[LoongArch][Clang] Make the parameters and return value of {x,}vorn.v builti ns ...
[llvm-project.git] / lldb / source / Core / Disassembler.cpp
blob68e52144eb6ef83333f68c7f4433478d5d8f886c
1 //===-- Disassembler.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "lldb/Core/Disassembler.h"
11 #include "lldb/Core/AddressRange.h"
12 #include "lldb/Core/Debugger.h"
13 #include "lldb/Core/EmulateInstruction.h"
14 #include "lldb/Core/Mangled.h"
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/ModuleList.h"
17 #include "lldb/Core/PluginManager.h"
18 #include "lldb/Core/SourceManager.h"
19 #include "lldb/Host/FileSystem.h"
20 #include "lldb/Interpreter/OptionValue.h"
21 #include "lldb/Interpreter/OptionValueArray.h"
22 #include "lldb/Interpreter/OptionValueDictionary.h"
23 #include "lldb/Interpreter/OptionValueRegex.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/OptionValueUInt64.h"
26 #include "lldb/Symbol/Function.h"
27 #include "lldb/Symbol/Symbol.h"
28 #include "lldb/Symbol/SymbolContext.h"
29 #include "lldb/Target/ExecutionContext.h"
30 #include "lldb/Target/SectionLoadList.h"
31 #include "lldb/Target/StackFrame.h"
32 #include "lldb/Target/Target.h"
33 #include "lldb/Target/Thread.h"
34 #include "lldb/Utility/DataBufferHeap.h"
35 #include "lldb/Utility/DataExtractor.h"
36 #include "lldb/Utility/RegularExpression.h"
37 #include "lldb/Utility/Status.h"
38 #include "lldb/Utility/Stream.h"
39 #include "lldb/Utility/StreamString.h"
40 #include "lldb/Utility/Timer.h"
41 #include "lldb/lldb-private-enumerations.h"
42 #include "lldb/lldb-private-interfaces.h"
43 #include "lldb/lldb-private-types.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/TargetParser/Triple.h"
47 #include <cstdint>
48 #include <cstring>
49 #include <utility>
51 #include <cassert>
53 #define DEFAULT_DISASM_BYTE_SIZE 32
55 using namespace lldb;
56 using namespace lldb_private;
58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch,
59 const char *flavor, const char *cpu,
60 const char *features,
61 const char *plugin_name) {
62 LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
63 arch.GetArchitectureName(), plugin_name);
65 DisassemblerCreateInstance create_callback = nullptr;
67 if (plugin_name) {
68 create_callback =
69 PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name);
70 if (create_callback) {
71 if (auto disasm_sp = create_callback(arch, flavor, cpu, features))
72 return disasm_sp;
74 } else {
75 for (uint32_t idx = 0;
76 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(
77 idx)) != nullptr;
78 ++idx) {
79 if (auto disasm_sp = create_callback(arch, flavor, cpu, features))
80 return disasm_sp;
83 return DisassemblerSP();
86 DisassemblerSP Disassembler::FindPluginForTarget(
87 const Target &target, const ArchSpec &arch, const char *flavor,
88 const char *cpu, const char *features, const char *plugin_name) {
89 if (!flavor) {
90 // FIXME - we don't have the mechanism in place to do per-architecture
91 // settings. But since we know that for now we only support flavors on x86
92 // & x86_64,
93 if (arch.GetTriple().getArch() == llvm::Triple::x86 ||
94 arch.GetTriple().getArch() == llvm::Triple::x86_64)
95 flavor = target.GetDisassemblyFlavor();
97 if (!cpu)
98 cpu = target.GetDisassemblyCPU();
99 if (!features)
100 features = target.GetDisassemblyFeatures();
102 return FindPlugin(arch, flavor, cpu, features, plugin_name);
105 static Address ResolveAddress(Target &target, const Address &addr) {
106 if (!addr.IsSectionOffset()) {
107 Address resolved_addr;
108 // If we weren't passed in a section offset address range, try and resolve
109 // it to something
110 bool is_resolved = target.GetSectionLoadList().IsEmpty()
111 ? target.GetImages().ResolveFileAddress(
112 addr.GetOffset(), resolved_addr)
113 : target.GetSectionLoadList().ResolveLoadAddress(
114 addr.GetOffset(), resolved_addr);
116 // We weren't able to resolve the address, just treat it as a raw address
117 if (is_resolved && resolved_addr.IsValid())
118 return resolved_addr;
120 return addr;
123 lldb::DisassemblerSP Disassembler::DisassembleRange(
124 const ArchSpec &arch, const char *plugin_name, const char *flavor,
125 const char *cpu, const char *features, Target &target,
126 const AddressRange &range, bool force_live_memory) {
127 if (range.GetByteSize() <= 0)
128 return {};
130 if (!range.GetBaseAddress().IsValid())
131 return {};
133 lldb::DisassemblerSP disasm_sp = Disassembler::FindPluginForTarget(
134 target, arch, flavor, cpu, features, plugin_name);
136 if (!disasm_sp)
137 return {};
139 const size_t bytes_disassembled = disasm_sp->ParseInstructions(
140 target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()},
141 nullptr, force_live_memory);
142 if (bytes_disassembled == 0)
143 return {};
145 return disasm_sp;
148 lldb::DisassemblerSP
149 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
150 const char *flavor, const char *cpu,
151 const char *features, const Address &start,
152 const void *src, size_t src_len,
153 uint32_t num_instructions, bool data_from_file) {
154 if (!src)
155 return {};
157 lldb::DisassemblerSP disasm_sp =
158 Disassembler::FindPlugin(arch, flavor, cpu, features, plugin_name);
160 if (!disasm_sp)
161 return {};
163 DataExtractor data(src, src_len, arch.GetByteOrder(),
164 arch.GetAddressByteSize());
166 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false,
167 data_from_file);
168 return disasm_sp;
171 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
172 const char *plugin_name, const char *flavor,
173 const char *cpu, const char *features,
174 const ExecutionContext &exe_ctx,
175 const Address &address, Limit limit,
176 bool mixed_source_and_assembly,
177 uint32_t num_mixed_context_lines,
178 uint32_t options, Stream &strm) {
179 if (!exe_ctx.GetTargetPtr())
180 return false;
182 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget(
183 exe_ctx.GetTargetRef(), arch, flavor, cpu, features, plugin_name));
184 if (!disasm_sp)
185 return false;
187 const bool force_live_memory = true;
188 size_t bytes_disassembled = disasm_sp->ParseInstructions(
189 exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory);
190 if (bytes_disassembled == 0)
191 return false;
193 disasm_sp->PrintInstructions(debugger, arch, exe_ctx,
194 mixed_source_and_assembly,
195 num_mixed_context_lines, options, strm);
196 return true;
199 Disassembler::SourceLine
200 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) {
201 if (!sc.function)
202 return {};
204 if (!sc.line_entry.IsValid())
205 return {};
207 LineEntry prologue_end_line = sc.line_entry;
208 SupportFileSP func_decl_file_sp;
209 uint32_t func_decl_line;
210 sc.function->GetStartLineSourceInfo(func_decl_file_sp, func_decl_line);
212 if (!func_decl_file_sp)
213 return {};
214 if (!func_decl_file_sp->Equal(*prologue_end_line.file_sp,
215 SupportFile::eEqualFileSpecAndChecksumIfSet) &&
216 !func_decl_file_sp->Equal(*prologue_end_line.original_file_sp,
217 SupportFile::eEqualFileSpecAndChecksumIfSet))
218 return {};
220 SourceLine decl_line;
221 decl_line.file = func_decl_file_sp->GetSpecOnly();
222 decl_line.line = func_decl_line;
223 // TODO: Do we care about column on these entries? If so, we need to plumb
224 // that through GetStartLineSourceInfo.
225 decl_line.column = 0;
226 return decl_line;
229 void Disassembler::AddLineToSourceLineTables(
230 SourceLine &line,
231 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) {
232 if (line.IsValid()) {
233 auto source_lines_seen_pos = source_lines_seen.find(line.file);
234 if (source_lines_seen_pos == source_lines_seen.end()) {
235 std::set<uint32_t> lines;
236 lines.insert(line.line);
237 source_lines_seen.emplace(line.file, lines);
238 } else {
239 source_lines_seen_pos->second.insert(line.line);
244 bool Disassembler::ElideMixedSourceAndDisassemblyLine(
245 const ExecutionContext &exe_ctx, const SymbolContext &sc,
246 SourceLine &line) {
248 // TODO: should we also check target.process.thread.step-avoid-libraries ?
250 const RegularExpression *avoid_regex = nullptr;
252 // Skip any line #0 entries - they are implementation details
253 if (line.line == 0)
254 return true;
256 ThreadSP thread_sp = exe_ctx.GetThreadSP();
257 if (thread_sp) {
258 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp();
259 } else {
260 TargetSP target_sp = exe_ctx.GetTargetSP();
261 if (target_sp) {
262 Status error;
263 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue(
264 &exe_ctx, "target.process.thread.step-avoid-regexp", error);
265 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) {
266 OptionValueRegex *re = value_sp->GetAsRegex();
267 if (re) {
268 avoid_regex = re->GetCurrentValue();
273 if (avoid_regex && sc.symbol != nullptr) {
274 const char *function_name =
275 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments)
276 .GetCString();
277 if (function_name && avoid_regex->Execute(function_name)) {
278 // skip this source line
279 return true;
282 // don't skip this source line
283 return false;
286 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch,
287 const ExecutionContext &exe_ctx,
288 bool mixed_source_and_assembly,
289 uint32_t num_mixed_context_lines,
290 uint32_t options, Stream &strm) {
291 // We got some things disassembled...
292 size_t num_instructions_found = GetInstructionList().GetSize();
294 const uint32_t max_opcode_byte_size =
295 GetInstructionList().GetMaxOpcocdeByteSize();
296 SymbolContext sc;
297 SymbolContext prev_sc;
298 AddressRange current_source_line_range;
299 const Address *pc_addr_ptr = nullptr;
300 StackFrame *frame = exe_ctx.GetFramePtr();
302 TargetSP target_sp(exe_ctx.GetTargetSP());
303 SourceManager &source_manager =
304 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager();
306 if (frame) {
307 pc_addr_ptr = &frame->GetFrameCodeAddress();
309 const uint32_t scope =
310 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
311 const bool use_inline_block_range = false;
313 const FormatEntity::Entry *disassembly_format = nullptr;
314 FormatEntity::Entry format;
315 if (exe_ctx.HasTargetScope()) {
316 disassembly_format =
317 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat();
318 } else {
319 FormatEntity::Parse("${addr}: ", format);
320 disassembly_format = &format;
323 // First pass: step through the list of instructions, find how long the
324 // initial addresses strings are, insert padding in the second pass so the
325 // opcodes all line up nicely.
327 // Also build up the source line mapping if this is mixed source & assembly
328 // mode. Calculate the source line for each assembly instruction (eliding
329 // inlined functions which the user wants to skip).
331 std::map<FileSpec, std::set<uint32_t>> source_lines_seen;
332 Symbol *previous_symbol = nullptr;
334 size_t address_text_size = 0;
335 for (size_t i = 0; i < num_instructions_found; ++i) {
336 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
337 if (inst) {
338 const Address &addr = inst->GetAddress();
339 ModuleSP module_sp(addr.GetModule());
340 if (module_sp) {
341 const SymbolContextItem resolve_mask = eSymbolContextFunction |
342 eSymbolContextSymbol |
343 eSymbolContextLineEntry;
344 uint32_t resolved_mask =
345 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc);
346 if (resolved_mask) {
347 StreamString strmstr;
348 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr,
349 &exe_ctx, &addr, strmstr);
350 size_t cur_line = strmstr.GetSizeOfLastLine();
351 if (cur_line > address_text_size)
352 address_text_size = cur_line;
354 // Add entries to our "source_lines_seen" map+set which list which
355 // sources lines occur in this disassembly session. We will print
356 // lines of context around a source line, but we don't want to print
357 // a source line that has a line table entry of its own - we'll leave
358 // that source line to be printed when it actually occurs in the
359 // disassembly.
361 if (mixed_source_and_assembly && sc.line_entry.IsValid()) {
362 if (sc.symbol != previous_symbol) {
363 SourceLine decl_line = GetFunctionDeclLineEntry(sc);
364 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line))
365 AddLineToSourceLineTables(decl_line, source_lines_seen);
367 if (sc.line_entry.IsValid()) {
368 SourceLine this_line;
369 this_line.file = sc.line_entry.GetFile();
370 this_line.line = sc.line_entry.line;
371 this_line.column = sc.line_entry.column;
372 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line))
373 AddLineToSourceLineTables(this_line, source_lines_seen);
377 sc.Clear(false);
382 previous_symbol = nullptr;
383 SourceLine previous_line;
384 for (size_t i = 0; i < num_instructions_found; ++i) {
385 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
387 if (inst) {
388 const Address &addr = inst->GetAddress();
389 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
390 SourceLinesToDisplay source_lines_to_display;
392 prev_sc = sc;
394 ModuleSP module_sp(addr.GetModule());
395 if (module_sp) {
396 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(
397 addr, eSymbolContextEverything, sc);
398 if (resolved_mask) {
399 if (mixed_source_and_assembly) {
401 // If we've started a new function (non-inlined), print all of the
402 // source lines from the function declaration until the first line
403 // table entry - typically the opening curly brace of the function.
404 if (previous_symbol != sc.symbol) {
405 // The default disassembly format puts an extra blank line
406 // between functions - so when we're displaying the source
407 // context for a function, we don't want to add a blank line
408 // after the source context or we'll end up with two of them.
409 if (previous_symbol != nullptr)
410 source_lines_to_display.print_source_context_end_eol = false;
412 previous_symbol = sc.symbol;
413 if (sc.function && sc.line_entry.IsValid()) {
414 LineEntry prologue_end_line = sc.line_entry;
415 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
416 prologue_end_line)) {
417 SupportFileSP func_decl_file_sp;
418 uint32_t func_decl_line;
419 sc.function->GetStartLineSourceInfo(func_decl_file_sp,
420 func_decl_line);
421 if (func_decl_file_sp &&
422 (func_decl_file_sp->Equal(
423 *prologue_end_line.file_sp,
424 SupportFile::eEqualFileSpecAndChecksumIfSet) ||
425 func_decl_file_sp->Equal(
426 *prologue_end_line.original_file_sp,
427 SupportFile::eEqualFileSpecAndChecksumIfSet))) {
428 // Add all the lines between the function declaration and
429 // the first non-prologue source line to the list of lines
430 // to print.
431 for (uint32_t lineno = func_decl_line;
432 lineno <= prologue_end_line.line; lineno++) {
433 SourceLine this_line;
434 this_line.file = func_decl_file_sp->GetSpecOnly();
435 this_line.line = lineno;
436 source_lines_to_display.lines.push_back(this_line);
438 // Mark the last line as the "current" one. Usually this
439 // is the open curly brace.
440 if (source_lines_to_display.lines.size() > 0)
441 source_lines_to_display.current_source_line =
442 source_lines_to_display.lines.size() - 1;
446 sc.GetAddressRange(scope, 0, use_inline_block_range,
447 current_source_line_range);
450 // If we've left a previous source line's address range, print a
451 // new source line
452 if (!current_source_line_range.ContainsFileAddress(addr)) {
453 sc.GetAddressRange(scope, 0, use_inline_block_range,
454 current_source_line_range);
456 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) {
457 SourceLine this_line;
458 this_line.file = sc.line_entry.GetFile();
459 this_line.line = sc.line_entry.line;
461 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
462 this_line)) {
463 // Only print this source line if it is different from the
464 // last source line we printed. There may have been inlined
465 // functions between these lines that we elided, resulting in
466 // the same line being printed twice in a row for a
467 // contiguous block of assembly instructions.
468 if (this_line != previous_line) {
470 std::vector<uint32_t> previous_lines;
471 for (uint32_t i = 0;
472 i < num_mixed_context_lines &&
473 (this_line.line - num_mixed_context_lines) > 0;
474 i++) {
475 uint32_t line =
476 this_line.line - num_mixed_context_lines + i;
477 auto pos = source_lines_seen.find(this_line.file);
478 if (pos != source_lines_seen.end()) {
479 if (pos->second.count(line) == 1) {
480 previous_lines.clear();
481 } else {
482 previous_lines.push_back(line);
486 for (size_t i = 0; i < previous_lines.size(); i++) {
487 SourceLine previous_line;
488 previous_line.file = this_line.file;
489 previous_line.line = previous_lines[i];
490 auto pos = source_lines_seen.find(previous_line.file);
491 if (pos != source_lines_seen.end()) {
492 pos->second.insert(previous_line.line);
494 source_lines_to_display.lines.push_back(previous_line);
497 source_lines_to_display.lines.push_back(this_line);
498 source_lines_to_display.current_source_line =
499 source_lines_to_display.lines.size() - 1;
501 for (uint32_t i = 0; i < num_mixed_context_lines; i++) {
502 SourceLine next_line;
503 next_line.file = this_line.file;
504 next_line.line = this_line.line + i + 1;
505 auto pos = source_lines_seen.find(next_line.file);
506 if (pos != source_lines_seen.end()) {
507 if (pos->second.count(next_line.line) == 1)
508 break;
509 pos->second.insert(next_line.line);
511 source_lines_to_display.lines.push_back(next_line);
514 previous_line = this_line;
519 } else {
520 sc.Clear(true);
524 if (source_lines_to_display.lines.size() > 0) {
525 strm.EOL();
526 for (size_t idx = 0; idx < source_lines_to_display.lines.size();
527 idx++) {
528 SourceLine ln = source_lines_to_display.lines[idx];
529 const char *line_highlight = "";
530 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) {
531 line_highlight = "->";
532 } else if (idx == source_lines_to_display.current_source_line) {
533 line_highlight = "**";
535 source_manager.DisplaySourceLinesWithLineNumbers(
536 std::make_shared<SupportFile>(ln.file), ln.line, ln.column, 0, 0,
537 line_highlight, &strm);
539 if (source_lines_to_display.print_source_context_end_eol)
540 strm.EOL();
543 const bool show_bytes = (options & eOptionShowBytes) != 0;
544 const bool show_control_flow_kind =
545 (options & eOptionShowControlFlowKind) != 0;
546 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes,
547 show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr,
548 address_text_size);
549 strm.EOL();
550 } else {
551 break;
556 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
557 StackFrame &frame, Stream &strm) {
558 AddressRange range;
559 SymbolContext sc(
560 frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
561 if (sc.function) {
562 range = sc.function->GetAddressRange();
563 } else if (sc.symbol && sc.symbol->ValueIsAddress()) {
564 range.GetBaseAddress() = sc.symbol->GetAddressRef();
565 range.SetByteSize(sc.symbol->GetByteSize());
566 } else {
567 range.GetBaseAddress() = frame.GetFrameCodeAddress();
570 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
571 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE);
573 Disassembler::Limit limit = {Disassembler::Limit::Bytes,
574 range.GetByteSize()};
575 if (limit.value == 0)
576 limit.value = DEFAULT_DISASM_BYTE_SIZE;
578 return Disassemble(debugger, arch, nullptr, nullptr, nullptr, nullptr,
579 frame, range.GetBaseAddress(), limit, false, 0, 0, strm);
582 Instruction::Instruction(const Address &address, AddressClass addr_class)
583 : m_address(address), m_address_class(addr_class), m_opcode(),
584 m_calculated_strings(false) {}
586 Instruction::~Instruction() = default;
588 AddressClass Instruction::GetAddressClass() {
589 if (m_address_class == AddressClass::eInvalid)
590 m_address_class = m_address.GetAddressClass();
591 return m_address_class;
594 const char *Instruction::GetNameForInstructionControlFlowKind(
595 lldb::InstructionControlFlowKind instruction_control_flow_kind) {
596 switch (instruction_control_flow_kind) {
597 case eInstructionControlFlowKindUnknown:
598 return "unknown";
599 case eInstructionControlFlowKindOther:
600 return "other";
601 case eInstructionControlFlowKindCall:
602 return "call";
603 case eInstructionControlFlowKindReturn:
604 return "return";
605 case eInstructionControlFlowKindJump:
606 return "jump";
607 case eInstructionControlFlowKindCondJump:
608 return "cond jump";
609 case eInstructionControlFlowKindFarCall:
610 return "far call";
611 case eInstructionControlFlowKindFarReturn:
612 return "far return";
613 case eInstructionControlFlowKindFarJump:
614 return "far jump";
616 llvm_unreachable("Fully covered switch above!");
619 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size,
620 bool show_address, bool show_bytes,
621 bool show_control_flow_kind,
622 const ExecutionContext *exe_ctx,
623 const SymbolContext *sym_ctx,
624 const SymbolContext *prev_sym_ctx,
625 const FormatEntity::Entry *disassembly_addr_format,
626 size_t max_address_text_size) {
627 size_t opcode_column_width = 7;
628 const size_t operand_column_width = 25;
630 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
632 StreamString ss;
634 if (show_address) {
635 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx,
636 prev_sym_ctx, exe_ctx, &m_address, ss);
637 ss.FillLastLineToColumn(max_address_text_size, ' ');
640 if (show_bytes) {
641 if (m_opcode.GetType() == Opcode::eTypeBytes) {
642 // x86_64 and i386 are the only ones that use bytes right now so pad out
643 // the byte dump to be able to always show 15 bytes (3 chars each) plus a
644 // space
645 if (max_opcode_byte_size > 0)
646 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
647 else
648 m_opcode.Dump(&ss, 15 * 3 + 1);
649 } else {
650 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000
651 // (10 spaces) plus two for padding...
652 if (max_opcode_byte_size > 0)
653 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
654 else
655 m_opcode.Dump(&ss, 12);
659 if (show_control_flow_kind) {
660 lldb::InstructionControlFlowKind instruction_control_flow_kind =
661 GetControlFlowKind(exe_ctx);
662 ss.Printf("%-12s", GetNameForInstructionControlFlowKind(
663 instruction_control_flow_kind));
666 bool show_color = false;
667 if (exe_ctx) {
668 if (TargetSP target_sp = exe_ctx->GetTargetSP()) {
669 show_color = target_sp->GetDebugger().GetUseColor();
672 const size_t opcode_pos = ss.GetSizeOfLastLine();
673 const std::string &opcode_name =
674 show_color ? m_markup_opcode_name : m_opcode_name;
675 const std::string &mnemonics = show_color ? m_markup_mnemonics : m_mnemonics;
677 // The default opcode size of 7 characters is plenty for most architectures
678 // but some like arm can pull out the occasional vqrshrun.s16. We won't get
679 // consistent column spacing in these cases, unfortunately. Also note that we
680 // need to directly use m_opcode_name here (instead of opcode_name) so we
681 // don't include color codes as characters.
682 if (m_opcode_name.length() >= opcode_column_width) {
683 opcode_column_width = m_opcode_name.length() + 1;
686 ss.PutCString(opcode_name);
687 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' ');
688 ss.PutCString(mnemonics);
690 if (!m_comment.empty()) {
691 ss.FillLastLineToColumn(
692 opcode_pos + opcode_column_width + operand_column_width, ' ');
693 ss.PutCString(" ; ");
694 ss.PutCString(m_comment);
696 s->PutCString(ss.GetString());
699 bool Instruction::DumpEmulation(const ArchSpec &arch) {
700 std::unique_ptr<EmulateInstruction> insn_emulator_up(
701 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
702 if (insn_emulator_up) {
703 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
704 return insn_emulator_up->EvaluateInstruction(0);
707 return false;
710 bool Instruction::CanSetBreakpoint () {
711 return !HasDelaySlot();
714 bool Instruction::HasDelaySlot() {
715 // Default is false.
716 return false;
719 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream &out_stream,
720 OptionValue::Type data_type) {
721 bool done = false;
722 char buffer[1024];
724 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type);
726 int idx = 0;
727 while (!done) {
728 if (!fgets(buffer, 1023, in_file)) {
729 out_stream.Printf(
730 "Instruction::ReadArray: Error reading file (fgets).\n");
731 option_value_sp.reset();
732 return option_value_sp;
735 std::string line(buffer);
737 size_t len = line.size();
738 if (line[len - 1] == '\n') {
739 line[len - 1] = '\0';
740 line.resize(len - 1);
743 if ((line.size() == 1) && line[0] == ']') {
744 done = true;
745 line.clear();
748 if (!line.empty()) {
749 std::string value;
750 static RegularExpression g_reg_exp(
751 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$"));
752 llvm::SmallVector<llvm::StringRef, 2> matches;
753 if (g_reg_exp.Execute(line, &matches))
754 value = matches[1].str();
755 else
756 value = line;
758 OptionValueSP data_value_sp;
759 switch (data_type) {
760 case OptionValue::eTypeUInt64:
761 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0);
762 data_value_sp->SetValueFromString(value);
763 break;
764 // Other types can be added later as needed.
765 default:
766 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
767 break;
770 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp);
771 ++idx;
775 return option_value_sp;
778 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream &out_stream) {
779 bool done = false;
780 char buffer[1024];
782 auto option_value_sp = std::make_shared<OptionValueDictionary>();
783 static constexpr llvm::StringLiteral encoding_key("data_encoding");
784 OptionValue::Type data_type = OptionValue::eTypeInvalid;
786 while (!done) {
787 // Read the next line in the file
788 if (!fgets(buffer, 1023, in_file)) {
789 out_stream.Printf(
790 "Instruction::ReadDictionary: Error reading file (fgets).\n");
791 option_value_sp.reset();
792 return option_value_sp;
795 // Check to see if the line contains the end-of-dictionary marker ("}")
796 std::string line(buffer);
798 size_t len = line.size();
799 if (line[len - 1] == '\n') {
800 line[len - 1] = '\0';
801 line.resize(len - 1);
804 if ((line.size() == 1) && (line[0] == '}')) {
805 done = true;
806 line.clear();
809 // Try to find a key-value pair in the current line and add it to the
810 // dictionary.
811 if (!line.empty()) {
812 static RegularExpression g_reg_exp(llvm::StringRef(
813 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"));
815 llvm::SmallVector<llvm::StringRef, 3> matches;
817 bool reg_exp_success = g_reg_exp.Execute(line, &matches);
818 std::string key;
819 std::string value;
820 if (reg_exp_success) {
821 key = matches[1].str();
822 value = matches[2].str();
823 } else {
824 out_stream.Printf("Instruction::ReadDictionary: Failure executing "
825 "regular expression.\n");
826 option_value_sp.reset();
827 return option_value_sp;
830 // Check value to see if it's the start of an array or dictionary.
832 lldb::OptionValueSP value_sp;
833 assert(value.empty() == false);
834 assert(key.empty() == false);
836 if (value[0] == '{') {
837 assert(value.size() == 1);
838 // value is a dictionary
839 value_sp = ReadDictionary(in_file, out_stream);
840 if (!value_sp) {
841 option_value_sp.reset();
842 return option_value_sp;
844 } else if (value[0] == '[') {
845 assert(value.size() == 1);
846 // value is an array
847 value_sp = ReadArray(in_file, out_stream, data_type);
848 if (!value_sp) {
849 option_value_sp.reset();
850 return option_value_sp;
852 // We've used the data_type to read an array; re-set the type to
853 // Invalid
854 data_type = OptionValue::eTypeInvalid;
855 } else if ((value[0] == '0') && (value[1] == 'x')) {
856 value_sp = std::make_shared<OptionValueUInt64>(0, 0);
857 value_sp->SetValueFromString(value);
858 } else {
859 size_t len = value.size();
860 if ((value[0] == '"') && (value[len - 1] == '"'))
861 value = value.substr(1, len - 2);
862 value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
865 if (key == encoding_key) {
866 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data
867 // indicating the data type of an upcoming array (usually the next bit
868 // of data to be read in).
869 if (llvm::StringRef(value) == "uint32_t")
870 data_type = OptionValue::eTypeUInt64;
871 } else
872 option_value_sp->GetAsDictionary()->SetValueForKey(key, value_sp,
873 false);
877 return option_value_sp;
880 bool Instruction::TestEmulation(Stream &out_stream, const char *file_name) {
881 if (!file_name) {
882 out_stream.Printf("Instruction::TestEmulation: Missing file_name.");
883 return false;
885 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r");
886 if (!test_file) {
887 out_stream.Printf(
888 "Instruction::TestEmulation: Attempt to open test file failed.");
889 return false;
892 char buffer[256];
893 if (!fgets(buffer, 255, test_file)) {
894 out_stream.Printf(
895 "Instruction::TestEmulation: Error reading first line of test file.\n");
896 fclose(test_file);
897 return false;
900 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) {
901 out_stream.Printf("Instructin::TestEmulation: Test file does not contain "
902 "emulation state dictionary\n");
903 fclose(test_file);
904 return false;
907 // Read all the test information from the test file into an
908 // OptionValueDictionary.
910 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream));
911 if (!data_dictionary_sp) {
912 out_stream.Printf(
913 "Instruction::TestEmulation: Error reading Dictionary Object.\n");
914 fclose(test_file);
915 return false;
918 fclose(test_file);
920 OptionValueDictionary *data_dictionary =
921 data_dictionary_sp->GetAsDictionary();
922 static constexpr llvm::StringLiteral description_key("assembly_string");
923 static constexpr llvm::StringLiteral triple_key("triple");
925 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key);
927 if (!value_sp) {
928 out_stream.Printf("Instruction::TestEmulation: Test file does not "
929 "contain description string.\n");
930 return false;
933 SetDescription(value_sp->GetValueAs<llvm::StringRef>().value_or(""));
935 value_sp = data_dictionary->GetValueForKey(triple_key);
936 if (!value_sp) {
937 out_stream.Printf(
938 "Instruction::TestEmulation: Test file does not contain triple.\n");
939 return false;
942 ArchSpec arch;
943 arch.SetTriple(
944 llvm::Triple(value_sp->GetValueAs<llvm::StringRef>().value_or("")));
946 bool success = false;
947 std::unique_ptr<EmulateInstruction> insn_emulator_up(
948 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
949 if (insn_emulator_up)
950 success =
951 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary);
953 if (success)
954 out_stream.Printf("Emulation test succeeded.");
955 else
956 out_stream.Printf("Emulation test failed.");
958 return success;
961 bool Instruction::Emulate(
962 const ArchSpec &arch, uint32_t evaluate_options, void *baton,
963 EmulateInstruction::ReadMemoryCallback read_mem_callback,
964 EmulateInstruction::WriteMemoryCallback write_mem_callback,
965 EmulateInstruction::ReadRegisterCallback read_reg_callback,
966 EmulateInstruction::WriteRegisterCallback write_reg_callback) {
967 std::unique_ptr<EmulateInstruction> insn_emulator_up(
968 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
969 if (insn_emulator_up) {
970 insn_emulator_up->SetBaton(baton);
971 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback,
972 read_reg_callback, write_reg_callback);
973 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
974 return insn_emulator_up->EvaluateInstruction(evaluate_options);
977 return false;
980 uint32_t Instruction::GetData(DataExtractor &data) {
981 return m_opcode.GetData(data);
984 InstructionList::InstructionList() : m_instructions() {}
986 InstructionList::~InstructionList() = default;
988 size_t InstructionList::GetSize() const { return m_instructions.size(); }
990 uint32_t InstructionList::GetMaxOpcocdeByteSize() const {
991 uint32_t max_inst_size = 0;
992 collection::const_iterator pos, end;
993 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end;
994 ++pos) {
995 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
996 if (max_inst_size < inst_size)
997 max_inst_size = inst_size;
999 return max_inst_size;
1002 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const {
1003 InstructionSP inst_sp;
1004 if (idx < m_instructions.size())
1005 inst_sp = m_instructions[idx];
1006 return inst_sp;
1009 InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) {
1010 uint32_t index = GetIndexOfInstructionAtAddress(address);
1011 if (index != UINT32_MAX)
1012 return GetInstructionAtIndex(index);
1013 return nullptr;
1016 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes,
1017 bool show_control_flow_kind,
1018 const ExecutionContext *exe_ctx) {
1019 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
1020 collection::const_iterator pos, begin, end;
1022 const FormatEntity::Entry *disassembly_format = nullptr;
1023 FormatEntity::Entry format;
1024 if (exe_ctx && exe_ctx->HasTargetScope()) {
1025 disassembly_format =
1026 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat();
1027 } else {
1028 FormatEntity::Parse("${addr}: ", format);
1029 disassembly_format = &format;
1032 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
1033 pos != end; ++pos) {
1034 if (pos != begin)
1035 s->EOL();
1036 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes,
1037 show_control_flow_kind, exe_ctx, nullptr, nullptr,
1038 disassembly_format, 0);
1042 void InstructionList::Clear() { m_instructions.clear(); }
1044 void InstructionList::Append(lldb::InstructionSP &inst_sp) {
1045 if (inst_sp)
1046 m_instructions.push_back(inst_sp);
1049 uint32_t
1050 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
1051 bool ignore_calls,
1052 bool *found_calls) const {
1053 size_t num_instructions = m_instructions.size();
1055 uint32_t next_branch = UINT32_MAX;
1057 if (found_calls)
1058 *found_calls = false;
1059 for (size_t i = start; i < num_instructions; i++) {
1060 if (m_instructions[i]->DoesBranch()) {
1061 if (ignore_calls && m_instructions[i]->IsCall()) {
1062 if (found_calls)
1063 *found_calls = true;
1064 continue;
1066 next_branch = i;
1067 break;
1071 return next_branch;
1074 uint32_t
1075 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) {
1076 size_t num_instructions = m_instructions.size();
1077 uint32_t index = UINT32_MAX;
1078 for (size_t i = 0; i < num_instructions; i++) {
1079 if (m_instructions[i]->GetAddress() == address) {
1080 index = i;
1081 break;
1084 return index;
1087 uint32_t
1088 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
1089 Target &target) {
1090 Address address;
1091 address.SetLoadAddress(load_addr, &target);
1092 return GetIndexOfInstructionAtAddress(address);
1095 size_t Disassembler::ParseInstructions(Target &target, Address start,
1096 Limit limit, Stream *error_strm_ptr,
1097 bool force_live_memory) {
1098 m_instruction_list.Clear();
1100 if (!start.IsValid())
1101 return 0;
1103 start = ResolveAddress(target, start);
1105 addr_t byte_size = limit.value;
1106 if (limit.kind == Limit::Instructions)
1107 byte_size *= m_arch.GetMaximumOpcodeByteSize();
1108 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0');
1110 Status error;
1111 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS;
1112 const size_t bytes_read =
1113 target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(),
1114 error, force_live_memory, &load_addr);
1115 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS;
1117 if (bytes_read == 0) {
1118 if (error_strm_ptr) {
1119 if (const char *error_cstr = error.AsCString())
1120 error_strm_ptr->Printf("error: %s\n", error_cstr);
1122 return 0;
1125 if (bytes_read != data_sp->GetByteSize())
1126 data_sp->SetByteSize(bytes_read);
1127 DataExtractor data(data_sp, m_arch.GetByteOrder(),
1128 m_arch.GetAddressByteSize());
1129 return DecodeInstructions(start, data, 0,
1130 limit.kind == Limit::Instructions ? limit.value
1131 : UINT32_MAX,
1132 false, data_from_file);
1135 // Disassembler copy constructor
1136 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor)
1137 : m_arch(arch), m_instruction_list(), m_flavor() {
1138 if (flavor == nullptr)
1139 m_flavor.assign("default");
1140 else
1141 m_flavor.assign(flavor);
1143 // If this is an arm variant that can only include thumb (T16, T32)
1144 // instructions, force the arch triple to be "thumbv.." instead of "armv..."
1145 if (arch.IsAlwaysThumbInstructions()) {
1146 std::string thumb_arch_name(arch.GetTriple().getArchName().str());
1147 // Replace "arm" with "thumb" so we get all thumb variants correct
1148 if (thumb_arch_name.size() > 3) {
1149 thumb_arch_name.erase(0, 3);
1150 thumb_arch_name.insert(0, "thumb");
1152 m_arch.SetTriple(thumb_arch_name.c_str());
1156 Disassembler::~Disassembler() = default;
1158 InstructionList &Disassembler::GetInstructionList() {
1159 return m_instruction_list;
1162 const InstructionList &Disassembler::GetInstructionList() const {
1163 return m_instruction_list;
1166 // Class PseudoInstruction
1168 PseudoInstruction::PseudoInstruction()
1169 : Instruction(Address(), AddressClass::eUnknown), m_description() {}
1171 PseudoInstruction::~PseudoInstruction() = default;
1173 bool PseudoInstruction::DoesBranch() {
1174 // This is NOT a valid question for a pseudo instruction.
1175 return false;
1178 bool PseudoInstruction::HasDelaySlot() {
1179 // This is NOT a valid question for a pseudo instruction.
1180 return false;
1183 bool PseudoInstruction::IsLoad() { return false; }
1185 bool PseudoInstruction::IsAuthenticated() { return false; }
1187 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler,
1188 const lldb_private::DataExtractor &data,
1189 lldb::offset_t data_offset) {
1190 return m_opcode.GetByteSize();
1193 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) {
1194 if (!opcode_data)
1195 return;
1197 switch (opcode_size) {
1198 case 8: {
1199 uint8_t value8 = *((uint8_t *)opcode_data);
1200 m_opcode.SetOpcode8(value8, eByteOrderInvalid);
1201 break;
1203 case 16: {
1204 uint16_t value16 = *((uint16_t *)opcode_data);
1205 m_opcode.SetOpcode16(value16, eByteOrderInvalid);
1206 break;
1208 case 32: {
1209 uint32_t value32 = *((uint32_t *)opcode_data);
1210 m_opcode.SetOpcode32(value32, eByteOrderInvalid);
1211 break;
1213 case 64: {
1214 uint64_t value64 = *((uint64_t *)opcode_data);
1215 m_opcode.SetOpcode64(value64, eByteOrderInvalid);
1216 break;
1218 default:
1219 break;
1223 void PseudoInstruction::SetDescription(llvm::StringRef description) {
1224 m_description = std::string(description);
1227 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) {
1228 Operand ret;
1229 ret.m_type = Type::Register;
1230 ret.m_register = r;
1231 return ret;
1234 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm,
1235 bool neg) {
1236 Operand ret;
1237 ret.m_type = Type::Immediate;
1238 ret.m_immediate = imm;
1239 ret.m_negative = neg;
1240 return ret;
1243 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) {
1244 Operand ret;
1245 ret.m_type = Type::Immediate;
1246 if (imm < 0) {
1247 ret.m_immediate = -imm;
1248 ret.m_negative = true;
1249 } else {
1250 ret.m_immediate = imm;
1251 ret.m_negative = false;
1253 return ret;
1256 Instruction::Operand
1257 Instruction::Operand::BuildDereference(const Operand &ref) {
1258 Operand ret;
1259 ret.m_type = Type::Dereference;
1260 ret.m_children = {ref};
1261 return ret;
1264 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs,
1265 const Operand &rhs) {
1266 Operand ret;
1267 ret.m_type = Type::Sum;
1268 ret.m_children = {lhs, rhs};
1269 return ret;
1272 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs,
1273 const Operand &rhs) {
1274 Operand ret;
1275 ret.m_type = Type::Product;
1276 ret.m_children = {lhs, rhs};
1277 return ret;
1280 std::function<bool(const Instruction::Operand &)>
1281 lldb_private::OperandMatchers::MatchBinaryOp(
1282 std::function<bool(const Instruction::Operand &)> base,
1283 std::function<bool(const Instruction::Operand &)> left,
1284 std::function<bool(const Instruction::Operand &)> right) {
1285 return [base, left, right](const Instruction::Operand &op) -> bool {
1286 return (base(op) && op.m_children.size() == 2 &&
1287 ((left(op.m_children[0]) && right(op.m_children[1])) ||
1288 (left(op.m_children[1]) && right(op.m_children[0]))));
1292 std::function<bool(const Instruction::Operand &)>
1293 lldb_private::OperandMatchers::MatchUnaryOp(
1294 std::function<bool(const Instruction::Operand &)> base,
1295 std::function<bool(const Instruction::Operand &)> child) {
1296 return [base, child](const Instruction::Operand &op) -> bool {
1297 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0]));
1301 std::function<bool(const Instruction::Operand &)>
1302 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) {
1303 return [&info](const Instruction::Operand &op) {
1304 return (op.m_type == Instruction::Operand::Type::Register &&
1305 (op.m_register == ConstString(info.name) ||
1306 op.m_register == ConstString(info.alt_name)));
1310 std::function<bool(const Instruction::Operand &)>
1311 lldb_private::OperandMatchers::FetchRegOp(ConstString &reg) {
1312 return [&reg](const Instruction::Operand &op) {
1313 if (op.m_type != Instruction::Operand::Type::Register) {
1314 return false;
1316 reg = op.m_register;
1317 return true;
1321 std::function<bool(const Instruction::Operand &)>
1322 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) {
1323 return [imm](const Instruction::Operand &op) {
1324 return (op.m_type == Instruction::Operand::Type::Immediate &&
1325 ((op.m_negative && op.m_immediate == (uint64_t)-imm) ||
1326 (!op.m_negative && op.m_immediate == (uint64_t)imm)));
1330 std::function<bool(const Instruction::Operand &)>
1331 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) {
1332 return [&imm](const Instruction::Operand &op) {
1333 if (op.m_type != Instruction::Operand::Type::Immediate) {
1334 return false;
1336 if (op.m_negative) {
1337 imm = -((int64_t)op.m_immediate);
1338 } else {
1339 imm = ((int64_t)op.m_immediate);
1341 return true;
1345 std::function<bool(const Instruction::Operand &)>
1346 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) {
1347 return [type](const Instruction::Operand &op) { return op.m_type == type; };