[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / DependenceAnalysis.cpp
blob6ce2875beeccac4651c4628f0f3b2b80cf4e8b67
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
44 // change.
46 //===----------------------------------------------------------------------===//
47 // //
48 // In memory of Ken Kennedy, 1945 - 2007 //
49 // //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/AliasAnalysis.h"
55 #include "llvm/Analysis/Delinearization.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
68 using namespace llvm;
70 #define DEBUG_TYPE "da"
72 //===----------------------------------------------------------------------===//
73 // statistics
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
108 static cl::opt<bool>
109 Delinearize("da-delinearize", cl::init(true), cl::Hidden,
110 cl::desc("Try to delinearize array references."));
111 static cl::opt<bool> DisableDelinearizationChecks(
112 "da-disable-delinearization-checks", cl::Hidden,
113 cl::desc(
114 "Disable checks that try to statically verify validity of "
115 "delinearized subscripts. Enabling this option may result in incorrect "
116 "dependence vectors for languages that allow the subscript of one "
117 "dimension to underflow or overflow into another dimension."));
119 static cl::opt<unsigned> MIVMaxLevelThreshold(
120 "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
121 cl::desc("Maximum depth allowed for the recursive algorithm used to "
122 "explore MIV direction vectors."));
124 //===----------------------------------------------------------------------===//
125 // basics
127 DependenceAnalysis::Result
128 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
129 auto &AA = FAM.getResult<AAManager>(F);
130 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
131 auto &LI = FAM.getResult<LoopAnalysis>(F);
132 return DependenceInfo(&F, &AA, &SE, &LI);
135 AnalysisKey DependenceAnalysis::Key;
137 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
138 "Dependence Analysis", true, true)
139 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
140 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
141 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
142 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
143 true, true)
145 char DependenceAnalysisWrapperPass::ID = 0;
147 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
148 : FunctionPass(ID) {
149 initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
152 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
153 return new DependenceAnalysisWrapperPass();
156 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
157 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
158 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
160 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
161 return false;
164 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
166 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
168 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
169 AU.setPreservesAll();
170 AU.addRequiredTransitive<AAResultsWrapperPass>();
171 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
172 AU.addRequiredTransitive<LoopInfoWrapperPass>();
175 // Used to test the dependence analyzer.
176 // Looks through the function, noting instructions that may access memory.
177 // Calls depends() on every possible pair and prints out the result.
178 // Ignores all other instructions.
179 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
180 ScalarEvolution &SE, bool NormalizeResults) {
181 auto *F = DA->getFunction();
182 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
183 ++SrcI) {
184 if (SrcI->mayReadOrWriteMemory()) {
185 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
186 DstI != DstE; ++DstI) {
187 if (DstI->mayReadOrWriteMemory()) {
188 OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
189 OS << " da analyze - ";
190 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
191 // Normalize negative direction vectors if required by clients.
192 if (NormalizeResults && D->normalize(&SE))
193 OS << "normalized - ";
194 D->dump(OS);
195 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
196 if (D->isSplitable(Level)) {
197 OS << " da analyze - split level = " << Level;
198 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
199 OS << "!\n";
203 else
204 OS << "none!\n";
211 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
212 const Module *) const {
213 dumpExampleDependence(OS, info.get(),
214 getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
217 PreservedAnalyses
218 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
219 OS << "Printing analysis 'Dependence Analysis' for function '" << F.getName()
220 << "':\n";
221 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F),
222 FAM.getResult<ScalarEvolutionAnalysis>(F),
223 NormalizeResults);
224 return PreservedAnalyses::all();
227 //===----------------------------------------------------------------------===//
228 // Dependence methods
230 // Returns true if this is an input dependence.
231 bool Dependence::isInput() const {
232 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
236 // Returns true if this is an output dependence.
237 bool Dependence::isOutput() const {
238 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
242 // Returns true if this is an flow (aka true) dependence.
243 bool Dependence::isFlow() const {
244 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
248 // Returns true if this is an anti dependence.
249 bool Dependence::isAnti() const {
250 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
254 // Returns true if a particular level is scalar; that is,
255 // if no subscript in the source or destination mention the induction
256 // variable associated with the loop at this level.
257 // Leave this out of line, so it will serve as a virtual method anchor
258 bool Dependence::isScalar(unsigned level) const {
259 return false;
263 //===----------------------------------------------------------------------===//
264 // FullDependence methods
266 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
267 bool PossiblyLoopIndependent,
268 unsigned CommonLevels)
269 : Dependence(Source, Destination), Levels(CommonLevels),
270 LoopIndependent(PossiblyLoopIndependent) {
271 Consistent = true;
272 if (CommonLevels)
273 DV = std::make_unique<DVEntry[]>(CommonLevels);
276 // FIXME: in some cases the meaning of a negative direction vector
277 // may not be straightforward, e.g.,
278 // for (int i = 0; i < 32; ++i) {
279 // Src: A[i] = ...;
280 // Dst: use(A[31 - i]);
281 // }
282 // The dependency is
283 // flow { Src[i] -> Dst[31 - i] : when i >= 16 } and
284 // anti { Dst[i] -> Src[31 - i] : when i < 16 },
285 // -- hence a [<>].
286 // As long as a dependence result contains '>' ('<>', '<=>', "*"), it
287 // means that a reversed/normalized dependence needs to be considered
288 // as well. Nevertheless, current isDirectionNegative() only returns
289 // true with a '>' or '>=' dependency for ease of canonicalizing the
290 // dependency vector, since the reverse of '<>', '<=>' and "*" is itself.
291 bool FullDependence::isDirectionNegative() const {
292 for (unsigned Level = 1; Level <= Levels; ++Level) {
293 unsigned char Direction = DV[Level - 1].Direction;
294 if (Direction == Dependence::DVEntry::EQ)
295 continue;
296 if (Direction == Dependence::DVEntry::GT ||
297 Direction == Dependence::DVEntry::GE)
298 return true;
299 return false;
301 return false;
304 bool FullDependence::normalize(ScalarEvolution *SE) {
305 if (!isDirectionNegative())
306 return false;
308 LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n";
309 dump(dbgs()););
310 std::swap(Src, Dst);
311 for (unsigned Level = 1; Level <= Levels; ++Level) {
312 unsigned char Direction = DV[Level - 1].Direction;
313 // Reverse the direction vector, this means LT becomes GT
314 // and GT becomes LT.
315 unsigned char RevDirection = Direction & Dependence::DVEntry::EQ;
316 if (Direction & Dependence::DVEntry::LT)
317 RevDirection |= Dependence::DVEntry::GT;
318 if (Direction & Dependence::DVEntry::GT)
319 RevDirection |= Dependence::DVEntry::LT;
320 DV[Level - 1].Direction = RevDirection;
321 // Reverse the dependence distance as well.
322 if (DV[Level - 1].Distance != nullptr)
323 DV[Level - 1].Distance =
324 SE->getNegativeSCEV(DV[Level - 1].Distance);
327 LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
328 dump(dbgs()););
329 return true;
332 // The rest are simple getters that hide the implementation.
334 // getDirection - Returns the direction associated with a particular level.
335 unsigned FullDependence::getDirection(unsigned Level) const {
336 assert(0 < Level && Level <= Levels && "Level out of range");
337 return DV[Level - 1].Direction;
341 // Returns the distance (or NULL) associated with a particular level.
342 const SCEV *FullDependence::getDistance(unsigned Level) const {
343 assert(0 < Level && Level <= Levels && "Level out of range");
344 return DV[Level - 1].Distance;
348 // Returns true if a particular level is scalar; that is,
349 // if no subscript in the source or destination mention the induction
350 // variable associated with the loop at this level.
351 bool FullDependence::isScalar(unsigned Level) const {
352 assert(0 < Level && Level <= Levels && "Level out of range");
353 return DV[Level - 1].Scalar;
357 // Returns true if peeling the first iteration from this loop
358 // will break this dependence.
359 bool FullDependence::isPeelFirst(unsigned Level) const {
360 assert(0 < Level && Level <= Levels && "Level out of range");
361 return DV[Level - 1].PeelFirst;
365 // Returns true if peeling the last iteration from this loop
366 // will break this dependence.
367 bool FullDependence::isPeelLast(unsigned Level) const {
368 assert(0 < Level && Level <= Levels && "Level out of range");
369 return DV[Level - 1].PeelLast;
373 // Returns true if splitting this loop will break the dependence.
374 bool FullDependence::isSplitable(unsigned Level) const {
375 assert(0 < Level && Level <= Levels && "Level out of range");
376 return DV[Level - 1].Splitable;
380 //===----------------------------------------------------------------------===//
381 // DependenceInfo::Constraint methods
383 // If constraint is a point <X, Y>, returns X.
384 // Otherwise assert.
385 const SCEV *DependenceInfo::Constraint::getX() const {
386 assert(Kind == Point && "Kind should be Point");
387 return A;
391 // If constraint is a point <X, Y>, returns Y.
392 // Otherwise assert.
393 const SCEV *DependenceInfo::Constraint::getY() const {
394 assert(Kind == Point && "Kind should be Point");
395 return B;
399 // If constraint is a line AX + BY = C, returns A.
400 // Otherwise assert.
401 const SCEV *DependenceInfo::Constraint::getA() const {
402 assert((Kind == Line || Kind == Distance) &&
403 "Kind should be Line (or Distance)");
404 return A;
408 // If constraint is a line AX + BY = C, returns B.
409 // Otherwise assert.
410 const SCEV *DependenceInfo::Constraint::getB() const {
411 assert((Kind == Line || Kind == Distance) &&
412 "Kind should be Line (or Distance)");
413 return B;
417 // If constraint is a line AX + BY = C, returns C.
418 // Otherwise assert.
419 const SCEV *DependenceInfo::Constraint::getC() const {
420 assert((Kind == Line || Kind == Distance) &&
421 "Kind should be Line (or Distance)");
422 return C;
426 // If constraint is a distance, returns D.
427 // Otherwise assert.
428 const SCEV *DependenceInfo::Constraint::getD() const {
429 assert(Kind == Distance && "Kind should be Distance");
430 return SE->getNegativeSCEV(C);
434 // Returns the loop associated with this constraint.
435 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
436 assert((Kind == Distance || Kind == Line || Kind == Point) &&
437 "Kind should be Distance, Line, or Point");
438 return AssociatedLoop;
441 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
442 const Loop *CurLoop) {
443 Kind = Point;
444 A = X;
445 B = Y;
446 AssociatedLoop = CurLoop;
449 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
450 const SCEV *CC, const Loop *CurLoop) {
451 Kind = Line;
452 A = AA;
453 B = BB;
454 C = CC;
455 AssociatedLoop = CurLoop;
458 void DependenceInfo::Constraint::setDistance(const SCEV *D,
459 const Loop *CurLoop) {
460 Kind = Distance;
461 A = SE->getOne(D->getType());
462 B = SE->getNegativeSCEV(A);
463 C = SE->getNegativeSCEV(D);
464 AssociatedLoop = CurLoop;
467 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
469 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
470 SE = NewSE;
471 Kind = Any;
474 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
475 // For debugging purposes. Dumps the constraint out to OS.
476 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
477 if (isEmpty())
478 OS << " Empty\n";
479 else if (isAny())
480 OS << " Any\n";
481 else if (isPoint())
482 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
483 else if (isDistance())
484 OS << " Distance is " << *getD() <<
485 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
486 else if (isLine())
487 OS << " Line is " << *getA() << "*X + " <<
488 *getB() << "*Y = " << *getC() << "\n";
489 else
490 llvm_unreachable("unknown constraint type in Constraint::dump");
492 #endif
495 // Updates X with the intersection
496 // of the Constraints X and Y. Returns true if X has changed.
497 // Corresponds to Figure 4 from the paper
499 // Practical Dependence Testing
500 // Goff, Kennedy, Tseng
501 // PLDI 1991
502 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
503 ++DeltaApplications;
504 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
505 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
506 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
507 assert(!Y->isPoint() && "Y must not be a Point");
508 if (X->isAny()) {
509 if (Y->isAny())
510 return false;
511 *X = *Y;
512 return true;
514 if (X->isEmpty())
515 return false;
516 if (Y->isEmpty()) {
517 X->setEmpty();
518 return true;
521 if (X->isDistance() && Y->isDistance()) {
522 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
523 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
524 return false;
525 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
526 X->setEmpty();
527 ++DeltaSuccesses;
528 return true;
530 // Hmmm, interesting situation.
531 // I guess if either is constant, keep it and ignore the other.
532 if (isa<SCEVConstant>(Y->getD())) {
533 *X = *Y;
534 return true;
536 return false;
539 // At this point, the pseudo-code in Figure 4 of the paper
540 // checks if (X->isPoint() && Y->isPoint()).
541 // This case can't occur in our implementation,
542 // since a Point can only arise as the result of intersecting
543 // two Line constraints, and the right-hand value, Y, is never
544 // the result of an intersection.
545 assert(!(X->isPoint() && Y->isPoint()) &&
546 "We shouldn't ever see X->isPoint() && Y->isPoint()");
548 if (X->isLine() && Y->isLine()) {
549 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
550 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
551 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
552 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
553 // slopes are equal, so lines are parallel
554 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
555 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
556 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
557 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
558 return false;
559 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
560 X->setEmpty();
561 ++DeltaSuccesses;
562 return true;
564 return false;
566 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
567 // slopes differ, so lines intersect
568 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
569 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
570 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
571 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
572 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
573 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
574 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
575 const SCEVConstant *C1A2_C2A1 =
576 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
577 const SCEVConstant *C1B2_C2B1 =
578 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
579 const SCEVConstant *A1B2_A2B1 =
580 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
581 const SCEVConstant *A2B1_A1B2 =
582 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
583 if (!C1B2_C2B1 || !C1A2_C2A1 ||
584 !A1B2_A2B1 || !A2B1_A1B2)
585 return false;
586 APInt Xtop = C1B2_C2B1->getAPInt();
587 APInt Xbot = A1B2_A2B1->getAPInt();
588 APInt Ytop = C1A2_C2A1->getAPInt();
589 APInt Ybot = A2B1_A1B2->getAPInt();
590 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
591 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
592 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
593 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
594 APInt Xq = Xtop; // these need to be initialized, even
595 APInt Xr = Xtop; // though they're just going to be overwritten
596 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
597 APInt Yq = Ytop;
598 APInt Yr = Ytop;
599 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
600 if (Xr != 0 || Yr != 0) {
601 X->setEmpty();
602 ++DeltaSuccesses;
603 return true;
605 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
606 if (Xq.slt(0) || Yq.slt(0)) {
607 X->setEmpty();
608 ++DeltaSuccesses;
609 return true;
611 if (const SCEVConstant *CUB =
612 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
613 const APInt &UpperBound = CUB->getAPInt();
614 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
615 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
616 X->setEmpty();
617 ++DeltaSuccesses;
618 return true;
621 X->setPoint(SE->getConstant(Xq),
622 SE->getConstant(Yq),
623 X->getAssociatedLoop());
624 ++DeltaSuccesses;
625 return true;
627 return false;
630 // if (X->isLine() && Y->isPoint()) This case can't occur.
631 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
633 if (X->isPoint() && Y->isLine()) {
634 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
635 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
636 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
637 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
638 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
639 return false;
640 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
641 X->setEmpty();
642 ++DeltaSuccesses;
643 return true;
645 return false;
648 llvm_unreachable("shouldn't reach the end of Constraint intersection");
649 return false;
653 //===----------------------------------------------------------------------===//
654 // DependenceInfo methods
656 // For debugging purposes. Dumps a dependence to OS.
657 void Dependence::dump(raw_ostream &OS) const {
658 bool Splitable = false;
659 if (isConfused())
660 OS << "confused";
661 else {
662 if (isConsistent())
663 OS << "consistent ";
664 if (isFlow())
665 OS << "flow";
666 else if (isOutput())
667 OS << "output";
668 else if (isAnti())
669 OS << "anti";
670 else if (isInput())
671 OS << "input";
672 unsigned Levels = getLevels();
673 OS << " [";
674 for (unsigned II = 1; II <= Levels; ++II) {
675 if (isSplitable(II))
676 Splitable = true;
677 if (isPeelFirst(II))
678 OS << 'p';
679 const SCEV *Distance = getDistance(II);
680 if (Distance)
681 OS << *Distance;
682 else if (isScalar(II))
683 OS << "S";
684 else {
685 unsigned Direction = getDirection(II);
686 if (Direction == DVEntry::ALL)
687 OS << "*";
688 else {
689 if (Direction & DVEntry::LT)
690 OS << "<";
691 if (Direction & DVEntry::EQ)
692 OS << "=";
693 if (Direction & DVEntry::GT)
694 OS << ">";
697 if (isPeelLast(II))
698 OS << 'p';
699 if (II < Levels)
700 OS << " ";
702 if (isLoopIndependent())
703 OS << "|<";
704 OS << "]";
705 if (Splitable)
706 OS << " splitable";
708 OS << "!\n";
711 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
712 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
713 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
714 // Otherwise the underlying objects are checked to see if they point to
715 // different identifiable objects.
716 static AliasResult underlyingObjectsAlias(AAResults *AA,
717 const DataLayout &DL,
718 const MemoryLocation &LocA,
719 const MemoryLocation &LocB) {
720 // Check the original locations (minus size) for noalias, which can happen for
721 // tbaa, incompatible underlying object locations, etc.
722 MemoryLocation LocAS =
723 MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
724 MemoryLocation LocBS =
725 MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
726 BatchAAResults BAA(*AA);
727 BAA.enableCrossIterationMode();
729 if (BAA.isNoAlias(LocAS, LocBS))
730 return AliasResult::NoAlias;
732 // Check the underlying objects are the same
733 const Value *AObj = getUnderlyingObject(LocA.Ptr);
734 const Value *BObj = getUnderlyingObject(LocB.Ptr);
736 // If the underlying objects are the same, they must alias
737 if (AObj == BObj)
738 return AliasResult::MustAlias;
740 // We may have hit the recursion limit for underlying objects, or have
741 // underlying objects where we don't know they will alias.
742 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
743 return AliasResult::MayAlias;
745 // Otherwise we know the objects are different and both identified objects so
746 // must not alias.
747 return AliasResult::NoAlias;
750 // Returns true if the load or store can be analyzed. Atomic and volatile
751 // operations have properties which this analysis does not understand.
752 static
753 bool isLoadOrStore(const Instruction *I) {
754 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
755 return LI->isUnordered();
756 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
757 return SI->isUnordered();
758 return false;
762 // Examines the loop nesting of the Src and Dst
763 // instructions and establishes their shared loops. Sets the variables
764 // CommonLevels, SrcLevels, and MaxLevels.
765 // The source and destination instructions needn't be contained in the same
766 // loop. The routine establishNestingLevels finds the level of most deeply
767 // nested loop that contains them both, CommonLevels. An instruction that's
768 // not contained in a loop is at level = 0. MaxLevels is equal to the level
769 // of the source plus the level of the destination, minus CommonLevels.
770 // This lets us allocate vectors MaxLevels in length, with room for every
771 // distinct loop referenced in both the source and destination subscripts.
772 // The variable SrcLevels is the nesting depth of the source instruction.
773 // It's used to help calculate distinct loops referenced by the destination.
774 // Here's the map from loops to levels:
775 // 0 - unused
776 // 1 - outermost common loop
777 // ... - other common loops
778 // CommonLevels - innermost common loop
779 // ... - loops containing Src but not Dst
780 // SrcLevels - innermost loop containing Src but not Dst
781 // ... - loops containing Dst but not Src
782 // MaxLevels - innermost loops containing Dst but not Src
783 // Consider the follow code fragment:
784 // for (a = ...) {
785 // for (b = ...) {
786 // for (c = ...) {
787 // for (d = ...) {
788 // A[] = ...;
789 // }
790 // }
791 // for (e = ...) {
792 // for (f = ...) {
793 // for (g = ...) {
794 // ... = A[];
795 // }
796 // }
797 // }
798 // }
799 // }
800 // If we're looking at the possibility of a dependence between the store
801 // to A (the Src) and the load from A (the Dst), we'll note that they
802 // have 2 loops in common, so CommonLevels will equal 2 and the direction
803 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
804 // A map from loop names to loop numbers would look like
805 // a - 1
806 // b - 2 = CommonLevels
807 // c - 3
808 // d - 4 = SrcLevels
809 // e - 5
810 // f - 6
811 // g - 7 = MaxLevels
812 void DependenceInfo::establishNestingLevels(const Instruction *Src,
813 const Instruction *Dst) {
814 const BasicBlock *SrcBlock = Src->getParent();
815 const BasicBlock *DstBlock = Dst->getParent();
816 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
817 unsigned DstLevel = LI->getLoopDepth(DstBlock);
818 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
819 const Loop *DstLoop = LI->getLoopFor(DstBlock);
820 SrcLevels = SrcLevel;
821 MaxLevels = SrcLevel + DstLevel;
822 while (SrcLevel > DstLevel) {
823 SrcLoop = SrcLoop->getParentLoop();
824 SrcLevel--;
826 while (DstLevel > SrcLevel) {
827 DstLoop = DstLoop->getParentLoop();
828 DstLevel--;
830 while (SrcLoop != DstLoop) {
831 SrcLoop = SrcLoop->getParentLoop();
832 DstLoop = DstLoop->getParentLoop();
833 SrcLevel--;
835 CommonLevels = SrcLevel;
836 MaxLevels -= CommonLevels;
840 // Given one of the loops containing the source, return
841 // its level index in our numbering scheme.
842 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
843 return SrcLoop->getLoopDepth();
847 // Given one of the loops containing the destination,
848 // return its level index in our numbering scheme.
849 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
850 unsigned D = DstLoop->getLoopDepth();
851 if (D > CommonLevels)
852 // This tries to make sure that we assign unique numbers to src and dst when
853 // the memory accesses reside in different loops that have the same depth.
854 return D - CommonLevels + SrcLevels;
855 else
856 return D;
860 // Returns true if Expression is loop invariant in LoopNest.
861 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
862 const Loop *LoopNest) const {
863 // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
864 // any loop as invariant, because we only consier expression evaluation at a
865 // specific position (where the array access takes place), and not across the
866 // entire function.
867 if (!LoopNest)
868 return true;
870 // If the expression is invariant in the outermost loop of the loop nest, it
871 // is invariant anywhere in the loop nest.
872 return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
877 // Finds the set of loops from the LoopNest that
878 // have a level <= CommonLevels and are referred to by the SCEV Expression.
879 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
880 const Loop *LoopNest,
881 SmallBitVector &Loops) const {
882 while (LoopNest) {
883 unsigned Level = LoopNest->getLoopDepth();
884 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
885 Loops.set(Level);
886 LoopNest = LoopNest->getParentLoop();
890 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
892 unsigned widestWidthSeen = 0;
893 Type *widestType;
895 // Go through each pair and find the widest bit to which we need
896 // to extend all of them.
897 for (Subscript *Pair : Pairs) {
898 const SCEV *Src = Pair->Src;
899 const SCEV *Dst = Pair->Dst;
900 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
901 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
902 if (SrcTy == nullptr || DstTy == nullptr) {
903 assert(SrcTy == DstTy && "This function only unify integer types and "
904 "expect Src and Dst share the same type "
905 "otherwise.");
906 continue;
908 if (SrcTy->getBitWidth() > widestWidthSeen) {
909 widestWidthSeen = SrcTy->getBitWidth();
910 widestType = SrcTy;
912 if (DstTy->getBitWidth() > widestWidthSeen) {
913 widestWidthSeen = DstTy->getBitWidth();
914 widestType = DstTy;
919 assert(widestWidthSeen > 0);
921 // Now extend each pair to the widest seen.
922 for (Subscript *Pair : Pairs) {
923 const SCEV *Src = Pair->Src;
924 const SCEV *Dst = Pair->Dst;
925 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
926 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
927 if (SrcTy == nullptr || DstTy == nullptr) {
928 assert(SrcTy == DstTy && "This function only unify integer types and "
929 "expect Src and Dst share the same type "
930 "otherwise.");
931 continue;
933 if (SrcTy->getBitWidth() < widestWidthSeen)
934 // Sign-extend Src to widestType
935 Pair->Src = SE->getSignExtendExpr(Src, widestType);
936 if (DstTy->getBitWidth() < widestWidthSeen) {
937 // Sign-extend Dst to widestType
938 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
943 // removeMatchingExtensions - Examines a subscript pair.
944 // If the source and destination are identically sign (or zero)
945 // extended, it strips off the extension in an effect to simplify
946 // the actual analysis.
947 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
948 const SCEV *Src = Pair->Src;
949 const SCEV *Dst = Pair->Dst;
950 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
951 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
952 const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
953 const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
954 const SCEV *SrcCastOp = SrcCast->getOperand();
955 const SCEV *DstCastOp = DstCast->getOperand();
956 if (SrcCastOp->getType() == DstCastOp->getType()) {
957 Pair->Src = SrcCastOp;
958 Pair->Dst = DstCastOp;
963 // Examine the scev and return true iff it's affine.
964 // Collect any loops mentioned in the set of "Loops".
965 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
966 SmallBitVector &Loops, bool IsSrc) {
967 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
968 if (!AddRec)
969 return isLoopInvariant(Expr, LoopNest);
971 // The AddRec must depend on one of the containing loops. Otherwise,
972 // mapSrcLoop and mapDstLoop return indices outside the intended range. This
973 // can happen when a subscript in one loop references an IV from a sibling
974 // loop that could not be replaced with a concrete exit value by
975 // getSCEVAtScope.
976 const Loop *L = LoopNest;
977 while (L && AddRec->getLoop() != L)
978 L = L->getParentLoop();
979 if (!L)
980 return false;
982 const SCEV *Start = AddRec->getStart();
983 const SCEV *Step = AddRec->getStepRecurrence(*SE);
984 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
985 if (!isa<SCEVCouldNotCompute>(UB)) {
986 if (SE->getTypeSizeInBits(Start->getType()) <
987 SE->getTypeSizeInBits(UB->getType())) {
988 if (!AddRec->getNoWrapFlags())
989 return false;
992 if (!isLoopInvariant(Step, LoopNest))
993 return false;
994 if (IsSrc)
995 Loops.set(mapSrcLoop(AddRec->getLoop()));
996 else
997 Loops.set(mapDstLoop(AddRec->getLoop()));
998 return checkSubscript(Start, LoopNest, Loops, IsSrc);
1001 // Examine the scev and return true iff it's linear.
1002 // Collect any loops mentioned in the set of "Loops".
1003 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
1004 SmallBitVector &Loops) {
1005 return checkSubscript(Src, LoopNest, Loops, true);
1008 // Examine the scev and return true iff it's linear.
1009 // Collect any loops mentioned in the set of "Loops".
1010 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
1011 SmallBitVector &Loops) {
1012 return checkSubscript(Dst, LoopNest, Loops, false);
1016 // Examines the subscript pair (the Src and Dst SCEVs)
1017 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
1018 // Collects the associated loops in a set.
1019 DependenceInfo::Subscript::ClassificationKind
1020 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
1021 const SCEV *Dst, const Loop *DstLoopNest,
1022 SmallBitVector &Loops) {
1023 SmallBitVector SrcLoops(MaxLevels + 1);
1024 SmallBitVector DstLoops(MaxLevels + 1);
1025 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
1026 return Subscript::NonLinear;
1027 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
1028 return Subscript::NonLinear;
1029 Loops = SrcLoops;
1030 Loops |= DstLoops;
1031 unsigned N = Loops.count();
1032 if (N == 0)
1033 return Subscript::ZIV;
1034 if (N == 1)
1035 return Subscript::SIV;
1036 if (N == 2 && (SrcLoops.count() == 0 ||
1037 DstLoops.count() == 0 ||
1038 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
1039 return Subscript::RDIV;
1040 return Subscript::MIV;
1044 // A wrapper around SCEV::isKnownPredicate.
1045 // Looks for cases where we're interested in comparing for equality.
1046 // If both X and Y have been identically sign or zero extended,
1047 // it strips off the (confusing) extensions before invoking
1048 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
1049 // will be similarly updated.
1051 // If SCEV::isKnownPredicate can't prove the predicate,
1052 // we try simple subtraction, which seems to help in some cases
1053 // involving symbolics.
1054 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
1055 const SCEV *Y) const {
1056 if (Pred == CmpInst::ICMP_EQ ||
1057 Pred == CmpInst::ICMP_NE) {
1058 if ((isa<SCEVSignExtendExpr>(X) &&
1059 isa<SCEVSignExtendExpr>(Y)) ||
1060 (isa<SCEVZeroExtendExpr>(X) &&
1061 isa<SCEVZeroExtendExpr>(Y))) {
1062 const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
1063 const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
1064 const SCEV *Xop = CX->getOperand();
1065 const SCEV *Yop = CY->getOperand();
1066 if (Xop->getType() == Yop->getType()) {
1067 X = Xop;
1068 Y = Yop;
1072 if (SE->isKnownPredicate(Pred, X, Y))
1073 return true;
1074 // If SE->isKnownPredicate can't prove the condition,
1075 // we try the brute-force approach of subtracting
1076 // and testing the difference.
1077 // By testing with SE->isKnownPredicate first, we avoid
1078 // the possibility of overflow when the arguments are constants.
1079 const SCEV *Delta = SE->getMinusSCEV(X, Y);
1080 switch (Pred) {
1081 case CmpInst::ICMP_EQ:
1082 return Delta->isZero();
1083 case CmpInst::ICMP_NE:
1084 return SE->isKnownNonZero(Delta);
1085 case CmpInst::ICMP_SGE:
1086 return SE->isKnownNonNegative(Delta);
1087 case CmpInst::ICMP_SLE:
1088 return SE->isKnownNonPositive(Delta);
1089 case CmpInst::ICMP_SGT:
1090 return SE->isKnownPositive(Delta);
1091 case CmpInst::ICMP_SLT:
1092 return SE->isKnownNegative(Delta);
1093 default:
1094 llvm_unreachable("unexpected predicate in isKnownPredicate");
1098 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1099 /// with some extra checking if S is an AddRec and we can prove less-than using
1100 /// the loop bounds.
1101 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1102 // First unify to the same type
1103 auto *SType = dyn_cast<IntegerType>(S->getType());
1104 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1105 if (!SType || !SizeType)
1106 return false;
1107 Type *MaxType =
1108 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1109 S = SE->getTruncateOrZeroExtend(S, MaxType);
1110 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1112 // Special check for addrecs using BE taken count
1113 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1114 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1115 if (AddRec->isAffine()) {
1116 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1117 if (!isa<SCEVCouldNotCompute>(BECount)) {
1118 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1119 if (SE->isKnownNegative(Limit))
1120 return true;
1125 // Check using normal isKnownNegative
1126 const SCEV *LimitedBound =
1127 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1128 return SE->isKnownNegative(LimitedBound);
1131 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1132 bool Inbounds = false;
1133 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1134 Inbounds = SrcGEP->isInBounds();
1135 if (Inbounds) {
1136 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1137 if (AddRec->isAffine()) {
1138 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1139 // If both parts are NonNegative, the end result will be NonNegative
1140 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1141 SE->isKnownNonNegative(AddRec->getOperand(1)))
1142 return true;
1147 return SE->isKnownNonNegative(S);
1150 // All subscripts are all the same type.
1151 // Loop bound may be smaller (e.g., a char).
1152 // Should zero extend loop bound, since it's always >= 0.
1153 // This routine collects upper bound and extends or truncates if needed.
1154 // Truncating is safe when subscripts are known not to wrap. Cases without
1155 // nowrap flags should have been rejected earlier.
1156 // Return null if no bound available.
1157 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1158 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1159 const SCEV *UB = SE->getBackedgeTakenCount(L);
1160 return SE->getTruncateOrZeroExtend(UB, T);
1162 return nullptr;
1166 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1167 // If the cast fails, returns NULL.
1168 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1169 Type *T) const {
1170 if (const SCEV *UB = collectUpperBound(L, T))
1171 return dyn_cast<SCEVConstant>(UB);
1172 return nullptr;
1176 // testZIV -
1177 // When we have a pair of subscripts of the form [c1] and [c2],
1178 // where c1 and c2 are both loop invariant, we attack it using
1179 // the ZIV test. Basically, we test by comparing the two values,
1180 // but there are actually three possible results:
1181 // 1) the values are equal, so there's a dependence
1182 // 2) the values are different, so there's no dependence
1183 // 3) the values might be equal, so we have to assume a dependence.
1185 // Return true if dependence disproved.
1186 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1187 FullDependence &Result) const {
1188 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1189 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1190 ++ZIVapplications;
1191 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1192 LLVM_DEBUG(dbgs() << " provably dependent\n");
1193 return false; // provably dependent
1195 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1196 LLVM_DEBUG(dbgs() << " provably independent\n");
1197 ++ZIVindependence;
1198 return true; // provably independent
1200 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1201 Result.Consistent = false;
1202 return false; // possibly dependent
1206 // strongSIVtest -
1207 // From the paper, Practical Dependence Testing, Section 4.2.1
1209 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1210 // where i is an induction variable, c1 and c2 are loop invariant,
1211 // and a is a constant, we can solve it exactly using the Strong SIV test.
1213 // Can prove independence. Failing that, can compute distance (and direction).
1214 // In the presence of symbolic terms, we can sometimes make progress.
1216 // If there's a dependence,
1218 // c1 + a*i = c2 + a*i'
1220 // The dependence distance is
1222 // d = i' - i = (c1 - c2)/a
1224 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1225 // loop's upper bound. If a dependence exists, the dependence direction is
1226 // defined as
1228 // { < if d > 0
1229 // direction = { = if d = 0
1230 // { > if d < 0
1232 // Return true if dependence disproved.
1233 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1234 const SCEV *DstConst, const Loop *CurLoop,
1235 unsigned Level, FullDependence &Result,
1236 Constraint &NewConstraint) const {
1237 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1238 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1239 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1240 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1241 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1242 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1243 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1244 ++StrongSIVapplications;
1245 assert(0 < Level && Level <= CommonLevels && "level out of range");
1246 Level--;
1248 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1249 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1250 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1252 // check that |Delta| < iteration count
1253 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1254 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1255 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1256 const SCEV *AbsDelta =
1257 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1258 const SCEV *AbsCoeff =
1259 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1260 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1261 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1262 // Distance greater than trip count - no dependence
1263 ++StrongSIVindependence;
1264 ++StrongSIVsuccesses;
1265 return true;
1269 // Can we compute distance?
1270 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1271 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1272 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1273 APInt Distance = ConstDelta; // these need to be initialized
1274 APInt Remainder = ConstDelta;
1275 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1276 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1277 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1278 // Make sure Coeff divides Delta exactly
1279 if (Remainder != 0) {
1280 // Coeff doesn't divide Distance, no dependence
1281 ++StrongSIVindependence;
1282 ++StrongSIVsuccesses;
1283 return true;
1285 Result.DV[Level].Distance = SE->getConstant(Distance);
1286 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1287 if (Distance.sgt(0))
1288 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1289 else if (Distance.slt(0))
1290 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1291 else
1292 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1293 ++StrongSIVsuccesses;
1295 else if (Delta->isZero()) {
1296 // since 0/X == 0
1297 Result.DV[Level].Distance = Delta;
1298 NewConstraint.setDistance(Delta, CurLoop);
1299 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1300 ++StrongSIVsuccesses;
1302 else {
1303 if (Coeff->isOne()) {
1304 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1305 Result.DV[Level].Distance = Delta; // since X/1 == X
1306 NewConstraint.setDistance(Delta, CurLoop);
1308 else {
1309 Result.Consistent = false;
1310 NewConstraint.setLine(Coeff,
1311 SE->getNegativeSCEV(Coeff),
1312 SE->getNegativeSCEV(Delta), CurLoop);
1315 // maybe we can get a useful direction
1316 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1317 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1318 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1319 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1320 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1321 // The double negatives above are confusing.
1322 // It helps to read !SE->isKnownNonZero(Delta)
1323 // as "Delta might be Zero"
1324 unsigned NewDirection = Dependence::DVEntry::NONE;
1325 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1326 (DeltaMaybeNegative && CoeffMaybeNegative))
1327 NewDirection = Dependence::DVEntry::LT;
1328 if (DeltaMaybeZero)
1329 NewDirection |= Dependence::DVEntry::EQ;
1330 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1331 (DeltaMaybePositive && CoeffMaybeNegative))
1332 NewDirection |= Dependence::DVEntry::GT;
1333 if (NewDirection < Result.DV[Level].Direction)
1334 ++StrongSIVsuccesses;
1335 Result.DV[Level].Direction &= NewDirection;
1337 return false;
1341 // weakCrossingSIVtest -
1342 // From the paper, Practical Dependence Testing, Section 4.2.2
1344 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1345 // where i is an induction variable, c1 and c2 are loop invariant,
1346 // and a is a constant, we can solve it exactly using the
1347 // Weak-Crossing SIV test.
1349 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1350 // the two lines, where i = i', yielding
1352 // c1 + a*i = c2 - a*i
1353 // 2a*i = c2 - c1
1354 // i = (c2 - c1)/2a
1356 // If i < 0, there is no dependence.
1357 // If i > upperbound, there is no dependence.
1358 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1359 // If i = upperbound, there's a dependence with distance = 0.
1360 // If i is integral, there's a dependence (all directions).
1361 // If the non-integer part = 1/2, there's a dependence (<> directions).
1362 // Otherwise, there's no dependence.
1364 // Can prove independence. Failing that,
1365 // can sometimes refine the directions.
1366 // Can determine iteration for splitting.
1368 // Return true if dependence disproved.
1369 bool DependenceInfo::weakCrossingSIVtest(
1370 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1371 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1372 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1373 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1374 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1375 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1376 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1377 ++WeakCrossingSIVapplications;
1378 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1379 Level--;
1380 Result.Consistent = false;
1381 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1382 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1383 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1384 if (Delta->isZero()) {
1385 Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1386 Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1387 ++WeakCrossingSIVsuccesses;
1388 if (!Result.DV[Level].Direction) {
1389 ++WeakCrossingSIVindependence;
1390 return true;
1392 Result.DV[Level].Distance = Delta; // = 0
1393 return false;
1395 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1396 if (!ConstCoeff)
1397 return false;
1399 Result.DV[Level].Splitable = true;
1400 if (SE->isKnownNegative(ConstCoeff)) {
1401 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1402 assert(ConstCoeff &&
1403 "dynamic cast of negative of ConstCoeff should yield constant");
1404 Delta = SE->getNegativeSCEV(Delta);
1406 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1408 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1409 SplitIter = SE->getUDivExpr(
1410 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1411 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1412 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1414 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1415 if (!ConstDelta)
1416 return false;
1418 // We're certain that ConstCoeff > 0; therefore,
1419 // if Delta < 0, then no dependence.
1420 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1421 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1422 if (SE->isKnownNegative(Delta)) {
1423 // No dependence, Delta < 0
1424 ++WeakCrossingSIVindependence;
1425 ++WeakCrossingSIVsuccesses;
1426 return true;
1429 // We're certain that Delta > 0 and ConstCoeff > 0.
1430 // Check Delta/(2*ConstCoeff) against upper loop bound
1431 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1432 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1433 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1434 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1435 ConstantTwo);
1436 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1437 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1438 // Delta too big, no dependence
1439 ++WeakCrossingSIVindependence;
1440 ++WeakCrossingSIVsuccesses;
1441 return true;
1443 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1444 // i = i' = UB
1445 Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1446 Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1447 ++WeakCrossingSIVsuccesses;
1448 if (!Result.DV[Level].Direction) {
1449 ++WeakCrossingSIVindependence;
1450 return true;
1452 Result.DV[Level].Splitable = false;
1453 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1454 return false;
1458 // check that Coeff divides Delta
1459 APInt APDelta = ConstDelta->getAPInt();
1460 APInt APCoeff = ConstCoeff->getAPInt();
1461 APInt Distance = APDelta; // these need to be initialzed
1462 APInt Remainder = APDelta;
1463 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1464 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1465 if (Remainder != 0) {
1466 // Coeff doesn't divide Delta, no dependence
1467 ++WeakCrossingSIVindependence;
1468 ++WeakCrossingSIVsuccesses;
1469 return true;
1471 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1473 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1474 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1475 Remainder = Distance.srem(Two);
1476 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1477 if (Remainder != 0) {
1478 // Equal direction isn't possible
1479 Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ;
1480 ++WeakCrossingSIVsuccesses;
1482 return false;
1486 // Kirch's algorithm, from
1488 // Optimizing Supercompilers for Supercomputers
1489 // Michael Wolfe
1490 // MIT Press, 1989
1492 // Program 2.1, page 29.
1493 // Computes the GCD of AM and BM.
1494 // Also finds a solution to the equation ax - by = gcd(a, b).
1495 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1496 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1497 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1498 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1499 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1500 APInt G0 = AM.abs();
1501 APInt G1 = BM.abs();
1502 APInt Q = G0; // these need to be initialized
1503 APInt R = G0;
1504 APInt::sdivrem(G0, G1, Q, R);
1505 while (R != 0) {
1506 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1507 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1508 G0 = G1; G1 = R;
1509 APInt::sdivrem(G0, G1, Q, R);
1511 G = G1;
1512 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1513 X = AM.slt(0) ? -A1 : A1;
1514 Y = BM.slt(0) ? B1 : -B1;
1516 // make sure gcd divides Delta
1517 R = Delta.srem(G);
1518 if (R != 0)
1519 return true; // gcd doesn't divide Delta, no dependence
1520 Q = Delta.sdiv(G);
1521 return false;
1524 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1525 APInt Q = A; // these need to be initialized
1526 APInt R = A;
1527 APInt::sdivrem(A, B, Q, R);
1528 if (R == 0)
1529 return Q;
1530 if ((A.sgt(0) && B.sgt(0)) ||
1531 (A.slt(0) && B.slt(0)))
1532 return Q;
1533 else
1534 return Q - 1;
1537 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1538 APInt Q = A; // these need to be initialized
1539 APInt R = A;
1540 APInt::sdivrem(A, B, Q, R);
1541 if (R == 0)
1542 return Q;
1543 if ((A.sgt(0) && B.sgt(0)) ||
1544 (A.slt(0) && B.slt(0)))
1545 return Q + 1;
1546 else
1547 return Q;
1550 // exactSIVtest -
1551 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1552 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1553 // and a2 are constant, we can solve it exactly using an algorithm developed
1554 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1556 // Dependence Analysis for Supercomputing
1557 // Utpal Banerjee
1558 // Kluwer Academic Publishers, 1988
1560 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1561 // so use them if possible. They're also a bit better with symbolics and,
1562 // in the case of the strong SIV test, can compute Distances.
1564 // Return true if dependence disproved.
1566 // This is a modified version of the original Banerjee algorithm. The original
1567 // only tested whether Dst depends on Src. This algorithm extends that and
1568 // returns all the dependencies that exist between Dst and Src.
1569 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1570 const SCEV *SrcConst, const SCEV *DstConst,
1571 const Loop *CurLoop, unsigned Level,
1572 FullDependence &Result,
1573 Constraint &NewConstraint) const {
1574 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1575 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1576 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1577 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1578 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1579 ++ExactSIVapplications;
1580 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1581 Level--;
1582 Result.Consistent = false;
1583 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1584 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1585 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1586 CurLoop);
1587 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1588 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1589 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1590 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1591 return false;
1593 // find gcd
1594 APInt G, X, Y;
1595 APInt AM = ConstSrcCoeff->getAPInt();
1596 APInt BM = ConstDstCoeff->getAPInt();
1597 APInt CM = ConstDelta->getAPInt();
1598 unsigned Bits = AM.getBitWidth();
1599 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1600 // gcd doesn't divide Delta, no dependence
1601 ++ExactSIVindependence;
1602 ++ExactSIVsuccesses;
1603 return true;
1606 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1608 // since SCEV construction normalizes, LM = 0
1609 APInt UM(Bits, 1, true);
1610 bool UMValid = false;
1611 // UM is perhaps unavailable, let's check
1612 if (const SCEVConstant *CUB =
1613 collectConstantUpperBound(CurLoop, Delta->getType())) {
1614 UM = CUB->getAPInt();
1615 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1616 UMValid = true;
1619 APInt TU(APInt::getSignedMaxValue(Bits));
1620 APInt TL(APInt::getSignedMinValue(Bits));
1621 APInt TC = CM.sdiv(G);
1622 APInt TX = X * TC;
1623 APInt TY = Y * TC;
1624 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
1625 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
1626 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
1628 SmallVector<APInt, 2> TLVec, TUVec;
1629 APInt TB = BM.sdiv(G);
1630 if (TB.sgt(0)) {
1631 TLVec.push_back(ceilingOfQuotient(-TX, TB));
1632 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1633 // New bound check - modification to Banerjee's e3 check
1634 if (UMValid) {
1635 TUVec.push_back(floorOfQuotient(UM - TX, TB));
1636 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1638 } else {
1639 TUVec.push_back(floorOfQuotient(-TX, TB));
1640 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1641 // New bound check - modification to Banerjee's e3 check
1642 if (UMValid) {
1643 TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1644 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1648 APInt TA = AM.sdiv(G);
1649 if (TA.sgt(0)) {
1650 if (UMValid) {
1651 TUVec.push_back(floorOfQuotient(UM - TY, TA));
1652 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1654 // New bound check - modification to Banerjee's e3 check
1655 TLVec.push_back(ceilingOfQuotient(-TY, TA));
1656 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1657 } else {
1658 if (UMValid) {
1659 TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1660 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1662 // New bound check - modification to Banerjee's e3 check
1663 TUVec.push_back(floorOfQuotient(-TY, TA));
1664 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1667 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
1668 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
1670 if (TLVec.empty() || TUVec.empty())
1671 return false;
1672 TL = APIntOps::smax(TLVec.front(), TLVec.back());
1673 TU = APIntOps::smin(TUVec.front(), TUVec.back());
1674 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1675 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1677 if (TL.sgt(TU)) {
1678 ++ExactSIVindependence;
1679 ++ExactSIVsuccesses;
1680 return true;
1683 // explore directions
1684 unsigned NewDirection = Dependence::DVEntry::NONE;
1685 APInt LowerDistance, UpperDistance;
1686 if (TA.sgt(TB)) {
1687 LowerDistance = (TY - TX) + (TA - TB) * TL;
1688 UpperDistance = (TY - TX) + (TA - TB) * TU;
1689 } else {
1690 LowerDistance = (TY - TX) + (TA - TB) * TU;
1691 UpperDistance = (TY - TX) + (TA - TB) * TL;
1694 LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n");
1695 LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n");
1697 APInt Zero(Bits, 0, true);
1698 if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1699 NewDirection |= Dependence::DVEntry::EQ;
1700 ++ExactSIVsuccesses;
1702 if (LowerDistance.slt(0)) {
1703 NewDirection |= Dependence::DVEntry::GT;
1704 ++ExactSIVsuccesses;
1706 if (UpperDistance.sgt(0)) {
1707 NewDirection |= Dependence::DVEntry::LT;
1708 ++ExactSIVsuccesses;
1711 // finished
1712 Result.DV[Level].Direction &= NewDirection;
1713 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1714 ++ExactSIVindependence;
1715 LLVM_DEBUG(dbgs() << "\t Result = ");
1716 LLVM_DEBUG(Result.dump(dbgs()));
1717 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1721 // Return true if the divisor evenly divides the dividend.
1722 static
1723 bool isRemainderZero(const SCEVConstant *Dividend,
1724 const SCEVConstant *Divisor) {
1725 const APInt &ConstDividend = Dividend->getAPInt();
1726 const APInt &ConstDivisor = Divisor->getAPInt();
1727 return ConstDividend.srem(ConstDivisor) == 0;
1731 // weakZeroSrcSIVtest -
1732 // From the paper, Practical Dependence Testing, Section 4.2.2
1734 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1735 // where i is an induction variable, c1 and c2 are loop invariant,
1736 // and a is a constant, we can solve it exactly using the
1737 // Weak-Zero SIV test.
1739 // Given
1741 // c1 = c2 + a*i
1743 // we get
1745 // (c1 - c2)/a = i
1747 // If i is not an integer, there's no dependence.
1748 // If i < 0 or > UB, there's no dependence.
1749 // If i = 0, the direction is >= and peeling the
1750 // 1st iteration will break the dependence.
1751 // If i = UB, the direction is <= and peeling the
1752 // last iteration will break the dependence.
1753 // Otherwise, the direction is *.
1755 // Can prove independence. Failing that, we can sometimes refine
1756 // the directions. Can sometimes show that first or last
1757 // iteration carries all the dependences (so worth peeling).
1759 // (see also weakZeroDstSIVtest)
1761 // Return true if dependence disproved.
1762 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1763 const SCEV *SrcConst,
1764 const SCEV *DstConst,
1765 const Loop *CurLoop, unsigned Level,
1766 FullDependence &Result,
1767 Constraint &NewConstraint) const {
1768 // For the WeakSIV test, it's possible the loop isn't common to
1769 // the Src and Dst loops. If it isn't, then there's no need to
1770 // record a direction.
1771 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1772 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1773 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1774 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1775 ++WeakZeroSIVapplications;
1776 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1777 Level--;
1778 Result.Consistent = false;
1779 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1780 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1781 CurLoop);
1782 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1783 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1784 if (Level < CommonLevels) {
1785 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1786 Result.DV[Level].PeelFirst = true;
1787 ++WeakZeroSIVsuccesses;
1789 return false; // dependences caused by first iteration
1791 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1792 if (!ConstCoeff)
1793 return false;
1794 const SCEV *AbsCoeff =
1795 SE->isKnownNegative(ConstCoeff) ?
1796 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1797 const SCEV *NewDelta =
1798 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1800 // check that Delta/SrcCoeff < iteration count
1801 // really check NewDelta < count*AbsCoeff
1802 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1803 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1804 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1805 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1806 ++WeakZeroSIVindependence;
1807 ++WeakZeroSIVsuccesses;
1808 return true;
1810 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1811 // dependences caused by last iteration
1812 if (Level < CommonLevels) {
1813 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1814 Result.DV[Level].PeelLast = true;
1815 ++WeakZeroSIVsuccesses;
1817 return false;
1821 // check that Delta/SrcCoeff >= 0
1822 // really check that NewDelta >= 0
1823 if (SE->isKnownNegative(NewDelta)) {
1824 // No dependence, newDelta < 0
1825 ++WeakZeroSIVindependence;
1826 ++WeakZeroSIVsuccesses;
1827 return true;
1830 // if SrcCoeff doesn't divide Delta, then no dependence
1831 if (isa<SCEVConstant>(Delta) &&
1832 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1833 ++WeakZeroSIVindependence;
1834 ++WeakZeroSIVsuccesses;
1835 return true;
1837 return false;
1841 // weakZeroDstSIVtest -
1842 // From the paper, Practical Dependence Testing, Section 4.2.2
1844 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1845 // where i is an induction variable, c1 and c2 are loop invariant,
1846 // and a is a constant, we can solve it exactly using the
1847 // Weak-Zero SIV test.
1849 // Given
1851 // c1 + a*i = c2
1853 // we get
1855 // i = (c2 - c1)/a
1857 // If i is not an integer, there's no dependence.
1858 // If i < 0 or > UB, there's no dependence.
1859 // If i = 0, the direction is <= and peeling the
1860 // 1st iteration will break the dependence.
1861 // If i = UB, the direction is >= and peeling the
1862 // last iteration will break the dependence.
1863 // Otherwise, the direction is *.
1865 // Can prove independence. Failing that, we can sometimes refine
1866 // the directions. Can sometimes show that first or last
1867 // iteration carries all the dependences (so worth peeling).
1869 // (see also weakZeroSrcSIVtest)
1871 // Return true if dependence disproved.
1872 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1873 const SCEV *SrcConst,
1874 const SCEV *DstConst,
1875 const Loop *CurLoop, unsigned Level,
1876 FullDependence &Result,
1877 Constraint &NewConstraint) const {
1878 // For the WeakSIV test, it's possible the loop isn't common to the
1879 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1880 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1881 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1882 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1883 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1884 ++WeakZeroSIVapplications;
1885 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1886 Level--;
1887 Result.Consistent = false;
1888 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1889 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1890 CurLoop);
1891 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1892 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1893 if (Level < CommonLevels) {
1894 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1895 Result.DV[Level].PeelFirst = true;
1896 ++WeakZeroSIVsuccesses;
1898 return false; // dependences caused by first iteration
1900 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1901 if (!ConstCoeff)
1902 return false;
1903 const SCEV *AbsCoeff =
1904 SE->isKnownNegative(ConstCoeff) ?
1905 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1906 const SCEV *NewDelta =
1907 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1909 // check that Delta/SrcCoeff < iteration count
1910 // really check NewDelta < count*AbsCoeff
1911 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1912 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1913 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1914 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1915 ++WeakZeroSIVindependence;
1916 ++WeakZeroSIVsuccesses;
1917 return true;
1919 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1920 // dependences caused by last iteration
1921 if (Level < CommonLevels) {
1922 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1923 Result.DV[Level].PeelLast = true;
1924 ++WeakZeroSIVsuccesses;
1926 return false;
1930 // check that Delta/SrcCoeff >= 0
1931 // really check that NewDelta >= 0
1932 if (SE->isKnownNegative(NewDelta)) {
1933 // No dependence, newDelta < 0
1934 ++WeakZeroSIVindependence;
1935 ++WeakZeroSIVsuccesses;
1936 return true;
1939 // if SrcCoeff doesn't divide Delta, then no dependence
1940 if (isa<SCEVConstant>(Delta) &&
1941 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1942 ++WeakZeroSIVindependence;
1943 ++WeakZeroSIVsuccesses;
1944 return true;
1946 return false;
1950 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1951 // Things of the form [c1 + a*i] and [c2 + b*j],
1952 // where i and j are induction variable, c1 and c2 are loop invariant,
1953 // and a and b are constants.
1954 // Returns true if any possible dependence is disproved.
1955 // Marks the result as inconsistent.
1956 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1957 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1958 const SCEV *SrcConst, const SCEV *DstConst,
1959 const Loop *SrcLoop, const Loop *DstLoop,
1960 FullDependence &Result) const {
1961 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1962 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1963 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1964 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1965 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1966 ++ExactRDIVapplications;
1967 Result.Consistent = false;
1968 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1969 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1970 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1971 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1972 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1973 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1974 return false;
1976 // find gcd
1977 APInt G, X, Y;
1978 APInt AM = ConstSrcCoeff->getAPInt();
1979 APInt BM = ConstDstCoeff->getAPInt();
1980 APInt CM = ConstDelta->getAPInt();
1981 unsigned Bits = AM.getBitWidth();
1982 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1983 // gcd doesn't divide Delta, no dependence
1984 ++ExactRDIVindependence;
1985 return true;
1988 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1990 // since SCEV construction seems to normalize, LM = 0
1991 APInt SrcUM(Bits, 1, true);
1992 bool SrcUMvalid = false;
1993 // SrcUM is perhaps unavailable, let's check
1994 if (const SCEVConstant *UpperBound =
1995 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1996 SrcUM = UpperBound->getAPInt();
1997 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1998 SrcUMvalid = true;
2001 APInt DstUM(Bits, 1, true);
2002 bool DstUMvalid = false;
2003 // UM is perhaps unavailable, let's check
2004 if (const SCEVConstant *UpperBound =
2005 collectConstantUpperBound(DstLoop, Delta->getType())) {
2006 DstUM = UpperBound->getAPInt();
2007 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
2008 DstUMvalid = true;
2011 APInt TU(APInt::getSignedMaxValue(Bits));
2012 APInt TL(APInt::getSignedMinValue(Bits));
2013 APInt TC = CM.sdiv(G);
2014 APInt TX = X * TC;
2015 APInt TY = Y * TC;
2016 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
2017 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
2018 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
2020 SmallVector<APInt, 2> TLVec, TUVec;
2021 APInt TB = BM.sdiv(G);
2022 if (TB.sgt(0)) {
2023 TLVec.push_back(ceilingOfQuotient(-TX, TB));
2024 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2025 if (SrcUMvalid) {
2026 TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
2027 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2029 } else {
2030 TUVec.push_back(floorOfQuotient(-TX, TB));
2031 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2032 if (SrcUMvalid) {
2033 TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
2034 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2038 APInt TA = AM.sdiv(G);
2039 if (TA.sgt(0)) {
2040 TLVec.push_back(ceilingOfQuotient(-TY, TA));
2041 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2042 if (DstUMvalid) {
2043 TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
2044 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2046 } else {
2047 TUVec.push_back(floorOfQuotient(-TY, TA));
2048 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2049 if (DstUMvalid) {
2050 TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
2051 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2055 if (TLVec.empty() || TUVec.empty())
2056 return false;
2058 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
2059 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
2061 TL = APIntOps::smax(TLVec.front(), TLVec.back());
2062 TU = APIntOps::smin(TUVec.front(), TUVec.back());
2063 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
2064 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
2066 if (TL.sgt(TU))
2067 ++ExactRDIVindependence;
2068 return TL.sgt(TU);
2072 // symbolicRDIVtest -
2073 // In Section 4.5 of the Practical Dependence Testing paper,the authors
2074 // introduce a special case of Banerjee's Inequalities (also called the
2075 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2076 // particularly cases with symbolics. Since it's only able to disprove
2077 // dependence (not compute distances or directions), we'll use it as a
2078 // fall back for the other tests.
2080 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2081 // where i and j are induction variables and c1 and c2 are loop invariants,
2082 // we can use the symbolic tests to disprove some dependences, serving as a
2083 // backup for the RDIV test. Note that i and j can be the same variable,
2084 // letting this test serve as a backup for the various SIV tests.
2086 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2087 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2088 // loop bounds for the i and j loops, respectively. So, ...
2090 // c1 + a1*i = c2 + a2*j
2091 // a1*i - a2*j = c2 - c1
2093 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2094 // range of the maximum and minimum possible values of a1*i - a2*j.
2095 // Considering the signs of a1 and a2, we have 4 possible cases:
2097 // 1) If a1 >= 0 and a2 >= 0, then
2098 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2099 // -a2*N2 <= c2 - c1 <= a1*N1
2101 // 2) If a1 >= 0 and a2 <= 0, then
2102 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2103 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2105 // 3) If a1 <= 0 and a2 >= 0, then
2106 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2107 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2109 // 4) If a1 <= 0 and a2 <= 0, then
2110 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2111 // a1*N1 <= c2 - c1 <= -a2*N2
2113 // return true if dependence disproved
2114 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2115 const SCEV *C1, const SCEV *C2,
2116 const Loop *Loop1,
2117 const Loop *Loop2) const {
2118 ++SymbolicRDIVapplications;
2119 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2120 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2121 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2122 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2123 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2124 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2125 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2126 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2127 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2128 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2129 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2130 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2131 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2132 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2133 if (SE->isKnownNonNegative(A1)) {
2134 if (SE->isKnownNonNegative(A2)) {
2135 // A1 >= 0 && A2 >= 0
2136 if (N1) {
2137 // make sure that c2 - c1 <= a1*N1
2138 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2139 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2140 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2141 ++SymbolicRDIVindependence;
2142 return true;
2145 if (N2) {
2146 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2147 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2148 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2149 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2150 ++SymbolicRDIVindependence;
2151 return true;
2155 else if (SE->isKnownNonPositive(A2)) {
2156 // a1 >= 0 && a2 <= 0
2157 if (N1 && N2) {
2158 // make sure that c2 - c1 <= a1*N1 - a2*N2
2159 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2160 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2161 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2162 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2163 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2164 ++SymbolicRDIVindependence;
2165 return true;
2168 // make sure that 0 <= c2 - c1
2169 if (SE->isKnownNegative(C2_C1)) {
2170 ++SymbolicRDIVindependence;
2171 return true;
2175 else if (SE->isKnownNonPositive(A1)) {
2176 if (SE->isKnownNonNegative(A2)) {
2177 // a1 <= 0 && a2 >= 0
2178 if (N1 && N2) {
2179 // make sure that a1*N1 - a2*N2 <= c2 - c1
2180 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2181 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2182 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2183 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2184 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2185 ++SymbolicRDIVindependence;
2186 return true;
2189 // make sure that c2 - c1 <= 0
2190 if (SE->isKnownPositive(C2_C1)) {
2191 ++SymbolicRDIVindependence;
2192 return true;
2195 else if (SE->isKnownNonPositive(A2)) {
2196 // a1 <= 0 && a2 <= 0
2197 if (N1) {
2198 // make sure that a1*N1 <= c2 - c1
2199 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2200 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2201 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2202 ++SymbolicRDIVindependence;
2203 return true;
2206 if (N2) {
2207 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2208 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2209 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2210 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2211 ++SymbolicRDIVindependence;
2212 return true;
2217 return false;
2221 // testSIV -
2222 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2223 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2224 // a2 are constant, we attack it with an SIV test. While they can all be
2225 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2226 // they apply; they're cheaper and sometimes more precise.
2228 // Return true if dependence disproved.
2229 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2230 FullDependence &Result, Constraint &NewConstraint,
2231 const SCEV *&SplitIter) const {
2232 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2233 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2234 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2235 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2236 if (SrcAddRec && DstAddRec) {
2237 const SCEV *SrcConst = SrcAddRec->getStart();
2238 const SCEV *DstConst = DstAddRec->getStart();
2239 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2240 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2241 const Loop *CurLoop = SrcAddRec->getLoop();
2242 assert(CurLoop == DstAddRec->getLoop() &&
2243 "both loops in SIV should be same");
2244 Level = mapSrcLoop(CurLoop);
2245 bool disproven;
2246 if (SrcCoeff == DstCoeff)
2247 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2248 Level, Result, NewConstraint);
2249 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2250 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2251 Level, Result, NewConstraint, SplitIter);
2252 else
2253 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2254 Level, Result, NewConstraint);
2255 return disproven ||
2256 gcdMIVtest(Src, Dst, Result) ||
2257 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2259 if (SrcAddRec) {
2260 const SCEV *SrcConst = SrcAddRec->getStart();
2261 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2262 const SCEV *DstConst = Dst;
2263 const Loop *CurLoop = SrcAddRec->getLoop();
2264 Level = mapSrcLoop(CurLoop);
2265 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2266 Level, Result, NewConstraint) ||
2267 gcdMIVtest(Src, Dst, Result);
2269 if (DstAddRec) {
2270 const SCEV *DstConst = DstAddRec->getStart();
2271 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2272 const SCEV *SrcConst = Src;
2273 const Loop *CurLoop = DstAddRec->getLoop();
2274 Level = mapDstLoop(CurLoop);
2275 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2276 CurLoop, Level, Result, NewConstraint) ||
2277 gcdMIVtest(Src, Dst, Result);
2279 llvm_unreachable("SIV test expected at least one AddRec");
2280 return false;
2284 // testRDIV -
2285 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2286 // where i and j are induction variables, c1 and c2 are loop invariant,
2287 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2288 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2289 // It doesn't make sense to talk about distance or direction in this case,
2290 // so there's no point in making special versions of the Strong SIV test or
2291 // the Weak-crossing SIV test.
2293 // With minor algebra, this test can also be used for things like
2294 // [c1 + a1*i + a2*j][c2].
2296 // Return true if dependence disproved.
2297 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2298 FullDependence &Result) const {
2299 // we have 3 possible situations here:
2300 // 1) [a*i + b] and [c*j + d]
2301 // 2) [a*i + c*j + b] and [d]
2302 // 3) [b] and [a*i + c*j + d]
2303 // We need to find what we've got and get organized
2305 const SCEV *SrcConst, *DstConst;
2306 const SCEV *SrcCoeff, *DstCoeff;
2307 const Loop *SrcLoop, *DstLoop;
2309 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2310 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2311 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2312 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2313 if (SrcAddRec && DstAddRec) {
2314 SrcConst = SrcAddRec->getStart();
2315 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2316 SrcLoop = SrcAddRec->getLoop();
2317 DstConst = DstAddRec->getStart();
2318 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2319 DstLoop = DstAddRec->getLoop();
2321 else if (SrcAddRec) {
2322 if (const SCEVAddRecExpr *tmpAddRec =
2323 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2324 SrcConst = tmpAddRec->getStart();
2325 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2326 SrcLoop = tmpAddRec->getLoop();
2327 DstConst = Dst;
2328 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2329 DstLoop = SrcAddRec->getLoop();
2331 else
2332 llvm_unreachable("RDIV reached by surprising SCEVs");
2334 else if (DstAddRec) {
2335 if (const SCEVAddRecExpr *tmpAddRec =
2336 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2337 DstConst = tmpAddRec->getStart();
2338 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2339 DstLoop = tmpAddRec->getLoop();
2340 SrcConst = Src;
2341 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2342 SrcLoop = DstAddRec->getLoop();
2344 else
2345 llvm_unreachable("RDIV reached by surprising SCEVs");
2347 else
2348 llvm_unreachable("RDIV expected at least one AddRec");
2349 return exactRDIVtest(SrcCoeff, DstCoeff,
2350 SrcConst, DstConst,
2351 SrcLoop, DstLoop,
2352 Result) ||
2353 gcdMIVtest(Src, Dst, Result) ||
2354 symbolicRDIVtest(SrcCoeff, DstCoeff,
2355 SrcConst, DstConst,
2356 SrcLoop, DstLoop);
2360 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2361 // Return true if dependence disproved.
2362 // Can sometimes refine direction vectors.
2363 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2364 const SmallBitVector &Loops,
2365 FullDependence &Result) const {
2366 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2367 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2368 Result.Consistent = false;
2369 return gcdMIVtest(Src, Dst, Result) ||
2370 banerjeeMIVtest(Src, Dst, Loops, Result);
2374 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2375 // in this case 10. If there is no constant part, returns NULL.
2376 static
2377 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2378 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2379 return Constant;
2380 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2381 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2382 return Constant;
2383 return nullptr;
2387 //===----------------------------------------------------------------------===//
2388 // gcdMIVtest -
2389 // Tests an MIV subscript pair for dependence.
2390 // Returns true if any possible dependence is disproved.
2391 // Marks the result as inconsistent.
2392 // Can sometimes disprove the equal direction for 1 or more loops,
2393 // as discussed in Michael Wolfe's book,
2394 // High Performance Compilers for Parallel Computing, page 235.
2396 // We spend some effort (code!) to handle cases like
2397 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2398 // but M and N are just loop-invariant variables.
2399 // This should help us handle linearized subscripts;
2400 // also makes this test a useful backup to the various SIV tests.
2402 // It occurs to me that the presence of loop-invariant variables
2403 // changes the nature of the test from "greatest common divisor"
2404 // to "a common divisor".
2405 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2406 FullDependence &Result) const {
2407 LLVM_DEBUG(dbgs() << "starting gcd\n");
2408 ++GCDapplications;
2409 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2410 APInt RunningGCD = APInt::getZero(BitWidth);
2412 // Examine Src coefficients.
2413 // Compute running GCD and record source constant.
2414 // Because we're looking for the constant at the end of the chain,
2415 // we can't quit the loop just because the GCD == 1.
2416 const SCEV *Coefficients = Src;
2417 while (const SCEVAddRecExpr *AddRec =
2418 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2419 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2420 // If the coefficient is the product of a constant and other stuff,
2421 // we can use the constant in the GCD computation.
2422 const auto *Constant = getConstantPart(Coeff);
2423 if (!Constant)
2424 return false;
2425 APInt ConstCoeff = Constant->getAPInt();
2426 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2427 Coefficients = AddRec->getStart();
2429 const SCEV *SrcConst = Coefficients;
2431 // Examine Dst coefficients.
2432 // Compute running GCD and record destination constant.
2433 // Because we're looking for the constant at the end of the chain,
2434 // we can't quit the loop just because the GCD == 1.
2435 Coefficients = Dst;
2436 while (const SCEVAddRecExpr *AddRec =
2437 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2438 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2439 // If the coefficient is the product of a constant and other stuff,
2440 // we can use the constant in the GCD computation.
2441 const auto *Constant = getConstantPart(Coeff);
2442 if (!Constant)
2443 return false;
2444 APInt ConstCoeff = Constant->getAPInt();
2445 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2446 Coefficients = AddRec->getStart();
2448 const SCEV *DstConst = Coefficients;
2450 APInt ExtraGCD = APInt::getZero(BitWidth);
2451 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2452 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2453 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2454 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2455 // If Delta is a sum of products, we may be able to make further progress.
2456 for (const SCEV *Operand : Sum->operands()) {
2457 if (isa<SCEVConstant>(Operand)) {
2458 assert(!Constant && "Surprised to find multiple constants");
2459 Constant = cast<SCEVConstant>(Operand);
2461 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2462 // Search for constant operand to participate in GCD;
2463 // If none found; return false.
2464 const SCEVConstant *ConstOp = getConstantPart(Product);
2465 if (!ConstOp)
2466 return false;
2467 APInt ConstOpValue = ConstOp->getAPInt();
2468 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2469 ConstOpValue.abs());
2471 else
2472 return false;
2475 if (!Constant)
2476 return false;
2477 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2478 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2479 if (ConstDelta == 0)
2480 return false;
2481 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2482 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2483 APInt Remainder = ConstDelta.srem(RunningGCD);
2484 if (Remainder != 0) {
2485 ++GCDindependence;
2486 return true;
2489 // Try to disprove equal directions.
2490 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2491 // the code above can't disprove the dependence because the GCD = 1.
2492 // So we consider what happen if i = i' and what happens if j = j'.
2493 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2494 // which is infeasible, so we can disallow the = direction for the i level.
2495 // Setting j = j' doesn't help matters, so we end up with a direction vector
2496 // of [<>, *]
2498 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2499 // we need to remember that the constant part is 5 and the RunningGCD should
2500 // be initialized to ExtraGCD = 30.
2501 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2503 bool Improved = false;
2504 Coefficients = Src;
2505 while (const SCEVAddRecExpr *AddRec =
2506 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2507 Coefficients = AddRec->getStart();
2508 const Loop *CurLoop = AddRec->getLoop();
2509 RunningGCD = ExtraGCD;
2510 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2511 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2512 const SCEV *Inner = Src;
2513 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2514 AddRec = cast<SCEVAddRecExpr>(Inner);
2515 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2516 if (CurLoop == AddRec->getLoop())
2517 ; // SrcCoeff == Coeff
2518 else {
2519 // If the coefficient is the product of a constant and other stuff,
2520 // we can use the constant in the GCD computation.
2521 Constant = getConstantPart(Coeff);
2522 if (!Constant)
2523 return false;
2524 APInt ConstCoeff = Constant->getAPInt();
2525 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2527 Inner = AddRec->getStart();
2529 Inner = Dst;
2530 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2531 AddRec = cast<SCEVAddRecExpr>(Inner);
2532 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2533 if (CurLoop == AddRec->getLoop())
2534 DstCoeff = Coeff;
2535 else {
2536 // If the coefficient is the product of a constant and other stuff,
2537 // we can use the constant in the GCD computation.
2538 Constant = getConstantPart(Coeff);
2539 if (!Constant)
2540 return false;
2541 APInt ConstCoeff = Constant->getAPInt();
2542 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2544 Inner = AddRec->getStart();
2546 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2547 // If the coefficient is the product of a constant and other stuff,
2548 // we can use the constant in the GCD computation.
2549 Constant = getConstantPart(Delta);
2550 if (!Constant)
2551 // The difference of the two coefficients might not be a product
2552 // or constant, in which case we give up on this direction.
2553 continue;
2554 APInt ConstCoeff = Constant->getAPInt();
2555 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2556 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2557 if (RunningGCD != 0) {
2558 Remainder = ConstDelta.srem(RunningGCD);
2559 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2560 if (Remainder != 0) {
2561 unsigned Level = mapSrcLoop(CurLoop);
2562 Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ;
2563 Improved = true;
2567 if (Improved)
2568 ++GCDsuccesses;
2569 LLVM_DEBUG(dbgs() << "all done\n");
2570 return false;
2574 //===----------------------------------------------------------------------===//
2575 // banerjeeMIVtest -
2576 // Use Banerjee's Inequalities to test an MIV subscript pair.
2577 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2578 // Generally follows the discussion in Section 2.5.2 of
2580 // Optimizing Supercompilers for Supercomputers
2581 // Michael Wolfe
2583 // The inequalities given on page 25 are simplified in that loops are
2584 // normalized so that the lower bound is always 0 and the stride is always 1.
2585 // For example, Wolfe gives
2587 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2589 // where A_k is the coefficient of the kth index in the source subscript,
2590 // B_k is the coefficient of the kth index in the destination subscript,
2591 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2592 // index, and N_k is the stride of the kth index. Since all loops are normalized
2593 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2594 // equation to
2596 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2597 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2599 // Similar simplifications are possible for the other equations.
2601 // When we can't determine the number of iterations for a loop,
2602 // we use NULL as an indicator for the worst case, infinity.
2603 // When computing the upper bound, NULL denotes +inf;
2604 // for the lower bound, NULL denotes -inf.
2606 // Return true if dependence disproved.
2607 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2608 const SmallBitVector &Loops,
2609 FullDependence &Result) const {
2610 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2611 ++BanerjeeApplications;
2612 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2613 const SCEV *A0;
2614 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2615 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2616 const SCEV *B0;
2617 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2618 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2619 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2620 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2622 // Compute bounds for all the * directions.
2623 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2624 for (unsigned K = 1; K <= MaxLevels; ++K) {
2625 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2626 Bound[K].Direction = Dependence::DVEntry::ALL;
2627 Bound[K].DirSet = Dependence::DVEntry::NONE;
2628 findBoundsALL(A, B, Bound, K);
2629 #ifndef NDEBUG
2630 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2631 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2632 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2633 else
2634 LLVM_DEBUG(dbgs() << "-inf\t");
2635 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2636 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2637 else
2638 LLVM_DEBUG(dbgs() << "+inf\n");
2639 #endif
2642 // Test the *, *, *, ... case.
2643 bool Disproved = false;
2644 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2645 // Explore the direction vector hierarchy.
2646 unsigned DepthExpanded = 0;
2647 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2648 Loops, DepthExpanded, Delta);
2649 if (NewDeps > 0) {
2650 bool Improved = false;
2651 for (unsigned K = 1; K <= CommonLevels; ++K) {
2652 if (Loops[K]) {
2653 unsigned Old = Result.DV[K - 1].Direction;
2654 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2655 Improved |= Old != Result.DV[K - 1].Direction;
2656 if (!Result.DV[K - 1].Direction) {
2657 Improved = false;
2658 Disproved = true;
2659 break;
2663 if (Improved)
2664 ++BanerjeeSuccesses;
2666 else {
2667 ++BanerjeeIndependence;
2668 Disproved = true;
2671 else {
2672 ++BanerjeeIndependence;
2673 Disproved = true;
2675 delete [] Bound;
2676 delete [] A;
2677 delete [] B;
2678 return Disproved;
2682 // Hierarchically expands the direction vector
2683 // search space, combining the directions of discovered dependences
2684 // in the DirSet field of Bound. Returns the number of distinct
2685 // dependences discovered. If the dependence is disproved,
2686 // it will return 0.
2687 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2688 CoefficientInfo *B, BoundInfo *Bound,
2689 const SmallBitVector &Loops,
2690 unsigned &DepthExpanded,
2691 const SCEV *Delta) const {
2692 // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2693 // of common loop levels. To avoid excessive compile-time, pessimize all the
2694 // results and immediately return when the number of common levels is beyond
2695 // the given threshold.
2696 if (CommonLevels > MIVMaxLevelThreshold) {
2697 LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2698 "direction exploration is terminated.\n");
2699 for (unsigned K = 1; K <= CommonLevels; ++K)
2700 if (Loops[K])
2701 Bound[K].DirSet = Dependence::DVEntry::ALL;
2702 return 1;
2705 if (Level > CommonLevels) {
2706 // record result
2707 LLVM_DEBUG(dbgs() << "\t[");
2708 for (unsigned K = 1; K <= CommonLevels; ++K) {
2709 if (Loops[K]) {
2710 Bound[K].DirSet |= Bound[K].Direction;
2711 #ifndef NDEBUG
2712 switch (Bound[K].Direction) {
2713 case Dependence::DVEntry::LT:
2714 LLVM_DEBUG(dbgs() << " <");
2715 break;
2716 case Dependence::DVEntry::EQ:
2717 LLVM_DEBUG(dbgs() << " =");
2718 break;
2719 case Dependence::DVEntry::GT:
2720 LLVM_DEBUG(dbgs() << " >");
2721 break;
2722 case Dependence::DVEntry::ALL:
2723 LLVM_DEBUG(dbgs() << " *");
2724 break;
2725 default:
2726 llvm_unreachable("unexpected Bound[K].Direction");
2728 #endif
2731 LLVM_DEBUG(dbgs() << " ]\n");
2732 return 1;
2734 if (Loops[Level]) {
2735 if (Level > DepthExpanded) {
2736 DepthExpanded = Level;
2737 // compute bounds for <, =, > at current level
2738 findBoundsLT(A, B, Bound, Level);
2739 findBoundsGT(A, B, Bound, Level);
2740 findBoundsEQ(A, B, Bound, Level);
2741 #ifndef NDEBUG
2742 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2743 LLVM_DEBUG(dbgs() << "\t <\t");
2744 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2745 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2746 << '\t');
2747 else
2748 LLVM_DEBUG(dbgs() << "-inf\t");
2749 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2750 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2751 << '\n');
2752 else
2753 LLVM_DEBUG(dbgs() << "+inf\n");
2754 LLVM_DEBUG(dbgs() << "\t =\t");
2755 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2756 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2757 << '\t');
2758 else
2759 LLVM_DEBUG(dbgs() << "-inf\t");
2760 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2761 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2762 << '\n');
2763 else
2764 LLVM_DEBUG(dbgs() << "+inf\n");
2765 LLVM_DEBUG(dbgs() << "\t >\t");
2766 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2767 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2768 << '\t');
2769 else
2770 LLVM_DEBUG(dbgs() << "-inf\t");
2771 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2772 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2773 << '\n');
2774 else
2775 LLVM_DEBUG(dbgs() << "+inf\n");
2776 #endif
2779 unsigned NewDeps = 0;
2781 // test bounds for <, *, *, ...
2782 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2783 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2784 Loops, DepthExpanded, Delta);
2786 // Test bounds for =, *, *, ...
2787 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2788 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2789 Loops, DepthExpanded, Delta);
2791 // test bounds for >, *, *, ...
2792 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2793 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2794 Loops, DepthExpanded, Delta);
2796 Bound[Level].Direction = Dependence::DVEntry::ALL;
2797 return NewDeps;
2799 else
2800 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2804 // Returns true iff the current bounds are plausible.
2805 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2806 BoundInfo *Bound, const SCEV *Delta) const {
2807 Bound[Level].Direction = DirKind;
2808 if (const SCEV *LowerBound = getLowerBound(Bound))
2809 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2810 return false;
2811 if (const SCEV *UpperBound = getUpperBound(Bound))
2812 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2813 return false;
2814 return true;
2818 // Computes the upper and lower bounds for level K
2819 // using the * direction. Records them in Bound.
2820 // Wolfe gives the equations
2822 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2823 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2825 // Since we normalize loops, we can simplify these equations to
2827 // LB^*_k = (A^-_k - B^+_k)U_k
2828 // UB^*_k = (A^+_k - B^-_k)U_k
2830 // We must be careful to handle the case where the upper bound is unknown.
2831 // Note that the lower bound is always <= 0
2832 // and the upper bound is always >= 0.
2833 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2834 BoundInfo *Bound, unsigned K) const {
2835 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2836 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2837 if (Bound[K].Iterations) {
2838 Bound[K].Lower[Dependence::DVEntry::ALL] =
2839 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2840 Bound[K].Iterations);
2841 Bound[K].Upper[Dependence::DVEntry::ALL] =
2842 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2843 Bound[K].Iterations);
2845 else {
2846 // If the difference is 0, we won't need to know the number of iterations.
2847 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2848 Bound[K].Lower[Dependence::DVEntry::ALL] =
2849 SE->getZero(A[K].Coeff->getType());
2850 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2851 Bound[K].Upper[Dependence::DVEntry::ALL] =
2852 SE->getZero(A[K].Coeff->getType());
2857 // Computes the upper and lower bounds for level K
2858 // using the = direction. Records them in Bound.
2859 // Wolfe gives the equations
2861 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2862 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2864 // Since we normalize loops, we can simplify these equations to
2866 // LB^=_k = (A_k - B_k)^- U_k
2867 // UB^=_k = (A_k - B_k)^+ U_k
2869 // We must be careful to handle the case where the upper bound is unknown.
2870 // Note that the lower bound is always <= 0
2871 // and the upper bound is always >= 0.
2872 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2873 BoundInfo *Bound, unsigned K) const {
2874 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2875 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2876 if (Bound[K].Iterations) {
2877 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2878 const SCEV *NegativePart = getNegativePart(Delta);
2879 Bound[K].Lower[Dependence::DVEntry::EQ] =
2880 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2881 const SCEV *PositivePart = getPositivePart(Delta);
2882 Bound[K].Upper[Dependence::DVEntry::EQ] =
2883 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2885 else {
2886 // If the positive/negative part of the difference is 0,
2887 // we won't need to know the number of iterations.
2888 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2889 const SCEV *NegativePart = getNegativePart(Delta);
2890 if (NegativePart->isZero())
2891 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2892 const SCEV *PositivePart = getPositivePart(Delta);
2893 if (PositivePart->isZero())
2894 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2899 // Computes the upper and lower bounds for level K
2900 // using the < direction. Records them in Bound.
2901 // Wolfe gives the equations
2903 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2904 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2906 // Since we normalize loops, we can simplify these equations to
2908 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2909 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2911 // We must be careful to handle the case where the upper bound is unknown.
2912 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2913 BoundInfo *Bound, unsigned K) const {
2914 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2915 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2916 if (Bound[K].Iterations) {
2917 const SCEV *Iter_1 = SE->getMinusSCEV(
2918 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2919 const SCEV *NegPart =
2920 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2921 Bound[K].Lower[Dependence::DVEntry::LT] =
2922 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2923 const SCEV *PosPart =
2924 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2925 Bound[K].Upper[Dependence::DVEntry::LT] =
2926 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2928 else {
2929 // If the positive/negative part of the difference is 0,
2930 // we won't need to know the number of iterations.
2931 const SCEV *NegPart =
2932 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2933 if (NegPart->isZero())
2934 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2935 const SCEV *PosPart =
2936 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2937 if (PosPart->isZero())
2938 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2943 // Computes the upper and lower bounds for level K
2944 // using the > direction. Records them in Bound.
2945 // Wolfe gives the equations
2947 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2948 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2950 // Since we normalize loops, we can simplify these equations to
2952 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2953 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2955 // We must be careful to handle the case where the upper bound is unknown.
2956 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2957 BoundInfo *Bound, unsigned K) const {
2958 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2959 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2960 if (Bound[K].Iterations) {
2961 const SCEV *Iter_1 = SE->getMinusSCEV(
2962 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2963 const SCEV *NegPart =
2964 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2965 Bound[K].Lower[Dependence::DVEntry::GT] =
2966 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2967 const SCEV *PosPart =
2968 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2969 Bound[K].Upper[Dependence::DVEntry::GT] =
2970 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2972 else {
2973 // If the positive/negative part of the difference is 0,
2974 // we won't need to know the number of iterations.
2975 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2976 if (NegPart->isZero())
2977 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2978 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2979 if (PosPart->isZero())
2980 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2985 // X^+ = max(X, 0)
2986 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2987 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2991 // X^- = min(X, 0)
2992 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2993 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2997 // Walks through the subscript,
2998 // collecting each coefficient, the associated loop bounds,
2999 // and recording its positive and negative parts for later use.
3000 DependenceInfo::CoefficientInfo *
3001 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
3002 const SCEV *&Constant) const {
3003 const SCEV *Zero = SE->getZero(Subscript->getType());
3004 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
3005 for (unsigned K = 1; K <= MaxLevels; ++K) {
3006 CI[K].Coeff = Zero;
3007 CI[K].PosPart = Zero;
3008 CI[K].NegPart = Zero;
3009 CI[K].Iterations = nullptr;
3011 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
3012 const Loop *L = AddRec->getLoop();
3013 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
3014 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
3015 CI[K].PosPart = getPositivePart(CI[K].Coeff);
3016 CI[K].NegPart = getNegativePart(CI[K].Coeff);
3017 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
3018 Subscript = AddRec->getStart();
3020 Constant = Subscript;
3021 #ifndef NDEBUG
3022 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
3023 for (unsigned K = 1; K <= MaxLevels; ++K) {
3024 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
3025 LLVM_DEBUG(dbgs() << "\tPos Part = ");
3026 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
3027 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
3028 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
3029 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
3030 if (CI[K].Iterations)
3031 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
3032 else
3033 LLVM_DEBUG(dbgs() << "+inf");
3034 LLVM_DEBUG(dbgs() << '\n');
3036 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
3037 #endif
3038 return CI;
3042 // Looks through all the bounds info and
3043 // computes the lower bound given the current direction settings
3044 // at each level. If the lower bound for any level is -inf,
3045 // the result is -inf.
3046 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
3047 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
3048 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3049 if (Bound[K].Lower[Bound[K].Direction])
3050 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
3051 else
3052 Sum = nullptr;
3054 return Sum;
3058 // Looks through all the bounds info and
3059 // computes the upper bound given the current direction settings
3060 // at each level. If the upper bound at any level is +inf,
3061 // the result is +inf.
3062 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
3063 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
3064 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3065 if (Bound[K].Upper[Bound[K].Direction])
3066 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
3067 else
3068 Sum = nullptr;
3070 return Sum;
3074 //===----------------------------------------------------------------------===//
3075 // Constraint manipulation for Delta test.
3077 // Given a linear SCEV,
3078 // return the coefficient (the step)
3079 // corresponding to the specified loop.
3080 // If there isn't one, return 0.
3081 // For example, given a*i + b*j + c*k, finding the coefficient
3082 // corresponding to the j loop would yield b.
3083 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3084 const Loop *TargetLoop) const {
3085 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3086 if (!AddRec)
3087 return SE->getZero(Expr->getType());
3088 if (AddRec->getLoop() == TargetLoop)
3089 return AddRec->getStepRecurrence(*SE);
3090 return findCoefficient(AddRec->getStart(), TargetLoop);
3094 // Given a linear SCEV,
3095 // return the SCEV given by zeroing out the coefficient
3096 // corresponding to the specified loop.
3097 // For example, given a*i + b*j + c*k, zeroing the coefficient
3098 // corresponding to the j loop would yield a*i + c*k.
3099 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3100 const Loop *TargetLoop) const {
3101 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3102 if (!AddRec)
3103 return Expr; // ignore
3104 if (AddRec->getLoop() == TargetLoop)
3105 return AddRec->getStart();
3106 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3107 AddRec->getStepRecurrence(*SE),
3108 AddRec->getLoop(),
3109 AddRec->getNoWrapFlags());
3113 // Given a linear SCEV Expr,
3114 // return the SCEV given by adding some Value to the
3115 // coefficient corresponding to the specified TargetLoop.
3116 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3117 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3118 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3119 const Loop *TargetLoop,
3120 const SCEV *Value) const {
3121 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3122 if (!AddRec) // create a new addRec
3123 return SE->getAddRecExpr(Expr,
3124 Value,
3125 TargetLoop,
3126 SCEV::FlagAnyWrap); // Worst case, with no info.
3127 if (AddRec->getLoop() == TargetLoop) {
3128 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3129 if (Sum->isZero())
3130 return AddRec->getStart();
3131 return SE->getAddRecExpr(AddRec->getStart(),
3132 Sum,
3133 AddRec->getLoop(),
3134 AddRec->getNoWrapFlags());
3136 if (SE->isLoopInvariant(AddRec, TargetLoop))
3137 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3138 return SE->getAddRecExpr(
3139 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3140 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3141 AddRec->getNoWrapFlags());
3145 // Review the constraints, looking for opportunities
3146 // to simplify a subscript pair (Src and Dst).
3147 // Return true if some simplification occurs.
3148 // If the simplification isn't exact (that is, if it is conservative
3149 // in terms of dependence), set consistent to false.
3150 // Corresponds to Figure 5 from the paper
3152 // Practical Dependence Testing
3153 // Goff, Kennedy, Tseng
3154 // PLDI 1991
3155 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3156 SmallBitVector &Loops,
3157 SmallVectorImpl<Constraint> &Constraints,
3158 bool &Consistent) {
3159 bool Result = false;
3160 for (unsigned LI : Loops.set_bits()) {
3161 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3162 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3163 if (Constraints[LI].isDistance())
3164 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3165 else if (Constraints[LI].isLine())
3166 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3167 else if (Constraints[LI].isPoint())
3168 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3170 return Result;
3174 // Attempt to propagate a distance
3175 // constraint into a subscript pair (Src and Dst).
3176 // Return true if some simplification occurs.
3177 // If the simplification isn't exact (that is, if it is conservative
3178 // in terms of dependence), set consistent to false.
3179 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3180 Constraint &CurConstraint,
3181 bool &Consistent) {
3182 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3183 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3184 const SCEV *A_K = findCoefficient(Src, CurLoop);
3185 if (A_K->isZero())
3186 return false;
3187 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3188 Src = SE->getMinusSCEV(Src, DA_K);
3189 Src = zeroCoefficient(Src, CurLoop);
3190 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3191 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3192 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3193 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3194 if (!findCoefficient(Dst, CurLoop)->isZero())
3195 Consistent = false;
3196 return true;
3200 // Attempt to propagate a line
3201 // constraint into a subscript pair (Src and Dst).
3202 // Return true if some simplification occurs.
3203 // If the simplification isn't exact (that is, if it is conservative
3204 // in terms of dependence), set consistent to false.
3205 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3206 Constraint &CurConstraint,
3207 bool &Consistent) {
3208 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3209 const SCEV *A = CurConstraint.getA();
3210 const SCEV *B = CurConstraint.getB();
3211 const SCEV *C = CurConstraint.getC();
3212 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3213 << "\n");
3214 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3215 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3216 if (A->isZero()) {
3217 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3218 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3219 if (!Bconst || !Cconst) return false;
3220 APInt Beta = Bconst->getAPInt();
3221 APInt Charlie = Cconst->getAPInt();
3222 APInt CdivB = Charlie.sdiv(Beta);
3223 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3224 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3225 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3226 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3227 Dst = zeroCoefficient(Dst, CurLoop);
3228 if (!findCoefficient(Src, CurLoop)->isZero())
3229 Consistent = false;
3231 else if (B->isZero()) {
3232 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3233 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3234 if (!Aconst || !Cconst) return false;
3235 APInt Alpha = Aconst->getAPInt();
3236 APInt Charlie = Cconst->getAPInt();
3237 APInt CdivA = Charlie.sdiv(Alpha);
3238 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3239 const SCEV *A_K = findCoefficient(Src, CurLoop);
3240 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3241 Src = zeroCoefficient(Src, CurLoop);
3242 if (!findCoefficient(Dst, CurLoop)->isZero())
3243 Consistent = false;
3245 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3246 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3247 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3248 if (!Aconst || !Cconst) return false;
3249 APInt Alpha = Aconst->getAPInt();
3250 APInt Charlie = Cconst->getAPInt();
3251 APInt CdivA = Charlie.sdiv(Alpha);
3252 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3253 const SCEV *A_K = findCoefficient(Src, CurLoop);
3254 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3255 Src = zeroCoefficient(Src, CurLoop);
3256 Dst = addToCoefficient(Dst, CurLoop, A_K);
3257 if (!findCoefficient(Dst, CurLoop)->isZero())
3258 Consistent = false;
3260 else {
3261 // paper is incorrect here, or perhaps just misleading
3262 const SCEV *A_K = findCoefficient(Src, CurLoop);
3263 Src = SE->getMulExpr(Src, A);
3264 Dst = SE->getMulExpr(Dst, A);
3265 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3266 Src = zeroCoefficient(Src, CurLoop);
3267 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3268 if (!findCoefficient(Dst, CurLoop)->isZero())
3269 Consistent = false;
3271 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3272 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3273 return true;
3277 // Attempt to propagate a point
3278 // constraint into a subscript pair (Src and Dst).
3279 // Return true if some simplification occurs.
3280 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3281 Constraint &CurConstraint) {
3282 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3283 const SCEV *A_K = findCoefficient(Src, CurLoop);
3284 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3285 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3286 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3287 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3288 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3289 Src = zeroCoefficient(Src, CurLoop);
3290 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3291 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3292 Dst = zeroCoefficient(Dst, CurLoop);
3293 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3294 return true;
3298 // Update direction vector entry based on the current constraint.
3299 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3300 const Constraint &CurConstraint) const {
3301 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3302 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3303 if (CurConstraint.isAny())
3304 ; // use defaults
3305 else if (CurConstraint.isDistance()) {
3306 // this one is consistent, the others aren't
3307 Level.Scalar = false;
3308 Level.Distance = CurConstraint.getD();
3309 unsigned NewDirection = Dependence::DVEntry::NONE;
3310 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3311 NewDirection = Dependence::DVEntry::EQ;
3312 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3313 NewDirection |= Dependence::DVEntry::LT;
3314 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3315 NewDirection |= Dependence::DVEntry::GT;
3316 Level.Direction &= NewDirection;
3318 else if (CurConstraint.isLine()) {
3319 Level.Scalar = false;
3320 Level.Distance = nullptr;
3321 // direction should be accurate
3323 else if (CurConstraint.isPoint()) {
3324 Level.Scalar = false;
3325 Level.Distance = nullptr;
3326 unsigned NewDirection = Dependence::DVEntry::NONE;
3327 if (!isKnownPredicate(CmpInst::ICMP_NE,
3328 CurConstraint.getY(),
3329 CurConstraint.getX()))
3330 // if X may be = Y
3331 NewDirection |= Dependence::DVEntry::EQ;
3332 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3333 CurConstraint.getY(),
3334 CurConstraint.getX()))
3335 // if Y may be > X
3336 NewDirection |= Dependence::DVEntry::LT;
3337 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3338 CurConstraint.getY(),
3339 CurConstraint.getX()))
3340 // if Y may be < X
3341 NewDirection |= Dependence::DVEntry::GT;
3342 Level.Direction &= NewDirection;
3344 else
3345 llvm_unreachable("constraint has unexpected kind");
3348 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3349 /// source and destination array references are recurrences on a nested loop,
3350 /// this function flattens the nested recurrences into separate recurrences
3351 /// for each loop level.
3352 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3353 SmallVectorImpl<Subscript> &Pair) {
3354 assert(isLoadOrStore(Src) && "instruction is not load or store");
3355 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3356 Value *SrcPtr = getLoadStorePointerOperand(Src);
3357 Value *DstPtr = getLoadStorePointerOperand(Dst);
3358 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3359 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3360 const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3361 const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3362 const SCEVUnknown *SrcBase =
3363 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3364 const SCEVUnknown *DstBase =
3365 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3367 if (!SrcBase || !DstBase || SrcBase != DstBase)
3368 return false;
3370 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3372 if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3373 SrcSubscripts, DstSubscripts) &&
3374 !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3375 SrcSubscripts, DstSubscripts))
3376 return false;
3378 int Size = SrcSubscripts.size();
3379 LLVM_DEBUG({
3380 dbgs() << "\nSrcSubscripts: ";
3381 for (int I = 0; I < Size; I++)
3382 dbgs() << *SrcSubscripts[I];
3383 dbgs() << "\nDstSubscripts: ";
3384 for (int I = 0; I < Size; I++)
3385 dbgs() << *DstSubscripts[I];
3388 // The delinearization transforms a single-subscript MIV dependence test into
3389 // a multi-subscript SIV dependence test that is easier to compute. So we
3390 // resize Pair to contain as many pairs of subscripts as the delinearization
3391 // has found, and then initialize the pairs following the delinearization.
3392 Pair.resize(Size);
3393 for (int I = 0; I < Size; ++I) {
3394 Pair[I].Src = SrcSubscripts[I];
3395 Pair[I].Dst = DstSubscripts[I];
3396 unifySubscriptType(&Pair[I]);
3399 return true;
3402 /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
3403 /// arrays accessed are fixed-size arrays. Return true if delinearization was
3404 /// successful.
3405 bool DependenceInfo::tryDelinearizeFixedSize(
3406 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3407 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3408 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3409 LLVM_DEBUG({
3410 const SCEVUnknown *SrcBase =
3411 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3412 const SCEVUnknown *DstBase =
3413 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3414 assert(SrcBase && DstBase && SrcBase == DstBase &&
3415 "expected src and dst scev unknowns to be equal");
3418 SmallVector<int, 4> SrcSizes;
3419 SmallVector<int, 4> DstSizes;
3420 if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
3421 SrcSizes) ||
3422 !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
3423 DstSizes))
3424 return false;
3426 // Check that the two size arrays are non-empty and equal in length and
3427 // value.
3428 if (SrcSizes.size() != DstSizes.size() ||
3429 !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3430 SrcSubscripts.clear();
3431 DstSubscripts.clear();
3432 return false;
3435 assert(SrcSubscripts.size() == DstSubscripts.size() &&
3436 "Expected equal number of entries in the list of SrcSubscripts and "
3437 "DstSubscripts.");
3439 Value *SrcPtr = getLoadStorePointerOperand(Src);
3440 Value *DstPtr = getLoadStorePointerOperand(Dst);
3442 // In general we cannot safely assume that the subscripts recovered from GEPs
3443 // are in the range of values defined for their corresponding array
3444 // dimensions. For example some C language usage/interpretation make it
3445 // impossible to verify this at compile-time. As such we can only delinearize
3446 // iff the subscripts are positive and are less than the range of the
3447 // dimension.
3448 if (!DisableDelinearizationChecks) {
3449 auto AllIndicesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3450 SmallVectorImpl<const SCEV *> &Subscripts,
3451 Value *Ptr) {
3452 size_t SSize = Subscripts.size();
3453 for (size_t I = 1; I < SSize; ++I) {
3454 const SCEV *S = Subscripts[I];
3455 if (!isKnownNonNegative(S, Ptr))
3456 return false;
3457 if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3458 const SCEV *Range = SE->getConstant(
3459 ConstantInt::get(SType, DimensionSizes[I - 1], false));
3460 if (!isKnownLessThan(S, Range))
3461 return false;
3464 return true;
3467 if (!AllIndicesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3468 !AllIndicesInRange(DstSizes, DstSubscripts, DstPtr)) {
3469 SrcSubscripts.clear();
3470 DstSubscripts.clear();
3471 return false;
3474 LLVM_DEBUG({
3475 dbgs() << "Delinearized subscripts of fixed-size array\n"
3476 << "SrcGEP:" << *SrcPtr << "\n"
3477 << "DstGEP:" << *DstPtr << "\n";
3479 return true;
3482 bool DependenceInfo::tryDelinearizeParametricSize(
3483 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3484 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3485 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3487 Value *SrcPtr = getLoadStorePointerOperand(Src);
3488 Value *DstPtr = getLoadStorePointerOperand(Dst);
3489 const SCEVUnknown *SrcBase =
3490 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3491 const SCEVUnknown *DstBase =
3492 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3493 assert(SrcBase && DstBase && SrcBase == DstBase &&
3494 "expected src and dst scev unknowns to be equal");
3496 const SCEV *ElementSize = SE->getElementSize(Src);
3497 if (ElementSize != SE->getElementSize(Dst))
3498 return false;
3500 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3501 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3503 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3504 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3505 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3506 return false;
3508 // First step: collect parametric terms in both array references.
3509 SmallVector<const SCEV *, 4> Terms;
3510 collectParametricTerms(*SE, SrcAR, Terms);
3511 collectParametricTerms(*SE, DstAR, Terms);
3513 // Second step: find subscript sizes.
3514 SmallVector<const SCEV *, 4> Sizes;
3515 findArrayDimensions(*SE, Terms, Sizes, ElementSize);
3517 // Third step: compute the access functions for each subscript.
3518 computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
3519 computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
3521 // Fail when there is only a subscript: that's a linearized access function.
3522 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3523 SrcSubscripts.size() != DstSubscripts.size())
3524 return false;
3526 size_t Size = SrcSubscripts.size();
3528 // Statically check that the array bounds are in-range. The first subscript we
3529 // don't have a size for and it cannot overflow into another subscript, so is
3530 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3531 // and dst.
3532 // FIXME: It may be better to record these sizes and add them as constraints
3533 // to the dependency checks.
3534 if (!DisableDelinearizationChecks)
3535 for (size_t I = 1; I < Size; ++I) {
3536 if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3537 return false;
3539 if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3540 return false;
3542 if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3543 return false;
3545 if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3546 return false;
3549 return true;
3552 //===----------------------------------------------------------------------===//
3554 #ifndef NDEBUG
3555 // For debugging purposes, dump a small bit vector to dbgs().
3556 static void dumpSmallBitVector(SmallBitVector &BV) {
3557 dbgs() << "{";
3558 for (unsigned VI : BV.set_bits()) {
3559 dbgs() << VI;
3560 if (BV.find_next(VI) >= 0)
3561 dbgs() << ' ';
3563 dbgs() << "}\n";
3565 #endif
3567 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3568 FunctionAnalysisManager::Invalidator &Inv) {
3569 // Check if the analysis itself has been invalidated.
3570 auto PAC = PA.getChecker<DependenceAnalysis>();
3571 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3572 return true;
3574 // Check transitive dependencies.
3575 return Inv.invalidate<AAManager>(F, PA) ||
3576 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3577 Inv.invalidate<LoopAnalysis>(F, PA);
3580 // depends -
3581 // Returns NULL if there is no dependence.
3582 // Otherwise, return a Dependence with as many details as possible.
3583 // Corresponds to Section 3.1 in the paper
3585 // Practical Dependence Testing
3586 // Goff, Kennedy, Tseng
3587 // PLDI 1991
3589 // Care is required to keep the routine below, getSplitIteration(),
3590 // up to date with respect to this routine.
3591 std::unique_ptr<Dependence>
3592 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3593 bool PossiblyLoopIndependent) {
3594 if (Src == Dst)
3595 PossiblyLoopIndependent = false;
3597 if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3598 // if both instructions don't reference memory, there's no dependence
3599 return nullptr;
3601 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3602 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3603 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3604 return std::make_unique<Dependence>(Src, Dst);
3607 assert(isLoadOrStore(Src) && "instruction is not load or store");
3608 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3609 Value *SrcPtr = getLoadStorePointerOperand(Src);
3610 Value *DstPtr = getLoadStorePointerOperand(Dst);
3612 switch (underlyingObjectsAlias(AA, F->getDataLayout(),
3613 MemoryLocation::get(Dst),
3614 MemoryLocation::get(Src))) {
3615 case AliasResult::MayAlias:
3616 case AliasResult::PartialAlias:
3617 // cannot analyse objects if we don't understand their aliasing.
3618 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3619 return std::make_unique<Dependence>(Src, Dst);
3620 case AliasResult::NoAlias:
3621 // If the objects noalias, they are distinct, accesses are independent.
3622 LLVM_DEBUG(dbgs() << "no alias\n");
3623 return nullptr;
3624 case AliasResult::MustAlias:
3625 break; // The underlying objects alias; test accesses for dependence.
3628 // establish loop nesting levels
3629 establishNestingLevels(Src, Dst);
3630 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3631 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3633 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3634 ++TotalArrayPairs;
3636 unsigned Pairs = 1;
3637 SmallVector<Subscript, 2> Pair(Pairs);
3638 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3639 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3640 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3641 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3642 if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3643 // If two pointers have different bases, trying to analyze indexes won't
3644 // work; we can't compare them to each other. This can happen, for example,
3645 // if one is produced by an LCSSA PHI node.
3647 // We check this upfront so we don't crash in cases where getMinusSCEV()
3648 // returns a SCEVCouldNotCompute.
3649 LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3650 return std::make_unique<Dependence>(Src, Dst);
3652 Pair[0].Src = SrcSCEV;
3653 Pair[0].Dst = DstSCEV;
3655 if (Delinearize) {
3656 if (tryDelinearize(Src, Dst, Pair)) {
3657 LLVM_DEBUG(dbgs() << " delinearized\n");
3658 Pairs = Pair.size();
3662 for (unsigned P = 0; P < Pairs; ++P) {
3663 Pair[P].Loops.resize(MaxLevels + 1);
3664 Pair[P].GroupLoops.resize(MaxLevels + 1);
3665 Pair[P].Group.resize(Pairs);
3666 removeMatchingExtensions(&Pair[P]);
3667 Pair[P].Classification =
3668 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3669 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3670 Pair[P].Loops);
3671 Pair[P].GroupLoops = Pair[P].Loops;
3672 Pair[P].Group.set(P);
3673 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3674 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3675 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3676 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3677 LLVM_DEBUG(dbgs() << "\tloops = ");
3678 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3681 SmallBitVector Separable(Pairs);
3682 SmallBitVector Coupled(Pairs);
3684 // Partition subscripts into separable and minimally-coupled groups
3685 // Algorithm in paper is algorithmically better;
3686 // this may be faster in practice. Check someday.
3688 // Here's an example of how it works. Consider this code:
3690 // for (i = ...) {
3691 // for (j = ...) {
3692 // for (k = ...) {
3693 // for (l = ...) {
3694 // for (m = ...) {
3695 // A[i][j][k][m] = ...;
3696 // ... = A[0][j][l][i + j];
3697 // }
3698 // }
3699 // }
3700 // }
3701 // }
3703 // There are 4 subscripts here:
3704 // 0 [i] and [0]
3705 // 1 [j] and [j]
3706 // 2 [k] and [l]
3707 // 3 [m] and [i + j]
3709 // We've already classified each subscript pair as ZIV, SIV, etc.,
3710 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3711 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3712 // and set Pair[P].Group = {P}.
3714 // Src Dst Classification Loops GroupLoops Group
3715 // 0 [i] [0] SIV {1} {1} {0}
3716 // 1 [j] [j] SIV {2} {2} {1}
3717 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3718 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3720 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3721 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3723 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3724 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3725 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3726 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3727 // to either Separable or Coupled).
3729 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3730 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3731 // so Pair[3].Group = {0, 1, 3} and Done = false.
3733 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3734 // Since Done remains true, we add 2 to the set of Separable pairs.
3736 // Finally, we consider 3. There's nothing to compare it with,
3737 // so Done remains true and we add it to the Coupled set.
3738 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3740 // In the end, we've got 1 separable subscript and 1 coupled group.
3741 for (unsigned SI = 0; SI < Pairs; ++SI) {
3742 if (Pair[SI].Classification == Subscript::NonLinear) {
3743 // ignore these, but collect loops for later
3744 ++NonlinearSubscriptPairs;
3745 collectCommonLoops(Pair[SI].Src,
3746 LI->getLoopFor(Src->getParent()),
3747 Pair[SI].Loops);
3748 collectCommonLoops(Pair[SI].Dst,
3749 LI->getLoopFor(Dst->getParent()),
3750 Pair[SI].Loops);
3751 Result.Consistent = false;
3752 } else if (Pair[SI].Classification == Subscript::ZIV) {
3753 // always separable
3754 Separable.set(SI);
3756 else {
3757 // SIV, RDIV, or MIV, so check for coupled group
3758 bool Done = true;
3759 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3760 SmallBitVector Intersection = Pair[SI].GroupLoops;
3761 Intersection &= Pair[SJ].GroupLoops;
3762 if (Intersection.any()) {
3763 // accumulate set of all the loops in group
3764 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3765 // accumulate set of all subscripts in group
3766 Pair[SJ].Group |= Pair[SI].Group;
3767 Done = false;
3770 if (Done) {
3771 if (Pair[SI].Group.count() == 1) {
3772 Separable.set(SI);
3773 ++SeparableSubscriptPairs;
3775 else {
3776 Coupled.set(SI);
3777 ++CoupledSubscriptPairs;
3783 LLVM_DEBUG(dbgs() << " Separable = ");
3784 LLVM_DEBUG(dumpSmallBitVector(Separable));
3785 LLVM_DEBUG(dbgs() << " Coupled = ");
3786 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3788 Constraint NewConstraint;
3789 NewConstraint.setAny(SE);
3791 // test separable subscripts
3792 for (unsigned SI : Separable.set_bits()) {
3793 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3794 switch (Pair[SI].Classification) {
3795 case Subscript::ZIV:
3796 LLVM_DEBUG(dbgs() << ", ZIV\n");
3797 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3798 return nullptr;
3799 break;
3800 case Subscript::SIV: {
3801 LLVM_DEBUG(dbgs() << ", SIV\n");
3802 unsigned Level;
3803 const SCEV *SplitIter = nullptr;
3804 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3805 SplitIter))
3806 return nullptr;
3807 break;
3809 case Subscript::RDIV:
3810 LLVM_DEBUG(dbgs() << ", RDIV\n");
3811 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3812 return nullptr;
3813 break;
3814 case Subscript::MIV:
3815 LLVM_DEBUG(dbgs() << ", MIV\n");
3816 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3817 return nullptr;
3818 break;
3819 default:
3820 llvm_unreachable("subscript has unexpected classification");
3824 if (Coupled.count()) {
3825 // test coupled subscript groups
3826 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3827 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3828 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3829 for (unsigned II = 0; II <= MaxLevels; ++II)
3830 Constraints[II].setAny(SE);
3831 for (unsigned SI : Coupled.set_bits()) {
3832 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3833 SmallBitVector Group(Pair[SI].Group);
3834 SmallBitVector Sivs(Pairs);
3835 SmallBitVector Mivs(Pairs);
3836 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3837 SmallVector<Subscript *, 4> PairsInGroup;
3838 for (unsigned SJ : Group.set_bits()) {
3839 LLVM_DEBUG(dbgs() << SJ << " ");
3840 if (Pair[SJ].Classification == Subscript::SIV)
3841 Sivs.set(SJ);
3842 else
3843 Mivs.set(SJ);
3844 PairsInGroup.push_back(&Pair[SJ]);
3846 unifySubscriptType(PairsInGroup);
3847 LLVM_DEBUG(dbgs() << "}\n");
3848 while (Sivs.any()) {
3849 bool Changed = false;
3850 for (unsigned SJ : Sivs.set_bits()) {
3851 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3852 // SJ is an SIV subscript that's part of the current coupled group
3853 unsigned Level;
3854 const SCEV *SplitIter = nullptr;
3855 LLVM_DEBUG(dbgs() << "SIV\n");
3856 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3857 SplitIter))
3858 return nullptr;
3859 ConstrainedLevels.set(Level);
3860 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3861 if (Constraints[Level].isEmpty()) {
3862 ++DeltaIndependence;
3863 return nullptr;
3865 Changed = true;
3867 Sivs.reset(SJ);
3869 if (Changed) {
3870 // propagate, possibly creating new SIVs and ZIVs
3871 LLVM_DEBUG(dbgs() << " propagating\n");
3872 LLVM_DEBUG(dbgs() << "\tMivs = ");
3873 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3874 for (unsigned SJ : Mivs.set_bits()) {
3875 // SJ is an MIV subscript that's part of the current coupled group
3876 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3877 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3878 Constraints, Result.Consistent)) {
3879 LLVM_DEBUG(dbgs() << "\t Changed\n");
3880 ++DeltaPropagations;
3881 Pair[SJ].Classification =
3882 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3883 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3884 Pair[SJ].Loops);
3885 switch (Pair[SJ].Classification) {
3886 case Subscript::ZIV:
3887 LLVM_DEBUG(dbgs() << "ZIV\n");
3888 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3889 return nullptr;
3890 Mivs.reset(SJ);
3891 break;
3892 case Subscript::SIV:
3893 Sivs.set(SJ);
3894 Mivs.reset(SJ);
3895 break;
3896 case Subscript::RDIV:
3897 case Subscript::MIV:
3898 break;
3899 default:
3900 llvm_unreachable("bad subscript classification");
3907 // test & propagate remaining RDIVs
3908 for (unsigned SJ : Mivs.set_bits()) {
3909 if (Pair[SJ].Classification == Subscript::RDIV) {
3910 LLVM_DEBUG(dbgs() << "RDIV test\n");
3911 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3912 return nullptr;
3913 // I don't yet understand how to propagate RDIV results
3914 Mivs.reset(SJ);
3918 // test remaining MIVs
3919 // This code is temporary.
3920 // Better to somehow test all remaining subscripts simultaneously.
3921 for (unsigned SJ : Mivs.set_bits()) {
3922 if (Pair[SJ].Classification == Subscript::MIV) {
3923 LLVM_DEBUG(dbgs() << "MIV test\n");
3924 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3925 return nullptr;
3927 else
3928 llvm_unreachable("expected only MIV subscripts at this point");
3931 // update Result.DV from constraint vector
3932 LLVM_DEBUG(dbgs() << " updating\n");
3933 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3934 if (SJ > CommonLevels)
3935 break;
3936 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3937 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3938 return nullptr;
3943 // Make sure the Scalar flags are set correctly.
3944 SmallBitVector CompleteLoops(MaxLevels + 1);
3945 for (unsigned SI = 0; SI < Pairs; ++SI)
3946 CompleteLoops |= Pair[SI].Loops;
3947 for (unsigned II = 1; II <= CommonLevels; ++II)
3948 if (CompleteLoops[II])
3949 Result.DV[II - 1].Scalar = false;
3951 if (PossiblyLoopIndependent) {
3952 // Make sure the LoopIndependent flag is set correctly.
3953 // All directions must include equal, otherwise no
3954 // loop-independent dependence is possible.
3955 for (unsigned II = 1; II <= CommonLevels; ++II) {
3956 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3957 Result.LoopIndependent = false;
3958 break;
3962 else {
3963 // On the other hand, if all directions are equal and there's no
3964 // loop-independent dependence possible, then no dependence exists.
3965 bool AllEqual = true;
3966 for (unsigned II = 1; II <= CommonLevels; ++II) {
3967 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3968 AllEqual = false;
3969 break;
3972 if (AllEqual)
3973 return nullptr;
3976 return std::make_unique<FullDependence>(std::move(Result));
3979 //===----------------------------------------------------------------------===//
3980 // getSplitIteration -
3981 // Rather than spend rarely-used space recording the splitting iteration
3982 // during the Weak-Crossing SIV test, we re-compute it on demand.
3983 // The re-computation is basically a repeat of the entire dependence test,
3984 // though simplified since we know that the dependence exists.
3985 // It's tedious, since we must go through all propagations, etc.
3987 // Care is required to keep this code up to date with respect to the routine
3988 // above, depends().
3990 // Generally, the dependence analyzer will be used to build
3991 // a dependence graph for a function (basically a map from instructions
3992 // to dependences). Looking for cycles in the graph shows us loops
3993 // that cannot be trivially vectorized/parallelized.
3995 // We can try to improve the situation by examining all the dependences
3996 // that make up the cycle, looking for ones we can break.
3997 // Sometimes, peeling the first or last iteration of a loop will break
3998 // dependences, and we've got flags for those possibilities.
3999 // Sometimes, splitting a loop at some other iteration will do the trick,
4000 // and we've got a flag for that case. Rather than waste the space to
4001 // record the exact iteration (since we rarely know), we provide
4002 // a method that calculates the iteration. It's a drag that it must work
4003 // from scratch, but wonderful in that it's possible.
4005 // Here's an example:
4007 // for (i = 0; i < 10; i++)
4008 // A[i] = ...
4009 // ... = A[11 - i]
4011 // There's a loop-carried flow dependence from the store to the load,
4012 // found by the weak-crossing SIV test. The dependence will have a flag,
4013 // indicating that the dependence can be broken by splitting the loop.
4014 // Calling getSplitIteration will return 5.
4015 // Splitting the loop breaks the dependence, like so:
4017 // for (i = 0; i <= 5; i++)
4018 // A[i] = ...
4019 // ... = A[11 - i]
4020 // for (i = 6; i < 10; i++)
4021 // A[i] = ...
4022 // ... = A[11 - i]
4024 // breaks the dependence and allows us to vectorize/parallelize
4025 // both loops.
4026 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
4027 unsigned SplitLevel) {
4028 assert(Dep.isSplitable(SplitLevel) &&
4029 "Dep should be splitable at SplitLevel");
4030 Instruction *Src = Dep.getSrc();
4031 Instruction *Dst = Dep.getDst();
4032 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
4033 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
4034 assert(isLoadOrStore(Src));
4035 assert(isLoadOrStore(Dst));
4036 Value *SrcPtr = getLoadStorePointerOperand(Src);
4037 Value *DstPtr = getLoadStorePointerOperand(Dst);
4038 assert(underlyingObjectsAlias(
4039 AA, F->getDataLayout(), MemoryLocation::get(Dst),
4040 MemoryLocation::get(Src)) == AliasResult::MustAlias);
4042 // establish loop nesting levels
4043 establishNestingLevels(Src, Dst);
4045 FullDependence Result(Src, Dst, false, CommonLevels);
4047 unsigned Pairs = 1;
4048 SmallVector<Subscript, 2> Pair(Pairs);
4049 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
4050 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
4051 Pair[0].Src = SrcSCEV;
4052 Pair[0].Dst = DstSCEV;
4054 if (Delinearize) {
4055 if (tryDelinearize(Src, Dst, Pair)) {
4056 LLVM_DEBUG(dbgs() << " delinearized\n");
4057 Pairs = Pair.size();
4061 for (unsigned P = 0; P < Pairs; ++P) {
4062 Pair[P].Loops.resize(MaxLevels + 1);
4063 Pair[P].GroupLoops.resize(MaxLevels + 1);
4064 Pair[P].Group.resize(Pairs);
4065 removeMatchingExtensions(&Pair[P]);
4066 Pair[P].Classification =
4067 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4068 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4069 Pair[P].Loops);
4070 Pair[P].GroupLoops = Pair[P].Loops;
4071 Pair[P].Group.set(P);
4074 SmallBitVector Separable(Pairs);
4075 SmallBitVector Coupled(Pairs);
4077 // partition subscripts into separable and minimally-coupled groups
4078 for (unsigned SI = 0; SI < Pairs; ++SI) {
4079 if (Pair[SI].Classification == Subscript::NonLinear) {
4080 // ignore these, but collect loops for later
4081 collectCommonLoops(Pair[SI].Src,
4082 LI->getLoopFor(Src->getParent()),
4083 Pair[SI].Loops);
4084 collectCommonLoops(Pair[SI].Dst,
4085 LI->getLoopFor(Dst->getParent()),
4086 Pair[SI].Loops);
4087 Result.Consistent = false;
4089 else if (Pair[SI].Classification == Subscript::ZIV)
4090 Separable.set(SI);
4091 else {
4092 // SIV, RDIV, or MIV, so check for coupled group
4093 bool Done = true;
4094 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4095 SmallBitVector Intersection = Pair[SI].GroupLoops;
4096 Intersection &= Pair[SJ].GroupLoops;
4097 if (Intersection.any()) {
4098 // accumulate set of all the loops in group
4099 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4100 // accumulate set of all subscripts in group
4101 Pair[SJ].Group |= Pair[SI].Group;
4102 Done = false;
4105 if (Done) {
4106 if (Pair[SI].Group.count() == 1)
4107 Separable.set(SI);
4108 else
4109 Coupled.set(SI);
4114 Constraint NewConstraint;
4115 NewConstraint.setAny(SE);
4117 // test separable subscripts
4118 for (unsigned SI : Separable.set_bits()) {
4119 switch (Pair[SI].Classification) {
4120 case Subscript::SIV: {
4121 unsigned Level;
4122 const SCEV *SplitIter = nullptr;
4123 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4124 Result, NewConstraint, SplitIter);
4125 if (Level == SplitLevel) {
4126 assert(SplitIter != nullptr);
4127 return SplitIter;
4129 break;
4131 case Subscript::ZIV:
4132 case Subscript::RDIV:
4133 case Subscript::MIV:
4134 break;
4135 default:
4136 llvm_unreachable("subscript has unexpected classification");
4140 if (Coupled.count()) {
4141 // test coupled subscript groups
4142 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4143 for (unsigned II = 0; II <= MaxLevels; ++II)
4144 Constraints[II].setAny(SE);
4145 for (unsigned SI : Coupled.set_bits()) {
4146 SmallBitVector Group(Pair[SI].Group);
4147 SmallBitVector Sivs(Pairs);
4148 SmallBitVector Mivs(Pairs);
4149 SmallBitVector ConstrainedLevels(MaxLevels + 1);
4150 for (unsigned SJ : Group.set_bits()) {
4151 if (Pair[SJ].Classification == Subscript::SIV)
4152 Sivs.set(SJ);
4153 else
4154 Mivs.set(SJ);
4156 while (Sivs.any()) {
4157 bool Changed = false;
4158 for (unsigned SJ : Sivs.set_bits()) {
4159 // SJ is an SIV subscript that's part of the current coupled group
4160 unsigned Level;
4161 const SCEV *SplitIter = nullptr;
4162 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4163 Result, NewConstraint, SplitIter);
4164 if (Level == SplitLevel && SplitIter)
4165 return SplitIter;
4166 ConstrainedLevels.set(Level);
4167 if (intersectConstraints(&Constraints[Level], &NewConstraint))
4168 Changed = true;
4169 Sivs.reset(SJ);
4171 if (Changed) {
4172 // propagate, possibly creating new SIVs and ZIVs
4173 for (unsigned SJ : Mivs.set_bits()) {
4174 // SJ is an MIV subscript that's part of the current coupled group
4175 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4176 Pair[SJ].Loops, Constraints, Result.Consistent)) {
4177 Pair[SJ].Classification =
4178 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4179 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4180 Pair[SJ].Loops);
4181 switch (Pair[SJ].Classification) {
4182 case Subscript::ZIV:
4183 Mivs.reset(SJ);
4184 break;
4185 case Subscript::SIV:
4186 Sivs.set(SJ);
4187 Mivs.reset(SJ);
4188 break;
4189 case Subscript::RDIV:
4190 case Subscript::MIV:
4191 break;
4192 default:
4193 llvm_unreachable("bad subscript classification");
4201 llvm_unreachable("somehow reached end of routine");
4202 return nullptr;