[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / AliasAnalysis.cpp
blob061a7e8e5c3497681f3f51cc6fcaa418d83971f2
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
33 #include "llvm/Analysis/ScopedNoAliasAA.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/AtomicOrdering.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include <cassert>
50 #include <functional>
51 #include <iterator>
53 #define DEBUG_TYPE "aa"
55 using namespace llvm;
57 STATISTIC(NumNoAlias, "Number of NoAlias results");
58 STATISTIC(NumMayAlias, "Number of MayAlias results");
59 STATISTIC(NumMustAlias, "Number of MustAlias results");
61 namespace llvm {
62 /// Allow disabling BasicAA from the AA results. This is particularly useful
63 /// when testing to isolate a single AA implementation.
64 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
65 } // namespace llvm
67 #ifndef NDEBUG
68 /// Print a trace of alias analysis queries and their results.
69 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
70 #else
71 static const bool EnableAATrace = false;
72 #endif
74 AAResults::AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
76 AAResults::AAResults(AAResults &&Arg)
77 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {}
79 AAResults::~AAResults() {}
81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
82 FunctionAnalysisManager::Invalidator &Inv) {
83 // AAResults preserves the AAManager by default, due to the stateless nature
84 // of AliasAnalysis. There is no need to check whether it has been preserved
85 // explicitly. Check if any module dependency was invalidated and caused the
86 // AAManager to be invalidated. Invalidate ourselves in that case.
87 auto PAC = PA.getChecker<AAManager>();
88 if (!PAC.preservedWhenStateless())
89 return true;
91 // Check if any of the function dependencies were invalidated, and invalidate
92 // ourselves in that case.
93 for (AnalysisKey *ID : AADeps)
94 if (Inv.invalidate(ID, F, PA))
95 return true;
97 // Everything we depend on is still fine, so are we. Nothing to invalidate.
98 return false;
101 //===----------------------------------------------------------------------===//
102 // Default chaining methods
103 //===----------------------------------------------------------------------===//
105 AliasResult AAResults::alias(const MemoryLocation &LocA,
106 const MemoryLocation &LocB) {
107 SimpleAAQueryInfo AAQIP(*this);
108 return alias(LocA, LocB, AAQIP, nullptr);
111 AliasResult AAResults::alias(const MemoryLocation &LocA,
112 const MemoryLocation &LocB, AAQueryInfo &AAQI,
113 const Instruction *CtxI) {
114 AliasResult Result = AliasResult::MayAlias;
116 if (EnableAATrace) {
117 for (unsigned I = 0; I < AAQI.Depth; ++I)
118 dbgs() << " ";
119 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
120 << *LocB.Ptr << " @ " << LocB.Size << "\n";
123 AAQI.Depth++;
124 for (const auto &AA : AAs) {
125 Result = AA->alias(LocA, LocB, AAQI, CtxI);
126 if (Result != AliasResult::MayAlias)
127 break;
129 AAQI.Depth--;
131 if (EnableAATrace) {
132 for (unsigned I = 0; I < AAQI.Depth; ++I)
133 dbgs() << " ";
134 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
135 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
138 if (AAQI.Depth == 0) {
139 if (Result == AliasResult::NoAlias)
140 ++NumNoAlias;
141 else if (Result == AliasResult::MustAlias)
142 ++NumMustAlias;
143 else
144 ++NumMayAlias;
146 return Result;
149 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
150 bool IgnoreLocals) {
151 SimpleAAQueryInfo AAQIP(*this);
152 return getModRefInfoMask(Loc, AAQIP, IgnoreLocals);
155 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
156 AAQueryInfo &AAQI, bool IgnoreLocals) {
157 ModRefInfo Result = ModRefInfo::ModRef;
159 for (const auto &AA : AAs) {
160 Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals);
162 // Early-exit the moment we reach the bottom of the lattice.
163 if (isNoModRef(Result))
164 return ModRefInfo::NoModRef;
167 return Result;
170 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
171 ModRefInfo Result = ModRefInfo::ModRef;
173 for (const auto &AA : AAs) {
174 Result &= AA->getArgModRefInfo(Call, ArgIdx);
176 // Early-exit the moment we reach the bottom of the lattice.
177 if (isNoModRef(Result))
178 return ModRefInfo::NoModRef;
181 return Result;
184 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
185 const CallBase *Call2) {
186 SimpleAAQueryInfo AAQIP(*this);
187 return getModRefInfo(I, Call2, AAQIP);
190 ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2,
191 AAQueryInfo &AAQI) {
192 // We may have two calls.
193 if (const auto *Call1 = dyn_cast<CallBase>(I)) {
194 // Check if the two calls modify the same memory.
195 return getModRefInfo(Call1, Call2, AAQI);
197 // If this is a fence, just return ModRef.
198 if (I->isFenceLike())
199 return ModRefInfo::ModRef;
200 // Otherwise, check if the call modifies or references the
201 // location this memory access defines. The best we can say
202 // is that if the call references what this instruction
203 // defines, it must be clobbered by this location.
204 const MemoryLocation DefLoc = MemoryLocation::get(I);
205 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
206 if (isModOrRefSet(MR))
207 return ModRefInfo::ModRef;
208 return ModRefInfo::NoModRef;
211 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
212 const MemoryLocation &Loc,
213 AAQueryInfo &AAQI) {
214 ModRefInfo Result = ModRefInfo::ModRef;
216 for (const auto &AA : AAs) {
217 Result &= AA->getModRefInfo(Call, Loc, AAQI);
219 // Early-exit the moment we reach the bottom of the lattice.
220 if (isNoModRef(Result))
221 return ModRefInfo::NoModRef;
224 // Try to refine the mod-ref info further using other API entry points to the
225 // aggregate set of AA results.
227 // We can completely ignore inaccessible memory here, because MemoryLocations
228 // can only reference accessible memory.
229 auto ME = getMemoryEffects(Call, AAQI)
230 .getWithoutLoc(IRMemLocation::InaccessibleMem);
231 if (ME.doesNotAccessMemory())
232 return ModRefInfo::NoModRef;
234 ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem);
235 ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef();
236 if ((ArgMR | OtherMR) != OtherMR) {
237 // Refine the modref info for argument memory. We only bother to do this
238 // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact
239 // on the final result.
240 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
241 for (const auto &I : llvm::enumerate(Call->args())) {
242 const Value *Arg = I.value();
243 if (!Arg->getType()->isPointerTy())
244 continue;
245 unsigned ArgIdx = I.index();
246 MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI);
247 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call);
248 if (ArgAlias != AliasResult::NoAlias)
249 AllArgsMask |= getArgModRefInfo(Call, ArgIdx);
251 ArgMR &= AllArgsMask;
254 Result &= ArgMR | OtherMR;
256 // Apply the ModRef mask. This ensures that if Loc is a constant memory
257 // location, we take into account the fact that the call definitely could not
258 // modify the memory location.
259 if (!isNoModRef(Result))
260 Result &= getModRefInfoMask(Loc);
262 return Result;
265 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
266 const CallBase *Call2, AAQueryInfo &AAQI) {
267 ModRefInfo Result = ModRefInfo::ModRef;
269 for (const auto &AA : AAs) {
270 Result &= AA->getModRefInfo(Call1, Call2, AAQI);
272 // Early-exit the moment we reach the bottom of the lattice.
273 if (isNoModRef(Result))
274 return ModRefInfo::NoModRef;
277 // Try to refine the mod-ref info further using other API entry points to the
278 // aggregate set of AA results.
280 // If Call1 or Call2 are readnone, they don't interact.
281 auto Call1B = getMemoryEffects(Call1, AAQI);
282 if (Call1B.doesNotAccessMemory())
283 return ModRefInfo::NoModRef;
285 auto Call2B = getMemoryEffects(Call2, AAQI);
286 if (Call2B.doesNotAccessMemory())
287 return ModRefInfo::NoModRef;
289 // If they both only read from memory, there is no dependence.
290 if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory())
291 return ModRefInfo::NoModRef;
293 // If Call1 only reads memory, the only dependence on Call2 can be
294 // from Call1 reading memory written by Call2.
295 if (Call1B.onlyReadsMemory())
296 Result &= ModRefInfo::Ref;
297 else if (Call1B.onlyWritesMemory())
298 Result &= ModRefInfo::Mod;
300 // If Call2 only access memory through arguments, accumulate the mod/ref
301 // information from Call1's references to the memory referenced by
302 // Call2's arguments.
303 if (Call2B.onlyAccessesArgPointees()) {
304 if (!Call2B.doesAccessArgPointees())
305 return ModRefInfo::NoModRef;
306 ModRefInfo R = ModRefInfo::NoModRef;
307 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
308 const Value *Arg = *I;
309 if (!Arg->getType()->isPointerTy())
310 continue;
311 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
312 auto Call2ArgLoc =
313 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
315 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
316 // dependence of Call1 on that location is the inverse:
317 // - If Call2 modifies location, dependence exists if Call1 reads or
318 // writes.
319 // - If Call2 only reads location, dependence exists if Call1 writes.
320 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
321 ModRefInfo ArgMask = ModRefInfo::NoModRef;
322 if (isModSet(ArgModRefC2))
323 ArgMask = ModRefInfo::ModRef;
324 else if (isRefSet(ArgModRefC2))
325 ArgMask = ModRefInfo::Mod;
327 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
328 // above ArgMask to update dependence info.
329 ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI);
331 R = (R | ArgMask) & Result;
332 if (R == Result)
333 break;
336 return R;
339 // If Call1 only accesses memory through arguments, check if Call2 references
340 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
341 if (Call1B.onlyAccessesArgPointees()) {
342 if (!Call1B.doesAccessArgPointees())
343 return ModRefInfo::NoModRef;
344 ModRefInfo R = ModRefInfo::NoModRef;
345 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
346 const Value *Arg = *I;
347 if (!Arg->getType()->isPointerTy())
348 continue;
349 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
350 auto Call1ArgLoc =
351 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
353 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
354 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
355 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
356 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
357 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
358 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
359 (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
360 R = (R | ArgModRefC1) & Result;
362 if (R == Result)
363 break;
366 return R;
369 return Result;
372 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call,
373 AAQueryInfo &AAQI) {
374 MemoryEffects Result = MemoryEffects::unknown();
376 for (const auto &AA : AAs) {
377 Result &= AA->getMemoryEffects(Call, AAQI);
379 // Early-exit the moment we reach the bottom of the lattice.
380 if (Result.doesNotAccessMemory())
381 return Result;
384 return Result;
387 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) {
388 SimpleAAQueryInfo AAQI(*this);
389 return getMemoryEffects(Call, AAQI);
392 MemoryEffects AAResults::getMemoryEffects(const Function *F) {
393 MemoryEffects Result = MemoryEffects::unknown();
395 for (const auto &AA : AAs) {
396 Result &= AA->getMemoryEffects(F);
398 // Early-exit the moment we reach the bottom of the lattice.
399 if (Result.doesNotAccessMemory())
400 return Result;
403 return Result;
406 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
407 switch (AR) {
408 case AliasResult::NoAlias:
409 OS << "NoAlias";
410 break;
411 case AliasResult::MustAlias:
412 OS << "MustAlias";
413 break;
414 case AliasResult::MayAlias:
415 OS << "MayAlias";
416 break;
417 case AliasResult::PartialAlias:
418 OS << "PartialAlias";
419 if (AR.hasOffset())
420 OS << " (off " << AR.getOffset() << ")";
421 break;
423 return OS;
426 //===----------------------------------------------------------------------===//
427 // Helper method implementation
428 //===----------------------------------------------------------------------===//
430 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
431 const MemoryLocation &Loc,
432 AAQueryInfo &AAQI) {
433 // Be conservative in the face of atomic.
434 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
435 return ModRefInfo::ModRef;
437 // If the load address doesn't alias the given address, it doesn't read
438 // or write the specified memory.
439 if (Loc.Ptr) {
440 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L);
441 if (AR == AliasResult::NoAlias)
442 return ModRefInfo::NoModRef;
444 // Otherwise, a load just reads.
445 return ModRefInfo::Ref;
448 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
449 const MemoryLocation &Loc,
450 AAQueryInfo &AAQI) {
451 // Be conservative in the face of atomic.
452 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
453 return ModRefInfo::ModRef;
455 if (Loc.Ptr) {
456 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S);
457 // If the store address cannot alias the pointer in question, then the
458 // specified memory cannot be modified by the store.
459 if (AR == AliasResult::NoAlias)
460 return ModRefInfo::NoModRef;
462 // Examine the ModRef mask. If Mod isn't present, then return NoModRef.
463 // This ensures that if Loc is a constant memory location, we take into
464 // account the fact that the store definitely could not modify the memory
465 // location.
466 if (!isModSet(getModRefInfoMask(Loc)))
467 return ModRefInfo::NoModRef;
470 // Otherwise, a store just writes.
471 return ModRefInfo::Mod;
474 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
475 const MemoryLocation &Loc,
476 AAQueryInfo &AAQI) {
477 // All we know about a fence instruction is what we get from the ModRef
478 // mask: if Loc is a constant memory location, the fence definitely could
479 // not modify it.
480 if (Loc.Ptr)
481 return getModRefInfoMask(Loc);
482 return ModRefInfo::ModRef;
485 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
486 const MemoryLocation &Loc,
487 AAQueryInfo &AAQI) {
488 if (Loc.Ptr) {
489 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V);
490 // If the va_arg address cannot alias the pointer in question, then the
491 // specified memory cannot be accessed by the va_arg.
492 if (AR == AliasResult::NoAlias)
493 return ModRefInfo::NoModRef;
495 // If the pointer is a pointer to invariant memory, then it could not have
496 // been modified by this va_arg.
497 return getModRefInfoMask(Loc, AAQI);
500 // Otherwise, a va_arg reads and writes.
501 return ModRefInfo::ModRef;
504 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
505 const MemoryLocation &Loc,
506 AAQueryInfo &AAQI) {
507 if (Loc.Ptr) {
508 // If the pointer is a pointer to invariant memory,
509 // then it could not have been modified by this catchpad.
510 return getModRefInfoMask(Loc, AAQI);
513 // Otherwise, a catchpad reads and writes.
514 return ModRefInfo::ModRef;
517 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
518 const MemoryLocation &Loc,
519 AAQueryInfo &AAQI) {
520 if (Loc.Ptr) {
521 // If the pointer is a pointer to invariant memory,
522 // then it could not have been modified by this catchpad.
523 return getModRefInfoMask(Loc, AAQI);
526 // Otherwise, a catchret reads and writes.
527 return ModRefInfo::ModRef;
530 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
531 const MemoryLocation &Loc,
532 AAQueryInfo &AAQI) {
533 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
534 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
535 return ModRefInfo::ModRef;
537 if (Loc.Ptr) {
538 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX);
539 // If the cmpxchg address does not alias the location, it does not access
540 // it.
541 if (AR == AliasResult::NoAlias)
542 return ModRefInfo::NoModRef;
545 return ModRefInfo::ModRef;
548 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
549 const MemoryLocation &Loc,
550 AAQueryInfo &AAQI) {
551 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
552 if (isStrongerThanMonotonic(RMW->getOrdering()))
553 return ModRefInfo::ModRef;
555 if (Loc.Ptr) {
556 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW);
557 // If the atomicrmw address does not alias the location, it does not access
558 // it.
559 if (AR == AliasResult::NoAlias)
560 return ModRefInfo::NoModRef;
563 return ModRefInfo::ModRef;
566 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
567 const std::optional<MemoryLocation> &OptLoc,
568 AAQueryInfo &AAQIP) {
569 if (OptLoc == std::nullopt) {
570 if (const auto *Call = dyn_cast<CallBase>(I))
571 return getMemoryEffects(Call, AAQIP).getModRef();
574 const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation());
576 switch (I->getOpcode()) {
577 case Instruction::VAArg:
578 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
579 case Instruction::Load:
580 return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
581 case Instruction::Store:
582 return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
583 case Instruction::Fence:
584 return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
585 case Instruction::AtomicCmpXchg:
586 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
587 case Instruction::AtomicRMW:
588 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
589 case Instruction::Call:
590 case Instruction::CallBr:
591 case Instruction::Invoke:
592 return getModRefInfo((const CallBase *)I, Loc, AAQIP);
593 case Instruction::CatchPad:
594 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
595 case Instruction::CatchRet:
596 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
597 default:
598 assert(!I->mayReadOrWriteMemory() &&
599 "Unhandled memory access instruction!");
600 return ModRefInfo::NoModRef;
604 /// Return information about whether a particular call site modifies
605 /// or reads the specified memory location \p MemLoc before instruction \p I
606 /// in a BasicBlock.
607 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
608 /// BasicAA isn't willing to spend linear time determining whether an alloca
609 /// was captured before or after this particular call, while we are. However,
610 /// with a smarter AA in place, this test is just wasting compile time.
611 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
612 const MemoryLocation &MemLoc,
613 DominatorTree *DT,
614 AAQueryInfo &AAQI) {
615 if (!DT)
616 return ModRefInfo::ModRef;
618 const Value *Object = getUnderlyingObject(MemLoc.Ptr);
619 if (!isIdentifiedFunctionLocal(Object))
620 return ModRefInfo::ModRef;
622 const auto *Call = dyn_cast<CallBase>(I);
623 if (!Call || Call == Object)
624 return ModRefInfo::ModRef;
626 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
627 /* StoreCaptures */ true, I, DT,
628 /* include Object */ true))
629 return ModRefInfo::ModRef;
631 unsigned ArgNo = 0;
632 ModRefInfo R = ModRefInfo::NoModRef;
633 // Set flag only if no May found and all operands processed.
634 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
635 CI != CE; ++CI, ++ArgNo) {
636 // Only look at the no-capture or byval pointer arguments. If this
637 // pointer were passed to arguments that were neither of these, then it
638 // couldn't be no-capture.
639 if (!(*CI)->getType()->isPointerTy() || !Call->doesNotCapture(ArgNo))
640 continue;
642 AliasResult AR =
643 alias(MemoryLocation::getBeforeOrAfter(*CI),
644 MemoryLocation::getBeforeOrAfter(Object), AAQI, Call);
645 // If this is a no-capture pointer argument, see if we can tell that it
646 // is impossible to alias the pointer we're checking. If not, we have to
647 // assume that the call could touch the pointer, even though it doesn't
648 // escape.
649 if (AR == AliasResult::NoAlias)
650 continue;
651 if (Call->doesNotAccessMemory(ArgNo))
652 continue;
653 if (Call->onlyReadsMemory(ArgNo)) {
654 R = ModRefInfo::Ref;
655 continue;
657 return ModRefInfo::ModRef;
659 return R;
662 /// canBasicBlockModify - Return true if it is possible for execution of the
663 /// specified basic block to modify the location Loc.
665 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
666 const MemoryLocation &Loc) {
667 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
670 /// canInstructionRangeModRef - Return true if it is possible for the
671 /// execution of the specified instructions to mod\ref (according to the
672 /// mode) the location Loc. The instructions to consider are all
673 /// of the instructions in the range of [I1,I2] INCLUSIVE.
674 /// I1 and I2 must be in the same basic block.
675 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
676 const Instruction &I2,
677 const MemoryLocation &Loc,
678 const ModRefInfo Mode) {
679 assert(I1.getParent() == I2.getParent() &&
680 "Instructions not in same basic block!");
681 BasicBlock::const_iterator I = I1.getIterator();
682 BasicBlock::const_iterator E = I2.getIterator();
683 ++E; // Convert from inclusive to exclusive range.
685 for (; I != E; ++I) // Check every instruction in range
686 if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode))
687 return true;
688 return false;
691 // Provide a definition for the root virtual destructor.
692 AAResults::Concept::~Concept() = default;
694 // Provide a definition for the static object used to identify passes.
695 AnalysisKey AAManager::Key;
697 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
698 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
701 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
702 : ImmutablePass(ID), CB(std::move(CB)) {
703 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
706 char ExternalAAWrapperPass::ID = 0;
708 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
709 false, true)
711 ImmutablePass *
712 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
713 return new ExternalAAWrapperPass(std::move(Callback));
716 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
717 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
720 char AAResultsWrapperPass::ID = 0;
722 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
723 "Function Alias Analysis Results", false, true)
724 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
725 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
726 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
727 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
728 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
729 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
730 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
731 "Function Alias Analysis Results", false, true)
733 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
735 /// This is the legacy pass manager's interface to the new-style AA results
736 /// aggregation object. Because this is somewhat shoe-horned into the legacy
737 /// pass manager, we hard code all the specific alias analyses available into
738 /// it. While the particular set enabled is configured via commandline flags,
739 /// adding a new alias analysis to LLVM will require adding support for it to
740 /// this list.
741 bool AAResultsWrapperPass::runOnFunction(Function &F) {
742 // NB! This *must* be reset before adding new AA results to the new
743 // AAResults object because in the legacy pass manager, each instance
744 // of these will refer to the *same* immutable analyses, registering and
745 // unregistering themselves with them. We need to carefully tear down the
746 // previous object first, in this case replacing it with an empty one, before
747 // registering new results.
748 AAR.reset(
749 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
751 // BasicAA is always available for function analyses. Also, we add it first
752 // so that it can trump TBAA results when it proves MustAlias.
753 // FIXME: TBAA should have an explicit mode to support this and then we
754 // should reconsider the ordering here.
755 if (!DisableBasicAA)
756 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
758 // Populate the results with the currently available AAs.
759 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
760 AAR->addAAResult(WrapperPass->getResult());
761 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
762 AAR->addAAResult(WrapperPass->getResult());
763 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
764 AAR->addAAResult(WrapperPass->getResult());
765 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
766 AAR->addAAResult(WrapperPass->getResult());
768 // If available, run an external AA providing callback over the results as
769 // well.
770 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
771 if (WrapperPass->CB)
772 WrapperPass->CB(*this, F, *AAR);
774 // Analyses don't mutate the IR, so return false.
775 return false;
778 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
779 AU.setPreservesAll();
780 AU.addRequiredTransitive<BasicAAWrapperPass>();
781 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
783 // We also need to mark all the alias analysis passes we will potentially
784 // probe in runOnFunction as used here to ensure the legacy pass manager
785 // preserves them. This hard coding of lists of alias analyses is specific to
786 // the legacy pass manager.
787 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
788 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
789 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
790 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
791 AU.addUsedIfAvailable<ExternalAAWrapperPass>();
794 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
795 Result R(AM.getResult<TargetLibraryAnalysis>(F));
796 for (auto &Getter : ResultGetters)
797 (*Getter)(F, AM, R);
798 return R;
801 bool llvm::isNoAliasCall(const Value *V) {
802 if (const auto *Call = dyn_cast<CallBase>(V))
803 return Call->hasRetAttr(Attribute::NoAlias);
804 return false;
807 static bool isNoAliasOrByValArgument(const Value *V) {
808 if (const Argument *A = dyn_cast<Argument>(V))
809 return A->hasNoAliasAttr() || A->hasByValAttr();
810 return false;
813 bool llvm::isIdentifiedObject(const Value *V) {
814 if (isa<AllocaInst>(V))
815 return true;
816 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
817 return true;
818 if (isNoAliasCall(V))
819 return true;
820 if (isNoAliasOrByValArgument(V))
821 return true;
822 return false;
825 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
826 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
829 bool llvm::isBaseOfObject(const Value *V) {
830 // TODO: We can handle other cases here
831 // 1) For GC languages, arguments to functions are often required to be
832 // base pointers.
833 // 2) Result of allocation routines are often base pointers. Leverage TLI.
834 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
837 bool llvm::isEscapeSource(const Value *V) {
838 if (auto *CB = dyn_cast<CallBase>(V))
839 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB,
840 true);
842 // The load case works because isNonEscapingLocalObject considers all
843 // stores to be escapes (it passes true for the StoreCaptures argument
844 // to PointerMayBeCaptured).
845 if (isa<LoadInst>(V))
846 return true;
848 // The inttoptr case works because isNonEscapingLocalObject considers all
849 // means of converting or equating a pointer to an int (ptrtoint, ptr store
850 // which could be followed by an integer load, ptr<->int compare) as
851 // escaping, and objects located at well-known addresses via platform-specific
852 // means cannot be considered non-escaping local objects.
853 if (isa<IntToPtrInst>(V))
854 return true;
856 // Same for inttoptr constant expressions.
857 if (auto *CE = dyn_cast<ConstantExpr>(V))
858 if (CE->getOpcode() == Instruction::IntToPtr)
859 return true;
861 return false;
864 bool llvm::isNotVisibleOnUnwind(const Value *Object,
865 bool &RequiresNoCaptureBeforeUnwind) {
866 RequiresNoCaptureBeforeUnwind = false;
868 // Alloca goes out of scope on unwind.
869 if (isa<AllocaInst>(Object))
870 return true;
872 // Byval goes out of scope on unwind.
873 if (auto *A = dyn_cast<Argument>(Object))
874 return A->hasByValAttr() || A->hasAttribute(Attribute::DeadOnUnwind);
876 // A noalias return is not accessible from any other code. If the pointer
877 // does not escape prior to the unwind, then the caller cannot access the
878 // memory either.
879 if (isNoAliasCall(Object)) {
880 RequiresNoCaptureBeforeUnwind = true;
881 return true;
884 return false;
887 // We don't consider globals as writable: While the physical memory is writable,
888 // we may not have provenance to perform the write.
889 bool llvm::isWritableObject(const Value *Object,
890 bool &ExplicitlyDereferenceableOnly) {
891 ExplicitlyDereferenceableOnly = false;
893 // TODO: Alloca might not be writable after its lifetime ends.
894 // See https://github.com/llvm/llvm-project/issues/51838.
895 if (isa<AllocaInst>(Object))
896 return true;
898 if (auto *A = dyn_cast<Argument>(Object)) {
899 // Also require noalias, otherwise writability at function entry cannot be
900 // generalized to writability at other program points, even if the pointer
901 // does not escape.
902 if (A->hasAttribute(Attribute::Writable) && A->hasNoAliasAttr()) {
903 ExplicitlyDereferenceableOnly = true;
904 return true;
907 return A->hasByValAttr();
910 // TODO: Noalias shouldn't imply writability, this should check for an
911 // allocator function instead.
912 return isNoAliasCall(Object);