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1924 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1925 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1926 Declarator &D, Expr *Initializer) {
1927 std::optional<Expr *> ArraySize;
1928 // If the specified type is an array, unwrap it and save the expression.
1929 if (D.getNumTypeObjects() > 0 &&
1930 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1931 DeclaratorChunk &Chunk = D.getTypeObject(0);
1932 if (D.getDeclSpec().hasAutoTypeSpec())
1933 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1934 << D.getSourceRange());
1935 if (Chunk.Arr.hasStatic)
1936 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1937 << D.getSourceRange());
1938 if (!Chunk.Arr.NumElts && !Initializer)
1939 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1940 << D.getSourceRange());
1942 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1943 D.DropFirstTypeObject();
1946 // Every dimension shall be of constant size.
1947 if (ArraySize) {
1948 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1949 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1950 break;
1952 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1953 if (Expr *NumElts = (Expr *)Array.NumElts) {
1954 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1955 // FIXME: GCC permits constant folding here. We should either do so consistently
1956 // or not do so at all, rather than changing behavior in C++14 onwards.
1957 if (getLangOpts().CPlusPlus14) {
1958 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1959 // shall be a converted constant expression (5.19) of type std::size_t
1960 // and shall evaluate to a strictly positive value.
1961 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1962 Array.NumElts
1963 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1964 CCEK_ArrayBound)
1965 .get();
1966 } else {
1967 Array.NumElts =
1968 VerifyIntegerConstantExpression(
1969 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1970 .get();
1972 if (!Array.NumElts)
1973 return ExprError();
1979 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1980 QualType AllocType = TInfo->getType();
1981 if (D.isInvalidType())
1982 return ExprError();
1984 SourceRange DirectInitRange;
1985 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1986 DirectInitRange = List->getSourceRange();
1988 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1989 PlacementLParen, PlacementArgs, PlacementRParen,
1990 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1991 Initializer);
1994 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1995 Expr *Init, bool IsCPlusPlus20) {
1996 if (!Init)
1997 return true;
1998 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1999 return IsCPlusPlus20 || PLE->getNumExprs() == 0;
2000 if (isa<ImplicitValueInitExpr>(Init))
2001 return true;
2002 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
2003 return !CCE->isListInitialization() &&
2004 CCE->getConstructor()->isDefaultConstructor();
2005 else if (Style == CXXNewInitializationStyle::Braces) {
2006 assert(isa<InitListExpr>(Init) &&
2007 "Shouldn't create list CXXConstructExprs for arrays.");
2008 return true;
2010 return false;
2013 bool
2014 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
2015 if (!getLangOpts().AlignedAllocationUnavailable)
2016 return false;
2017 if (FD.isDefined())
2018 return false;
2019 std::optional<unsigned> AlignmentParam;
2020 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
2021 AlignmentParam)
2022 return true;
2023 return false;
2026 // Emit a diagnostic if an aligned allocation/deallocation function that is not
2027 // implemented in the standard library is selected.
2028 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
2029 SourceLocation Loc) {
2030 if (isUnavailableAlignedAllocationFunction(FD)) {
2031 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
2032 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
2033 getASTContext().getTargetInfo().getPlatformName());
2034 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
2036 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
2037 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
2038 Diag(Loc, diag::err_aligned_allocation_unavailable)
2039 << IsDelete << FD.getType().getAsString() << OSName
2040 << OSVersion.getAsString() << OSVersion.empty();
2041 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
2045 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2046 SourceLocation PlacementLParen,
2047 MultiExprArg PlacementArgs,
2048 SourceLocation PlacementRParen,
2049 SourceRange TypeIdParens, QualType AllocType,
2050 TypeSourceInfo *AllocTypeInfo,
2051 std::optional<Expr *> ArraySize,
2052 SourceRange DirectInitRange, Expr *Initializer) {
2053 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2054 SourceLocation StartLoc = Range.getBegin();
2056 CXXNewInitializationStyle InitStyle;
2057 if (DirectInitRange.isValid()) {
2058 assert(Initializer && "Have parens but no initializer.");
2059 InitStyle = CXXNewInitializationStyle::Parens;
2060 } else if (isa_and_nonnull<InitListExpr>(Initializer))
2061 InitStyle = CXXNewInitializationStyle::Braces;
2062 else {
2063 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2064 isa<CXXConstructExpr>(Initializer)) &&
2065 "Initializer expression that cannot have been implicitly created.");
2066 InitStyle = CXXNewInitializationStyle::None;
2069 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2070 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2071 assert(InitStyle == CXXNewInitializationStyle::Parens &&
2072 "paren init for non-call init");
2073 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2076 // C++11 [expr.new]p15:
2077 // A new-expression that creates an object of type T initializes that
2078 // object as follows:
2079 InitializationKind Kind = [&] {
2080 switch (InitStyle) {
2081 // - If the new-initializer is omitted, the object is default-
2082 // initialized (8.5); if no initialization is performed,
2083 // the object has indeterminate value
2084 case CXXNewInitializationStyle::None:
2085 return InitializationKind::CreateDefault(TypeRange.getBegin());
2086 // - Otherwise, the new-initializer is interpreted according to the
2087 // initialization rules of 8.5 for direct-initialization.
2088 case CXXNewInitializationStyle::Parens:
2089 return InitializationKind::CreateDirect(TypeRange.getBegin(),
2090 DirectInitRange.getBegin(),
2091 DirectInitRange.getEnd());
2092 case CXXNewInitializationStyle::Braces:
2093 return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2094 Initializer->getBeginLoc(),
2095 Initializer->getEndLoc());
2097 llvm_unreachable("Unknown initialization kind");
2098 }();
2100 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2101 auto *Deduced = AllocType->getContainedDeducedType();
2102 if (Deduced && !Deduced->isDeduced() &&
2103 isa<DeducedTemplateSpecializationType>(Deduced)) {
2104 if (ArraySize)
2105 return ExprError(
2106 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2107 diag::err_deduced_class_template_compound_type)
2108 << /*array*/ 2
2109 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2111 InitializedEntity Entity
2112 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2113 AllocType = DeduceTemplateSpecializationFromInitializer(
2114 AllocTypeInfo, Entity, Kind, Exprs);
2115 if (AllocType.isNull())
2116 return ExprError();
2117 } else if (Deduced && !Deduced->isDeduced()) {
2118 MultiExprArg Inits = Exprs;
2119 bool Braced = (InitStyle == CXXNewInitializationStyle::Braces);
2120 if (Braced) {
2121 auto *ILE = cast<InitListExpr>(Exprs[0]);
2122 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2125 if (InitStyle == CXXNewInitializationStyle::None || Inits.empty())
2126 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2127 << AllocType << TypeRange);
2128 if (Inits.size() > 1) {
2129 Expr *FirstBad = Inits[1];
2130 return ExprError(Diag(FirstBad->getBeginLoc(),
2131 diag::err_auto_new_ctor_multiple_expressions)
2132 << AllocType << TypeRange);
2134 if (Braced && !getLangOpts().CPlusPlus17)
2135 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2136 << AllocType << TypeRange;
2137 Expr *Deduce = Inits[0];
2138 if (isa<InitListExpr>(Deduce))
2139 return ExprError(
2140 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2141 << Braced << AllocType << TypeRange);
2142 QualType DeducedType;
2143 TemplateDeductionInfo Info(Deduce->getExprLoc());
2144 TemplateDeductionResult Result =
2145 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2146 if (Result != TemplateDeductionResult::Success &&
2147 Result != TemplateDeductionResult::AlreadyDiagnosed)
2148 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2149 << AllocType << Deduce->getType() << TypeRange
2150 << Deduce->getSourceRange());
2151 if (DeducedType.isNull()) {
2152 assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
2153 return ExprError();
2155 AllocType = DeducedType;
2158 // Per C++0x [expr.new]p5, the type being constructed may be a
2159 // typedef of an array type.
2160 // Dependent case will be handled separately.
2161 if (!ArraySize && !AllocType->isDependentType()) {
2162 if (const ConstantArrayType *Array
2163 = Context.getAsConstantArrayType(AllocType)) {
2164 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2165 Context.getSizeType(),
2166 TypeRange.getEnd());
2167 AllocType = Array->getElementType();
2171 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2172 return ExprError();
2174 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2175 return ExprError();
2177 // In ARC, infer 'retaining' for the allocated
2178 if (getLangOpts().ObjCAutoRefCount &&
2179 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2180 AllocType->isObjCLifetimeType()) {
2181 AllocType = Context.getLifetimeQualifiedType(AllocType,
2182 AllocType->getObjCARCImplicitLifetime());
2185 QualType ResultType = Context.getPointerType(AllocType);
2187 if (ArraySize && *ArraySize &&
2188 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2189 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2190 if (result.isInvalid()) return ExprError();
2191 ArraySize = result.get();
2193 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2194 // integral or enumeration type with a non-negative value."
2195 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2196 // enumeration type, or a class type for which a single non-explicit
2197 // conversion function to integral or unscoped enumeration type exists.
2198 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2199 // std::size_t.
2200 std::optional<uint64_t> KnownArraySize;
2201 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2202 ExprResult ConvertedSize;
2203 if (getLangOpts().CPlusPlus14) {
2204 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2206 ConvertedSize = PerformImplicitConversion(
2207 *ArraySize, Context.getSizeType(), AssignmentAction::Converting);
2209 if (!ConvertedSize.isInvalid() &&
2210 (*ArraySize)->getType()->getAs<RecordType>())
2211 // Diagnose the compatibility of this conversion.
2212 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2213 << (*ArraySize)->getType() << 0 << "'size_t'";
2214 } else {
2215 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2216 protected:
2217 Expr *ArraySize;
2219 public:
2220 SizeConvertDiagnoser(Expr *ArraySize)
2221 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2222 ArraySize(ArraySize) {}
2224 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2225 QualType T) override {
2226 return S.Diag(Loc, diag::err_array_size_not_integral)
2227 << S.getLangOpts().CPlusPlus11 << T;
2230 SemaDiagnosticBuilder diagnoseIncomplete(
2231 Sema &S, SourceLocation Loc, QualType T) override {
2232 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2233 << T << ArraySize->getSourceRange();
2236 SemaDiagnosticBuilder diagnoseExplicitConv(
2237 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2238 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2241 SemaDiagnosticBuilder noteExplicitConv(
2242 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2243 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2244 << ConvTy->isEnumeralType() << ConvTy;
2247 SemaDiagnosticBuilder diagnoseAmbiguous(
2248 Sema &S, SourceLocation Loc, QualType T) override {
2249 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2252 SemaDiagnosticBuilder noteAmbiguous(
2253 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2254 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2255 << ConvTy->isEnumeralType() << ConvTy;
2258 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2259 QualType T,
2260 QualType ConvTy) override {
2261 return S.Diag(Loc,
2262 S.getLangOpts().CPlusPlus11
2263 ? diag::warn_cxx98_compat_array_size_conversion
2264 : diag::ext_array_size_conversion)
2265 << T << ConvTy->isEnumeralType() << ConvTy;
2267 } SizeDiagnoser(*ArraySize);
2269 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2270 SizeDiagnoser);
2272 if (ConvertedSize.isInvalid())
2273 return ExprError();
2275 ArraySize = ConvertedSize.get();
2276 QualType SizeType = (*ArraySize)->getType();
2278 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2279 return ExprError();
2281 // C++98 [expr.new]p7:
2282 // The expression in a direct-new-declarator shall have integral type
2283 // with a non-negative value.
2285 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2286 // per CWG1464. Otherwise, if it's not a constant, we must have an
2287 // unparenthesized array type.
2289 // We've already performed any required implicit conversion to integer or
2290 // unscoped enumeration type.
2291 // FIXME: Per CWG1464, we are required to check the value prior to
2292 // converting to size_t. This will never find a negative array size in
2293 // C++14 onwards, because Value is always unsigned here!
2294 if (std::optional<llvm::APSInt> Value =
2295 (*ArraySize)->getIntegerConstantExpr(Context)) {
2296 if (Value->isSigned() && Value->isNegative()) {
2297 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2298 diag::err_typecheck_negative_array_size)
2299 << (*ArraySize)->getSourceRange());
2302 if (!AllocType->isDependentType()) {
2303 unsigned ActiveSizeBits =
2304 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2305 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2306 return ExprError(
2307 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2308 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2311 KnownArraySize = Value->getZExtValue();
2312 } else if (TypeIdParens.isValid()) {
2313 // Can't have dynamic array size when the type-id is in parentheses.
2314 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2315 << (*ArraySize)->getSourceRange()
2316 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2317 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2319 TypeIdParens = SourceRange();
2322 // Note that we do *not* convert the argument in any way. It can
2323 // be signed, larger than size_t, whatever.
2326 FunctionDecl *OperatorNew = nullptr;
2327 FunctionDecl *OperatorDelete = nullptr;
2328 unsigned Alignment =
2329 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2330 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2331 bool PassAlignment = getLangOpts().AlignedAllocation &&
2332 Alignment > NewAlignment;
2334 if (CheckArgsForPlaceholders(PlacementArgs))
2335 return ExprError();
2337 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2338 if (!AllocType->isDependentType() &&
2339 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2340 FindAllocationFunctions(
2341 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2342 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2343 OperatorNew, OperatorDelete))
2344 return ExprError();
2346 // If this is an array allocation, compute whether the usual array
2347 // deallocation function for the type has a size_t parameter.
2348 bool UsualArrayDeleteWantsSize = false;
2349 if (ArraySize && !AllocType->isDependentType())
2350 UsualArrayDeleteWantsSize =
2351 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2353 SmallVector<Expr *, 8> AllPlaceArgs;
2354 if (OperatorNew) {
2355 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2356 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2357 : VariadicDoesNotApply;
2359 // We've already converted the placement args, just fill in any default
2360 // arguments. Skip the first parameter because we don't have a corresponding
2361 // argument. Skip the second parameter too if we're passing in the
2362 // alignment; we've already filled it in.
2363 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2364 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2365 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2366 CallType))
2367 return ExprError();
2369 if (!AllPlaceArgs.empty())
2370 PlacementArgs = AllPlaceArgs;
2372 // We would like to perform some checking on the given `operator new` call,
2373 // but the PlacementArgs does not contain the implicit arguments,
2374 // namely allocation size and maybe allocation alignment,
2375 // so we need to conjure them.
2377 QualType SizeTy = Context.getSizeType();
2378 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2380 llvm::APInt SingleEltSize(
2381 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2383 // How many bytes do we want to allocate here?
2384 std::optional<llvm::APInt> AllocationSize;
2385 if (!ArraySize && !AllocType->isDependentType()) {
2386 // For non-array operator new, we only want to allocate one element.
2387 AllocationSize = SingleEltSize;
2388 } else if (KnownArraySize && !AllocType->isDependentType()) {
2389 // For array operator new, only deal with static array size case.
2390 bool Overflow;
2391 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2392 .umul_ov(SingleEltSize, Overflow);
2393 (void)Overflow;
2394 assert(
2395 !Overflow &&
2396 "Expected that all the overflows would have been handled already.");
2399 IntegerLiteral AllocationSizeLiteral(
2400 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2401 SizeTy, SourceLocation());
2402 // Otherwise, if we failed to constant-fold the allocation size, we'll
2403 // just give up and pass-in something opaque, that isn't a null pointer.
2404 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2405 OK_Ordinary, /*SourceExpr=*/nullptr);
2407 // Let's synthesize the alignment argument in case we will need it.
2408 // Since we *really* want to allocate these on stack, this is slightly ugly
2409 // because there might not be a `std::align_val_t` type.
2410 EnumDecl *StdAlignValT = getStdAlignValT();
2411 QualType AlignValT =
2412 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2413 IntegerLiteral AlignmentLiteral(
2414 Context,
2415 llvm::APInt(Context.getTypeSize(SizeTy),
2416 Alignment / Context.getCharWidth()),
2417 SizeTy, SourceLocation());
2418 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2419 CK_IntegralCast, &AlignmentLiteral,
2420 VK_PRValue, FPOptionsOverride());
2422 // Adjust placement args by prepending conjured size and alignment exprs.
2423 llvm::SmallVector<Expr *, 8> CallArgs;
2424 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2425 CallArgs.emplace_back(AllocationSize
2426 ? static_cast<Expr *>(&AllocationSizeLiteral)
2427 : &OpaqueAllocationSize);
2428 if (PassAlignment)
2429 CallArgs.emplace_back(&DesiredAlignment);
2430 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2432 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2434 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2435 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2437 // Warn if the type is over-aligned and is being allocated by (unaligned)
2438 // global operator new.
2439 if (PlacementArgs.empty() && !PassAlignment &&
2440 (OperatorNew->isImplicit() ||
2441 (OperatorNew->getBeginLoc().isValid() &&
2442 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2443 if (Alignment > NewAlignment)
2444 Diag(StartLoc, diag::warn_overaligned_type)
2445 << AllocType
2446 << unsigned(Alignment / Context.getCharWidth())
2447 << unsigned(NewAlignment / Context.getCharWidth());
2451 // Array 'new' can't have any initializers except empty parentheses.
2452 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2453 // dialect distinction.
2454 if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer,
2455 getLangOpts().CPlusPlus20)) {
2456 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2457 Exprs.back()->getEndLoc());
2458 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2459 return ExprError();
2462 // If we can perform the initialization, and we've not already done so,
2463 // do it now.
2464 if (!AllocType->isDependentType() &&
2465 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2466 // The type we initialize is the complete type, including the array bound.
2467 QualType InitType;
2468 if (KnownArraySize)
2469 InitType = Context.getConstantArrayType(
2470 AllocType,
2471 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2472 *KnownArraySize),
2473 *ArraySize, ArraySizeModifier::Normal, 0);
2474 else if (ArraySize)
2475 InitType = Context.getIncompleteArrayType(AllocType,
2476 ArraySizeModifier::Normal, 0);
2477 else
2478 InitType = AllocType;
2480 InitializedEntity Entity
2481 = InitializedEntity::InitializeNew(StartLoc, InitType);
2482 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2483 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2484 if (FullInit.isInvalid())
2485 return ExprError();
2487 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2488 // we don't want the initialized object to be destructed.
2489 // FIXME: We should not create these in the first place.
2490 if (CXXBindTemporaryExpr *Binder =
2491 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2492 FullInit = Binder->getSubExpr();
2494 Initializer = FullInit.get();
2496 // FIXME: If we have a KnownArraySize, check that the array bound of the
2497 // initializer is no greater than that constant value.
2499 if (ArraySize && !*ArraySize) {
2500 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2501 if (CAT) {
2502 // FIXME: Track that the array size was inferred rather than explicitly
2503 // specified.
2504 ArraySize = IntegerLiteral::Create(
2505 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2506 } else {
2507 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2508 << Initializer->getSourceRange();
2513 // Mark the new and delete operators as referenced.
2514 if (OperatorNew) {
2515 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2516 return ExprError();
2517 MarkFunctionReferenced(StartLoc, OperatorNew);
2519 if (OperatorDelete) {
2520 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2521 return ExprError();
2522 MarkFunctionReferenced(StartLoc, OperatorDelete);
2525 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2526 PassAlignment, UsualArrayDeleteWantsSize,
2527 PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2528 Initializer, ResultType, AllocTypeInfo, Range,
2529 DirectInitRange);
2532 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2533 SourceRange R) {
2534 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2535 // abstract class type or array thereof.
2536 if (AllocType->isFunctionType())
2537 return Diag(Loc, diag::err_bad_new_type)
2538 << AllocType << 0 << R;
2539 else if (AllocType->isReferenceType())
2540 return Diag(Loc, diag::err_bad_new_type)
2541 << AllocType << 1 << R;
2542 else if (!AllocType->isDependentType() &&
2543 RequireCompleteSizedType(
2544 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2545 return true;
2546 else if (RequireNonAbstractType(Loc, AllocType,
2547 diag::err_allocation_of_abstract_type))
2548 return true;
2549 else if (AllocType->isVariablyModifiedType())
2550 return Diag(Loc, diag::err_variably_modified_new_type)
2551 << AllocType;
2552 else if (AllocType.getAddressSpace() != LangAS::Default &&
2553 !getLangOpts().OpenCLCPlusPlus)
2554 return Diag(Loc, diag::err_address_space_qualified_new)
2555 << AllocType.getUnqualifiedType()
2556 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2557 else if (getLangOpts().ObjCAutoRefCount) {
2558 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2559 QualType BaseAllocType = Context.getBaseElementType(AT);
2560 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2561 BaseAllocType->isObjCLifetimeType())
2562 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2563 << BaseAllocType;
2567 return false;
2570 static bool resolveAllocationOverload(
2571 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2572 bool &PassAlignment, FunctionDecl *&Operator,
2573 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2574 OverloadCandidateSet Candidates(R.getNameLoc(),
2575 OverloadCandidateSet::CSK_Normal);
2576 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2577 Alloc != AllocEnd; ++Alloc) {
2578 // Even member operator new/delete are implicitly treated as
2579 // static, so don't use AddMemberCandidate.
2580 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2582 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2583 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2584 /*ExplicitTemplateArgs=*/nullptr, Args,
2585 Candidates,
2586 /*SuppressUserConversions=*/false);
2587 continue;
2590 FunctionDecl *Fn = cast<FunctionDecl>(D);
2591 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2592 /*SuppressUserConversions=*/false);
2595 // Do the resolution.
2596 OverloadCandidateSet::iterator Best;
2597 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2598 case OR_Success: {
2599 // Got one!
2600 FunctionDecl *FnDecl = Best->Function;
2601 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2602 Best->FoundDecl) == Sema::AR_inaccessible)
2603 return true;
2605 Operator = FnDecl;
2606 return false;
2609 case OR_No_Viable_Function:
2610 // C++17 [expr.new]p13:
2611 // If no matching function is found and the allocated object type has
2612 // new-extended alignment, the alignment argument is removed from the
2613 // argument list, and overload resolution is performed again.
2614 if (PassAlignment) {
2615 PassAlignment = false;
2616 AlignArg = Args[1];
2617 Args.erase(Args.begin() + 1);
2618 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2619 Operator, &Candidates, AlignArg,
2620 Diagnose);
2623 // MSVC will fall back on trying to find a matching global operator new
2624 // if operator new[] cannot be found. Also, MSVC will leak by not
2625 // generating a call to operator delete or operator delete[], but we
2626 // will not replicate that bug.
2627 // FIXME: Find out how this interacts with the std::align_val_t fallback
2628 // once MSVC implements it.
2629 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2630 S.Context.getLangOpts().MSVCCompat) {
2631 R.clear();
2632 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2633 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2634 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2635 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2636 Operator, /*Candidates=*/nullptr,
2637 /*AlignArg=*/nullptr, Diagnose);
2640 if (Diagnose) {
2641 // If this is an allocation of the form 'new (p) X' for some object
2642 // pointer p (or an expression that will decay to such a pointer),
2643 // diagnose the missing inclusion of <new>.
2644 if (!R.isClassLookup() && Args.size() == 2 &&
2645 (Args[1]->getType()->isObjectPointerType() ||
2646 Args[1]->getType()->isArrayType())) {
2647 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2648 << R.getLookupName() << Range;
2649 // Listing the candidates is unlikely to be useful; skip it.
2650 return true;
2653 // Finish checking all candidates before we note any. This checking can
2654 // produce additional diagnostics so can't be interleaved with our
2655 // emission of notes.
2657 // For an aligned allocation, separately check the aligned and unaligned
2658 // candidates with their respective argument lists.
2659 SmallVector<OverloadCandidate*, 32> Cands;
2660 SmallVector<OverloadCandidate*, 32> AlignedCands;
2661 llvm::SmallVector<Expr*, 4> AlignedArgs;
2662 if (AlignedCandidates) {
2663 auto IsAligned = [](OverloadCandidate &C) {
2664 return C.Function->getNumParams() > 1 &&
2665 C.Function->getParamDecl(1)->getType()->isAlignValT();
2667 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2669 AlignedArgs.reserve(Args.size() + 1);
2670 AlignedArgs.push_back(Args[0]);
2671 AlignedArgs.push_back(AlignArg);
2672 AlignedArgs.append(Args.begin() + 1, Args.end());
2673 AlignedCands = AlignedCandidates->CompleteCandidates(
2674 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2676 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2677 R.getNameLoc(), IsUnaligned);
2678 } else {
2679 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2680 R.getNameLoc());
2683 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2684 << R.getLookupName() << Range;
2685 if (AlignedCandidates)
2686 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2687 R.getNameLoc());
2688 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2690 return true;
2692 case OR_Ambiguous:
2693 if (Diagnose) {
2694 Candidates.NoteCandidates(
2695 PartialDiagnosticAt(R.getNameLoc(),
2696 S.PDiag(diag::err_ovl_ambiguous_call)
2697 << R.getLookupName() << Range),
2698 S, OCD_AmbiguousCandidates, Args);
2700 return true;
2702 case OR_Deleted: {
2703 if (Diagnose)
2704 S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
2705 Candidates, Best->Function, Args);
2706 return true;
2709 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2712 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2713 AllocationFunctionScope NewScope,
2714 AllocationFunctionScope DeleteScope,
2715 QualType AllocType, bool IsArray,
2716 bool &PassAlignment, MultiExprArg PlaceArgs,
2717 FunctionDecl *&OperatorNew,
2718 FunctionDecl *&OperatorDelete,
2719 bool Diagnose) {
2720 // --- Choosing an allocation function ---
2721 // C++ 5.3.4p8 - 14 & 18
2722 // 1) If looking in AFS_Global scope for allocation functions, only look in
2723 // the global scope. Else, if AFS_Class, only look in the scope of the
2724 // allocated class. If AFS_Both, look in both.
2725 // 2) If an array size is given, look for operator new[], else look for
2726 // operator new.
2727 // 3) The first argument is always size_t. Append the arguments from the
2728 // placement form.
2730 SmallVector<Expr*, 8> AllocArgs;
2731 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2733 // We don't care about the actual value of these arguments.
2734 // FIXME: Should the Sema create the expression and embed it in the syntax
2735 // tree? Or should the consumer just recalculate the value?
2736 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2737 QualType SizeTy = Context.getSizeType();
2738 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2739 IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2740 SourceLocation());
2741 AllocArgs.push_back(&Size);
2743 QualType AlignValT = Context.VoidTy;
2744 if (PassAlignment) {
2745 DeclareGlobalNewDelete();
2746 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2748 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2749 if (PassAlignment)
2750 AllocArgs.push_back(&Align);
2752 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2754 // C++ [expr.new]p8:
2755 // If the allocated type is a non-array type, the allocation
2756 // function's name is operator new and the deallocation function's
2757 // name is operator delete. If the allocated type is an array
2758 // type, the allocation function's name is operator new[] and the
2759 // deallocation function's name is operator delete[].
2760 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2761 IsArray ? OO_Array_New : OO_New);
2763 QualType AllocElemType = Context.getBaseElementType(AllocType);
2765 // Find the allocation function.
2767 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2769 // C++1z [expr.new]p9:
2770 // If the new-expression begins with a unary :: operator, the allocation
2771 // function's name is looked up in the global scope. Otherwise, if the
2772 // allocated type is a class type T or array thereof, the allocation
2773 // function's name is looked up in the scope of T.
2774 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2775 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2777 // We can see ambiguity here if the allocation function is found in
2778 // multiple base classes.
2779 if (R.isAmbiguous())
2780 return true;
2782 // If this lookup fails to find the name, or if the allocated type is not
2783 // a class type, the allocation function's name is looked up in the
2784 // global scope.
2785 if (R.empty()) {
2786 if (NewScope == AFS_Class)
2787 return true;
2789 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2792 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2793 if (PlaceArgs.empty()) {
2794 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2795 } else {
2796 Diag(StartLoc, diag::err_openclcxx_placement_new);
2798 return true;
2801 assert(!R.empty() && "implicitly declared allocation functions not found");
2802 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2804 // We do our own custom access checks below.
2805 R.suppressDiagnostics();
2807 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2808 OperatorNew, /*Candidates=*/nullptr,
2809 /*AlignArg=*/nullptr, Diagnose))
2810 return true;
2813 // We don't need an operator delete if we're running under -fno-exceptions.
2814 if (!getLangOpts().Exceptions) {
2815 OperatorDelete = nullptr;
2816 return false;
2819 // Note, the name of OperatorNew might have been changed from array to
2820 // non-array by resolveAllocationOverload.
2821 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2822 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2823 ? OO_Array_Delete
2824 : OO_Delete);
2826 // C++ [expr.new]p19:
2828 // If the new-expression begins with a unary :: operator, the
2829 // deallocation function's name is looked up in the global
2830 // scope. Otherwise, if the allocated type is a class type T or an
2831 // array thereof, the deallocation function's name is looked up in
2832 // the scope of T. If this lookup fails to find the name, or if
2833 // the allocated type is not a class type or array thereof, the
2834 // deallocation function's name is looked up in the global scope.
2835 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2836 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2837 auto *RD =
2838 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2839 LookupQualifiedName(FoundDelete, RD);
2841 if (FoundDelete.isAmbiguous())
2842 return true; // FIXME: clean up expressions?
2844 // Filter out any destroying operator deletes. We can't possibly call such a
2845 // function in this context, because we're handling the case where the object
2846 // was not successfully constructed.
2847 // FIXME: This is not covered by the language rules yet.
2849 LookupResult::Filter Filter = FoundDelete.makeFilter();
2850 while (Filter.hasNext()) {
2851 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2852 if (FD && FD->isDestroyingOperatorDelete())
2853 Filter.erase();
2855 Filter.done();
2858 bool FoundGlobalDelete = FoundDelete.empty();
2859 if (FoundDelete.empty()) {
2860 FoundDelete.clear(LookupOrdinaryName);
2862 if (DeleteScope == AFS_Class)
2863 return true;
2865 DeclareGlobalNewDelete();
2866 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2869 FoundDelete.suppressDiagnostics();
2871 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2873 // Whether we're looking for a placement operator delete is dictated
2874 // by whether we selected a placement operator new, not by whether
2875 // we had explicit placement arguments. This matters for things like
2876 // struct A { void *operator new(size_t, int = 0); ... };
2877 // A *a = new A()
2879 // We don't have any definition for what a "placement allocation function"
2880 // is, but we assume it's any allocation function whose
2881 // parameter-declaration-clause is anything other than (size_t).
2883 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2884 // This affects whether an exception from the constructor of an overaligned
2885 // type uses the sized or non-sized form of aligned operator delete.
2886 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2887 OperatorNew->isVariadic();
2889 if (isPlacementNew) {
2890 // C++ [expr.new]p20:
2891 // A declaration of a placement deallocation function matches the
2892 // declaration of a placement allocation function if it has the
2893 // same number of parameters and, after parameter transformations
2894 // (8.3.5), all parameter types except the first are
2895 // identical. [...]
2897 // To perform this comparison, we compute the function type that
2898 // the deallocation function should have, and use that type both
2899 // for template argument deduction and for comparison purposes.
2900 QualType ExpectedFunctionType;
2902 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2904 SmallVector<QualType, 4> ArgTypes;
2905 ArgTypes.push_back(Context.VoidPtrTy);
2906 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2907 ArgTypes.push_back(Proto->getParamType(I));
2909 FunctionProtoType::ExtProtoInfo EPI;
2910 // FIXME: This is not part of the standard's rule.
2911 EPI.Variadic = Proto->isVariadic();
2913 ExpectedFunctionType
2914 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2917 for (LookupResult::iterator D = FoundDelete.begin(),
2918 DEnd = FoundDelete.end();
2919 D != DEnd; ++D) {
2920 FunctionDecl *Fn = nullptr;
2921 if (FunctionTemplateDecl *FnTmpl =
2922 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2923 // Perform template argument deduction to try to match the
2924 // expected function type.
2925 TemplateDeductionInfo Info(StartLoc);
2926 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2927 Info) != TemplateDeductionResult::Success)
2928 continue;
2929 } else
2930 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2932 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2933 ExpectedFunctionType,
2934 /*AdjustExcpetionSpec*/true),
2935 ExpectedFunctionType))
2936 Matches.push_back(std::make_pair(D.getPair(), Fn));
2939 if (getLangOpts().CUDA)
2940 CUDA().EraseUnwantedMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2941 Matches);
2942 } else {
2943 // C++1y [expr.new]p22:
2944 // For a non-placement allocation function, the normal deallocation
2945 // function lookup is used
2947 // Per [expr.delete]p10, this lookup prefers a member operator delete
2948 // without a size_t argument, but prefers a non-member operator delete
2949 // with a size_t where possible (which it always is in this case).
2950 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2951 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2952 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2953 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2954 &BestDeallocFns);
2955 if (Selected)
2956 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2957 else {
2958 // If we failed to select an operator, all remaining functions are viable
2959 // but ambiguous.
2960 for (auto Fn : BestDeallocFns)
2961 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2965 // C++ [expr.new]p20:
2966 // [...] If the lookup finds a single matching deallocation
2967 // function, that function will be called; otherwise, no
2968 // deallocation function will be called.
2969 if (Matches.size() == 1) {
2970 OperatorDelete = Matches[0].second;
2972 // C++1z [expr.new]p23:
2973 // If the lookup finds a usual deallocation function (3.7.4.2)
2974 // with a parameter of type std::size_t and that function, considered
2975 // as a placement deallocation function, would have been
2976 // selected as a match for the allocation function, the program
2977 // is ill-formed.
2978 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2979 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2980 UsualDeallocFnInfo Info(*this,
2981 DeclAccessPair::make(OperatorDelete, AS_public));
2982 // Core issue, per mail to core reflector, 2016-10-09:
2983 // If this is a member operator delete, and there is a corresponding
2984 // non-sized member operator delete, this isn't /really/ a sized
2985 // deallocation function, it just happens to have a size_t parameter.
2986 bool IsSizedDelete = Info.HasSizeT;
2987 if (IsSizedDelete && !FoundGlobalDelete) {
2988 auto NonSizedDelete =
2989 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2990 /*WantAlign*/Info.HasAlignValT);
2991 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2992 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2993 IsSizedDelete = false;
2996 if (IsSizedDelete) {
2997 SourceRange R = PlaceArgs.empty()
2998 ? SourceRange()
2999 : SourceRange(PlaceArgs.front()->getBeginLoc(),
3000 PlaceArgs.back()->getEndLoc());
3001 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
3002 if (!OperatorDelete->isImplicit())
3003 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
3004 << DeleteName;
3008 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
3009 Matches[0].first);
3010 } else if (!Matches.empty()) {
3011 // We found multiple suitable operators. Per [expr.new]p20, that means we
3012 // call no 'operator delete' function, but we should at least warn the user.
3013 // FIXME: Suppress this warning if the construction cannot throw.
3014 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
3015 << DeleteName << AllocElemType;
3017 for (auto &Match : Matches)
3018 Diag(Match.second->getLocation(),
3019 diag::note_member_declared_here) << DeleteName;
3022 return false;
3025 void Sema::DeclareGlobalNewDelete() {
3026 if (GlobalNewDeleteDeclared)
3027 return;
3029 // The implicitly declared new and delete operators
3030 // are not supported in OpenCL.
3031 if (getLangOpts().OpenCLCPlusPlus)
3032 return;
3034 // C++ [basic.stc.dynamic.general]p2:
3035 // The library provides default definitions for the global allocation
3036 // and deallocation functions. Some global allocation and deallocation
3037 // functions are replaceable ([new.delete]); these are attached to the
3038 // global module ([module.unit]).
3039 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3040 PushGlobalModuleFragment(SourceLocation());
3042 // C++ [basic.std.dynamic]p2:
3043 // [...] The following allocation and deallocation functions (18.4) are
3044 // implicitly declared in global scope in each translation unit of a
3045 // program
3047 // C++03:
3048 // void* operator new(std::size_t) throw(std::bad_alloc);
3049 // void* operator new[](std::size_t) throw(std::bad_alloc);
3050 // void operator delete(void*) throw();
3051 // void operator delete[](void*) throw();
3052 // C++11:
3053 // void* operator new(std::size_t);
3054 // void* operator new[](std::size_t);
3055 // void operator delete(void*) noexcept;
3056 // void operator delete[](void*) noexcept;
3057 // C++1y:
3058 // void* operator new(std::size_t);
3059 // void* operator new[](std::size_t);
3060 // void operator delete(void*) noexcept;
3061 // void operator delete[](void*) noexcept;
3062 // void operator delete(void*, std::size_t) noexcept;
3063 // void operator delete[](void*, std::size_t) noexcept;
3065 // These implicit declarations introduce only the function names operator
3066 // new, operator new[], operator delete, operator delete[].
3068 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3069 // "std" or "bad_alloc" as necessary to form the exception specification.
3070 // However, we do not make these implicit declarations visible to name
3071 // lookup.
3072 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3073 // The "std::bad_alloc" class has not yet been declared, so build it
3074 // implicitly.
3075 StdBadAlloc = CXXRecordDecl::Create(
3076 Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3077 SourceLocation(), SourceLocation(),
3078 &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3079 getStdBadAlloc()->setImplicit(true);
3081 // The implicitly declared "std::bad_alloc" should live in global module
3082 // fragment.
3083 if (TheGlobalModuleFragment) {
3084 getStdBadAlloc()->setModuleOwnershipKind(
3085 Decl::ModuleOwnershipKind::ReachableWhenImported);
3086 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3089 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3090 // The "std::align_val_t" enum class has not yet been declared, so build it
3091 // implicitly.
3092 auto *AlignValT = EnumDecl::Create(
3093 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3094 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3096 // The implicitly declared "std::align_val_t" should live in global module
3097 // fragment.
3098 if (TheGlobalModuleFragment) {
3099 AlignValT->setModuleOwnershipKind(
3100 Decl::ModuleOwnershipKind::ReachableWhenImported);
3101 AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3104 AlignValT->setIntegerType(Context.getSizeType());
3105 AlignValT->setPromotionType(Context.getSizeType());
3106 AlignValT->setImplicit(true);
3108 StdAlignValT = AlignValT;
3111 GlobalNewDeleteDeclared = true;
3113 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3114 QualType SizeT = Context.getSizeType();
3116 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3117 QualType Return, QualType Param) {
3118 llvm::SmallVector<QualType, 3> Params;
3119 Params.push_back(Param);
3121 // Create up to four variants of the function (sized/aligned).
3122 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3123 (Kind == OO_Delete || Kind == OO_Array_Delete);
3124 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3126 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3127 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3128 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3129 if (Sized)
3130 Params.push_back(SizeT);
3132 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3133 if (Aligned)
3134 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3136 DeclareGlobalAllocationFunction(
3137 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3139 if (Aligned)
3140 Params.pop_back();
3145 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3146 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3147 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3148 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3150 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3151 PopGlobalModuleFragment();
3154 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3155 /// allocation function if it doesn't already exist.
3156 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3157 QualType Return,
3158 ArrayRef<QualType> Params) {
3159 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3161 // Check if this function is already declared.
3162 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3163 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3164 Alloc != AllocEnd; ++Alloc) {
3165 // Only look at non-template functions, as it is the predefined,
3166 // non-templated allocation function we are trying to declare here.
3167 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3168 if (Func->getNumParams() == Params.size()) {
3169 llvm::SmallVector<QualType, 3> FuncParams;
3170 for (auto *P : Func->parameters())
3171 FuncParams.push_back(
3172 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3173 if (llvm::ArrayRef(FuncParams) == Params) {
3174 // Make the function visible to name lookup, even if we found it in
3175 // an unimported module. It either is an implicitly-declared global
3176 // allocation function, or is suppressing that function.
3177 Func->setVisibleDespiteOwningModule();
3178 return;
3184 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3185 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3187 QualType BadAllocType;
3188 bool HasBadAllocExceptionSpec
3189 = (Name.getCXXOverloadedOperator() == OO_New ||
3190 Name.getCXXOverloadedOperator() == OO_Array_New);
3191 if (HasBadAllocExceptionSpec) {
3192 if (!getLangOpts().CPlusPlus11) {
3193 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3194 assert(StdBadAlloc && "Must have std::bad_alloc declared");
3195 EPI.ExceptionSpec.Type = EST_Dynamic;
3196 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3198 if (getLangOpts().NewInfallible) {
3199 EPI.ExceptionSpec.Type = EST_DynamicNone;
3201 } else {
3202 EPI.ExceptionSpec =
3203 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3206 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3207 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3208 FunctionDecl *Alloc = FunctionDecl::Create(
3209 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3210 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3211 true);
3212 Alloc->setImplicit();
3213 // Global allocation functions should always be visible.
3214 Alloc->setVisibleDespiteOwningModule();
3216 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3217 !getLangOpts().CheckNew)
3218 Alloc->addAttr(
3219 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3221 // C++ [basic.stc.dynamic.general]p2:
3222 // The library provides default definitions for the global allocation
3223 // and deallocation functions. Some global allocation and deallocation
3224 // functions are replaceable ([new.delete]); these are attached to the
3225 // global module ([module.unit]).
3227 // In the language wording, these functions are attched to the global
3228 // module all the time. But in the implementation, the global module
3229 // is only meaningful when we're in a module unit. So here we attach
3230 // these allocation functions to global module conditionally.
3231 if (TheGlobalModuleFragment) {
3232 Alloc->setModuleOwnershipKind(
3233 Decl::ModuleOwnershipKind::ReachableWhenImported);
3234 Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3237 if (LangOpts.hasGlobalAllocationFunctionVisibility())
3238 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3239 Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility()
3240 ? VisibilityAttr::Hidden
3241 : LangOpts.hasProtectedGlobalAllocationFunctionVisibility()
3242 ? VisibilityAttr::Protected
3243 : VisibilityAttr::Default));
3245 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3246 for (QualType T : Params) {
3247 ParamDecls.push_back(ParmVarDecl::Create(
3248 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3249 /*TInfo=*/nullptr, SC_None, nullptr));
3250 ParamDecls.back()->setImplicit();
3252 Alloc->setParams(ParamDecls);
3253 if (ExtraAttr)
3254 Alloc->addAttr(ExtraAttr);
3255 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3256 Context.getTranslationUnitDecl()->addDecl(Alloc);
3257 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3260 if (!LangOpts.CUDA)
3261 CreateAllocationFunctionDecl(nullptr);
3262 else {
3263 // Host and device get their own declaration so each can be
3264 // defined or re-declared independently.
3265 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3266 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3270 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3271 bool CanProvideSize,
3272 bool Overaligned,
3273 DeclarationName Name) {
3274 DeclareGlobalNewDelete();
3276 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3277 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3279 // FIXME: It's possible for this to result in ambiguity, through a
3280 // user-declared variadic operator delete or the enable_if attribute. We
3281 // should probably not consider those cases to be usual deallocation
3282 // functions. But for now we just make an arbitrary choice in that case.
3283 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3284 Overaligned);
3285 assert(Result.FD && "operator delete missing from global scope?");
3286 return Result.FD;
3289 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3290 CXXRecordDecl *RD) {
3291 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3293 FunctionDecl *OperatorDelete = nullptr;
3294 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3295 return nullptr;
3296 if (OperatorDelete)
3297 return OperatorDelete;
3299 // If there's no class-specific operator delete, look up the global
3300 // non-array delete.
3301 return FindUsualDeallocationFunction(
3302 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3303 Name);
3306 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3307 DeclarationName Name,
3308 FunctionDecl *&Operator, bool Diagnose,
3309 bool WantSize, bool WantAligned) {
3310 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3311 // Try to find operator delete/operator delete[] in class scope.
3312 LookupQualifiedName(Found, RD);
3314 if (Found.isAmbiguous())
3315 return true;
3317 Found.suppressDiagnostics();
3319 bool Overaligned =
3320 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3322 // C++17 [expr.delete]p10:
3323 // If the deallocation functions have class scope, the one without a
3324 // parameter of type std::size_t is selected.
3325 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3326 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3327 /*WantAlign*/ Overaligned, &Matches);
3329 // If we could find an overload, use it.
3330 if (Matches.size() == 1) {
3331 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3333 // FIXME: DiagnoseUseOfDecl?
3334 if (Operator->isDeleted()) {
3335 if (Diagnose) {
3336 StringLiteral *Msg = Operator->getDeletedMessage();
3337 Diag(StartLoc, diag::err_deleted_function_use)
3338 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
3339 NoteDeletedFunction(Operator);
3341 return true;
3344 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3345 Matches[0].Found, Diagnose) == AR_inaccessible)
3346 return true;
3348 return false;
3351 // We found multiple suitable operators; complain about the ambiguity.
3352 // FIXME: The standard doesn't say to do this; it appears that the intent
3353 // is that this should never happen.
3354 if (!Matches.empty()) {
3355 if (Diagnose) {
3356 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3357 << Name << RD;
3358 for (auto &Match : Matches)
3359 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3361 return true;
3364 // We did find operator delete/operator delete[] declarations, but
3365 // none of them were suitable.
3366 if (!Found.empty()) {
3367 if (Diagnose) {
3368 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3369 << Name << RD;
3371 for (NamedDecl *D : Found)
3372 Diag(D->getUnderlyingDecl()->getLocation(),
3373 diag::note_member_declared_here) << Name;
3375 return true;
3378 Operator = nullptr;
3379 return false;
3382 namespace {
3383 /// Checks whether delete-expression, and new-expression used for
3384 /// initializing deletee have the same array form.
3385 class MismatchingNewDeleteDetector {
3386 public:
3387 enum MismatchResult {
3388 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3389 NoMismatch,
3390 /// Indicates that variable is initialized with mismatching form of \a new.
3391 VarInitMismatches,
3392 /// Indicates that member is initialized with mismatching form of \a new.
3393 MemberInitMismatches,
3394 /// Indicates that 1 or more constructors' definitions could not been
3395 /// analyzed, and they will be checked again at the end of translation unit.
3396 AnalyzeLater
3399 /// \param EndOfTU True, if this is the final analysis at the end of
3400 /// translation unit. False, if this is the initial analysis at the point
3401 /// delete-expression was encountered.
3402 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3403 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3404 HasUndefinedConstructors(false) {}
3406 /// Checks whether pointee of a delete-expression is initialized with
3407 /// matching form of new-expression.
3409 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3410 /// point where delete-expression is encountered, then a warning will be
3411 /// issued immediately. If return value is \c AnalyzeLater at the point where
3412 /// delete-expression is seen, then member will be analyzed at the end of
3413 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3414 /// couldn't be analyzed. If at least one constructor initializes the member
3415 /// with matching type of new, the return value is \c NoMismatch.
3416 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3417 /// Analyzes a class member.
3418 /// \param Field Class member to analyze.
3419 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3420 /// for deleting the \p Field.
3421 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3422 FieldDecl *Field;
3423 /// List of mismatching new-expressions used for initialization of the pointee
3424 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3425 /// Indicates whether delete-expression was in array form.
3426 bool IsArrayForm;
3428 private:
3429 const bool EndOfTU;
3430 /// Indicates that there is at least one constructor without body.
3431 bool HasUndefinedConstructors;
3432 /// Returns \c CXXNewExpr from given initialization expression.
3433 /// \param E Expression used for initializing pointee in delete-expression.
3434 /// E can be a single-element \c InitListExpr consisting of new-expression.
3435 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3436 /// Returns whether member is initialized with mismatching form of
3437 /// \c new either by the member initializer or in-class initialization.
3439 /// If bodies of all constructors are not visible at the end of translation
3440 /// unit or at least one constructor initializes member with the matching
3441 /// form of \c new, mismatch cannot be proven, and this function will return
3442 /// \c NoMismatch.
3443 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3444 /// Returns whether variable is initialized with mismatching form of
3445 /// \c new.
3447 /// If variable is initialized with matching form of \c new or variable is not
3448 /// initialized with a \c new expression, this function will return true.
3449 /// If variable is initialized with mismatching form of \c new, returns false.
3450 /// \param D Variable to analyze.
3451 bool hasMatchingVarInit(const DeclRefExpr *D);
3452 /// Checks whether the constructor initializes pointee with mismatching
3453 /// form of \c new.
3455 /// Returns true, if member is initialized with matching form of \c new in
3456 /// member initializer list. Returns false, if member is initialized with the
3457 /// matching form of \c new in this constructor's initializer or given
3458 /// constructor isn't defined at the point where delete-expression is seen, or
3459 /// member isn't initialized by the constructor.
3460 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3461 /// Checks whether member is initialized with matching form of
3462 /// \c new in member initializer list.
3463 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3464 /// Checks whether member is initialized with mismatching form of \c new by
3465 /// in-class initializer.
3466 MismatchResult analyzeInClassInitializer();
3470 MismatchingNewDeleteDetector::MismatchResult
3471 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3472 NewExprs.clear();
3473 assert(DE && "Expected delete-expression");
3474 IsArrayForm = DE->isArrayForm();
3475 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3476 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3477 return analyzeMemberExpr(ME);
3478 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3479 if (!hasMatchingVarInit(D))
3480 return VarInitMismatches;
3482 return NoMismatch;
3485 const CXXNewExpr *
3486 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3487 assert(E != nullptr && "Expected a valid initializer expression");
3488 E = E->IgnoreParenImpCasts();
3489 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3490 if (ILE->getNumInits() == 1)
3491 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3494 return dyn_cast_or_null<const CXXNewExpr>(E);
3497 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3498 const CXXCtorInitializer *CI) {
3499 const CXXNewExpr *NE = nullptr;
3500 if (Field == CI->getMember() &&
3501 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3502 if (NE->isArray() == IsArrayForm)
3503 return true;
3504 else
3505 NewExprs.push_back(NE);
3507 return false;
3510 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3511 const CXXConstructorDecl *CD) {
3512 if (CD->isImplicit())
3513 return false;
3514 const FunctionDecl *Definition = CD;
3515 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3516 HasUndefinedConstructors = true;
3517 return EndOfTU;
3519 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3520 if (hasMatchingNewInCtorInit(CI))
3521 return true;
3523 return false;
3526 MismatchingNewDeleteDetector::MismatchResult
3527 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3528 assert(Field != nullptr && "This should be called only for members");
3529 const Expr *InitExpr = Field->getInClassInitializer();
3530 if (!InitExpr)
3531 return EndOfTU ? NoMismatch : AnalyzeLater;
3532 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3533 if (NE->isArray() != IsArrayForm) {
3534 NewExprs.push_back(NE);
3535 return MemberInitMismatches;
3538 return NoMismatch;
3541 MismatchingNewDeleteDetector::MismatchResult
3542 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3543 bool DeleteWasArrayForm) {
3544 assert(Field != nullptr && "Analysis requires a valid class member.");
3545 this->Field = Field;
3546 IsArrayForm = DeleteWasArrayForm;
3547 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3548 for (const auto *CD : RD->ctors()) {
3549 if (hasMatchingNewInCtor(CD))
3550 return NoMismatch;
3552 if (HasUndefinedConstructors)
3553 return EndOfTU ? NoMismatch : AnalyzeLater;
3554 if (!NewExprs.empty())
3555 return MemberInitMismatches;
3556 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3557 : NoMismatch;
3560 MismatchingNewDeleteDetector::MismatchResult
3561 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3562 assert(ME != nullptr && "Expected a member expression");
3563 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3564 return analyzeField(F, IsArrayForm);
3565 return NoMismatch;
3568 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3569 const CXXNewExpr *NE = nullptr;
3570 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3571 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3572 NE->isArray() != IsArrayForm) {
3573 NewExprs.push_back(NE);
3576 return NewExprs.empty();
3579 static void
3580 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3581 const MismatchingNewDeleteDetector &Detector) {
3582 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3583 FixItHint H;
3584 if (!Detector.IsArrayForm)
3585 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3586 else {
3587 SourceLocation RSquare = Lexer::findLocationAfterToken(
3588 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3589 SemaRef.getLangOpts(), true);
3590 if (RSquare.isValid())
3591 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3593 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3594 << Detector.IsArrayForm << H;
3596 for (const auto *NE : Detector.NewExprs)
3597 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3598 << Detector.IsArrayForm;
3601 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3602 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3603 return;
3604 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3605 switch (Detector.analyzeDeleteExpr(DE)) {
3606 case MismatchingNewDeleteDetector::VarInitMismatches:
3607 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3608 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3609 break;
3611 case MismatchingNewDeleteDetector::AnalyzeLater: {
3612 DeleteExprs[Detector.Field].push_back(
3613 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3614 break;
3616 case MismatchingNewDeleteDetector::NoMismatch:
3617 break;
3621 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3622 bool DeleteWasArrayForm) {
3623 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3624 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3625 case MismatchingNewDeleteDetector::VarInitMismatches:
3626 llvm_unreachable("This analysis should have been done for class members.");
3627 case MismatchingNewDeleteDetector::AnalyzeLater:
3628 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3629 "translation unit.");
3630 case MismatchingNewDeleteDetector::MemberInitMismatches:
3631 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3632 break;
3633 case MismatchingNewDeleteDetector::NoMismatch:
3634 break;
3638 ExprResult
3639 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3640 bool ArrayForm, Expr *ExE) {
3641 // C++ [expr.delete]p1:
3642 // The operand shall have a pointer type, or a class type having a single
3643 // non-explicit conversion function to a pointer type. The result has type
3644 // void.
3646 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3648 ExprResult Ex = ExE;
3649 FunctionDecl *OperatorDelete = nullptr;
3650 bool ArrayFormAsWritten = ArrayForm;
3651 bool UsualArrayDeleteWantsSize = false;
3653 if (!Ex.get()->isTypeDependent()) {
3654 // Perform lvalue-to-rvalue cast, if needed.
3655 Ex = DefaultLvalueConversion(Ex.get());
3656 if (Ex.isInvalid())
3657 return ExprError();
3659 QualType Type = Ex.get()->getType();
3661 class DeleteConverter : public ContextualImplicitConverter {
3662 public:
3663 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3665 bool match(QualType ConvType) override {
3666 // FIXME: If we have an operator T* and an operator void*, we must pick
3667 // the operator T*.
3668 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3669 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3670 return true;
3671 return false;
3674 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3675 QualType T) override {
3676 return S.Diag(Loc, diag::err_delete_operand) << T;
3679 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3680 QualType T) override {
3681 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3684 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3685 QualType T,
3686 QualType ConvTy) override {
3687 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3690 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3691 QualType ConvTy) override {
3692 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3693 << ConvTy;
3696 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3697 QualType T) override {
3698 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3701 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3702 QualType ConvTy) override {
3703 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3704 << ConvTy;
3707 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3708 QualType T,
3709 QualType ConvTy) override {
3710 llvm_unreachable("conversion functions are permitted");
3712 } Converter;
3714 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3715 if (Ex.isInvalid())
3716 return ExprError();
3717 Type = Ex.get()->getType();
3718 if (!Converter.match(Type))
3719 // FIXME: PerformContextualImplicitConversion should return ExprError
3720 // itself in this case.
3721 return ExprError();
3723 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3724 QualType PointeeElem = Context.getBaseElementType(Pointee);
3726 if (Pointee.getAddressSpace() != LangAS::Default &&
3727 !getLangOpts().OpenCLCPlusPlus)
3728 return Diag(Ex.get()->getBeginLoc(),
3729 diag::err_address_space_qualified_delete)
3730 << Pointee.getUnqualifiedType()
3731 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3733 CXXRecordDecl *PointeeRD = nullptr;
3734 if (Pointee->isVoidType() && !isSFINAEContext()) {
3735 // The C++ standard bans deleting a pointer to a non-object type, which
3736 // effectively bans deletion of "void*". However, most compilers support
3737 // this, so we treat it as a warning unless we're in a SFINAE context.
3738 // But we still prohibit this since C++26.
3739 Diag(StartLoc, LangOpts.CPlusPlus26 ? diag::err_delete_incomplete
3740 : diag::ext_delete_void_ptr_operand)
3741 << (LangOpts.CPlusPlus26 ? Pointee : Type)
3742 << Ex.get()->getSourceRange();
3743 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3744 Pointee->isSizelessType()) {
3745 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3746 << Type << Ex.get()->getSourceRange());
3747 } else if (!Pointee->isDependentType()) {
3748 // FIXME: This can result in errors if the definition was imported from a
3749 // module but is hidden.
3750 if (Pointee->isEnumeralType() ||
3751 !RequireCompleteType(StartLoc, Pointee,
3752 LangOpts.CPlusPlus26
3753 ? diag::err_delete_incomplete
3754 : diag::warn_delete_incomplete,
3755 Ex.get())) {
3756 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3757 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3761 if (Pointee->isArrayType() && !ArrayForm) {
3762 Diag(StartLoc, diag::warn_delete_array_type)
3763 << Type << Ex.get()->getSourceRange()
3764 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3765 ArrayForm = true;
3768 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3769 ArrayForm ? OO_Array_Delete : OO_Delete);
3771 if (PointeeRD) {
3772 if (!UseGlobal &&
3773 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3774 OperatorDelete))
3775 return ExprError();
3777 // If we're allocating an array of records, check whether the
3778 // usual operator delete[] has a size_t parameter.
3779 if (ArrayForm) {
3780 // If the user specifically asked to use the global allocator,
3781 // we'll need to do the lookup into the class.
3782 if (UseGlobal)
3783 UsualArrayDeleteWantsSize =
3784 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3786 // Otherwise, the usual operator delete[] should be the
3787 // function we just found.
3788 else if (isa_and_nonnull<CXXMethodDecl>(OperatorDelete))
3789 UsualArrayDeleteWantsSize =
3790 UsualDeallocFnInfo(*this,
3791 DeclAccessPair::make(OperatorDelete, AS_public))
3792 .HasSizeT;
3795 if (!PointeeRD->hasIrrelevantDestructor()) {
3796 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3797 if (Dtor->isCalledByDelete(OperatorDelete)) {
3798 MarkFunctionReferenced(StartLoc,
3799 const_cast<CXXDestructorDecl *>(Dtor));
3800 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3801 return ExprError();
3806 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3807 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3808 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3809 SourceLocation());
3812 if (!OperatorDelete) {
3813 if (getLangOpts().OpenCLCPlusPlus) {
3814 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3815 return ExprError();
3818 bool IsComplete = isCompleteType(StartLoc, Pointee);
3819 bool CanProvideSize =
3820 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3821 Pointee.isDestructedType());
3822 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3824 // Look for a global declaration.
3825 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3826 Overaligned, DeleteName);
3829 if (OperatorDelete->isInvalidDecl())
3830 return ExprError();
3832 MarkFunctionReferenced(StartLoc, OperatorDelete);
3834 // Check access and ambiguity of destructor if we're going to call it.
3835 // Note that this is required even for a virtual delete.
3836 bool IsVirtualDelete = false;
3837 if (PointeeRD) {
3838 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3839 if (Dtor->isCalledByDelete(OperatorDelete))
3840 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3841 PDiag(diag::err_access_dtor) << PointeeElem);
3842 IsVirtualDelete = Dtor->isVirtual();
3846 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3848 // Convert the operand to the type of the first parameter of operator
3849 // delete. This is only necessary if we selected a destroying operator
3850 // delete that we are going to call (non-virtually); converting to void*
3851 // is trivial and left to AST consumers to handle.
3852 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3853 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3854 Qualifiers Qs = Pointee.getQualifiers();
3855 if (Qs.hasCVRQualifiers()) {
3856 // Qualifiers are irrelevant to this conversion; we're only looking
3857 // for access and ambiguity.
3858 Qs.removeCVRQualifiers();
3859 QualType Unqual = Context.getPointerType(
3860 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3861 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3863 Ex = PerformImplicitConversion(Ex.get(), ParamType,
3864 AssignmentAction::Passing);
3865 if (Ex.isInvalid())
3866 return ExprError();
3870 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3871 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3872 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3873 AnalyzeDeleteExprMismatch(Result);
3874 return Result;
3877 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3878 bool IsDelete,
3879 FunctionDecl *&Operator) {
3881 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3882 IsDelete ? OO_Delete : OO_New);
3884 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3885 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3886 assert(!R.empty() && "implicitly declared allocation functions not found");
3887 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3889 // We do our own custom access checks below.
3890 R.suppressDiagnostics();
3892 SmallVector<Expr *, 8> Args(TheCall->arguments());
3893 OverloadCandidateSet Candidates(R.getNameLoc(),
3894 OverloadCandidateSet::CSK_Normal);
3895 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3896 FnOvl != FnOvlEnd; ++FnOvl) {
3897 // Even member operator new/delete are implicitly treated as
3898 // static, so don't use AddMemberCandidate.
3899 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3901 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3902 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3903 /*ExplicitTemplateArgs=*/nullptr, Args,
3904 Candidates,
3905 /*SuppressUserConversions=*/false);
3906 continue;
3909 FunctionDecl *Fn = cast<FunctionDecl>(D);
3910 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3911 /*SuppressUserConversions=*/false);
3914 SourceRange Range = TheCall->getSourceRange();
3916 // Do the resolution.
3917 OverloadCandidateSet::iterator Best;
3918 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3919 case OR_Success: {
3920 // Got one!
3921 FunctionDecl *FnDecl = Best->Function;
3922 assert(R.getNamingClass() == nullptr &&
3923 "class members should not be considered");
3925 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3926 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3927 << (IsDelete ? 1 : 0) << Range;
3928 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3929 << R.getLookupName() << FnDecl->getSourceRange();
3930 return true;
3933 Operator = FnDecl;
3934 return false;
3937 case OR_No_Viable_Function:
3938 Candidates.NoteCandidates(
3939 PartialDiagnosticAt(R.getNameLoc(),
3940 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3941 << R.getLookupName() << Range),
3942 S, OCD_AllCandidates, Args);
3943 return true;
3945 case OR_Ambiguous:
3946 Candidates.NoteCandidates(
3947 PartialDiagnosticAt(R.getNameLoc(),
3948 S.PDiag(diag::err_ovl_ambiguous_call)
3949 << R.getLookupName() << Range),
3950 S, OCD_AmbiguousCandidates, Args);
3951 return true;
3953 case OR_Deleted:
3954 S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
3955 Candidates, Best->Function, Args);
3956 return true;
3958 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3961 ExprResult Sema::BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3962 bool IsDelete) {
3963 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3964 if (!getLangOpts().CPlusPlus) {
3965 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3966 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3967 << "C++";
3968 return ExprError();
3970 // CodeGen assumes it can find the global new and delete to call,
3971 // so ensure that they are declared.
3972 DeclareGlobalNewDelete();
3974 FunctionDecl *OperatorNewOrDelete = nullptr;
3975 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3976 OperatorNewOrDelete))
3977 return ExprError();
3978 assert(OperatorNewOrDelete && "should be found");
3980 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3981 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3983 TheCall->setType(OperatorNewOrDelete->getReturnType());
3984 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3985 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3986 InitializedEntity Entity =
3987 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3988 ExprResult Arg = PerformCopyInitialization(
3989 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3990 if (Arg.isInvalid())
3991 return ExprError();
3992 TheCall->setArg(i, Arg.get());
3994 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3995 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3996 "Callee expected to be implicit cast to a builtin function pointer");
3997 Callee->setType(OperatorNewOrDelete->getType());
3999 return TheCallResult;
4002 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
4003 bool IsDelete, bool CallCanBeVirtual,
4004 bool WarnOnNonAbstractTypes,
4005 SourceLocation DtorLoc) {
4006 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
4007 return;
4009 // C++ [expr.delete]p3:
4010 // In the first alternative (delete object), if the static type of the
4011 // object to be deleted is different from its dynamic type, the static
4012 // type shall be a base class of the dynamic type of the object to be
4013 // deleted and the static type shall have a virtual destructor or the
4014 // behavior is undefined.
4016 const CXXRecordDecl *PointeeRD = dtor->getParent();
4017 // Note: a final class cannot be derived from, no issue there
4018 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
4019 return;
4021 // If the superclass is in a system header, there's nothing that can be done.
4022 // The `delete` (where we emit the warning) can be in a system header,
4023 // what matters for this warning is where the deleted type is defined.
4024 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
4025 return;
4027 QualType ClassType = dtor->getFunctionObjectParameterType();
4028 if (PointeeRD->isAbstract()) {
4029 // If the class is abstract, we warn by default, because we're
4030 // sure the code has undefined behavior.
4031 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4032 << ClassType;
4033 } else if (WarnOnNonAbstractTypes) {
4034 // Otherwise, if this is not an array delete, it's a bit suspect,
4035 // but not necessarily wrong.
4036 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4037 << ClassType;
4039 if (!IsDelete) {
4040 std::string TypeStr;
4041 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4042 Diag(DtorLoc, diag::note_delete_non_virtual)
4043 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4047 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4048 SourceLocation StmtLoc,
4049 ConditionKind CK) {
4050 ExprResult E =
4051 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4052 if (E.isInvalid())
4053 return ConditionError();
4054 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4055 CK == ConditionKind::ConstexprIf);
4058 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4059 SourceLocation StmtLoc,
4060 ConditionKind CK) {
4061 if (ConditionVar->isInvalidDecl())
4062 return ExprError();
4064 QualType T = ConditionVar->getType();
4066 // C++ [stmt.select]p2:
4067 // The declarator shall not specify a function or an array.
4068 if (T->isFunctionType())
4069 return ExprError(Diag(ConditionVar->getLocation(),
4070 diag::err_invalid_use_of_function_type)
4071 << ConditionVar->getSourceRange());
4072 else if (T->isArrayType())
4073 return ExprError(Diag(ConditionVar->getLocation(),
4074 diag::err_invalid_use_of_array_type)
4075 << ConditionVar->getSourceRange());
4077 ExprResult Condition = BuildDeclRefExpr(
4078 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4079 ConditionVar->getLocation());
4081 switch (CK) {
4082 case ConditionKind::Boolean:
4083 return CheckBooleanCondition(StmtLoc, Condition.get());
4085 case ConditionKind::ConstexprIf:
4086 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4088 case ConditionKind::Switch:
4089 return CheckSwitchCondition(StmtLoc, Condition.get());
4092 llvm_unreachable("unexpected condition kind");
4095 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4096 // C++11 6.4p4:
4097 // The value of a condition that is an initialized declaration in a statement
4098 // other than a switch statement is the value of the declared variable
4099 // implicitly converted to type bool. If that conversion is ill-formed, the
4100 // program is ill-formed.
4101 // The value of a condition that is an expression is the value of the
4102 // expression, implicitly converted to bool.
4104 // C++23 8.5.2p2
4105 // If the if statement is of the form if constexpr, the value of the condition
4106 // is contextually converted to bool and the converted expression shall be
4107 // a constant expression.
4110 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4111 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4112 return E;
4114 // FIXME: Return this value to the caller so they don't need to recompute it.
4115 llvm::APSInt Cond;
4116 E = VerifyIntegerConstantExpression(
4117 E.get(), &Cond,
4118 diag::err_constexpr_if_condition_expression_is_not_constant);
4119 return E;
4122 bool
4123 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4124 // Look inside the implicit cast, if it exists.
4125 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4126 From = Cast->getSubExpr();
4128 // A string literal (2.13.4) that is not a wide string literal can
4129 // be converted to an rvalue of type "pointer to char"; a wide
4130 // string literal can be converted to an rvalue of type "pointer
4131 // to wchar_t" (C++ 4.2p2).
4132 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4133 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4134 if (const BuiltinType *ToPointeeType
4135 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4136 // This conversion is considered only when there is an
4137 // explicit appropriate pointer target type (C++ 4.2p2).
4138 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4139 switch (StrLit->getKind()) {
4140 case StringLiteralKind::UTF8:
4141 case StringLiteralKind::UTF16:
4142 case StringLiteralKind::UTF32:
4143 // We don't allow UTF literals to be implicitly converted
4144 break;
4145 case StringLiteralKind::Ordinary:
4146 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4147 ToPointeeType->getKind() == BuiltinType::Char_S);
4148 case StringLiteralKind::Wide:
4149 return Context.typesAreCompatible(Context.getWideCharType(),
4150 QualType(ToPointeeType, 0));
4151 case StringLiteralKind::Unevaluated:
4152 assert(false && "Unevaluated string literal in expression");
4153 break;
4158 return false;
4161 static ExprResult BuildCXXCastArgument(Sema &S,
4162 SourceLocation CastLoc,
4163 QualType Ty,
4164 CastKind Kind,
4165 CXXMethodDecl *Method,
4166 DeclAccessPair FoundDecl,
4167 bool HadMultipleCandidates,
4168 Expr *From) {
4169 switch (Kind) {
4170 default: llvm_unreachable("Unhandled cast kind!");
4171 case CK_ConstructorConversion: {
4172 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4173 SmallVector<Expr*, 8> ConstructorArgs;
4175 if (S.RequireNonAbstractType(CastLoc, Ty,
4176 diag::err_allocation_of_abstract_type))
4177 return ExprError();
4179 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4180 ConstructorArgs))
4181 return ExprError();
4183 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4184 InitializedEntity::InitializeTemporary(Ty));
4185 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4186 return ExprError();
4188 ExprResult Result = S.BuildCXXConstructExpr(
4189 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4190 ConstructorArgs, HadMultipleCandidates,
4191 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4192 CXXConstructionKind::Complete, SourceRange());
4193 if (Result.isInvalid())
4194 return ExprError();
4196 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4199 case CK_UserDefinedConversion: {
4200 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4202 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4203 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4204 return ExprError();
4206 // Create an implicit call expr that calls it.
4207 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4208 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4209 HadMultipleCandidates);
4210 if (Result.isInvalid())
4211 return ExprError();
4212 // Record usage of conversion in an implicit cast.
4213 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4214 CK_UserDefinedConversion, Result.get(),
4215 nullptr, Result.get()->getValueKind(),
4216 S.CurFPFeatureOverrides());
4218 return S.MaybeBindToTemporary(Result.get());
4223 ExprResult
4224 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4225 const ImplicitConversionSequence &ICS,
4226 AssignmentAction Action,
4227 CheckedConversionKind CCK) {
4228 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4229 if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp &&
4230 !From->getType()->isRecordType())
4231 return From;
4233 switch (ICS.getKind()) {
4234 case ImplicitConversionSequence::StandardConversion: {
4235 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4236 Action, CCK);
4237 if (Res.isInvalid())
4238 return ExprError();
4239 From = Res.get();
4240 break;
4243 case ImplicitConversionSequence::UserDefinedConversion: {
4245 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4246 CastKind CastKind;
4247 QualType BeforeToType;
4248 assert(FD && "no conversion function for user-defined conversion seq");
4249 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4250 CastKind = CK_UserDefinedConversion;
4252 // If the user-defined conversion is specified by a conversion function,
4253 // the initial standard conversion sequence converts the source type to
4254 // the implicit object parameter of the conversion function.
4255 BeforeToType = Context.getTagDeclType(Conv->getParent());
4256 } else {
4257 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4258 CastKind = CK_ConstructorConversion;
4259 // Do no conversion if dealing with ... for the first conversion.
4260 if (!ICS.UserDefined.EllipsisConversion) {
4261 // If the user-defined conversion is specified by a constructor, the
4262 // initial standard conversion sequence converts the source type to
4263 // the type required by the argument of the constructor
4264 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4267 // Watch out for ellipsis conversion.
4268 if (!ICS.UserDefined.EllipsisConversion) {
4269 ExprResult Res = PerformImplicitConversion(
4270 From, BeforeToType, ICS.UserDefined.Before,
4271 AssignmentAction::Converting, CCK);
4272 if (Res.isInvalid())
4273 return ExprError();
4274 From = Res.get();
4277 ExprResult CastArg = BuildCXXCastArgument(
4278 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4279 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4280 ICS.UserDefined.HadMultipleCandidates, From);
4282 if (CastArg.isInvalid())
4283 return ExprError();
4285 From = CastArg.get();
4287 // C++ [over.match.oper]p7:
4288 // [...] the second standard conversion sequence of a user-defined
4289 // conversion sequence is not applied.
4290 if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp)
4291 return From;
4293 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4294 AssignmentAction::Converting, CCK);
4297 case ImplicitConversionSequence::AmbiguousConversion:
4298 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4299 PDiag(diag::err_typecheck_ambiguous_condition)
4300 << From->getSourceRange());
4301 return ExprError();
4303 case ImplicitConversionSequence::EllipsisConversion:
4304 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4305 llvm_unreachable("bad conversion");
4307 case ImplicitConversionSequence::BadConversion:
4308 Sema::AssignConvertType ConvTy =
4309 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4310 bool Diagnosed = DiagnoseAssignmentResult(
4311 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4312 ToType, From->getType(), From, Action);
4313 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4314 return ExprError();
4317 // Everything went well.
4318 return From;
4321 // adjustVectorType - Compute the intermediate cast type casting elements of the
4322 // from type to the elements of the to type without resizing the vector.
4323 static QualType adjustVectorType(ASTContext &Context, QualType FromTy,
4324 QualType ToType, QualType *ElTy = nullptr) {
4325 QualType ElType = ToType;
4326 if (auto *ToVec = ToType->getAs<VectorType>())
4327 ElType = ToVec->getElementType();
4329 if (ElTy)
4330 *ElTy = ElType;
4331 if (!FromTy->isVectorType())
4332 return ElType;
4333 auto *FromVec = FromTy->castAs<VectorType>();
4334 return Context.getExtVectorType(ElType, FromVec->getNumElements());
4337 ExprResult
4338 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4339 const StandardConversionSequence& SCS,
4340 AssignmentAction Action,
4341 CheckedConversionKind CCK) {
4342 bool CStyle = (CCK == CheckedConversionKind::CStyleCast ||
4343 CCK == CheckedConversionKind::FunctionalCast);
4345 // Overall FIXME: we are recomputing too many types here and doing far too
4346 // much extra work. What this means is that we need to keep track of more
4347 // information that is computed when we try the implicit conversion initially,
4348 // so that we don't need to recompute anything here.
4349 QualType FromType = From->getType();
4351 if (SCS.CopyConstructor) {
4352 // FIXME: When can ToType be a reference type?
4353 assert(!ToType->isReferenceType());
4354 if (SCS.Second == ICK_Derived_To_Base) {
4355 SmallVector<Expr*, 8> ConstructorArgs;
4356 if (CompleteConstructorCall(
4357 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4358 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4359 return ExprError();
4360 return BuildCXXConstructExpr(
4361 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4362 SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4363 /*HadMultipleCandidates*/ false,
4364 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4365 CXXConstructionKind::Complete, SourceRange());
4367 return BuildCXXConstructExpr(
4368 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4369 SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4370 /*HadMultipleCandidates*/ false,
4371 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4372 CXXConstructionKind::Complete, SourceRange());
4375 // Resolve overloaded function references.
4376 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4377 DeclAccessPair Found;
4378 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4379 true, Found);
4380 if (!Fn)
4381 return ExprError();
4383 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4384 return ExprError();
4386 ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4387 if (Res.isInvalid())
4388 return ExprError();
4390 // We might get back another placeholder expression if we resolved to a
4391 // builtin.
4392 Res = CheckPlaceholderExpr(Res.get());
4393 if (Res.isInvalid())
4394 return ExprError();
4396 From = Res.get();
4397 FromType = From->getType();
4400 // If we're converting to an atomic type, first convert to the corresponding
4401 // non-atomic type.
4402 QualType ToAtomicType;
4403 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4404 ToAtomicType = ToType;
4405 ToType = ToAtomic->getValueType();
4408 QualType InitialFromType = FromType;
4409 // Perform the first implicit conversion.
4410 switch (SCS.First) {
4411 case ICK_Identity:
4412 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4413 FromType = FromAtomic->getValueType().getUnqualifiedType();
4414 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4415 From, /*BasePath=*/nullptr, VK_PRValue,
4416 FPOptionsOverride());
4418 break;
4420 case ICK_Lvalue_To_Rvalue: {
4421 assert(From->getObjectKind() != OK_ObjCProperty);
4422 ExprResult FromRes = DefaultLvalueConversion(From);
4423 if (FromRes.isInvalid())
4424 return ExprError();
4426 From = FromRes.get();
4427 FromType = From->getType();
4428 break;
4431 case ICK_Array_To_Pointer:
4432 FromType = Context.getArrayDecayedType(FromType);
4433 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4434 /*BasePath=*/nullptr, CCK)
4435 .get();
4436 break;
4438 case ICK_HLSL_Array_RValue:
4439 if (ToType->isArrayParameterType()) {
4440 FromType = Context.getArrayParameterType(FromType);
4441 From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue,
4442 /*BasePath=*/nullptr, CCK)
4443 .get();
4444 } else { // FromType must be ArrayParameterType
4445 assert(FromType->isArrayParameterType() &&
4446 "FromType must be ArrayParameterType in ICK_HLSL_Array_RValue \
4447 if it is not ToType");
4448 const ArrayParameterType *APT = cast<ArrayParameterType>(FromType);
4449 FromType = APT->getConstantArrayType(Context);
4450 From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue,
4451 /*BasePath=*/nullptr, CCK)
4452 .get();
4454 break;
4456 case ICK_Function_To_Pointer:
4457 FromType = Context.getPointerType(FromType);
4458 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4459 VK_PRValue, /*BasePath=*/nullptr, CCK)
4460 .get();
4461 break;
4463 default:
4464 llvm_unreachable("Improper first standard conversion");
4467 // Perform the second implicit conversion
4468 switch (SCS.Second) {
4469 case ICK_Identity:
4470 // C++ [except.spec]p5:
4471 // [For] assignment to and initialization of pointers to functions,
4472 // pointers to member functions, and references to functions: the
4473 // target entity shall allow at least the exceptions allowed by the
4474 // source value in the assignment or initialization.
4475 switch (Action) {
4476 case AssignmentAction::Assigning:
4477 case AssignmentAction::Initializing:
4478 // Note, function argument passing and returning are initialization.
4479 case AssignmentAction::Passing:
4480 case AssignmentAction::Returning:
4481 case AssignmentAction::Sending:
4482 case AssignmentAction::Passing_CFAudited:
4483 if (CheckExceptionSpecCompatibility(From, ToType))
4484 return ExprError();
4485 break;
4487 case AssignmentAction::Casting:
4488 case AssignmentAction::Converting:
4489 // Casts and implicit conversions are not initialization, so are not
4490 // checked for exception specification mismatches.
4491 break;
4493 // Nothing else to do.
4494 break;
4496 case ICK_Integral_Promotion:
4497 case ICK_Integral_Conversion: {
4498 QualType ElTy = ToType;
4499 QualType StepTy = ToType;
4500 if (FromType->isVectorType() || ToType->isVectorType())
4501 StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4502 if (ElTy->isBooleanType()) {
4503 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4504 SCS.Second == ICK_Integral_Promotion &&
4505 "only enums with fixed underlying type can promote to bool");
4506 From = ImpCastExprToType(From, StepTy, CK_IntegralToBoolean, VK_PRValue,
4507 /*BasePath=*/nullptr, CCK)
4508 .get();
4509 } else {
4510 From = ImpCastExprToType(From, StepTy, CK_IntegralCast, VK_PRValue,
4511 /*BasePath=*/nullptr, CCK)
4512 .get();
4514 break;
4517 case ICK_Floating_Promotion:
4518 case ICK_Floating_Conversion: {
4519 QualType StepTy = ToType;
4520 if (FromType->isVectorType() || ToType->isVectorType())
4521 StepTy = adjustVectorType(Context, FromType, ToType);
4522 From = ImpCastExprToType(From, StepTy, CK_FloatingCast, VK_PRValue,
4523 /*BasePath=*/nullptr, CCK)
4524 .get();
4525 break;
4528 case ICK_Complex_Promotion:
4529 case ICK_Complex_Conversion: {
4530 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4531 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4532 CastKind CK;
4533 if (FromEl->isRealFloatingType()) {
4534 if (ToEl->isRealFloatingType())
4535 CK = CK_FloatingComplexCast;
4536 else
4537 CK = CK_FloatingComplexToIntegralComplex;
4538 } else if (ToEl->isRealFloatingType()) {
4539 CK = CK_IntegralComplexToFloatingComplex;
4540 } else {
4541 CK = CK_IntegralComplexCast;
4543 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4544 CCK)
4545 .get();
4546 break;
4549 case ICK_Floating_Integral: {
4550 QualType ElTy = ToType;
4551 QualType StepTy = ToType;
4552 if (FromType->isVectorType() || ToType->isVectorType())
4553 StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4554 if (ElTy->isRealFloatingType())
4555 From = ImpCastExprToType(From, StepTy, CK_IntegralToFloating, VK_PRValue,
4556 /*BasePath=*/nullptr, CCK)
4557 .get();
4558 else
4559 From = ImpCastExprToType(From, StepTy, CK_FloatingToIntegral, VK_PRValue,
4560 /*BasePath=*/nullptr, CCK)
4561 .get();
4562 break;
4565 case ICK_Fixed_Point_Conversion:
4566 assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4567 "Attempting implicit fixed point conversion without a fixed "
4568 "point operand");
4569 if (FromType->isFloatingType())
4570 From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4571 VK_PRValue,
4572 /*BasePath=*/nullptr, CCK).get();
4573 else if (ToType->isFloatingType())
4574 From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4575 VK_PRValue,
4576 /*BasePath=*/nullptr, CCK).get();
4577 else if (FromType->isIntegralType(Context))
4578 From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4579 VK_PRValue,
4580 /*BasePath=*/nullptr, CCK).get();
4581 else if (ToType->isIntegralType(Context))
4582 From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4583 VK_PRValue,
4584 /*BasePath=*/nullptr, CCK).get();
4585 else if (ToType->isBooleanType())
4586 From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4587 VK_PRValue,
4588 /*BasePath=*/nullptr, CCK).get();
4589 else
4590 From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4591 VK_PRValue,
4592 /*BasePath=*/nullptr, CCK).get();
4593 break;
4595 case ICK_Compatible_Conversion:
4596 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4597 /*BasePath=*/nullptr, CCK).get();
4598 break;
4600 case ICK_Writeback_Conversion:
4601 case ICK_Pointer_Conversion: {
4602 if (SCS.IncompatibleObjC && Action != AssignmentAction::Casting) {
4603 // Diagnose incompatible Objective-C conversions
4604 if (Action == AssignmentAction::Initializing ||
4605 Action == AssignmentAction::Assigning)
4606 Diag(From->getBeginLoc(),
4607 diag::ext_typecheck_convert_incompatible_pointer)
4608 << ToType << From->getType() << Action << From->getSourceRange()
4609 << 0;
4610 else
4611 Diag(From->getBeginLoc(),
4612 diag::ext_typecheck_convert_incompatible_pointer)
4613 << From->getType() << ToType << Action << From->getSourceRange()
4614 << 0;
4616 if (From->getType()->isObjCObjectPointerType() &&
4617 ToType->isObjCObjectPointerType())
4618 ObjC().EmitRelatedResultTypeNote(From);
4619 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4620 !ObjC().CheckObjCARCUnavailableWeakConversion(ToType,
4621 From->getType())) {
4622 if (Action == AssignmentAction::Initializing)
4623 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4624 else
4625 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4626 << (Action == AssignmentAction::Casting) << From->getType()
4627 << ToType << From->getSourceRange();
4630 // Defer address space conversion to the third conversion.
4631 QualType FromPteeType = From->getType()->getPointeeType();
4632 QualType ToPteeType = ToType->getPointeeType();
4633 QualType NewToType = ToType;
4634 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4635 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4636 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4637 NewToType = Context.getAddrSpaceQualType(NewToType,
4638 FromPteeType.getAddressSpace());
4639 if (ToType->isObjCObjectPointerType())
4640 NewToType = Context.getObjCObjectPointerType(NewToType);
4641 else if (ToType->isBlockPointerType())
4642 NewToType = Context.getBlockPointerType(NewToType);
4643 else
4644 NewToType = Context.getPointerType(NewToType);
4647 CastKind Kind;
4648 CXXCastPath BasePath;
4649 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4650 return ExprError();
4652 // Make sure we extend blocks if necessary.
4653 // FIXME: doing this here is really ugly.
4654 if (Kind == CK_BlockPointerToObjCPointerCast) {
4655 ExprResult E = From;
4656 (void)ObjC().PrepareCastToObjCObjectPointer(E);
4657 From = E.get();
4659 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4660 ObjC().CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4661 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4662 .get();
4663 break;
4666 case ICK_Pointer_Member: {
4667 CastKind Kind;
4668 CXXCastPath BasePath;
4669 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4670 return ExprError();
4671 if (CheckExceptionSpecCompatibility(From, ToType))
4672 return ExprError();
4674 // We may not have been able to figure out what this member pointer resolved
4675 // to up until this exact point. Attempt to lock-in it's inheritance model.
4676 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4677 (void)isCompleteType(From->getExprLoc(), From->getType());
4678 (void)isCompleteType(From->getExprLoc(), ToType);
4681 From =
4682 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4683 break;
4686 case ICK_Boolean_Conversion: {
4687 // Perform half-to-boolean conversion via float.
4688 if (From->getType()->isHalfType()) {
4689 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4690 FromType = Context.FloatTy;
4692 QualType ElTy = FromType;
4693 QualType StepTy = ToType;
4694 if (FromType->isVectorType())
4695 ElTy = FromType->castAs<VectorType>()->getElementType();
4696 if (getLangOpts().HLSL &&
4697 (FromType->isVectorType() || ToType->isVectorType()))
4698 StepTy = adjustVectorType(Context, FromType, ToType);
4700 From = ImpCastExprToType(From, StepTy, ScalarTypeToBooleanCastKind(ElTy),
4701 VK_PRValue,
4702 /*BasePath=*/nullptr, CCK)
4703 .get();
4704 break;
4707 case ICK_Derived_To_Base: {
4708 CXXCastPath BasePath;
4709 if (CheckDerivedToBaseConversion(
4710 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4711 From->getSourceRange(), &BasePath, CStyle))
4712 return ExprError();
4714 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4715 CK_DerivedToBase, From->getValueKind(),
4716 &BasePath, CCK).get();
4717 break;
4720 case ICK_Vector_Conversion:
4721 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4722 /*BasePath=*/nullptr, CCK)
4723 .get();
4724 break;
4726 case ICK_SVE_Vector_Conversion:
4727 case ICK_RVV_Vector_Conversion:
4728 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4729 /*BasePath=*/nullptr, CCK)
4730 .get();
4731 break;
4733 case ICK_Vector_Splat: {
4734 // Vector splat from any arithmetic type to a vector.
4735 Expr *Elem = prepareVectorSplat(ToType, From).get();
4736 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4737 /*BasePath=*/nullptr, CCK)
4738 .get();
4739 break;
4742 case ICK_Complex_Real:
4743 // Case 1. x -> _Complex y
4744 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4745 QualType ElType = ToComplex->getElementType();
4746 bool isFloatingComplex = ElType->isRealFloatingType();
4748 // x -> y
4749 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4750 // do nothing
4751 } else if (From->getType()->isRealFloatingType()) {
4752 From = ImpCastExprToType(From, ElType,
4753 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4754 } else {
4755 assert(From->getType()->isIntegerType());
4756 From = ImpCastExprToType(From, ElType,
4757 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4759 // y -> _Complex y
4760 From = ImpCastExprToType(From, ToType,
4761 isFloatingComplex ? CK_FloatingRealToComplex
4762 : CK_IntegralRealToComplex).get();
4764 // Case 2. _Complex x -> y
4765 } else {
4766 auto *FromComplex = From->getType()->castAs<ComplexType>();
4767 QualType ElType = FromComplex->getElementType();
4768 bool isFloatingComplex = ElType->isRealFloatingType();
4770 // _Complex x -> x
4771 From = ImpCastExprToType(From, ElType,
4772 isFloatingComplex ? CK_FloatingComplexToReal
4773 : CK_IntegralComplexToReal,
4774 VK_PRValue, /*BasePath=*/nullptr, CCK)
4775 .get();
4777 // x -> y
4778 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4779 // do nothing
4780 } else if (ToType->isRealFloatingType()) {
4781 From = ImpCastExprToType(From, ToType,
4782 isFloatingComplex ? CK_FloatingCast
4783 : CK_IntegralToFloating,
4784 VK_PRValue, /*BasePath=*/nullptr, CCK)
4785 .get();
4786 } else {
4787 assert(ToType->isIntegerType());
4788 From = ImpCastExprToType(From, ToType,
4789 isFloatingComplex ? CK_FloatingToIntegral
4790 : CK_IntegralCast,
4791 VK_PRValue, /*BasePath=*/nullptr, CCK)
4792 .get();
4795 break;
4797 case ICK_Block_Pointer_Conversion: {
4798 LangAS AddrSpaceL =
4799 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4800 LangAS AddrSpaceR =
4801 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4802 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR,
4803 getASTContext()) &&
4804 "Invalid cast");
4805 CastKind Kind =
4806 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4807 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4808 VK_PRValue, /*BasePath=*/nullptr, CCK)
4809 .get();
4810 break;
4813 case ICK_TransparentUnionConversion: {
4814 ExprResult FromRes = From;
4815 Sema::AssignConvertType ConvTy =
4816 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4817 if (FromRes.isInvalid())
4818 return ExprError();
4819 From = FromRes.get();
4820 assert ((ConvTy == Sema::Compatible) &&
4821 "Improper transparent union conversion");
4822 (void)ConvTy;
4823 break;
4826 case ICK_Zero_Event_Conversion:
4827 case ICK_Zero_Queue_Conversion:
4828 From = ImpCastExprToType(From, ToType,
4829 CK_ZeroToOCLOpaqueType,
4830 From->getValueKind()).get();
4831 break;
4833 case ICK_Lvalue_To_Rvalue:
4834 case ICK_Array_To_Pointer:
4835 case ICK_Function_To_Pointer:
4836 case ICK_Function_Conversion:
4837 case ICK_Qualification:
4838 case ICK_Num_Conversion_Kinds:
4839 case ICK_C_Only_Conversion:
4840 case ICK_Incompatible_Pointer_Conversion:
4841 case ICK_HLSL_Array_RValue:
4842 case ICK_HLSL_Vector_Truncation:
4843 case ICK_HLSL_Vector_Splat:
4844 llvm_unreachable("Improper second standard conversion");
4847 if (SCS.Dimension != ICK_Identity) {
4848 // If SCS.Element is not ICK_Identity the To and From types must be HLSL
4849 // vectors or matrices.
4851 // TODO: Support HLSL matrices.
4852 assert((!From->getType()->isMatrixType() && !ToType->isMatrixType()) &&
4853 "Dimension conversion for matrix types is not implemented yet.");
4854 assert((ToType->isVectorType() || ToType->isBuiltinType()) &&
4855 "Dimension conversion output must be vector or scalar type.");
4856 switch (SCS.Dimension) {
4857 case ICK_HLSL_Vector_Splat: {
4858 // Vector splat from any arithmetic type to a vector.
4859 Expr *Elem = prepareVectorSplat(ToType, From).get();
4860 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4861 /*BasePath=*/nullptr, CCK)
4862 .get();
4863 break;
4865 case ICK_HLSL_Vector_Truncation: {
4866 // Note: HLSL built-in vectors are ExtVectors. Since this truncates a
4867 // vector to a smaller vector or to a scalar, this can only operate on
4868 // arguments where the source type is an ExtVector and the destination
4869 // type is destination type is either an ExtVectorType or a builtin scalar
4870 // type.
4871 auto *FromVec = From->getType()->castAs<VectorType>();
4872 QualType TruncTy = FromVec->getElementType();
4873 if (auto *ToVec = ToType->getAs<VectorType>())
4874 TruncTy = Context.getExtVectorType(TruncTy, ToVec->getNumElements());
4875 From = ImpCastExprToType(From, TruncTy, CK_HLSLVectorTruncation,
4876 From->getValueKind())
4877 .get();
4879 break;
4881 case ICK_Identity:
4882 default:
4883 llvm_unreachable("Improper element standard conversion");
4887 switch (SCS.Third) {
4888 case ICK_Identity:
4889 // Nothing to do.
4890 break;
4892 case ICK_Function_Conversion:
4893 // If both sides are functions (or pointers/references to them), there could
4894 // be incompatible exception declarations.
4895 if (CheckExceptionSpecCompatibility(From, ToType))
4896 return ExprError();
4898 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4899 /*BasePath=*/nullptr, CCK)
4900 .get();
4901 break;
4903 case ICK_Qualification: {
4904 ExprValueKind VK = From->getValueKind();
4905 CastKind CK = CK_NoOp;
4907 if (ToType->isReferenceType() &&
4908 ToType->getPointeeType().getAddressSpace() !=
4909 From->getType().getAddressSpace())
4910 CK = CK_AddressSpaceConversion;
4912 if (ToType->isPointerType() &&
4913 ToType->getPointeeType().getAddressSpace() !=
4914 From->getType()->getPointeeType().getAddressSpace())
4915 CK = CK_AddressSpaceConversion;
4917 if (!isCast(CCK) &&
4918 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4919 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4920 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4921 << InitialFromType << ToType;
4924 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4925 /*BasePath=*/nullptr, CCK)
4926 .get();
4928 if (SCS.DeprecatedStringLiteralToCharPtr &&
4929 !getLangOpts().WritableStrings) {
4930 Diag(From->getBeginLoc(),
4931 getLangOpts().CPlusPlus11
4932 ? diag::ext_deprecated_string_literal_conversion
4933 : diag::warn_deprecated_string_literal_conversion)
4934 << ToType.getNonReferenceType();
4937 break;
4940 default:
4941 llvm_unreachable("Improper third standard conversion");
4944 // If this conversion sequence involved a scalar -> atomic conversion, perform
4945 // that conversion now.
4946 if (!ToAtomicType.isNull()) {
4947 assert(Context.hasSameType(
4948 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4949 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4950 VK_PRValue, nullptr, CCK)
4951 .get();
4954 // Materialize a temporary if we're implicitly converting to a reference
4955 // type. This is not required by the C++ rules but is necessary to maintain
4956 // AST invariants.
4957 if (ToType->isReferenceType() && From->isPRValue()) {
4958 ExprResult Res = TemporaryMaterializationConversion(From);
4959 if (Res.isInvalid())
4960 return ExprError();
4961 From = Res.get();
4964 // If this conversion sequence succeeded and involved implicitly converting a
4965 // _Nullable type to a _Nonnull one, complain.
4966 if (!isCast(CCK))
4967 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4968 From->getBeginLoc());
4970 return From;
4973 /// Checks that type T is not a VLA.
4975 /// @returns @c true if @p T is VLA and a diagnostic was emitted,
4976 /// @c false otherwise.
4977 static bool DiagnoseVLAInCXXTypeTrait(Sema &S, const TypeSourceInfo *T,
4978 clang::tok::TokenKind TypeTraitID) {
4979 if (!T->getType()->isVariableArrayType())
4980 return false;
4982 S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_vla_unsupported)
4983 << 1 << TypeTraitID;
4984 return true;
4987 /// Checks that type T is not an atomic type (_Atomic).
4989 /// @returns @c true if @p T is VLA and a diagnostic was emitted,
4990 /// @c false otherwise.
4991 static bool DiagnoseAtomicInCXXTypeTrait(Sema &S, const TypeSourceInfo *T,
4992 clang::tok::TokenKind TypeTraitID) {
4993 if (!T->getType()->isAtomicType())
4994 return false;
4996 S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_atomic_unsupported)
4997 << TypeTraitID;
4998 return true;
5001 /// Check the completeness of a type in a unary type trait.
5003 /// If the particular type trait requires a complete type, tries to complete
5004 /// it. If completing the type fails, a diagnostic is emitted and false
5005 /// returned. If completing the type succeeds or no completion was required,
5006 /// returns true.
5007 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
5008 SourceLocation Loc,
5009 QualType ArgTy) {
5010 // C++0x [meta.unary.prop]p3:
5011 // For all of the class templates X declared in this Clause, instantiating
5012 // that template with a template argument that is a class template
5013 // specialization may result in the implicit instantiation of the template
5014 // argument if and only if the semantics of X require that the argument
5015 // must be a complete type.
5016 // We apply this rule to all the type trait expressions used to implement
5017 // these class templates. We also try to follow any GCC documented behavior
5018 // in these expressions to ensure portability of standard libraries.
5019 switch (UTT) {
5020 default: llvm_unreachable("not a UTT");
5021 // is_complete_type somewhat obviously cannot require a complete type.
5022 case UTT_IsCompleteType:
5023 // Fall-through
5025 // These traits are modeled on the type predicates in C++0x
5026 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
5027 // requiring a complete type, as whether or not they return true cannot be
5028 // impacted by the completeness of the type.
5029 case UTT_IsVoid:
5030 case UTT_IsIntegral:
5031 case UTT_IsFloatingPoint:
5032 case UTT_IsArray:
5033 case UTT_IsBoundedArray:
5034 case UTT_IsPointer:
5035 case UTT_IsReferenceable:
5036 case UTT_IsLvalueReference:
5037 case UTT_IsRvalueReference:
5038 case UTT_IsMemberFunctionPointer:
5039 case UTT_IsMemberObjectPointer:
5040 case UTT_IsEnum:
5041 case UTT_IsScopedEnum:
5042 case UTT_IsUnion:
5043 case UTT_IsClass:
5044 case UTT_IsFunction:
5045 case UTT_IsReference:
5046 case UTT_IsArithmetic:
5047 case UTT_IsFundamental:
5048 case UTT_IsObject:
5049 case UTT_IsScalar:
5050 case UTT_IsCompound:
5051 case UTT_IsMemberPointer:
5052 case UTT_IsTypedResourceElementCompatible:
5053 // Fall-through
5055 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
5056 // which requires some of its traits to have the complete type. However,
5057 // the completeness of the type cannot impact these traits' semantics, and
5058 // so they don't require it. This matches the comments on these traits in
5059 // Table 49.
5060 case UTT_IsConst:
5061 case UTT_IsVolatile:
5062 case UTT_IsSigned:
5063 case UTT_IsUnboundedArray:
5064 case UTT_IsUnsigned:
5066 // This type trait always returns false, checking the type is moot.
5067 case UTT_IsInterfaceClass:
5068 return true;
5070 // C++14 [meta.unary.prop]:
5071 // If T is a non-union class type, T shall be a complete type.
5072 case UTT_IsEmpty:
5073 case UTT_IsPolymorphic:
5074 case UTT_IsAbstract:
5075 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
5076 if (!RD->isUnion())
5077 return !S.RequireCompleteType(
5078 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5079 return true;
5081 // C++14 [meta.unary.prop]:
5082 // If T is a class type, T shall be a complete type.
5083 case UTT_IsFinal:
5084 case UTT_IsSealed:
5085 if (ArgTy->getAsCXXRecordDecl())
5086 return !S.RequireCompleteType(
5087 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5088 return true;
5090 // LWG3823: T shall be an array type, a complete type, or cv void.
5091 case UTT_IsAggregate:
5092 case UTT_IsImplicitLifetime:
5093 if (ArgTy->isArrayType() || ArgTy->isVoidType())
5094 return true;
5096 return !S.RequireCompleteType(
5097 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5099 // C++1z [meta.unary.prop]:
5100 // remove_all_extents_t<T> shall be a complete type or cv void.
5101 case UTT_IsTrivial:
5102 case UTT_IsTriviallyCopyable:
5103 case UTT_IsStandardLayout:
5104 case UTT_IsPOD:
5105 case UTT_IsLiteral:
5106 case UTT_IsBitwiseCloneable:
5107 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
5108 // impose the same constraints.
5109 case UTT_IsTriviallyRelocatable:
5110 case UTT_IsTriviallyEqualityComparable:
5111 case UTT_CanPassInRegs:
5112 // Per the GCC type traits documentation, T shall be a complete type, cv void,
5113 // or an array of unknown bound. But GCC actually imposes the same constraints
5114 // as above.
5115 case UTT_HasNothrowAssign:
5116 case UTT_HasNothrowMoveAssign:
5117 case UTT_HasNothrowConstructor:
5118 case UTT_HasNothrowCopy:
5119 case UTT_HasTrivialAssign:
5120 case UTT_HasTrivialMoveAssign:
5121 case UTT_HasTrivialDefaultConstructor:
5122 case UTT_HasTrivialMoveConstructor:
5123 case UTT_HasTrivialCopy:
5124 case UTT_HasTrivialDestructor:
5125 case UTT_HasVirtualDestructor:
5126 // has_unique_object_representations<T> when T is an array is defined in terms
5127 // of has_unique_object_representations<remove_all_extents_t<T>>, so the base
5128 // type needs to be complete even if the type is an incomplete array type.
5129 case UTT_HasUniqueObjectRepresentations:
5130 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
5131 [[fallthrough]];
5133 // C++1z [meta.unary.prop]:
5134 // T shall be a complete type, cv void, or an array of unknown bound.
5135 case UTT_IsDestructible:
5136 case UTT_IsNothrowDestructible:
5137 case UTT_IsTriviallyDestructible:
5138 case UTT_IsIntangibleType:
5139 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
5140 return true;
5142 return !S.RequireCompleteType(
5143 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5147 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5148 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5149 bool (CXXRecordDecl::*HasTrivial)() const,
5150 bool (CXXRecordDecl::*HasNonTrivial)() const,
5151 bool (CXXMethodDecl::*IsDesiredOp)() const)
5153 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5154 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5155 return true;
5157 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5158 DeclarationNameInfo NameInfo(Name, KeyLoc);
5159 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5160 if (Self.LookupQualifiedName(Res, RD)) {
5161 bool FoundOperator = false;
5162 Res.suppressDiagnostics();
5163 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5164 Op != OpEnd; ++Op) {
5165 if (isa<FunctionTemplateDecl>(*Op))
5166 continue;
5168 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5169 if((Operator->*IsDesiredOp)()) {
5170 FoundOperator = true;
5171 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5172 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5173 if (!CPT || !CPT->isNothrow())
5174 return false;
5177 return FoundOperator;
5179 return false;
5182 static bool HasNonDeletedDefaultedEqualityComparison(Sema &S,
5183 const CXXRecordDecl *Decl,
5184 SourceLocation KeyLoc) {
5185 if (Decl->isUnion())
5186 return false;
5187 if (Decl->isLambda())
5188 return Decl->isCapturelessLambda();
5191 EnterExpressionEvaluationContext UnevaluatedContext(
5192 S, Sema::ExpressionEvaluationContext::Unevaluated);
5193 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5194 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5196 // const ClassT& obj;
5197 OpaqueValueExpr Operand(
5198 KeyLoc,
5199 Decl->getTypeForDecl()->getCanonicalTypeUnqualified().withConst(),
5200 ExprValueKind::VK_LValue);
5201 UnresolvedSet<16> Functions;
5202 // obj == obj;
5203 S.LookupBinOp(S.TUScope, {}, BinaryOperatorKind::BO_EQ, Functions);
5205 auto Result = S.CreateOverloadedBinOp(KeyLoc, BinaryOperatorKind::BO_EQ,
5206 Functions, &Operand, &Operand);
5207 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5208 return false;
5210 const auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(Result.get());
5211 if (!CallExpr)
5212 return false;
5213 const auto *Callee = CallExpr->getDirectCallee();
5214 auto ParamT = Callee->getParamDecl(0)->getType();
5215 if (!Callee->isDefaulted())
5216 return false;
5217 if (!ParamT->isReferenceType() && !Decl->isTriviallyCopyable())
5218 return false;
5219 if (ParamT.getNonReferenceType()->getUnqualifiedDesugaredType() !=
5220 Decl->getTypeForDecl())
5221 return false;
5224 return llvm::all_of(Decl->bases(),
5225 [&](const CXXBaseSpecifier &BS) {
5226 if (const auto *RD = BS.getType()->getAsCXXRecordDecl())
5227 return HasNonDeletedDefaultedEqualityComparison(
5228 S, RD, KeyLoc);
5229 return true;
5230 }) &&
5231 llvm::all_of(Decl->fields(), [&](const FieldDecl *FD) {
5232 auto Type = FD->getType();
5233 if (Type->isArrayType())
5234 Type = Type->getBaseElementTypeUnsafe()
5235 ->getCanonicalTypeUnqualified();
5237 if (Type->isReferenceType() || Type->isEnumeralType())
5238 return false;
5239 if (const auto *RD = Type->getAsCXXRecordDecl())
5240 return HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc);
5241 return true;
5245 static bool isTriviallyEqualityComparableType(Sema &S, QualType Type, SourceLocation KeyLoc) {
5246 QualType CanonicalType = Type.getCanonicalType();
5247 if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() ||
5248 CanonicalType->isEnumeralType() || CanonicalType->isArrayType())
5249 return false;
5251 if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) {
5252 if (!HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc))
5253 return false;
5256 return S.getASTContext().hasUniqueObjectRepresentations(
5257 CanonicalType, /*CheckIfTriviallyCopyable=*/false);
5260 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5261 SourceLocation KeyLoc,
5262 TypeSourceInfo *TInfo) {
5263 QualType T = TInfo->getType();
5264 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5266 ASTContext &C = Self.Context;
5267 switch(UTT) {
5268 default: llvm_unreachable("not a UTT");
5269 // Type trait expressions corresponding to the primary type category
5270 // predicates in C++0x [meta.unary.cat].
5271 case UTT_IsVoid:
5272 return T->isVoidType();
5273 case UTT_IsIntegral:
5274 return T->isIntegralType(C);
5275 case UTT_IsFloatingPoint:
5276 return T->isFloatingType();
5277 case UTT_IsArray:
5278 // Zero-sized arrays aren't considered arrays in partial specializations,
5279 // so __is_array shouldn't consider them arrays either.
5280 if (const auto *CAT = C.getAsConstantArrayType(T))
5281 return CAT->getSize() != 0;
5282 return T->isArrayType();
5283 case UTT_IsBoundedArray:
5284 if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_bounded_array))
5285 return false;
5286 // Zero-sized arrays aren't considered arrays in partial specializations,
5287 // so __is_bounded_array shouldn't consider them arrays either.
5288 if (const auto *CAT = C.getAsConstantArrayType(T))
5289 return CAT->getSize() != 0;
5290 return T->isArrayType() && !T->isIncompleteArrayType();
5291 case UTT_IsUnboundedArray:
5292 if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_unbounded_array))
5293 return false;
5294 return T->isIncompleteArrayType();
5295 case UTT_IsPointer:
5296 return T->isAnyPointerType();
5297 case UTT_IsLvalueReference:
5298 return T->isLValueReferenceType();
5299 case UTT_IsRvalueReference:
5300 return T->isRValueReferenceType();
5301 case UTT_IsMemberFunctionPointer:
5302 return T->isMemberFunctionPointerType();
5303 case UTT_IsMemberObjectPointer:
5304 return T->isMemberDataPointerType();
5305 case UTT_IsEnum:
5306 return T->isEnumeralType();
5307 case UTT_IsScopedEnum:
5308 return T->isScopedEnumeralType();
5309 case UTT_IsUnion:
5310 return T->isUnionType();
5311 case UTT_IsClass:
5312 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5313 case UTT_IsFunction:
5314 return T->isFunctionType();
5316 // Type trait expressions which correspond to the convenient composition
5317 // predicates in C++0x [meta.unary.comp].
5318 case UTT_IsReference:
5319 return T->isReferenceType();
5320 case UTT_IsArithmetic:
5321 return T->isArithmeticType() && !T->isEnumeralType();
5322 case UTT_IsFundamental:
5323 return T->isFundamentalType();
5324 case UTT_IsObject:
5325 return T->isObjectType();
5326 case UTT_IsScalar:
5327 // Note: semantic analysis depends on Objective-C lifetime types to be
5328 // considered scalar types. However, such types do not actually behave
5329 // like scalar types at run time (since they may require retain/release
5330 // operations), so we report them as non-scalar.
5331 if (T->isObjCLifetimeType()) {
5332 switch (T.getObjCLifetime()) {
5333 case Qualifiers::OCL_None:
5334 case Qualifiers::OCL_ExplicitNone:
5335 return true;
5337 case Qualifiers::OCL_Strong:
5338 case Qualifiers::OCL_Weak:
5339 case Qualifiers::OCL_Autoreleasing:
5340 return false;
5344 return T->isScalarType();
5345 case UTT_IsCompound:
5346 return T->isCompoundType();
5347 case UTT_IsMemberPointer:
5348 return T->isMemberPointerType();
5350 // Type trait expressions which correspond to the type property predicates
5351 // in C++0x [meta.unary.prop].
5352 case UTT_IsConst:
5353 return T.isConstQualified();
5354 case UTT_IsVolatile:
5355 return T.isVolatileQualified();
5356 case UTT_IsTrivial:
5357 return T.isTrivialType(C);
5358 case UTT_IsTriviallyCopyable:
5359 return T.isTriviallyCopyableType(C);
5360 case UTT_IsStandardLayout:
5361 return T->isStandardLayoutType();
5362 case UTT_IsPOD:
5363 return T.isPODType(C);
5364 case UTT_IsLiteral:
5365 return T->isLiteralType(C);
5366 case UTT_IsEmpty:
5367 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5368 return !RD->isUnion() && RD->isEmpty();
5369 return false;
5370 case UTT_IsPolymorphic:
5371 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5372 return !RD->isUnion() && RD->isPolymorphic();
5373 return false;
5374 case UTT_IsAbstract:
5375 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5376 return !RD->isUnion() && RD->isAbstract();
5377 return false;
5378 case UTT_IsAggregate:
5379 // Report vector extensions and complex types as aggregates because they
5380 // support aggregate initialization. GCC mirrors this behavior for vectors
5381 // but not _Complex.
5382 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5383 T->isAnyComplexType();
5384 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5385 // even then only when it is used with the 'interface struct ...' syntax
5386 // Clang doesn't support /CLR which makes this type trait moot.
5387 case UTT_IsInterfaceClass:
5388 return false;
5389 case UTT_IsFinal:
5390 case UTT_IsSealed:
5391 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5392 return RD->hasAttr<FinalAttr>();
5393 return false;
5394 case UTT_IsSigned:
5395 // Enum types should always return false.
5396 // Floating points should always return true.
5397 return T->isFloatingType() ||
5398 (T->isSignedIntegerType() && !T->isEnumeralType());
5399 case UTT_IsUnsigned:
5400 // Enum types should always return false.
5401 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5403 // Type trait expressions which query classes regarding their construction,
5404 // destruction, and copying. Rather than being based directly on the
5405 // related type predicates in the standard, they are specified by both
5406 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5407 // specifications.
5409 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5410 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5412 // Note that these builtins do not behave as documented in g++: if a class
5413 // has both a trivial and a non-trivial special member of a particular kind,
5414 // they return false! For now, we emulate this behavior.
5415 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5416 // does not correctly compute triviality in the presence of multiple special
5417 // members of the same kind. Revisit this once the g++ bug is fixed.
5418 case UTT_HasTrivialDefaultConstructor:
5419 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5420 // If __is_pod (type) is true then the trait is true, else if type is
5421 // a cv class or union type (or array thereof) with a trivial default
5422 // constructor ([class.ctor]) then the trait is true, else it is false.
5423 if (T.isPODType(C))
5424 return true;
5425 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5426 return RD->hasTrivialDefaultConstructor() &&
5427 !RD->hasNonTrivialDefaultConstructor();
5428 return false;
5429 case UTT_HasTrivialMoveConstructor:
5430 // This trait is implemented by MSVC 2012 and needed to parse the
5431 // standard library headers. Specifically this is used as the logic
5432 // behind std::is_trivially_move_constructible (20.9.4.3).
5433 if (T.isPODType(C))
5434 return true;
5435 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5436 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5437 return false;
5438 case UTT_HasTrivialCopy:
5439 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5440 // If __is_pod (type) is true or type is a reference type then
5441 // the trait is true, else if type is a cv class or union type
5442 // with a trivial copy constructor ([class.copy]) then the trait
5443 // is true, else it is false.
5444 if (T.isPODType(C) || T->isReferenceType())
5445 return true;
5446 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5447 return RD->hasTrivialCopyConstructor() &&
5448 !RD->hasNonTrivialCopyConstructor();
5449 return false;
5450 case UTT_HasTrivialMoveAssign:
5451 // This trait is implemented by MSVC 2012 and needed to parse the
5452 // standard library headers. Specifically it is used as the logic
5453 // behind std::is_trivially_move_assignable (20.9.4.3)
5454 if (T.isPODType(C))
5455 return true;
5456 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5457 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5458 return false;
5459 case UTT_HasTrivialAssign:
5460 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5461 // If type is const qualified or is a reference type then the
5462 // trait is false. Otherwise if __is_pod (type) is true then the
5463 // trait is true, else if type is a cv class or union type with
5464 // a trivial copy assignment ([class.copy]) then the trait is
5465 // true, else it is false.
5466 // Note: the const and reference restrictions are interesting,
5467 // given that const and reference members don't prevent a class
5468 // from having a trivial copy assignment operator (but do cause
5469 // errors if the copy assignment operator is actually used, q.v.
5470 // [class.copy]p12).
5472 if (T.isConstQualified())
5473 return false;
5474 if (T.isPODType(C))
5475 return true;
5476 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5477 return RD->hasTrivialCopyAssignment() &&
5478 !RD->hasNonTrivialCopyAssignment();
5479 return false;
5480 case UTT_IsDestructible:
5481 case UTT_IsTriviallyDestructible:
5482 case UTT_IsNothrowDestructible:
5483 // C++14 [meta.unary.prop]:
5484 // For reference types, is_destructible<T>::value is true.
5485 if (T->isReferenceType())
5486 return true;
5488 // Objective-C++ ARC: autorelease types don't require destruction.
5489 if (T->isObjCLifetimeType() &&
5490 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5491 return true;
5493 // C++14 [meta.unary.prop]:
5494 // For incomplete types and function types, is_destructible<T>::value is
5495 // false.
5496 if (T->isIncompleteType() || T->isFunctionType())
5497 return false;
5499 // A type that requires destruction (via a non-trivial destructor or ARC
5500 // lifetime semantics) is not trivially-destructible.
5501 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5502 return false;
5504 // C++14 [meta.unary.prop]:
5505 // For object types and given U equal to remove_all_extents_t<T>, if the
5506 // expression std::declval<U&>().~U() is well-formed when treated as an
5507 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5508 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5509 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5510 if (!Destructor)
5511 return false;
5512 // C++14 [dcl.fct.def.delete]p2:
5513 // A program that refers to a deleted function implicitly or
5514 // explicitly, other than to declare it, is ill-formed.
5515 if (Destructor->isDeleted())
5516 return false;
5517 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5518 return false;
5519 if (UTT == UTT_IsNothrowDestructible) {
5520 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5521 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5522 if (!CPT || !CPT->isNothrow())
5523 return false;
5526 return true;
5528 case UTT_HasTrivialDestructor:
5529 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5530 // If __is_pod (type) is true or type is a reference type
5531 // then the trait is true, else if type is a cv class or union
5532 // type (or array thereof) with a trivial destructor
5533 // ([class.dtor]) then the trait is true, else it is
5534 // false.
5535 if (T.isPODType(C) || T->isReferenceType())
5536 return true;
5538 // Objective-C++ ARC: autorelease types don't require destruction.
5539 if (T->isObjCLifetimeType() &&
5540 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5541 return true;
5543 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5544 return RD->hasTrivialDestructor();
5545 return false;
5546 // TODO: Propagate nothrowness for implicitly declared special members.
5547 case UTT_HasNothrowAssign:
5548 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5549 // If type is const qualified or is a reference type then the
5550 // trait is false. Otherwise if __has_trivial_assign (type)
5551 // is true then the trait is true, else if type is a cv class
5552 // or union type with copy assignment operators that are known
5553 // not to throw an exception then the trait is true, else it is
5554 // false.
5555 if (C.getBaseElementType(T).isConstQualified())
5556 return false;
5557 if (T->isReferenceType())
5558 return false;
5559 if (T.isPODType(C) || T->isObjCLifetimeType())
5560 return true;
5562 if (const RecordType *RT = T->getAs<RecordType>())
5563 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5564 &CXXRecordDecl::hasTrivialCopyAssignment,
5565 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5566 &CXXMethodDecl::isCopyAssignmentOperator);
5567 return false;
5568 case UTT_HasNothrowMoveAssign:
5569 // This trait is implemented by MSVC 2012 and needed to parse the
5570 // standard library headers. Specifically this is used as the logic
5571 // behind std::is_nothrow_move_assignable (20.9.4.3).
5572 if (T.isPODType(C))
5573 return true;
5575 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5576 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5577 &CXXRecordDecl::hasTrivialMoveAssignment,
5578 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5579 &CXXMethodDecl::isMoveAssignmentOperator);
5580 return false;
5581 case UTT_HasNothrowCopy:
5582 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5583 // If __has_trivial_copy (type) is true then the trait is true, else
5584 // if type is a cv class or union type with copy constructors that are
5585 // known not to throw an exception then the trait is true, else it is
5586 // false.
5587 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5588 return true;
5589 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5590 if (RD->hasTrivialCopyConstructor() &&
5591 !RD->hasNonTrivialCopyConstructor())
5592 return true;
5594 bool FoundConstructor = false;
5595 unsigned FoundTQs;
5596 for (const auto *ND : Self.LookupConstructors(RD)) {
5597 // A template constructor is never a copy constructor.
5598 // FIXME: However, it may actually be selected at the actual overload
5599 // resolution point.
5600 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5601 continue;
5602 // UsingDecl itself is not a constructor
5603 if (isa<UsingDecl>(ND))
5604 continue;
5605 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5606 if (Constructor->isCopyConstructor(FoundTQs)) {
5607 FoundConstructor = true;
5608 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5609 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5610 if (!CPT)
5611 return false;
5612 // TODO: check whether evaluating default arguments can throw.
5613 // For now, we'll be conservative and assume that they can throw.
5614 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5615 return false;
5619 return FoundConstructor;
5621 return false;
5622 case UTT_HasNothrowConstructor:
5623 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5624 // If __has_trivial_constructor (type) is true then the trait is
5625 // true, else if type is a cv class or union type (or array
5626 // thereof) with a default constructor that is known not to
5627 // throw an exception then the trait is true, else it is false.
5628 if (T.isPODType(C) || T->isObjCLifetimeType())
5629 return true;
5630 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5631 if (RD->hasTrivialDefaultConstructor() &&
5632 !RD->hasNonTrivialDefaultConstructor())
5633 return true;
5635 bool FoundConstructor = false;
5636 for (const auto *ND : Self.LookupConstructors(RD)) {
5637 // FIXME: In C++0x, a constructor template can be a default constructor.
5638 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5639 continue;
5640 // UsingDecl itself is not a constructor
5641 if (isa<UsingDecl>(ND))
5642 continue;
5643 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5644 if (Constructor->isDefaultConstructor()) {
5645 FoundConstructor = true;
5646 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5647 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5648 if (!CPT)
5649 return false;
5650 // FIXME: check whether evaluating default arguments can throw.
5651 // For now, we'll be conservative and assume that they can throw.
5652 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5653 return false;
5656 return FoundConstructor;
5658 return false;
5659 case UTT_HasVirtualDestructor:
5660 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5661 // If type is a class type with a virtual destructor ([class.dtor])
5662 // then the trait is true, else it is false.
5663 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5664 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5665 return Destructor->isVirtual();
5666 return false;
5668 // These type trait expressions are modeled on the specifications for the
5669 // Embarcadero C++0x type trait functions:
5670 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5671 case UTT_IsCompleteType:
5672 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5673 // Returns True if and only if T is a complete type at the point of the
5674 // function call.
5675 return !T->isIncompleteType();
5676 case UTT_HasUniqueObjectRepresentations:
5677 return C.hasUniqueObjectRepresentations(T);
5678 case UTT_IsTriviallyRelocatable:
5679 return T.isTriviallyRelocatableType(C);
5680 case UTT_IsBitwiseCloneable:
5681 return T.isBitwiseCloneableType(C);
5682 case UTT_IsReferenceable:
5683 return T.isReferenceable();
5684 case UTT_CanPassInRegs:
5685 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5686 return RD->canPassInRegisters();
5687 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5688 return false;
5689 case UTT_IsTriviallyEqualityComparable:
5690 return isTriviallyEqualityComparableType(Self, T, KeyLoc);
5691 case UTT_IsImplicitLifetime: {
5692 DiagnoseVLAInCXXTypeTrait(Self, TInfo,
5693 tok::kw___builtin_is_implicit_lifetime);
5694 DiagnoseAtomicInCXXTypeTrait(Self, TInfo,
5695 tok::kw___builtin_is_implicit_lifetime);
5697 // [basic.types.general] p9
5698 // Scalar types, implicit-lifetime class types ([class.prop]),
5699 // array types, and cv-qualified versions of these types
5700 // are collectively called implicit-lifetime types.
5701 QualType UnqualT = T->getCanonicalTypeUnqualified();
5702 if (UnqualT->isScalarType())
5703 return true;
5704 if (UnqualT->isArrayType() || UnqualT->isVectorType())
5705 return true;
5706 const CXXRecordDecl *RD = UnqualT->getAsCXXRecordDecl();
5707 if (!RD)
5708 return false;
5710 // [class.prop] p9
5711 // A class S is an implicit-lifetime class if
5712 // - it is an aggregate whose destructor is not user-provided or
5713 // - it has at least one trivial eligible constructor and a trivial,
5714 // non-deleted destructor.
5715 const CXXDestructorDecl *Dtor = RD->getDestructor();
5716 if (UnqualT->isAggregateType())
5717 if (Dtor && !Dtor->isUserProvided())
5718 return true;
5719 if (RD->hasTrivialDestructor() && (!Dtor || !Dtor->isDeleted()))
5720 if (RD->hasTrivialDefaultConstructor() ||
5721 RD->hasTrivialCopyConstructor() || RD->hasTrivialMoveConstructor())
5722 return true;
5723 return false;
5725 case UTT_IsIntangibleType:
5726 assert(Self.getLangOpts().HLSL && "intangible types are HLSL-only feature");
5727 if (!T->isVoidType() && !T->isIncompleteArrayType())
5728 if (Self.RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), T,
5729 diag::err_incomplete_type))
5730 return false;
5731 if (DiagnoseVLAInCXXTypeTrait(Self, TInfo,
5732 tok::kw___builtin_hlsl_is_intangible))
5733 return false;
5734 return T->isHLSLIntangibleType();
5736 case UTT_IsTypedResourceElementCompatible:
5737 assert(Self.getLangOpts().HLSL &&
5738 "typed resource element compatible types are an HLSL-only feature");
5739 if (T->isIncompleteType())
5740 return false;
5742 return Self.HLSL().IsTypedResourceElementCompatible(T);
5746 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
5747 const TypeSourceInfo *Rhs, SourceLocation KeyLoc);
5749 static ExprResult CheckConvertibilityForTypeTraits(
5750 Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs,
5751 SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) {
5753 QualType LhsT = Lhs->getType();
5754 QualType RhsT = Rhs->getType();
5756 // C++0x [meta.rel]p4:
5757 // Given the following function prototype:
5759 // template <class T>
5760 // typename add_rvalue_reference<T>::type create();
5762 // the predicate condition for a template specialization
5763 // is_convertible<From, To> shall be satisfied if and only if
5764 // the return expression in the following code would be
5765 // well-formed, including any implicit conversions to the return
5766 // type of the function:
5768 // To test() {
5769 // return create<From>();
5770 // }
5772 // Access checking is performed as if in a context unrelated to To and
5773 // From. Only the validity of the immediate context of the expression
5774 // of the return-statement (including conversions to the return type)
5775 // is considered.
5777 // We model the initialization as a copy-initialization of a temporary
5778 // of the appropriate type, which for this expression is identical to the
5779 // return statement (since NRVO doesn't apply).
5781 // Functions aren't allowed to return function or array types.
5782 if (RhsT->isFunctionType() || RhsT->isArrayType())
5783 return ExprError();
5785 // A function definition requires a complete, non-abstract return type.
5786 if (!Self.isCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT) ||
5787 Self.isAbstractType(Rhs->getTypeLoc().getBeginLoc(), RhsT))
5788 return ExprError();
5790 // Compute the result of add_rvalue_reference.
5791 if (LhsT->isObjectType() || LhsT->isFunctionType())
5792 LhsT = Self.Context.getRValueReferenceType(LhsT);
5794 // Build a fake source and destination for initialization.
5795 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5796 Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5797 OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5798 Expr::getValueKindForType(LhsT));
5799 InitializationKind Kind =
5800 InitializationKind::CreateCopy(KeyLoc, SourceLocation());
5802 // Perform the initialization in an unevaluated context within a SFINAE
5803 // trap at translation unit scope.
5804 EnterExpressionEvaluationContext Unevaluated(
5805 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5806 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5807 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5808 InitializationSequence Init(Self, To, Kind, From);
5809 if (Init.Failed())
5810 return ExprError();
5812 ExprResult Result = Init.Perform(Self, To, Kind, From);
5813 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5814 return ExprError();
5816 return Result;
5819 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5820 SourceLocation KWLoc,
5821 ArrayRef<TypeSourceInfo *> Args,
5822 SourceLocation RParenLoc,
5823 bool IsDependent) {
5824 if (IsDependent)
5825 return false;
5827 if (Kind <= UTT_Last)
5828 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]);
5830 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5831 // alongside the IsConstructible traits to avoid duplication.
5832 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary &&
5833 Kind != BTT_ReferenceConstructsFromTemporary &&
5834 Kind != BTT_ReferenceConvertsFromTemporary)
5835 return EvaluateBinaryTypeTrait(S, Kind, Args[0],
5836 Args[1], RParenLoc);
5838 switch (Kind) {
5839 case clang::BTT_ReferenceBindsToTemporary:
5840 case clang::BTT_ReferenceConstructsFromTemporary:
5841 case clang::BTT_ReferenceConvertsFromTemporary:
5842 case clang::TT_IsConstructible:
5843 case clang::TT_IsNothrowConstructible:
5844 case clang::TT_IsTriviallyConstructible: {
5845 // C++11 [meta.unary.prop]:
5846 // is_trivially_constructible is defined as:
5848 // is_constructible<T, Args...>::value is true and the variable
5849 // definition for is_constructible, as defined below, is known to call
5850 // no operation that is not trivial.
5852 // The predicate condition for a template specialization
5853 // is_constructible<T, Args...> shall be satisfied if and only if the
5854 // following variable definition would be well-formed for some invented
5855 // variable t:
5857 // T t(create<Args>()...);
5858 assert(!Args.empty());
5860 // Precondition: T and all types in the parameter pack Args shall be
5861 // complete types, (possibly cv-qualified) void, or arrays of
5862 // unknown bound.
5863 for (const auto *TSI : Args) {
5864 QualType ArgTy = TSI->getType();
5865 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5866 continue;
5868 if (S.RequireCompleteType(KWLoc, ArgTy,
5869 diag::err_incomplete_type_used_in_type_trait_expr))
5870 return false;
5873 // Make sure the first argument is not incomplete nor a function type.
5874 QualType T = Args[0]->getType();
5875 if (T->isIncompleteType() || T->isFunctionType())
5876 return false;
5878 // Make sure the first argument is not an abstract type.
5879 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5880 if (RD && RD->isAbstract())
5881 return false;
5883 llvm::BumpPtrAllocator OpaqueExprAllocator;
5884 SmallVector<Expr *, 2> ArgExprs;
5885 ArgExprs.reserve(Args.size() - 1);
5886 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5887 QualType ArgTy = Args[I]->getType();
5888 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5889 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5890 ArgExprs.push_back(
5891 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5892 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5893 ArgTy.getNonLValueExprType(S.Context),
5894 Expr::getValueKindForType(ArgTy)));
5897 // Perform the initialization in an unevaluated context within a SFINAE
5898 // trap at translation unit scope.
5899 EnterExpressionEvaluationContext Unevaluated(
5900 S, Sema::ExpressionEvaluationContext::Unevaluated);
5901 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5902 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5903 InitializedEntity To(
5904 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5905 InitializationKind InitKind(
5906 Kind == clang::BTT_ReferenceConvertsFromTemporary
5907 ? InitializationKind::CreateCopy(KWLoc, KWLoc)
5908 : InitializationKind::CreateDirect(KWLoc, KWLoc, RParenLoc));
5909 InitializationSequence Init(S, To, InitKind, ArgExprs);
5910 if (Init.Failed())
5911 return false;
5913 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5914 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5915 return false;
5917 if (Kind == clang::TT_IsConstructible)
5918 return true;
5920 if (Kind == clang::BTT_ReferenceBindsToTemporary ||
5921 Kind == clang::BTT_ReferenceConstructsFromTemporary ||
5922 Kind == clang::BTT_ReferenceConvertsFromTemporary) {
5923 if (!T->isReferenceType())
5924 return false;
5926 if (!Init.isDirectReferenceBinding())
5927 return true;
5929 if (Kind == clang::BTT_ReferenceBindsToTemporary)
5930 return false;
5932 QualType U = Args[1]->getType();
5933 if (U->isReferenceType())
5934 return false;
5936 TypeSourceInfo *TPtr = S.Context.CreateTypeSourceInfo(
5937 S.Context.getPointerType(T.getNonReferenceType()));
5938 TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo(
5939 S.Context.getPointerType(U.getNonReferenceType()));
5940 return !CheckConvertibilityForTypeTraits(S, UPtr, TPtr, RParenLoc,
5941 OpaqueExprAllocator)
5942 .isInvalid();
5945 if (Kind == clang::TT_IsNothrowConstructible)
5946 return S.canThrow(Result.get()) == CT_Cannot;
5948 if (Kind == clang::TT_IsTriviallyConstructible) {
5949 // Under Objective-C ARC and Weak, if the destination has non-trivial
5950 // Objective-C lifetime, this is a non-trivial construction.
5951 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5952 return false;
5954 // The initialization succeeded; now make sure there are no non-trivial
5955 // calls.
5956 return !Result.get()->hasNonTrivialCall(S.Context);
5959 llvm_unreachable("unhandled type trait");
5960 return false;
5962 default: llvm_unreachable("not a TT");
5965 return false;
5968 namespace {
5969 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5970 SourceLocation KWLoc) {
5971 TypeTrait Replacement;
5972 switch (Kind) {
5973 case UTT_HasNothrowAssign:
5974 case UTT_HasNothrowMoveAssign:
5975 Replacement = BTT_IsNothrowAssignable;
5976 break;
5977 case UTT_HasNothrowCopy:
5978 case UTT_HasNothrowConstructor:
5979 Replacement = TT_IsNothrowConstructible;
5980 break;
5981 case UTT_HasTrivialAssign:
5982 case UTT_HasTrivialMoveAssign:
5983 Replacement = BTT_IsTriviallyAssignable;
5984 break;
5985 case UTT_HasTrivialCopy:
5986 Replacement = UTT_IsTriviallyCopyable;
5987 break;
5988 case UTT_HasTrivialDefaultConstructor:
5989 case UTT_HasTrivialMoveConstructor:
5990 Replacement = TT_IsTriviallyConstructible;
5991 break;
5992 case UTT_HasTrivialDestructor:
5993 Replacement = UTT_IsTriviallyDestructible;
5994 break;
5995 default:
5996 return;
5998 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5999 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
6003 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
6004 if (Arity && N != Arity) {
6005 Diag(Loc, diag::err_type_trait_arity)
6006 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
6007 return false;
6010 if (!Arity && N == 0) {
6011 Diag(Loc, diag::err_type_trait_arity)
6012 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
6013 return false;
6015 return true;
6018 enum class TypeTraitReturnType {
6019 Bool,
6022 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
6023 return TypeTraitReturnType::Bool;
6026 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6027 ArrayRef<TypeSourceInfo *> Args,
6028 SourceLocation RParenLoc) {
6029 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
6030 return ExprError();
6032 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
6033 *this, Kind, KWLoc, Args[0]->getType()))
6034 return ExprError();
6036 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
6038 bool Dependent = false;
6039 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
6040 if (Args[I]->getType()->isDependentType()) {
6041 Dependent = true;
6042 break;
6046 switch (GetReturnType(Kind)) {
6047 case TypeTraitReturnType::Bool: {
6048 bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
6049 Dependent);
6050 return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
6051 KWLoc, Kind, Args, RParenLoc, Result);
6054 llvm_unreachable("unhandled type trait return type");
6057 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6058 ArrayRef<ParsedType> Args,
6059 SourceLocation RParenLoc) {
6060 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
6061 ConvertedArgs.reserve(Args.size());
6063 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
6064 TypeSourceInfo *TInfo;
6065 QualType T = GetTypeFromParser(Args[I], &TInfo);
6066 if (!TInfo)
6067 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
6069 ConvertedArgs.push_back(TInfo);
6072 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
6075 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
6076 const TypeSourceInfo *Rhs, SourceLocation KeyLoc) {
6077 QualType LhsT = Lhs->getType();
6078 QualType RhsT = Rhs->getType();
6080 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
6081 "Cannot evaluate traits of dependent types");
6083 switch(BTT) {
6084 case BTT_IsBaseOf: {
6085 // C++0x [meta.rel]p2
6086 // Base is a base class of Derived without regard to cv-qualifiers or
6087 // Base and Derived are not unions and name the same class type without
6088 // regard to cv-qualifiers.
6090 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
6091 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
6092 if (!rhsRecord || !lhsRecord) {
6093 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
6094 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
6095 if (!LHSObjTy || !RHSObjTy)
6096 return false;
6098 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
6099 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
6100 if (!BaseInterface || !DerivedInterface)
6101 return false;
6103 if (Self.RequireCompleteType(
6104 Rhs->getTypeLoc().getBeginLoc(), RhsT,
6105 diag::err_incomplete_type_used_in_type_trait_expr))
6106 return false;
6108 return BaseInterface->isSuperClassOf(DerivedInterface);
6111 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
6112 == (lhsRecord == rhsRecord));
6114 // Unions are never base classes, and never have base classes.
6115 // It doesn't matter if they are complete or not. See PR#41843
6116 if (lhsRecord && lhsRecord->getDecl()->isUnion())
6117 return false;
6118 if (rhsRecord && rhsRecord->getDecl()->isUnion())
6119 return false;
6121 if (lhsRecord == rhsRecord)
6122 return true;
6124 // C++0x [meta.rel]p2:
6125 // If Base and Derived are class types and are different types
6126 // (ignoring possible cv-qualifiers) then Derived shall be a
6127 // complete type.
6128 if (Self.RequireCompleteType(
6129 Rhs->getTypeLoc().getBeginLoc(), RhsT,
6130 diag::err_incomplete_type_used_in_type_trait_expr))
6131 return false;
6133 return cast<CXXRecordDecl>(rhsRecord->getDecl())
6134 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
6136 case BTT_IsVirtualBaseOf: {
6137 const RecordType *BaseRecord = LhsT->getAs<RecordType>();
6138 const RecordType *DerivedRecord = RhsT->getAs<RecordType>();
6140 if (!BaseRecord || !DerivedRecord) {
6141 DiagnoseVLAInCXXTypeTrait(Self, Lhs,
6142 tok::kw___builtin_is_virtual_base_of);
6143 DiagnoseVLAInCXXTypeTrait(Self, Rhs,
6144 tok::kw___builtin_is_virtual_base_of);
6145 return false;
6148 if (BaseRecord->isUnionType() || DerivedRecord->isUnionType())
6149 return false;
6151 if (!BaseRecord->isStructureOrClassType() ||
6152 !DerivedRecord->isStructureOrClassType())
6153 return false;
6155 if (Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6156 diag::err_incomplete_type))
6157 return false;
6159 return cast<CXXRecordDecl>(DerivedRecord->getDecl())
6160 ->isVirtuallyDerivedFrom(cast<CXXRecordDecl>(BaseRecord->getDecl()));
6162 case BTT_IsSame:
6163 return Self.Context.hasSameType(LhsT, RhsT);
6164 case BTT_TypeCompatible: {
6165 // GCC ignores cv-qualifiers on arrays for this builtin.
6166 Qualifiers LhsQuals, RhsQuals;
6167 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
6168 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
6169 return Self.Context.typesAreCompatible(Lhs, Rhs);
6171 case BTT_IsConvertible:
6172 case BTT_IsConvertibleTo:
6173 case BTT_IsNothrowConvertible: {
6174 if (RhsT->isVoidType())
6175 return LhsT->isVoidType();
6176 llvm::BumpPtrAllocator OpaqueExprAllocator;
6177 ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc,
6178 OpaqueExprAllocator);
6179 if (Result.isInvalid())
6180 return false;
6182 if (BTT != BTT_IsNothrowConvertible)
6183 return true;
6185 return Self.canThrow(Result.get()) == CT_Cannot;
6188 case BTT_IsAssignable:
6189 case BTT_IsNothrowAssignable:
6190 case BTT_IsTriviallyAssignable: {
6191 // C++11 [meta.unary.prop]p3:
6192 // is_trivially_assignable is defined as:
6193 // is_assignable<T, U>::value is true and the assignment, as defined by
6194 // is_assignable, is known to call no operation that is not trivial
6196 // is_assignable is defined as:
6197 // The expression declval<T>() = declval<U>() is well-formed when
6198 // treated as an unevaluated operand (Clause 5).
6200 // For both, T and U shall be complete types, (possibly cv-qualified)
6201 // void, or arrays of unknown bound.
6202 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
6203 Self.RequireCompleteType(
6204 Lhs->getTypeLoc().getBeginLoc(), LhsT,
6205 diag::err_incomplete_type_used_in_type_trait_expr))
6206 return false;
6207 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
6208 Self.RequireCompleteType(
6209 Rhs->getTypeLoc().getBeginLoc(), RhsT,
6210 diag::err_incomplete_type_used_in_type_trait_expr))
6211 return false;
6213 // cv void is never assignable.
6214 if (LhsT->isVoidType() || RhsT->isVoidType())
6215 return false;
6217 // Build expressions that emulate the effect of declval<T>() and
6218 // declval<U>().
6219 if (LhsT->isObjectType() || LhsT->isFunctionType())
6220 LhsT = Self.Context.getRValueReferenceType(LhsT);
6221 if (RhsT->isObjectType() || RhsT->isFunctionType())
6222 RhsT = Self.Context.getRValueReferenceType(RhsT);
6223 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
6224 Expr::getValueKindForType(LhsT));
6225 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
6226 Expr::getValueKindForType(RhsT));
6228 // Attempt the assignment in an unevaluated context within a SFINAE
6229 // trap at translation unit scope.
6230 EnterExpressionEvaluationContext Unevaluated(
6231 Self, Sema::ExpressionEvaluationContext::Unevaluated);
6232 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
6233 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
6234 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
6235 &Rhs);
6236 if (Result.isInvalid())
6237 return false;
6239 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
6240 Self.CheckUnusedVolatileAssignment(Result.get());
6242 if (SFINAE.hasErrorOccurred())
6243 return false;
6245 if (BTT == BTT_IsAssignable)
6246 return true;
6248 if (BTT == BTT_IsNothrowAssignable)
6249 return Self.canThrow(Result.get()) == CT_Cannot;
6251 if (BTT == BTT_IsTriviallyAssignable) {
6252 // Under Objective-C ARC and Weak, if the destination has non-trivial
6253 // Objective-C lifetime, this is a non-trivial assignment.
6254 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
6255 return false;
6257 return !Result.get()->hasNonTrivialCall(Self.Context);
6260 llvm_unreachable("unhandled type trait");
6261 return false;
6263 case BTT_IsLayoutCompatible: {
6264 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType())
6265 Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT,
6266 diag::err_incomplete_type);
6267 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType())
6268 Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6269 diag::err_incomplete_type);
6271 DiagnoseVLAInCXXTypeTrait(Self, Lhs, tok::kw___is_layout_compatible);
6272 DiagnoseVLAInCXXTypeTrait(Self, Rhs, tok::kw___is_layout_compatible);
6274 return Self.IsLayoutCompatible(LhsT, RhsT);
6276 case BTT_IsPointerInterconvertibleBaseOf: {
6277 if (LhsT->isStructureOrClassType() && RhsT->isStructureOrClassType() &&
6278 !Self.getASTContext().hasSameUnqualifiedType(LhsT, RhsT)) {
6279 Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6280 diag::err_incomplete_type);
6283 DiagnoseVLAInCXXTypeTrait(Self, Lhs,
6284 tok::kw___is_pointer_interconvertible_base_of);
6285 DiagnoseVLAInCXXTypeTrait(Self, Rhs,
6286 tok::kw___is_pointer_interconvertible_base_of);
6288 return Self.IsPointerInterconvertibleBaseOf(Lhs, Rhs);
6290 case BTT_IsDeducible: {
6291 const auto *TSTToBeDeduced = cast<DeducedTemplateSpecializationType>(LhsT);
6292 sema::TemplateDeductionInfo Info(KeyLoc);
6293 return Self.DeduceTemplateArgumentsFromType(
6294 TSTToBeDeduced->getTemplateName().getAsTemplateDecl(), RhsT,
6295 Info) == TemplateDeductionResult::Success;
6297 case BTT_IsScalarizedLayoutCompatible: {
6298 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
6299 Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT,
6300 diag::err_incomplete_type))
6301 return true;
6302 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
6303 Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6304 diag::err_incomplete_type))
6305 return true;
6307 DiagnoseVLAInCXXTypeTrait(
6308 Self, Lhs, tok::kw___builtin_hlsl_is_scalarized_layout_compatible);
6309 DiagnoseVLAInCXXTypeTrait(
6310 Self, Rhs, tok::kw___builtin_hlsl_is_scalarized_layout_compatible);
6312 return Self.HLSL().IsScalarizedLayoutCompatible(LhsT, RhsT);
6314 default:
6315 llvm_unreachable("not a BTT");
6317 llvm_unreachable("Unknown type trait or not implemented");
6320 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6321 SourceLocation KWLoc,
6322 ParsedType Ty,
6323 Expr* DimExpr,
6324 SourceLocation RParen) {
6325 TypeSourceInfo *TSInfo;
6326 QualType T = GetTypeFromParser(Ty, &TSInfo);
6327 if (!TSInfo)
6328 TSInfo = Context.getTrivialTypeSourceInfo(T);
6330 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
6333 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
6334 QualType T, Expr *DimExpr,
6335 SourceLocation KeyLoc) {
6336 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
6338 switch(ATT) {
6339 case ATT_ArrayRank:
6340 if (T->isArrayType()) {
6341 unsigned Dim = 0;
6342 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6343 ++Dim;
6344 T = AT->getElementType();
6346 return Dim;
6348 return 0;
6350 case ATT_ArrayExtent: {
6351 llvm::APSInt Value;
6352 uint64_t Dim;
6353 if (Self.VerifyIntegerConstantExpression(
6354 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
6355 .isInvalid())
6356 return 0;
6357 if (Value.isSigned() && Value.isNegative()) {
6358 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
6359 << DimExpr->getSourceRange();
6360 return 0;
6362 Dim = Value.getLimitedValue();
6364 if (T->isArrayType()) {
6365 unsigned D = 0;
6366 bool Matched = false;
6367 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6368 if (Dim == D) {
6369 Matched = true;
6370 break;
6372 ++D;
6373 T = AT->getElementType();
6376 if (Matched && T->isArrayType()) {
6377 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
6378 return CAT->getLimitedSize();
6381 return 0;
6384 llvm_unreachable("Unknown type trait or not implemented");
6387 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
6388 SourceLocation KWLoc,
6389 TypeSourceInfo *TSInfo,
6390 Expr* DimExpr,
6391 SourceLocation RParen) {
6392 QualType T = TSInfo->getType();
6394 // FIXME: This should likely be tracked as an APInt to remove any host
6395 // assumptions about the width of size_t on the target.
6396 uint64_t Value = 0;
6397 if (!T->isDependentType())
6398 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6400 // While the specification for these traits from the Embarcadero C++
6401 // compiler's documentation says the return type is 'unsigned int', Clang
6402 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6403 // compiler, there is no difference. On several other platforms this is an
6404 // important distinction.
6405 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6406 RParen, Context.getSizeType());
6409 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6410 SourceLocation KWLoc,
6411 Expr *Queried,
6412 SourceLocation RParen) {
6413 // If error parsing the expression, ignore.
6414 if (!Queried)
6415 return ExprError();
6417 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6419 return Result;
6422 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6423 switch (ET) {
6424 case ET_IsLValueExpr: return E->isLValue();
6425 case ET_IsRValueExpr:
6426 return E->isPRValue();
6428 llvm_unreachable("Expression trait not covered by switch");
6431 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6432 SourceLocation KWLoc,
6433 Expr *Queried,
6434 SourceLocation RParen) {
6435 if (Queried->isTypeDependent()) {
6436 // Delay type-checking for type-dependent expressions.
6437 } else if (Queried->hasPlaceholderType()) {
6438 ExprResult PE = CheckPlaceholderExpr(Queried);
6439 if (PE.isInvalid()) return ExprError();
6440 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6443 bool Value = EvaluateExpressionTrait(ET, Queried);
6445 return new (Context)
6446 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6449 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6450 ExprValueKind &VK,
6451 SourceLocation Loc,
6452 bool isIndirect) {
6453 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6454 "placeholders should have been weeded out by now");
6456 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6457 // temporary materialization conversion otherwise.
6458 if (isIndirect)
6459 LHS = DefaultLvalueConversion(LHS.get());
6460 else if (LHS.get()->isPRValue())
6461 LHS = TemporaryMaterializationConversion(LHS.get());
6462 if (LHS.isInvalid())
6463 return QualType();
6465 // The RHS always undergoes lvalue conversions.
6466 RHS = DefaultLvalueConversion(RHS.get());
6467 if (RHS.isInvalid()) return QualType();
6469 const char *OpSpelling = isIndirect ? "->*" : ".*";
6470 // C++ 5.5p2
6471 // The binary operator .* [p3: ->*] binds its second operand, which shall
6472 // be of type "pointer to member of T" (where T is a completely-defined
6473 // class type) [...]
6474 QualType RHSType = RHS.get()->getType();
6475 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6476 if (!MemPtr) {
6477 Diag(Loc, diag::err_bad_memptr_rhs)
6478 << OpSpelling << RHSType << RHS.get()->getSourceRange();
6479 return QualType();
6482 QualType Class(MemPtr->getClass(), 0);
6484 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6485 // member pointer points must be completely-defined. However, there is no
6486 // reason for this semantic distinction, and the rule is not enforced by
6487 // other compilers. Therefore, we do not check this property, as it is
6488 // likely to be considered a defect.
6490 // C++ 5.5p2
6491 // [...] to its first operand, which shall be of class T or of a class of
6492 // which T is an unambiguous and accessible base class. [p3: a pointer to
6493 // such a class]
6494 QualType LHSType = LHS.get()->getType();
6495 if (isIndirect) {
6496 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6497 LHSType = Ptr->getPointeeType();
6498 else {
6499 Diag(Loc, diag::err_bad_memptr_lhs)
6500 << OpSpelling << 1 << LHSType
6501 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6502 return QualType();
6506 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6507 // If we want to check the hierarchy, we need a complete type.
6508 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6509 OpSpelling, (int)isIndirect)) {
6510 return QualType();
6513 if (!IsDerivedFrom(Loc, LHSType, Class)) {
6514 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6515 << (int)isIndirect << LHS.get()->getType();
6516 return QualType();
6519 CXXCastPath BasePath;
6520 if (CheckDerivedToBaseConversion(
6521 LHSType, Class, Loc,
6522 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6523 &BasePath))
6524 return QualType();
6526 // Cast LHS to type of use.
6527 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6528 if (isIndirect)
6529 UseType = Context.getPointerType(UseType);
6530 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6531 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6532 &BasePath);
6535 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6536 // Diagnose use of pointer-to-member type which when used as
6537 // the functional cast in a pointer-to-member expression.
6538 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6539 return QualType();
6542 // C++ 5.5p2
6543 // The result is an object or a function of the type specified by the
6544 // second operand.
6545 // The cv qualifiers are the union of those in the pointer and the left side,
6546 // in accordance with 5.5p5 and 5.2.5.
6547 QualType Result = MemPtr->getPointeeType();
6548 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6550 // C++0x [expr.mptr.oper]p6:
6551 // In a .* expression whose object expression is an rvalue, the program is
6552 // ill-formed if the second operand is a pointer to member function with
6553 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6554 // expression is an lvalue, the program is ill-formed if the second operand
6555 // is a pointer to member function with ref-qualifier &&.
6556 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6557 switch (Proto->getRefQualifier()) {
6558 case RQ_None:
6559 // Do nothing
6560 break;
6562 case RQ_LValue:
6563 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6564 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6565 // is (exactly) 'const'.
6566 if (Proto->isConst() && !Proto->isVolatile())
6567 Diag(Loc, getLangOpts().CPlusPlus20
6568 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6569 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6570 else
6571 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6572 << RHSType << 1 << LHS.get()->getSourceRange();
6574 break;
6576 case RQ_RValue:
6577 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6578 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6579 << RHSType << 0 << LHS.get()->getSourceRange();
6580 break;
6584 // C++ [expr.mptr.oper]p6:
6585 // The result of a .* expression whose second operand is a pointer
6586 // to a data member is of the same value category as its
6587 // first operand. The result of a .* expression whose second
6588 // operand is a pointer to a member function is a prvalue. The
6589 // result of an ->* expression is an lvalue if its second operand
6590 // is a pointer to data member and a prvalue otherwise.
6591 if (Result->isFunctionType()) {
6592 VK = VK_PRValue;
6593 return Context.BoundMemberTy;
6594 } else if (isIndirect) {
6595 VK = VK_LValue;
6596 } else {
6597 VK = LHS.get()->getValueKind();
6600 return Result;
6603 /// Try to convert a type to another according to C++11 5.16p3.
6605 /// This is part of the parameter validation for the ? operator. If either
6606 /// value operand is a class type, the two operands are attempted to be
6607 /// converted to each other. This function does the conversion in one direction.
6608 /// It returns true if the program is ill-formed and has already been diagnosed
6609 /// as such.
6610 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6611 SourceLocation QuestionLoc,
6612 bool &HaveConversion,
6613 QualType &ToType) {
6614 HaveConversion = false;
6615 ToType = To->getType();
6617 InitializationKind Kind =
6618 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6619 // C++11 5.16p3
6620 // The process for determining whether an operand expression E1 of type T1
6621 // can be converted to match an operand expression E2 of type T2 is defined
6622 // as follows:
6623 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6624 // implicitly converted to type "lvalue reference to T2", subject to the
6625 // constraint that in the conversion the reference must bind directly to
6626 // an lvalue.
6627 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6628 // implicitly converted to the type "rvalue reference to R2", subject to
6629 // the constraint that the reference must bind directly.
6630 if (To->isGLValue()) {
6631 QualType T = Self.Context.getReferenceQualifiedType(To);
6632 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6634 InitializationSequence InitSeq(Self, Entity, Kind, From);
6635 if (InitSeq.isDirectReferenceBinding()) {
6636 ToType = T;
6637 HaveConversion = true;
6638 return false;
6641 if (InitSeq.isAmbiguous())
6642 return InitSeq.Diagnose(Self, Entity, Kind, From);
6645 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6646 // -- if E1 and E2 have class type, and the underlying class types are
6647 // the same or one is a base class of the other:
6648 QualType FTy = From->getType();
6649 QualType TTy = To->getType();
6650 const RecordType *FRec = FTy->getAs<RecordType>();
6651 const RecordType *TRec = TTy->getAs<RecordType>();
6652 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6653 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6654 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6655 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6656 // E1 can be converted to match E2 if the class of T2 is the
6657 // same type as, or a base class of, the class of T1, and
6658 // [cv2 > cv1].
6659 if (FRec == TRec || FDerivedFromT) {
6660 if (TTy.isAtLeastAsQualifiedAs(FTy, Self.getASTContext())) {
6661 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6662 InitializationSequence InitSeq(Self, Entity, Kind, From);
6663 if (InitSeq) {
6664 HaveConversion = true;
6665 return false;
6668 if (InitSeq.isAmbiguous())
6669 return InitSeq.Diagnose(Self, Entity, Kind, From);
6673 return false;
6676 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6677 // implicitly converted to the type that expression E2 would have
6678 // if E2 were converted to an rvalue (or the type it has, if E2 is
6679 // an rvalue).
6681 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6682 // to the array-to-pointer or function-to-pointer conversions.
6683 TTy = TTy.getNonLValueExprType(Self.Context);
6685 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6686 InitializationSequence InitSeq(Self, Entity, Kind, From);
6687 HaveConversion = !InitSeq.Failed();
6688 ToType = TTy;
6689 if (InitSeq.isAmbiguous())
6690 return InitSeq.Diagnose(Self, Entity, Kind, From);
6692 return false;
6695 /// Try to find a common type for two according to C++0x 5.16p5.
6697 /// This is part of the parameter validation for the ? operator. If either
6698 /// value operand is a class type, overload resolution is used to find a
6699 /// conversion to a common type.
6700 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6701 SourceLocation QuestionLoc) {
6702 Expr *Args[2] = { LHS.get(), RHS.get() };
6703 OverloadCandidateSet CandidateSet(QuestionLoc,
6704 OverloadCandidateSet::CSK_Operator);
6705 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6706 CandidateSet);
6708 OverloadCandidateSet::iterator Best;
6709 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6710 case OR_Success: {
6711 // We found a match. Perform the conversions on the arguments and move on.
6712 ExprResult LHSRes = Self.PerformImplicitConversion(
6713 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6714 AssignmentAction::Converting);
6715 if (LHSRes.isInvalid())
6716 break;
6717 LHS = LHSRes;
6719 ExprResult RHSRes = Self.PerformImplicitConversion(
6720 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6721 AssignmentAction::Converting);
6722 if (RHSRes.isInvalid())
6723 break;
6724 RHS = RHSRes;
6725 if (Best->Function)
6726 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6727 return false;
6730 case OR_No_Viable_Function:
6732 // Emit a better diagnostic if one of the expressions is a null pointer
6733 // constant and the other is a pointer type. In this case, the user most
6734 // likely forgot to take the address of the other expression.
6735 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6736 return true;
6738 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6739 << LHS.get()->getType() << RHS.get()->getType()
6740 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6741 return true;
6743 case OR_Ambiguous:
6744 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6745 << LHS.get()->getType() << RHS.get()->getType()
6746 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6747 // FIXME: Print the possible common types by printing the return types of
6748 // the viable candidates.
6749 break;
6751 case OR_Deleted:
6752 llvm_unreachable("Conditional operator has only built-in overloads");
6754 return true;
6757 /// Perform an "extended" implicit conversion as returned by
6758 /// TryClassUnification.
6759 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6760 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6761 InitializationKind Kind =
6762 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6763 Expr *Arg = E.get();
6764 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6765 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6766 if (Result.isInvalid())
6767 return true;
6769 E = Result;
6770 return false;
6773 // Check the condition operand of ?: to see if it is valid for the GCC
6774 // extension.
6775 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6776 QualType CondTy) {
6777 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6778 return false;
6779 const QualType EltTy =
6780 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6781 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6782 return EltTy->isIntegralType(Ctx);
6785 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6786 QualType CondTy) {
6787 if (!CondTy->isSveVLSBuiltinType())
6788 return false;
6789 const QualType EltTy =
6790 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6791 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6792 return EltTy->isIntegralType(Ctx);
6795 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6796 ExprResult &RHS,
6797 SourceLocation QuestionLoc) {
6798 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6799 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6801 QualType CondType = Cond.get()->getType();
6802 const auto *CondVT = CondType->castAs<VectorType>();
6803 QualType CondElementTy = CondVT->getElementType();
6804 unsigned CondElementCount = CondVT->getNumElements();
6805 QualType LHSType = LHS.get()->getType();
6806 const auto *LHSVT = LHSType->getAs<VectorType>();
6807 QualType RHSType = RHS.get()->getType();
6808 const auto *RHSVT = RHSType->getAs<VectorType>();
6810 QualType ResultType;
6813 if (LHSVT && RHSVT) {
6814 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6815 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6816 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6817 return {};
6820 // If both are vector types, they must be the same type.
6821 if (!Context.hasSameType(LHSType, RHSType)) {
6822 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6823 << LHSType << RHSType;
6824 return {};
6826 ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6827 } else if (LHSVT || RHSVT) {
6828 ResultType = CheckVectorOperands(
6829 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6830 /*AllowBoolConversions*/ false,
6831 /*AllowBoolOperation*/ true,
6832 /*ReportInvalid*/ true);
6833 if (ResultType.isNull())
6834 return {};
6835 } else {
6836 // Both are scalar.
6837 LHSType = LHSType.getUnqualifiedType();
6838 RHSType = RHSType.getUnqualifiedType();
6839 QualType ResultElementTy =
6840 Context.hasSameType(LHSType, RHSType)
6841 ? Context.getCommonSugaredType(LHSType, RHSType)
6842 : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6843 ACK_Conditional);
6845 if (ResultElementTy->isEnumeralType()) {
6846 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6847 << ResultElementTy;
6848 return {};
6850 if (CondType->isExtVectorType())
6851 ResultType =
6852 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6853 else
6854 ResultType = Context.getVectorType(
6855 ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6857 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6858 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6861 assert(!ResultType.isNull() && ResultType->isVectorType() &&
6862 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6863 "Result should have been a vector type");
6864 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6865 QualType ResultElementTy = ResultVectorTy->getElementType();
6866 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6868 if (ResultElementCount != CondElementCount) {
6869 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6870 << ResultType;
6871 return {};
6874 if (Context.getTypeSize(ResultElementTy) !=
6875 Context.getTypeSize(CondElementTy)) {
6876 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6877 << ResultType;
6878 return {};
6881 return ResultType;
6884 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6885 ExprResult &LHS,
6886 ExprResult &RHS,
6887 SourceLocation QuestionLoc) {
6888 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6889 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6891 QualType CondType = Cond.get()->getType();
6892 const auto *CondBT = CondType->castAs<BuiltinType>();
6893 QualType CondElementTy = CondBT->getSveEltType(Context);
6894 llvm::ElementCount CondElementCount =
6895 Context.getBuiltinVectorTypeInfo(CondBT).EC;
6897 QualType LHSType = LHS.get()->getType();
6898 const auto *LHSBT =
6899 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6900 QualType RHSType = RHS.get()->getType();
6901 const auto *RHSBT =
6902 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6904 QualType ResultType;
6906 if (LHSBT && RHSBT) {
6907 // If both are sizeless vector types, they must be the same type.
6908 if (!Context.hasSameType(LHSType, RHSType)) {
6909 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6910 << LHSType << RHSType;
6911 return QualType();
6913 ResultType = LHSType;
6914 } else if (LHSBT || RHSBT) {
6915 ResultType = CheckSizelessVectorOperands(
6916 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6917 if (ResultType.isNull())
6918 return QualType();
6919 } else {
6920 // Both are scalar so splat
6921 QualType ResultElementTy;
6922 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6923 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6925 if (Context.hasSameType(LHSType, RHSType))
6926 ResultElementTy = LHSType;
6927 else
6928 ResultElementTy =
6929 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6931 if (ResultElementTy->isEnumeralType()) {
6932 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6933 << ResultElementTy;
6934 return QualType();
6937 ResultType = Context.getScalableVectorType(
6938 ResultElementTy, CondElementCount.getKnownMinValue());
6940 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6941 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6944 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6945 "Result should have been a vector type");
6946 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6947 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6948 llvm::ElementCount ResultElementCount =
6949 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6951 if (ResultElementCount != CondElementCount) {
6952 Diag(QuestionLoc, diag::err_conditional_vector_size)
6953 << CondType << ResultType;
6954 return QualType();
6957 if (Context.getTypeSize(ResultElementTy) !=
6958 Context.getTypeSize(CondElementTy)) {
6959 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6960 << CondType << ResultType;
6961 return QualType();
6964 return ResultType;
6967 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6968 ExprResult &RHS, ExprValueKind &VK,
6969 ExprObjectKind &OK,
6970 SourceLocation QuestionLoc) {
6971 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6972 // pointers.
6974 // Assume r-value.
6975 VK = VK_PRValue;
6976 OK = OK_Ordinary;
6977 bool IsVectorConditional =
6978 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6980 bool IsSizelessVectorConditional =
6981 isValidSizelessVectorForConditionalCondition(Context,
6982 Cond.get()->getType());
6984 // C++11 [expr.cond]p1
6985 // The first expression is contextually converted to bool.
6986 if (!Cond.get()->isTypeDependent()) {
6987 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6988 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6989 : CheckCXXBooleanCondition(Cond.get());
6990 if (CondRes.isInvalid())
6991 return QualType();
6992 Cond = CondRes;
6993 } else {
6994 // To implement C++, the first expression typically doesn't alter the result
6995 // type of the conditional, however the GCC compatible vector extension
6996 // changes the result type to be that of the conditional. Since we cannot
6997 // know if this is a vector extension here, delay the conversion of the
6998 // LHS/RHS below until later.
6999 return Context.DependentTy;
7003 // Either of the arguments dependent?
7004 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
7005 return Context.DependentTy;
7007 // C++11 [expr.cond]p2
7008 // If either the second or the third operand has type (cv) void, ...
7009 QualType LTy = LHS.get()->getType();
7010 QualType RTy = RHS.get()->getType();
7011 bool LVoid = LTy->isVoidType();
7012 bool RVoid = RTy->isVoidType();
7013 if (LVoid || RVoid) {
7014 // ... one of the following shall hold:
7015 // -- The second or the third operand (but not both) is a (possibly
7016 // parenthesized) throw-expression; the result is of the type
7017 // and value category of the other.
7018 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
7019 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
7021 // Void expressions aren't legal in the vector-conditional expressions.
7022 if (IsVectorConditional) {
7023 SourceRange DiagLoc =
7024 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
7025 bool IsThrow = LVoid ? LThrow : RThrow;
7026 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
7027 << DiagLoc << IsThrow;
7028 return QualType();
7031 if (LThrow != RThrow) {
7032 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
7033 VK = NonThrow->getValueKind();
7034 // DR (no number yet): the result is a bit-field if the
7035 // non-throw-expression operand is a bit-field.
7036 OK = NonThrow->getObjectKind();
7037 return NonThrow->getType();
7040 // -- Both the second and third operands have type void; the result is of
7041 // type void and is a prvalue.
7042 if (LVoid && RVoid)
7043 return Context.getCommonSugaredType(LTy, RTy);
7045 // Neither holds, error.
7046 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
7047 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
7048 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7049 return QualType();
7052 // Neither is void.
7053 if (IsVectorConditional)
7054 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
7056 if (IsSizelessVectorConditional)
7057 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
7059 // WebAssembly tables are not allowed as conditional LHS or RHS.
7060 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
7061 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
7062 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7063 return QualType();
7066 // C++11 [expr.cond]p3
7067 // Otherwise, if the second and third operand have different types, and
7068 // either has (cv) class type [...] an attempt is made to convert each of
7069 // those operands to the type of the other.
7070 if (!Context.hasSameType(LTy, RTy) &&
7071 (LTy->isRecordType() || RTy->isRecordType())) {
7072 // These return true if a single direction is already ambiguous.
7073 QualType L2RType, R2LType;
7074 bool HaveL2R, HaveR2L;
7075 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
7076 return QualType();
7077 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
7078 return QualType();
7080 // If both can be converted, [...] the program is ill-formed.
7081 if (HaveL2R && HaveR2L) {
7082 Diag(QuestionLoc, diag::err_conditional_ambiguous)
7083 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7084 return QualType();
7087 // If exactly one conversion is possible, that conversion is applied to
7088 // the chosen operand and the converted operands are used in place of the
7089 // original operands for the remainder of this section.
7090 if (HaveL2R) {
7091 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
7092 return QualType();
7093 LTy = LHS.get()->getType();
7094 } else if (HaveR2L) {
7095 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
7096 return QualType();
7097 RTy = RHS.get()->getType();
7101 // C++11 [expr.cond]p3
7102 // if both are glvalues of the same value category and the same type except
7103 // for cv-qualification, an attempt is made to convert each of those
7104 // operands to the type of the other.
7105 // FIXME:
7106 // Resolving a defect in P0012R1: we extend this to cover all cases where
7107 // one of the operands is reference-compatible with the other, in order
7108 // to support conditionals between functions differing in noexcept. This
7109 // will similarly cover difference in array bounds after P0388R4.
7110 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
7111 // that instead?
7112 ExprValueKind LVK = LHS.get()->getValueKind();
7113 ExprValueKind RVK = RHS.get()->getValueKind();
7114 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
7115 // DerivedToBase was already handled by the class-specific case above.
7116 // FIXME: Should we allow ObjC conversions here?
7117 const ReferenceConversions AllowedConversions =
7118 ReferenceConversions::Qualification |
7119 ReferenceConversions::NestedQualification |
7120 ReferenceConversions::Function;
7122 ReferenceConversions RefConv;
7123 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
7124 Ref_Compatible &&
7125 !(RefConv & ~AllowedConversions) &&
7126 // [...] subject to the constraint that the reference must bind
7127 // directly [...]
7128 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
7129 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
7130 RTy = RHS.get()->getType();
7131 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
7132 Ref_Compatible &&
7133 !(RefConv & ~AllowedConversions) &&
7134 !LHS.get()->refersToBitField() &&
7135 !LHS.get()->refersToVectorElement()) {
7136 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
7137 LTy = LHS.get()->getType();
7141 // C++11 [expr.cond]p4
7142 // If the second and third operands are glvalues of the same value
7143 // category and have the same type, the result is of that type and
7144 // value category and it is a bit-field if the second or the third
7145 // operand is a bit-field, or if both are bit-fields.
7146 // We only extend this to bitfields, not to the crazy other kinds of
7147 // l-values.
7148 bool Same = Context.hasSameType(LTy, RTy);
7149 if (Same && LVK == RVK && LVK != VK_PRValue &&
7150 LHS.get()->isOrdinaryOrBitFieldObject() &&
7151 RHS.get()->isOrdinaryOrBitFieldObject()) {
7152 VK = LHS.get()->getValueKind();
7153 if (LHS.get()->getObjectKind() == OK_BitField ||
7154 RHS.get()->getObjectKind() == OK_BitField)
7155 OK = OK_BitField;
7156 return Context.getCommonSugaredType(LTy, RTy);
7159 // C++11 [expr.cond]p5
7160 // Otherwise, the result is a prvalue. If the second and third operands
7161 // do not have the same type, and either has (cv) class type, ...
7162 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
7163 // ... overload resolution is used to determine the conversions (if any)
7164 // to be applied to the operands. If the overload resolution fails, the
7165 // program is ill-formed.
7166 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
7167 return QualType();
7170 // C++11 [expr.cond]p6
7171 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
7172 // conversions are performed on the second and third operands.
7173 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7174 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7175 if (LHS.isInvalid() || RHS.isInvalid())
7176 return QualType();
7177 LTy = LHS.get()->getType();
7178 RTy = RHS.get()->getType();
7180 // After those conversions, one of the following shall hold:
7181 // -- The second and third operands have the same type; the result
7182 // is of that type. If the operands have class type, the result
7183 // is a prvalue temporary of the result type, which is
7184 // copy-initialized from either the second operand or the third
7185 // operand depending on the value of the first operand.
7186 if (Context.hasSameType(LTy, RTy)) {
7187 if (LTy->isRecordType()) {
7188 // The operands have class type. Make a temporary copy.
7189 ExprResult LHSCopy = PerformCopyInitialization(
7190 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
7191 if (LHSCopy.isInvalid())
7192 return QualType();
7194 ExprResult RHSCopy = PerformCopyInitialization(
7195 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
7196 if (RHSCopy.isInvalid())
7197 return QualType();
7199 LHS = LHSCopy;
7200 RHS = RHSCopy;
7202 return Context.getCommonSugaredType(LTy, RTy);
7205 // Extension: conditional operator involving vector types.
7206 if (LTy->isVectorType() || RTy->isVectorType())
7207 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
7208 /*AllowBothBool*/ true,
7209 /*AllowBoolConversions*/ false,
7210 /*AllowBoolOperation*/ false,
7211 /*ReportInvalid*/ true);
7213 // -- The second and third operands have arithmetic or enumeration type;
7214 // the usual arithmetic conversions are performed to bring them to a
7215 // common type, and the result is of that type.
7216 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
7217 QualType ResTy =
7218 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
7219 if (LHS.isInvalid() || RHS.isInvalid())
7220 return QualType();
7221 if (ResTy.isNull()) {
7222 Diag(QuestionLoc,
7223 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
7224 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7225 return QualType();
7228 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7229 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7231 return ResTy;
7234 // -- The second and third operands have pointer type, or one has pointer
7235 // type and the other is a null pointer constant, or both are null
7236 // pointer constants, at least one of which is non-integral; pointer
7237 // conversions and qualification conversions are performed to bring them
7238 // to their composite pointer type. The result is of the composite
7239 // pointer type.
7240 // -- The second and third operands have pointer to member type, or one has
7241 // pointer to member type and the other is a null pointer constant;
7242 // pointer to member conversions and qualification conversions are
7243 // performed to bring them to a common type, whose cv-qualification
7244 // shall match the cv-qualification of either the second or the third
7245 // operand. The result is of the common type.
7246 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
7247 if (!Composite.isNull())
7248 return Composite;
7250 // Similarly, attempt to find composite type of two objective-c pointers.
7251 Composite = ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
7252 if (LHS.isInvalid() || RHS.isInvalid())
7253 return QualType();
7254 if (!Composite.isNull())
7255 return Composite;
7257 // Check if we are using a null with a non-pointer type.
7258 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7259 return QualType();
7261 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7262 << LHS.get()->getType() << RHS.get()->getType()
7263 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7264 return QualType();
7267 QualType Sema::FindCompositePointerType(SourceLocation Loc,
7268 Expr *&E1, Expr *&E2,
7269 bool ConvertArgs) {
7270 assert(getLangOpts().CPlusPlus && "This function assumes C++");
7272 // C++1z [expr]p14:
7273 // The composite pointer type of two operands p1 and p2 having types T1
7274 // and T2
7275 QualType T1 = E1->getType(), T2 = E2->getType();
7277 // where at least one is a pointer or pointer to member type or
7278 // std::nullptr_t is:
7279 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
7280 T1->isNullPtrType();
7281 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
7282 T2->isNullPtrType();
7283 if (!T1IsPointerLike && !T2IsPointerLike)
7284 return QualType();
7286 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
7287 // This can't actually happen, following the standard, but we also use this
7288 // to implement the end of [expr.conv], which hits this case.
7290 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
7291 if (T1IsPointerLike &&
7292 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7293 if (ConvertArgs)
7294 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
7295 ? CK_NullToMemberPointer
7296 : CK_NullToPointer).get();
7297 return T1;
7299 if (T2IsPointerLike &&
7300 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7301 if (ConvertArgs)
7302 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
7303 ? CK_NullToMemberPointer
7304 : CK_NullToPointer).get();
7305 return T2;
7308 // Now both have to be pointers or member pointers.
7309 if (!T1IsPointerLike || !T2IsPointerLike)
7310 return QualType();
7311 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
7312 "nullptr_t should be a null pointer constant");
7314 struct Step {
7315 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
7316 // Qualifiers to apply under the step kind.
7317 Qualifiers Quals;
7318 /// The class for a pointer-to-member; a constant array type with a bound
7319 /// (if any) for an array.
7320 const Type *ClassOrBound;
7322 Step(Kind K, const Type *ClassOrBound = nullptr)
7323 : K(K), ClassOrBound(ClassOrBound) {}
7324 QualType rebuild(ASTContext &Ctx, QualType T) const {
7325 T = Ctx.getQualifiedType(T, Quals);
7326 switch (K) {
7327 case Pointer:
7328 return Ctx.getPointerType(T);
7329 case MemberPointer:
7330 return Ctx.getMemberPointerType(T, ClassOrBound);
7331 case ObjCPointer:
7332 return Ctx.getObjCObjectPointerType(T);
7333 case Array:
7334 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
7335 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
7336 ArraySizeModifier::Normal, 0);
7337 else
7338 return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
7340 llvm_unreachable("unknown step kind");
7344 SmallVector<Step, 8> Steps;
7346 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7347 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7348 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
7349 // respectively;
7350 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
7351 // to member of C2 of type cv2 U2" for some non-function type U, where
7352 // C1 is reference-related to C2 or C2 is reference-related to C1, the
7353 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
7354 // respectively;
7355 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
7356 // T2;
7358 // Dismantle T1 and T2 to simultaneously determine whether they are similar
7359 // and to prepare to form the cv-combined type if so.
7360 QualType Composite1 = T1;
7361 QualType Composite2 = T2;
7362 unsigned NeedConstBefore = 0;
7363 while (true) {
7364 assert(!Composite1.isNull() && !Composite2.isNull());
7366 Qualifiers Q1, Q2;
7367 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7368 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7370 // Top-level qualifiers are ignored. Merge at all lower levels.
7371 if (!Steps.empty()) {
7372 // Find the qualifier union: (approximately) the unique minimal set of
7373 // qualifiers that is compatible with both types.
7374 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7375 Q2.getCVRUQualifiers());
7377 // Under one level of pointer or pointer-to-member, we can change to an
7378 // unambiguous compatible address space.
7379 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7380 Quals.setAddressSpace(Q1.getAddressSpace());
7381 } else if (Steps.size() == 1) {
7382 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2, getASTContext());
7383 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1, getASTContext());
7384 if (MaybeQ1 == MaybeQ2) {
7385 // Exception for ptr size address spaces. Should be able to choose
7386 // either address space during comparison.
7387 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7388 isPtrSizeAddressSpace(Q2.getAddressSpace()))
7389 MaybeQ1 = true;
7390 else
7391 return QualType(); // No unique best address space.
7393 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7394 : Q2.getAddressSpace());
7395 } else {
7396 return QualType();
7399 // FIXME: In C, we merge __strong and none to __strong at the top level.
7400 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7401 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7402 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7403 assert(Steps.size() == 1);
7404 else
7405 return QualType();
7407 // Mismatched lifetime qualifiers never compatibly include each other.
7408 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7409 Quals.setObjCLifetime(Q1.getObjCLifetime());
7410 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7411 assert(Steps.size() == 1);
7412 else
7413 return QualType();
7415 Steps.back().Quals = Quals;
7416 if (Q1 != Quals || Q2 != Quals)
7417 NeedConstBefore = Steps.size() - 1;
7420 // FIXME: Can we unify the following with UnwrapSimilarTypes?
7422 const ArrayType *Arr1, *Arr2;
7423 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7424 (Arr2 = Context.getAsArrayType(Composite2))) {
7425 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7426 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7427 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7428 Composite1 = Arr1->getElementType();
7429 Composite2 = Arr2->getElementType();
7430 Steps.emplace_back(Step::Array, CAT1);
7431 continue;
7433 bool IAT1 = isa<IncompleteArrayType>(Arr1);
7434 bool IAT2 = isa<IncompleteArrayType>(Arr2);
7435 if ((IAT1 && IAT2) ||
7436 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7437 ((bool)CAT1 != (bool)CAT2) &&
7438 (Steps.empty() || Steps.back().K != Step::Array))) {
7439 // In C++20 onwards, we can unify an array of N T with an array of
7440 // a different or unknown bound. But we can't form an array whose
7441 // element type is an array of unknown bound by doing so.
7442 Composite1 = Arr1->getElementType();
7443 Composite2 = Arr2->getElementType();
7444 Steps.emplace_back(Step::Array);
7445 if (CAT1 || CAT2)
7446 NeedConstBefore = Steps.size();
7447 continue;
7451 const PointerType *Ptr1, *Ptr2;
7452 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7453 (Ptr2 = Composite2->getAs<PointerType>())) {
7454 Composite1 = Ptr1->getPointeeType();
7455 Composite2 = Ptr2->getPointeeType();
7456 Steps.emplace_back(Step::Pointer);
7457 continue;
7460 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7461 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7462 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7463 Composite1 = ObjPtr1->getPointeeType();
7464 Composite2 = ObjPtr2->getPointeeType();
7465 Steps.emplace_back(Step::ObjCPointer);
7466 continue;
7469 const MemberPointerType *MemPtr1, *MemPtr2;
7470 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7471 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7472 Composite1 = MemPtr1->getPointeeType();
7473 Composite2 = MemPtr2->getPointeeType();
7475 // At the top level, we can perform a base-to-derived pointer-to-member
7476 // conversion:
7478 // - [...] where C1 is reference-related to C2 or C2 is
7479 // reference-related to C1
7481 // (Note that the only kinds of reference-relatedness in scope here are
7482 // "same type or derived from".) At any other level, the class must
7483 // exactly match.
7484 const Type *Class = nullptr;
7485 QualType Cls1(MemPtr1->getClass(), 0);
7486 QualType Cls2(MemPtr2->getClass(), 0);
7487 if (Context.hasSameType(Cls1, Cls2))
7488 Class = MemPtr1->getClass();
7489 else if (Steps.empty())
7490 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7491 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7492 if (!Class)
7493 return QualType();
7495 Steps.emplace_back(Step::MemberPointer, Class);
7496 continue;
7499 // Special case: at the top level, we can decompose an Objective-C pointer
7500 // and a 'cv void *'. Unify the qualifiers.
7501 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7502 Composite2->isObjCObjectPointerType()) ||
7503 (Composite1->isObjCObjectPointerType() &&
7504 Composite2->isVoidPointerType()))) {
7505 Composite1 = Composite1->getPointeeType();
7506 Composite2 = Composite2->getPointeeType();
7507 Steps.emplace_back(Step::Pointer);
7508 continue;
7511 // FIXME: block pointer types?
7513 // Cannot unwrap any more types.
7514 break;
7517 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7518 // "pointer to function", where the function types are otherwise the same,
7519 // "pointer to function";
7520 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7521 // type is "pointer to member of C2 of type noexcept function", and C1
7522 // is reference-related to C2 or C2 is reference-related to C1, where
7523 // the function types are otherwise the same, "pointer to member of C2 of
7524 // type function" or "pointer to member of C1 of type function",
7525 // respectively;
7527 // We also support 'noreturn' here, so as a Clang extension we generalize the
7528 // above to:
7530 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7531 // "pointer to member function" and the pointee types can be unified
7532 // by a function pointer conversion, that conversion is applied
7533 // before checking the following rules.
7535 // We've already unwrapped down to the function types, and we want to merge
7536 // rather than just convert, so do this ourselves rather than calling
7537 // IsFunctionConversion.
7539 // FIXME: In order to match the standard wording as closely as possible, we
7540 // currently only do this under a single level of pointers. Ideally, we would
7541 // allow this in general, and set NeedConstBefore to the relevant depth on
7542 // the side(s) where we changed anything. If we permit that, we should also
7543 // consider this conversion when determining type similarity and model it as
7544 // a qualification conversion.
7545 if (Steps.size() == 1) {
7546 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7547 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7548 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7549 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7551 // The result is noreturn if both operands are.
7552 bool Noreturn =
7553 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7554 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7555 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7557 // The result is nothrow if both operands are.
7558 SmallVector<QualType, 8> ExceptionTypeStorage;
7559 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7560 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7561 getLangOpts().CPlusPlus17);
7563 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7564 FPT1->getParamTypes(), EPI1);
7565 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7566 FPT2->getParamTypes(), EPI2);
7571 // There are some more conversions we can perform under exactly one pointer.
7572 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7573 !Context.hasSameType(Composite1, Composite2)) {
7574 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7575 // "pointer to cv2 T", where T is an object type or void,
7576 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7577 if (Composite1->isVoidType() && Composite2->isObjectType())
7578 Composite2 = Composite1;
7579 else if (Composite2->isVoidType() && Composite1->isObjectType())
7580 Composite1 = Composite2;
7581 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7582 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7583 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7584 // T1, respectively;
7586 // The "similar type" handling covers all of this except for the "T1 is a
7587 // base class of T2" case in the definition of reference-related.
7588 else if (IsDerivedFrom(Loc, Composite1, Composite2))
7589 Composite1 = Composite2;
7590 else if (IsDerivedFrom(Loc, Composite2, Composite1))
7591 Composite2 = Composite1;
7594 // At this point, either the inner types are the same or we have failed to
7595 // find a composite pointer type.
7596 if (!Context.hasSameType(Composite1, Composite2))
7597 return QualType();
7599 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7600 // differing qualifier.
7601 for (unsigned I = 0; I != NeedConstBefore; ++I)
7602 Steps[I].Quals.addConst();
7604 // Rebuild the composite type.
7605 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7606 for (auto &S : llvm::reverse(Steps))
7607 Composite = S.rebuild(Context, Composite);
7609 if (ConvertArgs) {
7610 // Convert the expressions to the composite pointer type.
7611 InitializedEntity Entity =
7612 InitializedEntity::InitializeTemporary(Composite);
7613 InitializationKind Kind =
7614 InitializationKind::CreateCopy(Loc, SourceLocation());
7616 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7617 if (!E1ToC)
7618 return QualType();
7620 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7621 if (!E2ToC)
7622 return QualType();
7624 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7625 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7626 if (E1Result.isInvalid())
7627 return QualType();
7628 E1 = E1Result.get();
7630 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7631 if (E2Result.isInvalid())
7632 return QualType();
7633 E2 = E2Result.get();
7636 return Composite;
7639 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7640 if (!E)
7641 return ExprError();
7643 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7645 // If the result is a glvalue, we shouldn't bind it.
7646 if (E->isGLValue())
7647 return E;
7649 // In ARC, calls that return a retainable type can return retained,
7650 // in which case we have to insert a consuming cast.
7651 if (getLangOpts().ObjCAutoRefCount &&
7652 E->getType()->isObjCRetainableType()) {
7654 bool ReturnsRetained;
7656 // For actual calls, we compute this by examining the type of the
7657 // called value.
7658 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7659 Expr *Callee = Call->getCallee()->IgnoreParens();
7660 QualType T = Callee->getType();
7662 if (T == Context.BoundMemberTy) {
7663 // Handle pointer-to-members.
7664 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7665 T = BinOp->getRHS()->getType();
7666 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7667 T = Mem->getMemberDecl()->getType();
7670 if (const PointerType *Ptr = T->getAs<PointerType>())
7671 T = Ptr->getPointeeType();
7672 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7673 T = Ptr->getPointeeType();
7674 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7675 T = MemPtr->getPointeeType();
7677 auto *FTy = T->castAs<FunctionType>();
7678 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7680 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7681 // type always produce a +1 object.
7682 } else if (isa<StmtExpr>(E)) {
7683 ReturnsRetained = true;
7685 // We hit this case with the lambda conversion-to-block optimization;
7686 // we don't want any extra casts here.
7687 } else if (isa<CastExpr>(E) &&
7688 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7689 return E;
7691 // For message sends and property references, we try to find an
7692 // actual method. FIXME: we should infer retention by selector in
7693 // cases where we don't have an actual method.
7694 } else {
7695 ObjCMethodDecl *D = nullptr;
7696 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7697 D = Send->getMethodDecl();
7698 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7699 D = BoxedExpr->getBoxingMethod();
7700 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7701 // Don't do reclaims if we're using the zero-element array
7702 // constant.
7703 if (ArrayLit->getNumElements() == 0 &&
7704 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7705 return E;
7707 D = ArrayLit->getArrayWithObjectsMethod();
7708 } else if (ObjCDictionaryLiteral *DictLit
7709 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7710 // Don't do reclaims if we're using the zero-element dictionary
7711 // constant.
7712 if (DictLit->getNumElements() == 0 &&
7713 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7714 return E;
7716 D = DictLit->getDictWithObjectsMethod();
7719 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7721 // Don't do reclaims on performSelector calls; despite their
7722 // return type, the invoked method doesn't necessarily actually
7723 // return an object.
7724 if (!ReturnsRetained &&
7725 D && D->getMethodFamily() == OMF_performSelector)
7726 return E;
7729 // Don't reclaim an object of Class type.
7730 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7731 return E;
7733 Cleanup.setExprNeedsCleanups(true);
7735 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7736 : CK_ARCReclaimReturnedObject);
7737 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7738 VK_PRValue, FPOptionsOverride());
7741 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7742 Cleanup.setExprNeedsCleanups(true);
7744 if (!getLangOpts().CPlusPlus)
7745 return E;
7747 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7748 // a fast path for the common case that the type is directly a RecordType.
7749 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7750 const RecordType *RT = nullptr;
7751 while (!RT) {
7752 switch (T->getTypeClass()) {
7753 case Type::Record:
7754 RT = cast<RecordType>(T);
7755 break;
7756 case Type::ConstantArray:
7757 case Type::IncompleteArray:
7758 case Type::VariableArray:
7759 case Type::DependentSizedArray:
7760 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7761 break;
7762 default:
7763 return E;
7767 // That should be enough to guarantee that this type is complete, if we're
7768 // not processing a decltype expression.
7769 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7770 if (RD->isInvalidDecl() || RD->isDependentContext())
7771 return E;
7773 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7774 ExpressionEvaluationContextRecord::EK_Decltype;
7775 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7777 if (Destructor) {
7778 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7779 CheckDestructorAccess(E->getExprLoc(), Destructor,
7780 PDiag(diag::err_access_dtor_temp)
7781 << E->getType());
7782 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7783 return ExprError();
7785 // If destructor is trivial, we can avoid the extra copy.
7786 if (Destructor->isTrivial())
7787 return E;
7789 // We need a cleanup, but we don't need to remember the temporary.
7790 Cleanup.setExprNeedsCleanups(true);
7793 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7794 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7796 if (IsDecltype)
7797 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7799 return Bind;
7802 ExprResult
7803 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7804 if (SubExpr.isInvalid())
7805 return ExprError();
7807 return MaybeCreateExprWithCleanups(SubExpr.get());
7810 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7811 assert(SubExpr && "subexpression can't be null!");
7813 CleanupVarDeclMarking();
7815 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7816 assert(ExprCleanupObjects.size() >= FirstCleanup);
7817 assert(Cleanup.exprNeedsCleanups() ||
7818 ExprCleanupObjects.size() == FirstCleanup);
7819 if (!Cleanup.exprNeedsCleanups())
7820 return SubExpr;
7822 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7823 ExprCleanupObjects.size() - FirstCleanup);
7825 auto *E = ExprWithCleanups::Create(
7826 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7827 DiscardCleanupsInEvaluationContext();
7829 return E;
7832 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7833 assert(SubStmt && "sub-statement can't be null!");
7835 CleanupVarDeclMarking();
7837 if (!Cleanup.exprNeedsCleanups())
7838 return SubStmt;
7840 // FIXME: In order to attach the temporaries, wrap the statement into
7841 // a StmtExpr; currently this is only used for asm statements.
7842 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7843 // a new AsmStmtWithTemporaries.
7844 CompoundStmt *CompStmt =
7845 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7846 SourceLocation(), SourceLocation());
7847 Expr *E = new (Context)
7848 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7849 /*FIXME TemplateDepth=*/0);
7850 return MaybeCreateExprWithCleanups(E);
7853 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7854 assert(ExprEvalContexts.back().ExprContext ==
7855 ExpressionEvaluationContextRecord::EK_Decltype &&
7856 "not in a decltype expression");
7858 ExprResult Result = CheckPlaceholderExpr(E);
7859 if (Result.isInvalid())
7860 return ExprError();
7861 E = Result.get();
7863 // C++11 [expr.call]p11:
7864 // If a function call is a prvalue of object type,
7865 // -- if the function call is either
7866 // -- the operand of a decltype-specifier, or
7867 // -- the right operand of a comma operator that is the operand of a
7868 // decltype-specifier,
7869 // a temporary object is not introduced for the prvalue.
7871 // Recursively rebuild ParenExprs and comma expressions to strip out the
7872 // outermost CXXBindTemporaryExpr, if any.
7873 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7874 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7875 if (SubExpr.isInvalid())
7876 return ExprError();
7877 if (SubExpr.get() == PE->getSubExpr())
7878 return E;
7879 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7881 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7882 if (BO->getOpcode() == BO_Comma) {
7883 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7884 if (RHS.isInvalid())
7885 return ExprError();
7886 if (RHS.get() == BO->getRHS())
7887 return E;
7888 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7889 BO->getType(), BO->getValueKind(),
7890 BO->getObjectKind(), BO->getOperatorLoc(),
7891 BO->getFPFeatures());
7895 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7896 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7897 : nullptr;
7898 if (TopCall)
7899 E = TopCall;
7900 else
7901 TopBind = nullptr;
7903 // Disable the special decltype handling now.
7904 ExprEvalContexts.back().ExprContext =
7905 ExpressionEvaluationContextRecord::EK_Other;
7907 Result = CheckUnevaluatedOperand(E);
7908 if (Result.isInvalid())
7909 return ExprError();
7910 E = Result.get();
7912 // In MS mode, don't perform any extra checking of call return types within a
7913 // decltype expression.
7914 if (getLangOpts().MSVCCompat)
7915 return E;
7917 // Perform the semantic checks we delayed until this point.
7918 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7919 I != N; ++I) {
7920 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7921 if (Call == TopCall)
7922 continue;
7924 if (CheckCallReturnType(Call->getCallReturnType(Context),
7925 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7926 return ExprError();
7929 // Now all relevant types are complete, check the destructors are accessible
7930 // and non-deleted, and annotate them on the temporaries.
7931 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7932 I != N; ++I) {
7933 CXXBindTemporaryExpr *Bind =
7934 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7935 if (Bind == TopBind)
7936 continue;
7938 CXXTemporary *Temp = Bind->getTemporary();
7940 CXXRecordDecl *RD =
7941 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7942 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7943 Temp->setDestructor(Destructor);
7945 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7946 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7947 PDiag(diag::err_access_dtor_temp)
7948 << Bind->getType());
7949 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7950 return ExprError();
7952 // We need a cleanup, but we don't need to remember the temporary.
7953 Cleanup.setExprNeedsCleanups(true);
7956 // Possibly strip off the top CXXBindTemporaryExpr.
7957 return E;
7960 /// Note a set of 'operator->' functions that were used for a member access.
7961 static void noteOperatorArrows(Sema &S,
7962 ArrayRef<FunctionDecl *> OperatorArrows) {
7963 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7964 // FIXME: Make this configurable?
7965 unsigned Limit = 9;
7966 if (OperatorArrows.size() > Limit) {
7967 // Produce Limit-1 normal notes and one 'skipping' note.
7968 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7969 SkipCount = OperatorArrows.size() - (Limit - 1);
7972 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7973 if (I == SkipStart) {
7974 S.Diag(OperatorArrows[I]->getLocation(),
7975 diag::note_operator_arrows_suppressed)
7976 << SkipCount;
7977 I += SkipCount;
7978 } else {
7979 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7980 << OperatorArrows[I]->getCallResultType();
7981 ++I;
7986 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7987 SourceLocation OpLoc,
7988 tok::TokenKind OpKind,
7989 ParsedType &ObjectType,
7990 bool &MayBePseudoDestructor) {
7991 // Since this might be a postfix expression, get rid of ParenListExprs.
7992 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7993 if (Result.isInvalid()) return ExprError();
7994 Base = Result.get();
7996 Result = CheckPlaceholderExpr(Base);
7997 if (Result.isInvalid()) return ExprError();
7998 Base = Result.get();
8000 QualType BaseType = Base->getType();
8001 MayBePseudoDestructor = false;
8002 if (BaseType->isDependentType()) {
8003 // If we have a pointer to a dependent type and are using the -> operator,
8004 // the object type is the type that the pointer points to. We might still
8005 // have enough information about that type to do something useful.
8006 if (OpKind == tok::arrow)
8007 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
8008 BaseType = Ptr->getPointeeType();
8010 ObjectType = ParsedType::make(BaseType);
8011 MayBePseudoDestructor = true;
8012 return Base;
8015 // C++ [over.match.oper]p8:
8016 // [...] When operator->returns, the operator-> is applied to the value
8017 // returned, with the original second operand.
8018 if (OpKind == tok::arrow) {
8019 QualType StartingType = BaseType;
8020 bool NoArrowOperatorFound = false;
8021 bool FirstIteration = true;
8022 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
8023 // The set of types we've considered so far.
8024 llvm::SmallPtrSet<CanQualType,8> CTypes;
8025 SmallVector<FunctionDecl*, 8> OperatorArrows;
8026 CTypes.insert(Context.getCanonicalType(BaseType));
8028 while (BaseType->isRecordType()) {
8029 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
8030 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
8031 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
8032 noteOperatorArrows(*this, OperatorArrows);
8033 Diag(OpLoc, diag::note_operator_arrow_depth)
8034 << getLangOpts().ArrowDepth;
8035 return ExprError();
8038 Result = BuildOverloadedArrowExpr(
8039 S, Base, OpLoc,
8040 // When in a template specialization and on the first loop iteration,
8041 // potentially give the default diagnostic (with the fixit in a
8042 // separate note) instead of having the error reported back to here
8043 // and giving a diagnostic with a fixit attached to the error itself.
8044 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
8045 ? nullptr
8046 : &NoArrowOperatorFound);
8047 if (Result.isInvalid()) {
8048 if (NoArrowOperatorFound) {
8049 if (FirstIteration) {
8050 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8051 << BaseType << 1 << Base->getSourceRange()
8052 << FixItHint::CreateReplacement(OpLoc, ".");
8053 OpKind = tok::period;
8054 break;
8056 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8057 << BaseType << Base->getSourceRange();
8058 CallExpr *CE = dyn_cast<CallExpr>(Base);
8059 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
8060 Diag(CD->getBeginLoc(),
8061 diag::note_member_reference_arrow_from_operator_arrow);
8064 return ExprError();
8066 Base = Result.get();
8067 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
8068 OperatorArrows.push_back(OpCall->getDirectCallee());
8069 BaseType = Base->getType();
8070 CanQualType CBaseType = Context.getCanonicalType(BaseType);
8071 if (!CTypes.insert(CBaseType).second) {
8072 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
8073 noteOperatorArrows(*this, OperatorArrows);
8074 return ExprError();
8076 FirstIteration = false;
8079 if (OpKind == tok::arrow) {
8080 if (BaseType->isPointerType())
8081 BaseType = BaseType->getPointeeType();
8082 else if (auto *AT = Context.getAsArrayType(BaseType))
8083 BaseType = AT->getElementType();
8087 // Objective-C properties allow "." access on Objective-C pointer types,
8088 // so adjust the base type to the object type itself.
8089 if (BaseType->isObjCObjectPointerType())
8090 BaseType = BaseType->getPointeeType();
8092 // C++ [basic.lookup.classref]p2:
8093 // [...] If the type of the object expression is of pointer to scalar
8094 // type, the unqualified-id is looked up in the context of the complete
8095 // postfix-expression.
8097 // This also indicates that we could be parsing a pseudo-destructor-name.
8098 // Note that Objective-C class and object types can be pseudo-destructor
8099 // expressions or normal member (ivar or property) access expressions, and
8100 // it's legal for the type to be incomplete if this is a pseudo-destructor
8101 // call. We'll do more incomplete-type checks later in the lookup process,
8102 // so just skip this check for ObjC types.
8103 if (!BaseType->isRecordType()) {
8104 ObjectType = ParsedType::make(BaseType);
8105 MayBePseudoDestructor = true;
8106 return Base;
8109 // The object type must be complete (or dependent), or
8110 // C++11 [expr.prim.general]p3:
8111 // Unlike the object expression in other contexts, *this is not required to
8112 // be of complete type for purposes of class member access (5.2.5) outside
8113 // the member function body.
8114 if (!BaseType->isDependentType() &&
8115 !isThisOutsideMemberFunctionBody(BaseType) &&
8116 RequireCompleteType(OpLoc, BaseType,
8117 diag::err_incomplete_member_access)) {
8118 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
8121 // C++ [basic.lookup.classref]p2:
8122 // If the id-expression in a class member access (5.2.5) is an
8123 // unqualified-id, and the type of the object expression is of a class
8124 // type C (or of pointer to a class type C), the unqualified-id is looked
8125 // up in the scope of class C. [...]
8126 ObjectType = ParsedType::make(BaseType);
8127 return Base;
8130 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
8131 tok::TokenKind &OpKind, SourceLocation OpLoc) {
8132 if (Base->hasPlaceholderType()) {
8133 ExprResult result = S.CheckPlaceholderExpr(Base);
8134 if (result.isInvalid()) return true;
8135 Base = result.get();
8137 ObjectType = Base->getType();
8139 // C++ [expr.pseudo]p2:
8140 // The left-hand side of the dot operator shall be of scalar type. The
8141 // left-hand side of the arrow operator shall be of pointer to scalar type.
8142 // This scalar type is the object type.
8143 // Note that this is rather different from the normal handling for the
8144 // arrow operator.
8145 if (OpKind == tok::arrow) {
8146 // The operator requires a prvalue, so perform lvalue conversions.
8147 // Only do this if we might plausibly end with a pointer, as otherwise
8148 // this was likely to be intended to be a '.'.
8149 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
8150 ObjectType->isFunctionType()) {
8151 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
8152 if (BaseResult.isInvalid())
8153 return true;
8154 Base = BaseResult.get();
8155 ObjectType = Base->getType();
8158 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
8159 ObjectType = Ptr->getPointeeType();
8160 } else if (!Base->isTypeDependent()) {
8161 // The user wrote "p->" when they probably meant "p."; fix it.
8162 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8163 << ObjectType << true
8164 << FixItHint::CreateReplacement(OpLoc, ".");
8165 if (S.isSFINAEContext())
8166 return true;
8168 OpKind = tok::period;
8172 return false;
8175 /// Check if it's ok to try and recover dot pseudo destructor calls on
8176 /// pointer objects.
8177 static bool
8178 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
8179 QualType DestructedType) {
8180 // If this is a record type, check if its destructor is callable.
8181 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
8182 if (RD->hasDefinition())
8183 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
8184 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
8185 return false;
8188 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
8189 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
8190 DestructedType->isVectorType();
8193 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
8194 SourceLocation OpLoc,
8195 tok::TokenKind OpKind,
8196 const CXXScopeSpec &SS,
8197 TypeSourceInfo *ScopeTypeInfo,
8198 SourceLocation CCLoc,
8199 SourceLocation TildeLoc,
8200 PseudoDestructorTypeStorage Destructed) {
8201 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
8203 QualType ObjectType;
8204 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8205 return ExprError();
8207 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
8208 !ObjectType->isVectorType() && !ObjectType->isMatrixType()) {
8209 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
8210 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
8211 else {
8212 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
8213 << ObjectType << Base->getSourceRange();
8214 return ExprError();
8218 // C++ [expr.pseudo]p2:
8219 // [...] The cv-unqualified versions of the object type and of the type
8220 // designated by the pseudo-destructor-name shall be the same type.
8221 if (DestructedTypeInfo) {
8222 QualType DestructedType = DestructedTypeInfo->getType();
8223 SourceLocation DestructedTypeStart =
8224 DestructedTypeInfo->getTypeLoc().getBeginLoc();
8225 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
8226 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
8227 // Detect dot pseudo destructor calls on pointer objects, e.g.:
8228 // Foo *foo;
8229 // foo.~Foo();
8230 if (OpKind == tok::period && ObjectType->isPointerType() &&
8231 Context.hasSameUnqualifiedType(DestructedType,
8232 ObjectType->getPointeeType())) {
8233 auto Diagnostic =
8234 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8235 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
8237 // Issue a fixit only when the destructor is valid.
8238 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
8239 *this, DestructedType))
8240 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
8242 // Recover by setting the object type to the destructed type and the
8243 // operator to '->'.
8244 ObjectType = DestructedType;
8245 OpKind = tok::arrow;
8246 } else {
8247 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
8248 << ObjectType << DestructedType << Base->getSourceRange()
8249 << DestructedTypeInfo->getTypeLoc().getSourceRange();
8251 // Recover by setting the destructed type to the object type.
8252 DestructedType = ObjectType;
8253 DestructedTypeInfo =
8254 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
8255 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8257 } else if (DestructedType.getObjCLifetime() !=
8258 ObjectType.getObjCLifetime()) {
8260 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
8261 // Okay: just pretend that the user provided the correctly-qualified
8262 // type.
8263 } else {
8264 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
8265 << ObjectType << DestructedType << Base->getSourceRange()
8266 << DestructedTypeInfo->getTypeLoc().getSourceRange();
8269 // Recover by setting the destructed type to the object type.
8270 DestructedType = ObjectType;
8271 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
8272 DestructedTypeStart);
8273 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8278 // C++ [expr.pseudo]p2:
8279 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
8280 // form
8282 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
8284 // shall designate the same scalar type.
8285 if (ScopeTypeInfo) {
8286 QualType ScopeType = ScopeTypeInfo->getType();
8287 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
8288 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
8290 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
8291 diag::err_pseudo_dtor_type_mismatch)
8292 << ObjectType << ScopeType << Base->getSourceRange()
8293 << ScopeTypeInfo->getTypeLoc().getSourceRange();
8295 ScopeType = QualType();
8296 ScopeTypeInfo = nullptr;
8300 Expr *Result
8301 = new (Context) CXXPseudoDestructorExpr(Context, Base,
8302 OpKind == tok::arrow, OpLoc,
8303 SS.getWithLocInContext(Context),
8304 ScopeTypeInfo,
8305 CCLoc,
8306 TildeLoc,
8307 Destructed);
8309 return Result;
8312 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8313 SourceLocation OpLoc,
8314 tok::TokenKind OpKind,
8315 CXXScopeSpec &SS,
8316 UnqualifiedId &FirstTypeName,
8317 SourceLocation CCLoc,
8318 SourceLocation TildeLoc,
8319 UnqualifiedId &SecondTypeName) {
8320 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8321 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8322 "Invalid first type name in pseudo-destructor");
8323 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8324 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8325 "Invalid second type name in pseudo-destructor");
8327 QualType ObjectType;
8328 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8329 return ExprError();
8331 // Compute the object type that we should use for name lookup purposes. Only
8332 // record types and dependent types matter.
8333 ParsedType ObjectTypePtrForLookup;
8334 if (!SS.isSet()) {
8335 if (ObjectType->isRecordType())
8336 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
8337 else if (ObjectType->isDependentType())
8338 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
8341 // Convert the name of the type being destructed (following the ~) into a
8342 // type (with source-location information).
8343 QualType DestructedType;
8344 TypeSourceInfo *DestructedTypeInfo = nullptr;
8345 PseudoDestructorTypeStorage Destructed;
8346 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8347 ParsedType T = getTypeName(*SecondTypeName.Identifier,
8348 SecondTypeName.StartLocation,
8349 S, &SS, true, false, ObjectTypePtrForLookup,
8350 /*IsCtorOrDtorName*/true);
8351 if (!T &&
8352 ((SS.isSet() && !computeDeclContext(SS, false)) ||
8353 (!SS.isSet() && ObjectType->isDependentType()))) {
8354 // The name of the type being destroyed is a dependent name, and we
8355 // couldn't find anything useful in scope. Just store the identifier and
8356 // it's location, and we'll perform (qualified) name lookup again at
8357 // template instantiation time.
8358 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8359 SecondTypeName.StartLocation);
8360 } else if (!T) {
8361 Diag(SecondTypeName.StartLocation,
8362 diag::err_pseudo_dtor_destructor_non_type)
8363 << SecondTypeName.Identifier << ObjectType;
8364 if (isSFINAEContext())
8365 return ExprError();
8367 // Recover by assuming we had the right type all along.
8368 DestructedType = ObjectType;
8369 } else
8370 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8371 } else {
8372 // Resolve the template-id to a type.
8373 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8374 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8375 TemplateId->NumArgs);
8376 TypeResult T = ActOnTemplateIdType(S,
8378 TemplateId->TemplateKWLoc,
8379 TemplateId->Template,
8380 TemplateId->Name,
8381 TemplateId->TemplateNameLoc,
8382 TemplateId->LAngleLoc,
8383 TemplateArgsPtr,
8384 TemplateId->RAngleLoc,
8385 /*IsCtorOrDtorName*/true);
8386 if (T.isInvalid() || !T.get()) {
8387 // Recover by assuming we had the right type all along.
8388 DestructedType = ObjectType;
8389 } else
8390 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8393 // If we've performed some kind of recovery, (re-)build the type source
8394 // information.
8395 if (!DestructedType.isNull()) {
8396 if (!DestructedTypeInfo)
8397 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8398 SecondTypeName.StartLocation);
8399 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8402 // Convert the name of the scope type (the type prior to '::') into a type.
8403 TypeSourceInfo *ScopeTypeInfo = nullptr;
8404 QualType ScopeType;
8405 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8406 FirstTypeName.Identifier) {
8407 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8408 ParsedType T = getTypeName(*FirstTypeName.Identifier,
8409 FirstTypeName.StartLocation,
8410 S, &SS, true, false, ObjectTypePtrForLookup,
8411 /*IsCtorOrDtorName*/true);
8412 if (!T) {
8413 Diag(FirstTypeName.StartLocation,
8414 diag::err_pseudo_dtor_destructor_non_type)
8415 << FirstTypeName.Identifier << ObjectType;
8417 if (isSFINAEContext())
8418 return ExprError();
8420 // Just drop this type. It's unnecessary anyway.
8421 ScopeType = QualType();
8422 } else
8423 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8424 } else {
8425 // Resolve the template-id to a type.
8426 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8427 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8428 TemplateId->NumArgs);
8429 TypeResult T = ActOnTemplateIdType(S,
8431 TemplateId->TemplateKWLoc,
8432 TemplateId->Template,
8433 TemplateId->Name,
8434 TemplateId->TemplateNameLoc,
8435 TemplateId->LAngleLoc,
8436 TemplateArgsPtr,
8437 TemplateId->RAngleLoc,
8438 /*IsCtorOrDtorName*/true);
8439 if (T.isInvalid() || !T.get()) {
8440 // Recover by dropping this type.
8441 ScopeType = QualType();
8442 } else
8443 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8447 if (!ScopeType.isNull() && !ScopeTypeInfo)
8448 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8449 FirstTypeName.StartLocation);
8452 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8453 ScopeTypeInfo, CCLoc, TildeLoc,
8454 Destructed);
8457 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8458 SourceLocation OpLoc,
8459 tok::TokenKind OpKind,
8460 SourceLocation TildeLoc,
8461 const DeclSpec& DS) {
8462 QualType ObjectType;
8463 QualType T;
8464 TypeLocBuilder TLB;
8465 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc) ||
8466 DS.getTypeSpecType() == DeclSpec::TST_error)
8467 return ExprError();
8469 switch (DS.getTypeSpecType()) {
8470 case DeclSpec::TST_decltype_auto: {
8471 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8472 return true;
8474 case DeclSpec::TST_decltype: {
8475 T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8476 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8477 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8478 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8479 break;
8481 case DeclSpec::TST_typename_pack_indexing: {
8482 T = ActOnPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(),
8483 DS.getBeginLoc(), DS.getEllipsisLoc());
8484 TLB.pushTrivial(getASTContext(),
8485 cast<PackIndexingType>(T.getTypePtr())->getPattern(),
8486 DS.getBeginLoc());
8487 PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T);
8488 PITL.setEllipsisLoc(DS.getEllipsisLoc());
8489 break;
8491 default:
8492 llvm_unreachable("Unsupported type in pseudo destructor");
8494 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8495 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8497 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8498 nullptr, SourceLocation(), TildeLoc,
8499 Destructed);
8502 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8503 SourceLocation RParen) {
8504 // If the operand is an unresolved lookup expression, the expression is ill-
8505 // formed per [over.over]p1, because overloaded function names cannot be used
8506 // without arguments except in explicit contexts.
8507 ExprResult R = CheckPlaceholderExpr(Operand);
8508 if (R.isInvalid())
8509 return R;
8511 R = CheckUnevaluatedOperand(R.get());
8512 if (R.isInvalid())
8513 return ExprError();
8515 Operand = R.get();
8517 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8518 Operand->HasSideEffects(Context, false)) {
8519 // The expression operand for noexcept is in an unevaluated expression
8520 // context, so side effects could result in unintended consequences.
8521 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8524 CanThrowResult CanThrow = canThrow(Operand);
8525 return new (Context)
8526 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8529 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8530 Expr *Operand, SourceLocation RParen) {
8531 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8534 static void MaybeDecrementCount(
8535 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8536 DeclRefExpr *LHS = nullptr;
8537 bool IsCompoundAssign = false;
8538 bool isIncrementDecrementUnaryOp = false;
8539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8540 if (BO->getLHS()->getType()->isDependentType() ||
8541 BO->getRHS()->getType()->isDependentType()) {
8542 if (BO->getOpcode() != BO_Assign)
8543 return;
8544 } else if (!BO->isAssignmentOp())
8545 return;
8546 else
8547 IsCompoundAssign = BO->isCompoundAssignmentOp();
8548 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8549 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8550 if (COCE->getOperator() != OO_Equal)
8551 return;
8552 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8553 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8554 if (!UO->isIncrementDecrementOp())
8555 return;
8556 isIncrementDecrementUnaryOp = true;
8557 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8559 if (!LHS)
8560 return;
8561 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8562 if (!VD)
8563 return;
8564 // Don't decrement RefsMinusAssignments if volatile variable with compound
8565 // assignment (+=, ...) or increment/decrement unary operator to avoid
8566 // potential unused-but-set-variable warning.
8567 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8568 VD->getType().isVolatileQualified())
8569 return;
8570 auto iter = RefsMinusAssignments.find(VD);
8571 if (iter == RefsMinusAssignments.end())
8572 return;
8573 iter->getSecond()--;
8576 /// Perform the conversions required for an expression used in a
8577 /// context that ignores the result.
8578 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8579 MaybeDecrementCount(E, RefsMinusAssignments);
8581 if (E->hasPlaceholderType()) {
8582 ExprResult result = CheckPlaceholderExpr(E);
8583 if (result.isInvalid()) return E;
8584 E = result.get();
8587 if (getLangOpts().CPlusPlus) {
8588 // The C++11 standard defines the notion of a discarded-value expression;
8589 // normally, we don't need to do anything to handle it, but if it is a
8590 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8591 // conversion.
8592 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8593 ExprResult Res = DefaultLvalueConversion(E);
8594 if (Res.isInvalid())
8595 return E;
8596 E = Res.get();
8597 } else {
8598 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8599 // it occurs as a discarded-value expression.
8600 CheckUnusedVolatileAssignment(E);
8603 // C++1z:
8604 // If the expression is a prvalue after this optional conversion, the
8605 // temporary materialization conversion is applied.
8607 // We do not materialize temporaries by default in order to avoid creating
8608 // unnecessary temporary objects. If we skip this step, IR generation is
8609 // able to synthesize the storage for itself in the aggregate case, and
8610 // adding the extra node to the AST is just clutter.
8611 if (isInLifetimeExtendingContext() && getLangOpts().CPlusPlus17 &&
8612 E->isPRValue() && !E->getType()->isVoidType()) {
8613 ExprResult Res = TemporaryMaterializationConversion(E);
8614 if (Res.isInvalid())
8615 return E;
8616 E = Res.get();
8618 return E;
8621 // C99 6.3.2.1:
8622 // [Except in specific positions,] an lvalue that does not have
8623 // array type is converted to the value stored in the
8624 // designated object (and is no longer an lvalue).
8625 if (E->isPRValue()) {
8626 // In C, function designators (i.e. expressions of function type)
8627 // are r-values, but we still want to do function-to-pointer decay
8628 // on them. This is both technically correct and convenient for
8629 // some clients.
8630 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8631 return DefaultFunctionArrayConversion(E);
8633 return E;
8636 // GCC seems to also exclude expressions of incomplete enum type.
8637 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8638 if (!T->getDecl()->isComplete()) {
8639 // FIXME: stupid workaround for a codegen bug!
8640 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8641 return E;
8645 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8646 if (Res.isInvalid())
8647 return E;
8648 E = Res.get();
8650 if (!E->getType()->isVoidType())
8651 RequireCompleteType(E->getExprLoc(), E->getType(),
8652 diag::err_incomplete_type);
8653 return E;
8656 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8657 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8658 // it occurs as an unevaluated operand.
8659 CheckUnusedVolatileAssignment(E);
8661 return E;
8664 // If we can unambiguously determine whether Var can never be used
8665 // in a constant expression, return true.
8666 // - if the variable and its initializer are non-dependent, then
8667 // we can unambiguously check if the variable is a constant expression.
8668 // - if the initializer is not value dependent - we can determine whether
8669 // it can be used to initialize a constant expression. If Init can not
8670 // be used to initialize a constant expression we conclude that Var can
8671 // never be a constant expression.
8672 // - FXIME: if the initializer is dependent, we can still do some analysis and
8673 // identify certain cases unambiguously as non-const by using a Visitor:
8674 // - such as those that involve odr-use of a ParmVarDecl, involve a new
8675 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8676 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8677 ASTContext &Context) {
8678 if (isa<ParmVarDecl>(Var)) return true;
8679 const VarDecl *DefVD = nullptr;
8681 // If there is no initializer - this can not be a constant expression.
8682 const Expr *Init = Var->getAnyInitializer(DefVD);
8683 if (!Init)
8684 return true;
8685 assert(DefVD);
8686 if (DefVD->isWeak())
8687 return false;
8689 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8690 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8691 // of value-dependent expressions, and use it here to determine whether the
8692 // initializer is a potential constant expression.
8693 return false;
8696 return !Var->isUsableInConstantExpressions(Context);
8699 /// Check if the current lambda has any potential captures
8700 /// that must be captured by any of its enclosing lambdas that are ready to
8701 /// capture. If there is a lambda that can capture a nested
8702 /// potential-capture, go ahead and do so. Also, check to see if any
8703 /// variables are uncaptureable or do not involve an odr-use so do not
8704 /// need to be captured.
8706 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8707 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8709 assert(!S.isUnevaluatedContext());
8710 assert(S.CurContext->isDependentContext());
8711 #ifndef NDEBUG
8712 DeclContext *DC = S.CurContext;
8713 while (isa_and_nonnull<CapturedDecl>(DC))
8714 DC = DC->getParent();
8715 assert(
8716 (CurrentLSI->CallOperator == DC || !CurrentLSI->AfterParameterList) &&
8717 "The current call operator must be synchronized with Sema's CurContext");
8718 #endif // NDEBUG
8720 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8722 // All the potentially captureable variables in the current nested
8723 // lambda (within a generic outer lambda), must be captured by an
8724 // outer lambda that is enclosed within a non-dependent context.
8725 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8726 // If the variable is clearly identified as non-odr-used and the full
8727 // expression is not instantiation dependent, only then do we not
8728 // need to check enclosing lambda's for speculative captures.
8729 // For e.g.:
8730 // Even though 'x' is not odr-used, it should be captured.
8731 // int test() {
8732 // const int x = 10;
8733 // auto L = [=](auto a) {
8734 // (void) +x + a;
8735 // };
8736 // }
8737 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8738 !IsFullExprInstantiationDependent)
8739 return;
8741 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8742 if (!UnderlyingVar)
8743 return;
8745 // If we have a capture-capable lambda for the variable, go ahead and
8746 // capture the variable in that lambda (and all its enclosing lambdas).
8747 if (const std::optional<unsigned> Index =
8748 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8749 S.FunctionScopes, Var, S))
8750 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8751 const bool IsVarNeverAConstantExpression =
8752 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8753 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8754 // This full expression is not instantiation dependent or the variable
8755 // can not be used in a constant expression - which means
8756 // this variable must be odr-used here, so diagnose a
8757 // capture violation early, if the variable is un-captureable.
8758 // This is purely for diagnosing errors early. Otherwise, this
8759 // error would get diagnosed when the lambda becomes capture ready.
8760 QualType CaptureType, DeclRefType;
8761 SourceLocation ExprLoc = VarExpr->getExprLoc();
8762 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8763 /*EllipsisLoc*/ SourceLocation(),
8764 /*BuildAndDiagnose*/false, CaptureType,
8765 DeclRefType, nullptr)) {
8766 // We will never be able to capture this variable, and we need
8767 // to be able to in any and all instantiations, so diagnose it.
8768 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8769 /*EllipsisLoc*/ SourceLocation(),
8770 /*BuildAndDiagnose*/true, CaptureType,
8771 DeclRefType, nullptr);
8776 // Check if 'this' needs to be captured.
8777 if (CurrentLSI->hasPotentialThisCapture()) {
8778 // If we have a capture-capable lambda for 'this', go ahead and capture
8779 // 'this' in that lambda (and all its enclosing lambdas).
8780 if (const std::optional<unsigned> Index =
8781 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8782 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8783 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8784 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8785 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8786 &FunctionScopeIndexOfCapturableLambda);
8790 // Reset all the potential captures at the end of each full-expression.
8791 CurrentLSI->clearPotentialCaptures();
8794 static ExprResult attemptRecovery(Sema &SemaRef,
8795 const TypoCorrectionConsumer &Consumer,
8796 const TypoCorrection &TC) {
8797 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8798 Consumer.getLookupResult().getLookupKind());
8799 const CXXScopeSpec *SS = Consumer.getSS();
8800 CXXScopeSpec NewSS;
8802 // Use an approprate CXXScopeSpec for building the expr.
8803 if (auto *NNS = TC.getCorrectionSpecifier())
8804 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8805 else if (SS && !TC.WillReplaceSpecifier())
8806 NewSS = *SS;
8808 if (auto *ND = TC.getFoundDecl()) {
8809 R.setLookupName(ND->getDeclName());
8810 R.addDecl(ND);
8811 if (ND->isCXXClassMember()) {
8812 // Figure out the correct naming class to add to the LookupResult.
8813 CXXRecordDecl *Record = nullptr;
8814 if (auto *NNS = TC.getCorrectionSpecifier())
8815 Record = NNS->getAsType()->getAsCXXRecordDecl();
8816 if (!Record)
8817 Record =
8818 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8819 if (Record)
8820 R.setNamingClass(Record);
8822 // Detect and handle the case where the decl might be an implicit
8823 // member.
8824 if (SemaRef.isPotentialImplicitMemberAccess(
8825 NewSS, R, Consumer.isAddressOfOperand()))
8826 return SemaRef.BuildPossibleImplicitMemberExpr(
8827 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8828 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8829 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8830 return SemaRef.ObjC().LookupInObjCMethod(R, Consumer.getScope(),
8831 Ivar->getIdentifier());
8835 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8836 /*AcceptInvalidDecl*/ true);
8839 namespace {
8840 class FindTypoExprs : public DynamicRecursiveASTVisitor {
8841 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8843 public:
8844 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8845 : TypoExprs(TypoExprs) {}
8846 bool VisitTypoExpr(TypoExpr *TE) override {
8847 TypoExprs.insert(TE);
8848 return true;
8852 class TransformTypos : public TreeTransform<TransformTypos> {
8853 typedef TreeTransform<TransformTypos> BaseTransform;
8855 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8856 // process of being initialized.
8857 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8858 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8859 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8860 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8862 /// Emit diagnostics for all of the TypoExprs encountered.
8864 /// If the TypoExprs were successfully corrected, then the diagnostics should
8865 /// suggest the corrections. Otherwise the diagnostics will not suggest
8866 /// anything (having been passed an empty TypoCorrection).
8868 /// If we've failed to correct due to ambiguous corrections, we need to
8869 /// be sure to pass empty corrections and replacements. Otherwise it's
8870 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8871 /// and we don't want to report those diagnostics.
8872 void EmitAllDiagnostics(bool IsAmbiguous) {
8873 for (TypoExpr *TE : TypoExprs) {
8874 auto &State = SemaRef.getTypoExprState(TE);
8875 if (State.DiagHandler) {
8876 TypoCorrection TC = IsAmbiguous
8877 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8878 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8880 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8881 // TypoCorrection, replacing the existing decls. This ensures the right
8882 // NamedDecl is used in diagnostics e.g. in the case where overload
8883 // resolution was used to select one from several possible decls that
8884 // had been stored in the TypoCorrection.
8885 if (auto *ND = getDeclFromExpr(
8886 Replacement.isInvalid() ? nullptr : Replacement.get()))
8887 TC.setCorrectionDecl(ND);
8889 State.DiagHandler(TC);
8891 SemaRef.clearDelayedTypo(TE);
8895 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8896 /// We allow advancement of the correction stream by removing it from the
8897 /// TransformCache which allows `TransformTypoExpr` to advance during the
8898 /// next transformation attempt.
8900 /// Any substitution attempts for the previous TypoExprs (which must have been
8901 /// finished) will need to be retried since it's possible that they will now
8902 /// be invalid given the latest advancement.
8904 /// We need to be sure that we're making progress - it's possible that the
8905 /// tree is so malformed that the transform never makes it to the
8906 /// `TransformTypoExpr`.
8908 /// Returns true if there are any untried correction combinations.
8909 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8910 for (auto *TE : TypoExprs) {
8911 auto &State = SemaRef.getTypoExprState(TE);
8912 TransformCache.erase(TE);
8913 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8914 return false;
8915 if (!State.Consumer->finished())
8916 return true;
8917 State.Consumer->resetCorrectionStream();
8919 return false;
8922 NamedDecl *getDeclFromExpr(Expr *E) {
8923 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8924 E = OverloadResolution[OE];
8926 if (!E)
8927 return nullptr;
8928 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8929 return DRE->getFoundDecl();
8930 if (auto *ME = dyn_cast<MemberExpr>(E))
8931 return ME->getFoundDecl();
8932 // FIXME: Add any other expr types that could be seen by the delayed typo
8933 // correction TreeTransform for which the corresponding TypoCorrection could
8934 // contain multiple decls.
8935 return nullptr;
8938 ExprResult TryTransform(Expr *E) {
8939 Sema::SFINAETrap Trap(SemaRef);
8940 ExprResult Res = TransformExpr(E);
8941 if (Trap.hasErrorOccurred() || Res.isInvalid())
8942 return ExprError();
8944 return ExprFilter(Res.get());
8947 // Since correcting typos may intoduce new TypoExprs, this function
8948 // checks for new TypoExprs and recurses if it finds any. Note that it will
8949 // only succeed if it is able to correct all typos in the given expression.
8950 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8951 if (Res.isInvalid()) {
8952 return Res;
8954 // Check to see if any new TypoExprs were created. If so, we need to recurse
8955 // to check their validity.
8956 Expr *FixedExpr = Res.get();
8958 auto SavedTypoExprs = std::move(TypoExprs);
8959 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8960 TypoExprs.clear();
8961 AmbiguousTypoExprs.clear();
8963 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8964 if (!TypoExprs.empty()) {
8965 // Recurse to handle newly created TypoExprs. If we're not able to
8966 // handle them, discard these TypoExprs.
8967 ExprResult RecurResult =
8968 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8969 if (RecurResult.isInvalid()) {
8970 Res = ExprError();
8971 // Recursive corrections didn't work, wipe them away and don't add
8972 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8973 // since we don't want to clear them twice. Note: it's possible the
8974 // TypoExprs were created recursively and thus won't be in our
8975 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8976 auto &SemaTypoExprs = SemaRef.TypoExprs;
8977 for (auto *TE : TypoExprs) {
8978 TransformCache.erase(TE);
8979 SemaRef.clearDelayedTypo(TE);
8981 auto SI = find(SemaTypoExprs, TE);
8982 if (SI != SemaTypoExprs.end()) {
8983 SemaTypoExprs.erase(SI);
8986 } else {
8987 // TypoExpr is valid: add newly created TypoExprs since we were
8988 // able to correct them.
8989 Res = RecurResult;
8990 SavedTypoExprs.set_union(TypoExprs);
8994 TypoExprs = std::move(SavedTypoExprs);
8995 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8997 return Res;
9000 // Try to transform the given expression, looping through the correction
9001 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
9003 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
9004 // true and this method immediately will return an `ExprError`.
9005 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
9006 ExprResult Res;
9007 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
9008 SemaRef.TypoExprs.clear();
9010 while (true) {
9011 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
9013 // Recursion encountered an ambiguous correction. This means that our
9014 // correction itself is ambiguous, so stop now.
9015 if (IsAmbiguous)
9016 break;
9018 // If the transform is still valid after checking for any new typos,
9019 // it's good to go.
9020 if (!Res.isInvalid())
9021 break;
9023 // The transform was invalid, see if we have any TypoExprs with untried
9024 // correction candidates.
9025 if (!CheckAndAdvanceTypoExprCorrectionStreams())
9026 break;
9029 // If we found a valid result, double check to make sure it's not ambiguous.
9030 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
9031 auto SavedTransformCache =
9032 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
9034 // Ensure none of the TypoExprs have multiple typo correction candidates
9035 // with the same edit length that pass all the checks and filters.
9036 while (!AmbiguousTypoExprs.empty()) {
9037 auto TE = AmbiguousTypoExprs.back();
9039 // TryTransform itself can create new Typos, adding them to the TypoExpr map
9040 // and invalidating our TypoExprState, so always fetch it instead of storing.
9041 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
9043 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
9044 TypoCorrection Next;
9045 do {
9046 // Fetch the next correction by erasing the typo from the cache and calling
9047 // `TryTransform` which will iterate through corrections in
9048 // `TransformTypoExpr`.
9049 TransformCache.erase(TE);
9050 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
9052 if (!AmbigRes.isInvalid() || IsAmbiguous) {
9053 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
9054 SavedTransformCache.erase(TE);
9055 Res = ExprError();
9056 IsAmbiguous = true;
9057 break;
9059 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
9060 Next.getEditDistance(false) == TC.getEditDistance(false));
9062 if (IsAmbiguous)
9063 break;
9065 AmbiguousTypoExprs.remove(TE);
9066 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
9067 TransformCache[TE] = SavedTransformCache[TE];
9069 TransformCache = std::move(SavedTransformCache);
9072 // Wipe away any newly created TypoExprs that we don't know about. Since we
9073 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
9074 // possible if a `TypoExpr` is created during a transformation but then
9075 // fails before we can discover it.
9076 auto &SemaTypoExprs = SemaRef.TypoExprs;
9077 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
9078 auto TE = *Iterator;
9079 auto FI = find(TypoExprs, TE);
9080 if (FI != TypoExprs.end()) {
9081 Iterator++;
9082 continue;
9084 SemaRef.clearDelayedTypo(TE);
9085 Iterator = SemaTypoExprs.erase(Iterator);
9087 SemaRef.TypoExprs = std::move(SavedTypoExprs);
9089 return Res;
9092 public:
9093 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
9094 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
9096 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
9097 MultiExprArg Args,
9098 SourceLocation RParenLoc,
9099 Expr *ExecConfig = nullptr) {
9100 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
9101 RParenLoc, ExecConfig);
9102 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
9103 if (Result.isUsable()) {
9104 Expr *ResultCall = Result.get();
9105 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
9106 ResultCall = BE->getSubExpr();
9107 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
9108 OverloadResolution[OE] = CE->getCallee();
9111 return Result;
9114 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
9116 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
9118 ExprResult Transform(Expr *E) {
9119 bool IsAmbiguous = false;
9120 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
9122 if (!Res.isUsable())
9123 FindTypoExprs(TypoExprs).TraverseStmt(E);
9125 EmitAllDiagnostics(IsAmbiguous);
9127 return Res;
9130 ExprResult TransformTypoExpr(TypoExpr *E) {
9131 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
9132 // cached transformation result if there is one and the TypoExpr isn't the
9133 // first one that was encountered.
9134 auto &CacheEntry = TransformCache[E];
9135 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
9136 return CacheEntry;
9139 auto &State = SemaRef.getTypoExprState(E);
9140 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
9142 // For the first TypoExpr and an uncached TypoExpr, find the next likely
9143 // typo correction and return it.
9144 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
9145 if (InitDecl && TC.getFoundDecl() == InitDecl)
9146 continue;
9147 // FIXME: If we would typo-correct to an invalid declaration, it's
9148 // probably best to just suppress all errors from this typo correction.
9149 ExprResult NE = State.RecoveryHandler ?
9150 State.RecoveryHandler(SemaRef, E, TC) :
9151 attemptRecovery(SemaRef, *State.Consumer, TC);
9152 if (!NE.isInvalid()) {
9153 // Check whether there may be a second viable correction with the same
9154 // edit distance; if so, remember this TypoExpr may have an ambiguous
9155 // correction so it can be more thoroughly vetted later.
9156 TypoCorrection Next;
9157 if ((Next = State.Consumer->peekNextCorrection()) &&
9158 Next.getEditDistance(false) == TC.getEditDistance(false)) {
9159 AmbiguousTypoExprs.insert(E);
9160 } else {
9161 AmbiguousTypoExprs.remove(E);
9163 assert(!NE.isUnset() &&
9164 "Typo was transformed into a valid-but-null ExprResult");
9165 return CacheEntry = NE;
9168 return CacheEntry = ExprError();
9173 ExprResult
9174 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
9175 bool RecoverUncorrectedTypos,
9176 llvm::function_ref<ExprResult(Expr *)> Filter) {
9177 // If the current evaluation context indicates there are uncorrected typos
9178 // and the current expression isn't guaranteed to not have typos, try to
9179 // resolve any TypoExpr nodes that might be in the expression.
9180 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
9181 (E->isTypeDependent() || E->isValueDependent() ||
9182 E->isInstantiationDependent())) {
9183 auto TyposResolved = DelayedTypos.size();
9184 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
9185 TyposResolved -= DelayedTypos.size();
9186 if (Result.isInvalid() || Result.get() != E) {
9187 ExprEvalContexts.back().NumTypos -= TyposResolved;
9188 if (Result.isInvalid() && RecoverUncorrectedTypos) {
9189 struct TyposReplace : TreeTransform<TyposReplace> {
9190 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
9191 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
9192 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
9193 E->getEndLoc(), {});
9195 } TT(*this);
9196 return TT.TransformExpr(E);
9198 return Result;
9200 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
9202 return E;
9205 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
9206 bool DiscardedValue, bool IsConstexpr,
9207 bool IsTemplateArgument) {
9208 ExprResult FullExpr = FE;
9210 if (!FullExpr.get())
9211 return ExprError();
9213 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
9214 return ExprError();
9216 if (DiscardedValue) {
9217 // Top-level expressions default to 'id' when we're in a debugger.
9218 if (getLangOpts().DebuggerCastResultToId &&
9219 FullExpr.get()->getType() == Context.UnknownAnyTy) {
9220 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
9221 if (FullExpr.isInvalid())
9222 return ExprError();
9225 FullExpr = CheckPlaceholderExpr(FullExpr.get());
9226 if (FullExpr.isInvalid())
9227 return ExprError();
9229 FullExpr = IgnoredValueConversions(FullExpr.get());
9230 if (FullExpr.isInvalid())
9231 return ExprError();
9233 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
9236 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
9237 /*RecoverUncorrectedTypos=*/true);
9238 if (FullExpr.isInvalid())
9239 return ExprError();
9241 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
9243 // At the end of this full expression (which could be a deeply nested
9244 // lambda), if there is a potential capture within the nested lambda,
9245 // have the outer capture-able lambda try and capture it.
9246 // Consider the following code:
9247 // void f(int, int);
9248 // void f(const int&, double);
9249 // void foo() {
9250 // const int x = 10, y = 20;
9251 // auto L = [=](auto a) {
9252 // auto M = [=](auto b) {
9253 // f(x, b); <-- requires x to be captured by L and M
9254 // f(y, a); <-- requires y to be captured by L, but not all Ms
9255 // };
9256 // };
9257 // }
9259 // FIXME: Also consider what happens for something like this that involves
9260 // the gnu-extension statement-expressions or even lambda-init-captures:
9261 // void f() {
9262 // const int n = 0;
9263 // auto L = [&](auto a) {
9264 // +n + ({ 0; a; });
9265 // };
9266 // }
9268 // Here, we see +n, and then the full-expression 0; ends, so we don't
9269 // capture n (and instead remove it from our list of potential captures),
9270 // and then the full-expression +n + ({ 0; }); ends, but it's too late
9271 // for us to see that we need to capture n after all.
9273 LambdaScopeInfo *const CurrentLSI =
9274 getCurLambda(/*IgnoreCapturedRegions=*/true);
9275 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
9276 // even if CurContext is not a lambda call operator. Refer to that Bug Report
9277 // for an example of the code that might cause this asynchrony.
9278 // By ensuring we are in the context of a lambda's call operator
9279 // we can fix the bug (we only need to check whether we need to capture
9280 // if we are within a lambda's body); but per the comments in that
9281 // PR, a proper fix would entail :
9282 // "Alternative suggestion:
9283 // - Add to Sema an integer holding the smallest (outermost) scope
9284 // index that we are *lexically* within, and save/restore/set to
9285 // FunctionScopes.size() in InstantiatingTemplate's
9286 // constructor/destructor.
9287 // - Teach the handful of places that iterate over FunctionScopes to
9288 // stop at the outermost enclosing lexical scope."
9289 DeclContext *DC = CurContext;
9290 while (isa_and_nonnull<CapturedDecl>(DC))
9291 DC = DC->getParent();
9292 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
9293 if (IsInLambdaDeclContext && CurrentLSI &&
9294 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
9295 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
9296 *this);
9297 return MaybeCreateExprWithCleanups(FullExpr);
9300 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
9301 if (!FullStmt) return StmtError();
9303 return MaybeCreateStmtWithCleanups(FullStmt);
9306 Sema::IfExistsResult
9307 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
9308 CXXScopeSpec &SS,
9309 const DeclarationNameInfo &TargetNameInfo) {
9310 DeclarationName TargetName = TargetNameInfo.getName();
9311 if (!TargetName)
9312 return IER_DoesNotExist;
9314 // If the name itself is dependent, then the result is dependent.
9315 if (TargetName.isDependentName())
9316 return IER_Dependent;
9318 // Do the redeclaration lookup in the current scope.
9319 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
9320 RedeclarationKind::NotForRedeclaration);
9321 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType());
9322 R.suppressDiagnostics();
9324 switch (R.getResultKind()) {
9325 case LookupResult::Found:
9326 case LookupResult::FoundOverloaded:
9327 case LookupResult::FoundUnresolvedValue:
9328 case LookupResult::Ambiguous:
9329 return IER_Exists;
9331 case LookupResult::NotFound:
9332 return IER_DoesNotExist;
9334 case LookupResult::NotFoundInCurrentInstantiation:
9335 return IER_Dependent;
9338 llvm_unreachable("Invalid LookupResult Kind!");
9341 Sema::IfExistsResult
9342 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
9343 bool IsIfExists, CXXScopeSpec &SS,
9344 UnqualifiedId &Name) {
9345 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9347 // Check for an unexpanded parameter pack.
9348 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
9349 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
9350 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
9351 return IER_Error;
9353 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
9356 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
9357 return BuildExprRequirement(E, /*IsSimple=*/true,
9358 /*NoexceptLoc=*/SourceLocation(),
9359 /*ReturnTypeRequirement=*/{});
9362 concepts::Requirement *Sema::ActOnTypeRequirement(
9363 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
9364 const IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId) {
9365 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
9366 "Exactly one of TypeName and TemplateId must be specified.");
9367 TypeSourceInfo *TSI = nullptr;
9368 if (TypeName) {
9369 QualType T =
9370 CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9371 SS.getWithLocInContext(Context), *TypeName, NameLoc,
9372 &TSI, /*DeducedTSTContext=*/false);
9373 if (T.isNull())
9374 return nullptr;
9375 } else {
9376 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9377 TemplateId->NumArgs);
9378 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9379 TemplateId->TemplateKWLoc,
9380 TemplateId->Template, TemplateId->Name,
9381 TemplateId->TemplateNameLoc,
9382 TemplateId->LAngleLoc, ArgsPtr,
9383 TemplateId->RAngleLoc);
9384 if (T.isInvalid())
9385 return nullptr;
9386 if (GetTypeFromParser(T.get(), &TSI).isNull())
9387 return nullptr;
9389 return BuildTypeRequirement(TSI);
9392 concepts::Requirement *
9393 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9394 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9395 /*ReturnTypeRequirement=*/{});
9398 concepts::Requirement *
9399 Sema::ActOnCompoundRequirement(
9400 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9401 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9402 // C++2a [expr.prim.req.compound] p1.3.3
9403 // [..] the expression is deduced against an invented function template
9404 // F [...] F is a void function template with a single type template
9405 // parameter T declared with the constrained-parameter. Form a new
9406 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
9407 // around the constrained-parameter. F has a single parameter whose
9408 // type-specifier is cv T followed by the abstract-declarator. [...]
9410 // The cv part is done in the calling function - we get the concept with
9411 // arguments and the abstract declarator with the correct CV qualification and
9412 // have to synthesize T and the single parameter of F.
9413 auto &II = Context.Idents.get("expr-type");
9414 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9415 SourceLocation(),
9416 SourceLocation(), Depth,
9417 /*Index=*/0, &II,
9418 /*Typename=*/true,
9419 /*ParameterPack=*/false,
9420 /*HasTypeConstraint=*/true);
9422 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9423 /*EllipsisLoc=*/SourceLocation(),
9424 /*AllowUnexpandedPack=*/true))
9425 // Just produce a requirement with no type requirements.
9426 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9428 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9429 SourceLocation(),
9430 ArrayRef<NamedDecl *>(TParam),
9431 SourceLocation(),
9432 /*RequiresClause=*/nullptr);
9433 return BuildExprRequirement(
9434 E, /*IsSimple=*/false, NoexceptLoc,
9435 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9438 concepts::ExprRequirement *
9439 Sema::BuildExprRequirement(
9440 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9441 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9442 auto Status = concepts::ExprRequirement::SS_Satisfied;
9443 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9444 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9445 ReturnTypeRequirement.isDependent())
9446 Status = concepts::ExprRequirement::SS_Dependent;
9447 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9448 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9449 else if (ReturnTypeRequirement.isSubstitutionFailure())
9450 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9451 else if (ReturnTypeRequirement.isTypeConstraint()) {
9452 // C++2a [expr.prim.req]p1.3.3
9453 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9454 // be satisfied.
9455 TemplateParameterList *TPL =
9456 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9457 QualType MatchedType =
9458 Context.getReferenceQualifiedType(E).getCanonicalType();
9459 llvm::SmallVector<TemplateArgument, 1> Args;
9460 Args.push_back(TemplateArgument(MatchedType));
9462 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9464 MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false);
9465 MLTAL.addOuterRetainedLevels(TPL->getDepth());
9466 const TypeConstraint *TC = Param->getTypeConstraint();
9467 assert(TC && "Type Constraint cannot be null here");
9468 auto *IDC = TC->getImmediatelyDeclaredConstraint();
9469 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9470 ExprResult Constraint = SubstExpr(IDC, MLTAL);
9471 if (Constraint.isInvalid()) {
9472 return new (Context) concepts::ExprRequirement(
9473 createSubstDiagAt(IDC->getExprLoc(),
9474 [&](llvm::raw_ostream &OS) {
9475 IDC->printPretty(OS, /*Helper=*/nullptr,
9476 getPrintingPolicy());
9478 IsSimple, NoexceptLoc, ReturnTypeRequirement);
9480 SubstitutedConstraintExpr =
9481 cast<ConceptSpecializationExpr>(Constraint.get());
9482 if (!SubstitutedConstraintExpr->isSatisfied())
9483 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9485 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9486 ReturnTypeRequirement, Status,
9487 SubstitutedConstraintExpr);
9490 concepts::ExprRequirement *
9491 Sema::BuildExprRequirement(
9492 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9493 bool IsSimple, SourceLocation NoexceptLoc,
9494 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9495 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9496 IsSimple, NoexceptLoc,
9497 ReturnTypeRequirement);
9500 concepts::TypeRequirement *
9501 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9502 return new (Context) concepts::TypeRequirement(Type);
9505 concepts::TypeRequirement *
9506 Sema::BuildTypeRequirement(
9507 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9508 return new (Context) concepts::TypeRequirement(SubstDiag);
9511 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9512 return BuildNestedRequirement(Constraint);
9515 concepts::NestedRequirement *
9516 Sema::BuildNestedRequirement(Expr *Constraint) {
9517 ConstraintSatisfaction Satisfaction;
9518 if (!Constraint->isInstantiationDependent() &&
9519 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9520 Constraint->getSourceRange(), Satisfaction))
9521 return nullptr;
9522 return new (Context) concepts::NestedRequirement(Context, Constraint,
9523 Satisfaction);
9526 concepts::NestedRequirement *
9527 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9528 const ASTConstraintSatisfaction &Satisfaction) {
9529 return new (Context) concepts::NestedRequirement(
9530 InvalidConstraintEntity,
9531 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9534 RequiresExprBodyDecl *
9535 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9536 ArrayRef<ParmVarDecl *> LocalParameters,
9537 Scope *BodyScope) {
9538 assert(BodyScope);
9540 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9541 RequiresKWLoc);
9543 PushDeclContext(BodyScope, Body);
9545 for (ParmVarDecl *Param : LocalParameters) {
9546 if (Param->getType()->isVoidType()) {
9547 if (LocalParameters.size() > 1) {
9548 Diag(Param->getBeginLoc(), diag::err_void_only_param);
9549 Param->setType(Context.IntTy);
9550 } else if (Param->getIdentifier()) {
9551 Diag(Param->getBeginLoc(), diag::err_param_with_void_type);
9552 Param->setType(Context.IntTy);
9553 } else if (Param->getType().hasQualifiers()) {
9554 Diag(Param->getBeginLoc(), diag::err_void_param_qualified);
9556 } else if (Param->hasDefaultArg()) {
9557 // C++2a [expr.prim.req] p4
9558 // [...] A local parameter of a requires-expression shall not have a
9559 // default argument. [...]
9560 Diag(Param->getDefaultArgRange().getBegin(),
9561 diag::err_requires_expr_local_parameter_default_argument);
9562 // Ignore default argument and move on
9563 } else if (Param->isExplicitObjectParameter()) {
9564 // C++23 [dcl.fct]p6:
9565 // An explicit-object-parameter-declaration is a parameter-declaration
9566 // with a this specifier. An explicit-object-parameter-declaration
9567 // shall appear only as the first parameter-declaration of a
9568 // parameter-declaration-list of either:
9569 // - a member-declarator that declares a member function, or
9570 // - a lambda-declarator.
9572 // The parameter-declaration-list of a requires-expression is not such
9573 // a context.
9574 Diag(Param->getExplicitObjectParamThisLoc(),
9575 diag::err_requires_expr_explicit_object_parameter);
9576 Param->setExplicitObjectParameterLoc(SourceLocation());
9579 Param->setDeclContext(Body);
9580 // If this has an identifier, add it to the scope stack.
9581 if (Param->getIdentifier()) {
9582 CheckShadow(BodyScope, Param);
9583 PushOnScopeChains(Param, BodyScope);
9586 return Body;
9589 void Sema::ActOnFinishRequiresExpr() {
9590 assert(CurContext && "DeclContext imbalance!");
9591 CurContext = CurContext->getLexicalParent();
9592 assert(CurContext && "Popped translation unit!");
9595 ExprResult Sema::ActOnRequiresExpr(
9596 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9597 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9598 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9599 SourceLocation ClosingBraceLoc) {
9600 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9601 LocalParameters, RParenLoc, Requirements,
9602 ClosingBraceLoc);
9603 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9604 return ExprError();
9605 return RE;